
Internet-Draft J. Linn
IETF Common Authentication Technology WG OpenVision Technologies
draft-ietf-cat-kerb5gss-01.txt July 1994

The Kerberos Version 5 GSS-API Mechanism

STATUS OF THIS MEMO

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress."

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 Comments on this document should be sent to "cat-ietf@mit.edu", the
 IETF Common Authentication Technology WG discussion list.

ABSTRACT

 This specification defines protocols, procedures, and conventions to
 be employed by peers implementing the Generic Security Service
 Application Program Interface (as specified in RFCs 1508 and 1509)
 when using Kerberos Version 5 technology (as specified in RFC 1510).

ACKNOWLEDGMENTS

 Much of the material in this Internet-Draft is based on working
 documents drafted by John Wray of Digital Equipment Corporation and
 on discussions, implementation activities, and interoperability
 testing involving Marc Horowitz of OpenVision Technologies, Ted Ts'o
 of the Massachusetts Institute of Technology (MIT), and John Wray.
 Thanks are due to each of these individuals for their contributions
 towards development and availability of GSS-API support within the
 Kerberos Version 5 code base.

1. Token Formats

 This section discusses protocol-visible characteristics of the GSS-

Linn Document Expiration: 31 January 1995 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerb5gss-01.txt
https://datatracker.ietf.org/doc/html/rfc1510

Internet-Draft July 1994

 API mechanism to be implemented atop Kerberos V5 security technology
 per RFC-1508 and RFC-1510; it defines elements of protocol for
 interoperability and is independent of language bindings per RFC-

1509.

 Tokens transferred between GSS-API peers (for security context
 management and per-message protection purposes) are defined. The
 data elements exchanged between a GSS-API endpoint implementation and
 the Kerberos KDC are not specific to GSS-API usage and are therefore
 defined within RFC-1510 rather than within this specification.

 To support ongoing experimentation, testing, and evolution of the
 specification, the Kerberos V5 GSS-API mechanism as defined in this
 and any successor Internet-Drafts will be identified with the
 following Object Identifier, as defined in RFC-1510, until the
 specification is advanced to the level of Proposed Standard RFC:

 {iso(1), org(3), dod(5), internet(1), security(5), kerberosv5(2)}

 Upon advancement to the level of Proposed Standard RFC, the Kerberos
 V5 GSS-API mechanism will be identified by an Object Identifier
 having the value:

 {iso(1) member-body(2) United States(840) mit(113554) infosys(1)
 gssapi(2) krb5(2)}

1.1. Context Establishment Tokens

 Per RFC-1508, Appendix B, the initial context establishment token
 will be enclosed within framing as follows:

 InitialContextToken ::=
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType
 -- MechType is OBJECT IDENTIFIER
 -- representing "Kerberos V5"
 innerContextToken ANY DEFINED BY thisMech
 -- contents mechanism-specific;
 -- ASN.1 usage within innerContextToken
 -- is not required
 }

 The innerContextToken of the initial context token will consist of a
 Kerberos V5 KRB_AP_REQ message, preceded by a two-byte token-id
 (TOK_ID) field, which shall contain the value 01 00.

 The above GSS-API framing shall be applied to all tokens emitted by
 the Kerberos V5 GSS-API mechanism, including KRB_AP_REP, KRB_ERROR,

https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1509
https://datatracker.ietf.org/doc/html/rfc1509
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1508#appendix-B

Linn Document Expiration: 31 January 1995 [Page 2]

Internet-Draft July 1994

 context-deletion, and per-message tokens, not just to the initial
 token in a context establishment sequence. While not required by

RFC-1508, this enables implementations to perform enhanced error-
 checking. The innerContextToken field of context establishment tokens
 for the Kerberos V5 GSS-API mechanism will contain a Kerberos message
 (KRB_AP_REQ, KRB_AP_REP or KRB_ERROR), preceded by a 2-byte TOK_ID
 field containing 01 00 for KRB_AP_REQ messages, 02 00 for KRB_AP_REP
 messages and 03 00 for KRB_ERROR messages.

 Relevant KRB_AP_REQ syntax (from RFC-1510) is as follows:

 AP-REQ ::= [APPLICATION 14] SEQUENCE {
 pvno [0] INTEGER, -- indicates Version 5
 msg-type [1] INTEGER, -- indicates KRB_AP_REQ
 ap-options[2] APOptions,
 ticket[3] Ticket,
 authenticator[4] EncryptedData
 }

 APOptions ::= BIT STRING {
 reserved (0),
 use-session-key (1),
 mutual-required (2)
 }

 Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER, -- indicates Version 5
 realm [1] Realm,
 sname [2] PrincipalName,
 enc-part [3] EncryptedData
 }

 -- Encrypted part of ticket
 EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags[0] TicketFlags,
 key[1] EncryptionKey,
 crealm[2] Realm,
 cname[3] PrincipalName,
 transited[4] TransitedEncoding,
 authtime[5] KerberosTime,
 starttime[6] KerberosTime OPTIONAL,
 endtime[7] KerberosTime,
 renew-till[8] KerberosTime OPTIONAL,
 caddr[9] HostAddresses OPTIONAL,
 authorization-data[10] AuthorizationData OPTIONAL
 }

 -- Unencrypted authenticator

https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1510

Linn Document Expiration: 31 January 1995 [Page 3]

Internet-Draft July 1994

 Authenticator ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno[0] INTEGER,
 crealm[1] Realm,
 cname[2] PrincipalName,
 cksum[3] Checksum OPTIONAL,
 cusec[4] INTEGER,
 ctime[5] KerberosTime,
 subkey[6] EncryptionKey OPTIONAL,
 seq-number[7] INTEGER OPTIONAL,
 authorization-data[8] AuthorizationData OPTIONAL
 }

 For purposes of this specification, the authenticator shall include
 the optional sequence number, and the checksum field shall be used to
 convey the channel bindings. The checksum will have a type of 0x8003
 (within the set of negative 16-bit values reserved by Kerberos for
 application use), and a 24-byte value field, as follows:

 Byte Name Description
 0..3 Lgth Number of bytes in Bnd field;
 Currently contains hex 10 00 00 00
 (16, represented in little-endian form)
 4..19 Bnd MD5 hash of channel bindings, taken over all non-null
 components of bindings, in order of declaration.
 Integer fields within channel bindings are represented
 in little-endian order for the purposes of the MD5
 calculation.
 20..23 Flags Bit vector of context-establishment flags,
 with values consistent with RFC-1509, p. 41:
 GSS_C_DELEG_FLAG: 1
 GSS_C_MUTUAL_FLAG: 2
 GSS_C_REPLAY_FLAG: 4
 GSS_C_SEQUENCE_FLAG: 8
 GSS_C_CONF_FLAG: 16
 GSS_C_INTEG_FLAG: 32
 The resulting bit vector is encoded into bytes 20..23
 in little-endian form.

 In computing the contents of the "Bnd" field, the following detailed
 points apply:

 (1) Each integer field shall be formatted into four bytes, using
 little-endian byte ordering, for purposes of MD5 hash
 computation.

 (2) All input length fields within gss_buffer_desc elements of a
 gss_channel_bindings_struct, even those which are zero-valued,
 shall be included in the hash calculation; the value elements of

https://datatracker.ietf.org/doc/html/rfc1509

Linn Document Expiration: 31 January 1995 [Page 4]

Internet-Draft July 1994

 gss_buffer_desc elements shall be dereferenced, and the
 resulting data shall be included within the hash computation,
 only for the case of gss_buffer_desc elements having non-zero
 length specifiers.

 (3) If the caller passes the value GSS_C_NO_BINDINGS instead of
 a valid channel bindings structure, the Bnd field shall be set
 to 16 zero-valued bytes.

 It is anticipated that future extensions to this specification may
 add new features by suffixing additional data following the checksum
 value field as defined above. In order that such extended
 implementations may remain interoperable with implementations based
 on the current specification, implementations of this Internet-Draft
 shall be capable of accepting checksum value fields with Lgth
 specifiers indicating 24 bytes or greater. Processing procedures for
 data elements within the checksum value field but after the Flags are
 not, however, currently defined.

 A context establishment sequence based on the Kerberos V5 mechanism
 will perform one-way authentication (without confirmation or any
 return token from target to initiator in response to the initiator's
 KRB_AP_REQ) if the mutual_req bit is not set in the application's
 call to gss_init_sec_context(). Applications requiring confirmation
 that their authentication was successful should request mutual
 authentication, resulting in a "mutual-required" indication within
 KRB_AP_REQ APoptions and the setting of the mutual_req bit in the
 flags field of the authenticator checksum. In response to such a
 request, the context target will reply to the initiator with a token
 containing either a KRB_AP_REP or KRB_ERROR, completing the mutual
 context establishment exchange.

 Relevant KRB_AP_REP syntax is as follows:

 AP-REP ::= [APPLICATION 15] SEQUENCE {
 pvno [0] INTEGER, -- represents Kerberos V5
 msg-type [1] INTEGER, -- represents KRB_AP_REP
 enc-part [2] EncryptedData
 }

 EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] INTEGER,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] INTEGER OPTIONAL
 }

 The optional seq-number element within the AP-REP's EncAPRepPart

Linn Document Expiration: 31 January 1995 [Page 5]

Internet-Draft July 1994

 shall be included.

 The syntax of KRB_ERROR is as follows:

 KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 ctime[2] KerberosTime OPTIONAL,
 cusec[3] INTEGER OPTIONAL,
 stime[4] KerberosTime,
 susec[5] INTEGER,
 error-code[6] INTEGER,
 crealm[7] Realm OPTIONAL,
 cname[8] PrincipalName OPTIONAL,
 realm[9] Realm, -- Correct realm
 sname[10] PrincipalName, -- Correct name
 e-text[11] GeneralString OPTIONAL,
 e-data[12] OCTET STRING OPTIONAL
 }

 Values to be transferred in the error-code field of a KRB-ERROR
 message are defined in [RFC-1510], not in this specification.

1.2. Per-Message and Context Deletion Tokens

 Three classes of tokens are defined in this section: "Sign" tokens,
 emitted by calls to gss_sign() and consumed by calls to gss_verify(),
 "Seal" tokens, emitted by calls to gss_seal() and consumed by calls
 to gss_unseal(), and context deletion tokens, emitted by calls to
 gss_delete_sec_context() and consumed by calls to
 gss_process_context_token().

 Several variants of cryptographic keys are used in generation and
 processing of per-message tokens:

 (1) context key: uses Kerberos session key (or subkey, if
 present in authenticator emitted by context initiator) directly

 (2) confidentiality key: forms variant of context key by
 exclusive-OR with the hexadecimal constant f0f0f0f0f0f0f0f0.

 (3) MD2.5 seed key: forms variant of context key by reversing
 the bytes of the context key (i.e. if the original key is the
 8-byte sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the seed key
 will be {hh, gg, ff, ee, dd, cc, bb, aa}).

1.2.1. Per-message Tokens - Sign

https://datatracker.ietf.org/doc/html/rfc1510

Linn Document Expiration: 31 January 1995 [Page 6]

Internet-Draft July 1994

 Use of the gss_sign() call yields a token, separate from the user
 data being protected, which can be used to verify the integrity of
 that data as received. The token has the following format:

 Byte no Name Description
 0..1 TOK_ID Identification field.
 Tokens emitted by gss_sign() contain
 the hex value 01 01 in this field.
 2..3 SGN_ALG Integrity algorithm indicator.
 00 00 - DES MAC MD5
 01 00 - MD2.5
 02 00 - DES MAC
 4..7 Filler Contains ff ff ff ff
 8..15 SND_SEQ Sequence number field.
 16..23 SGN_CKSUM Checksum of "to-be-signed data",
 calculated according to algorithm
 specified in SGN_ALG field.

 GSS-API tokens must be encapsulated within the higher-level protocol
 by the application; no embedded length field is necessary.

1.2.1.1. Checksum

 Checksum calculation procedure (common to all algorithms): Checksums
 are calculated over the data field, logically prepended by the first
 8 bytes of the plaintext packet header. The resulting signature
 binds the data to the packet type and signature algorithm identifier
 fields.

 DES MAC MD5 algorithm: The checksum is formed by computing an MD5
 [RFC-1321] hash over the plaintext data, and then computing a DES-CBC
 MAC on the 16-byte MD5 result. A standard 64-bit DES-CBC MAC is
 computed per [FIPS-PUB-113], employing the context key and a zero IV.
 The 8-byte result is stored in the SGN_CKSUM field.

 MD2.5 algorithm: The checksum is formed by first DES-CBC encrypting a
 16-byte zero-block, using a zero IV and a key formed by reversing the
 bytes of the context key (i.e. if the original key is the 8-byte
 sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the checksum key will be
 {hh, gg, ff, ee, dd, cc, bb, aa}). The resulting 16-byte value is
 logically prepended to the to-be-signed data. A standard MD5
 checksum is calculated over the combined data, and the first 8 bytes
 of the result are stored in the SGN_CKSUM field. (Note: we refer to
 this algorithm informally as "MD2.5" to connote the fact that it uses
 half of the 128 bits generated by MD5; use of only a subset of the
 MD5 bits is intended to protect against the prospect that data could
 be postfixed to an existing message with corresponding modifications
 being made to the checksum.)

https://datatracker.ietf.org/doc/html/rfc1321

Linn Document Expiration: 31 January 1995 [Page 7]

Internet-Draft July 1994

 DES-MAC algorithm: A standard 64-bit DES-CBC MAC is computed on the
 plaintext data per [FIPS-PUB-113], employing the context key and a
 zero IV. Padding procedures to accomodate plaintext data lengths
 which may not be integral multiples of 8 bytes are defined in [FIPS-
 PUB-113]. The result is an 8-byte value, which is stored in the
 SGN_CKSUM field. Support for this algorithm may not be present in
 all implementations.

1.2.1.2. Sequence Number

 Sequence number field: The 8 byte plaintext sequence number field is
 formed from the sender's four-byte sequence number as follows. If
 the four bytes of the sender's sequence number are named s0, s1, s2
 and s3 (from least to most significant), the plaintext sequence
 number field is the 8 byte sequence: (s0, s1, s2, s3, di, di, di,
 di), where 'di' is the direction-indicator (Hex 0 - sender is the
 context initiator, Hex FF - sender is the context acceptor). The
 field is then DES-CBC encrypted using the context key and an IV
 formed from the first 8 bytes of the previously calculated SGN_CKSUM
 field. After sending a gss_sign() or gss_seal() token, the sender's
 sequence number is incremented by one.

 The receiver of the token will first verify the SGN_CKSUM field. If
 valid, the sequence number field may be decrypted and compared to the
 expected sequence number. The repetition of the (effectively 1-bit)
 direction indicator within the sequence number field provides
 redundancy so that the receiver may verify that the decryption
 succeeded.

 Since the checksum computation is used as an IV to the sequence
 number decryption, attempts to splice a checksum and sequence number
 from different messages will be detected. The direction indicator
 will detect packets that have been maliciously reflected.

1.2.2. Per-message Tokens - Seal

 Use of the gss_seal() call yields a token which encapsulates the
 input user data (optionally encrypted) along with associated
 integrity check quantities. The token emitted by gss_seal() consists
 of an integrity header whose format is identical to that emitted by
 gss_sign() (except that the TOK_ID field contains the value 02 01),
 followed by a body portion that contains either the plaintext data
 (if SEAL_ALG = ff ff) or encrypted data for any other supported value
 of SEAL_ALG. Currently, only SEAL_ALG = 00 00 is supported, and
 means that DES-CBC encryption is being used to protect the data.

 The gss_seal() token has the following format:

Linn Document Expiration: 31 January 1995 [Page 8]

Internet-Draft July 1994

 Byte no Name Description
 0..1 TOK_ID Identification field.
 Tokens emitted by gss_seal() contain
 the hex value 02 01 in this field.
 2..3 SGN_ALG Checksum algorithm indicator.
 00 00 - DES MAC MD5
 01 00 - MD2.5
 02 00 - DES MAC
 4..5 SEAL_ALG ff ff - none
 00 00 - DES
 6..7 Filler Contains ff ff
 8..15 SND_SEQ Encrypted sequence number field.
 16..23 SGN_CKSUM Checksum of plaintext padded data,
 calculated according to algorithm
 specified in SGN_ALG field.
 24..last Data encrypted or plaintext padded data

 GSS-API tokens must be encapsulated within the higher-level protocol
 by the application; no embedded length field is necessary.

1.2.2.1. Checksum

 Checksum calculation procedure (common to all algorithms): Checksums
 are calculated over the plaintext padded data field, logically
 prepended by the first 8 bytes of the plaintext packet header. The
 resulting signature binds the data to the packet type, protocol
 version, and signature algorithm identifier fields.

 DES MAC MD5 algorithm: The checksum is formed by computing an MD5
 hash over the plaintext padded data, and then computing a DES-CBC MAC
 on the 16-byte MD5 result. A standard 64-bit DES-CBC MAC is computed
 per [FIPS-PUB-113], employing the context key and a zero IV. The 8-
 byte result is stored in the SGN_CKSUM field.

 MD2.5 algorithm: The checksum is formed by first DES-CBC encrypting a
 16-byte zero-block, using a zero IV and a key formed by reversing the
 bytes of the context key (i.e., if the original key is the 8-byte
 sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the checksum key will be
 {hh, gg, ff, ee, dd, cc, bb, aa}). The resulting 16-byte value is
 logically pre-pended to the "to-be-signed data". A standard MD5
 checksum is calculated over the combined data, and the first 8 bytes
 of the result are stored in the SGN_CKSUM field.

 DES-MAC algorithm: A standard 64-bit DES-CBC MAC is computed on the
 plaintext padded data per [FIPS-PUB-113], employing the context key
 and a zero IV. The plaintext padded data is already assured to be an
 integral multiple of 8 bytes; no additional padding is required or
 applied in order to accomplish MAC calculation. The result is an 8-

Linn Document Expiration: 31 January 1995 [Page 9]

Internet-Draft July 1994

 byte value, which is stored in the SGN_CKSUM field. Support for this
 algorithm may not be present in all implementations.

1.2.2. Sequence Number

 Sequence number field: The 8 byte plaintext sequence number field is
 formed from the sender's four-byte sequence number as follows. If
 the four bytes of the sender's sequence number are named s0, s1, s2
 and s3 (from least to most significant), the plaintext sequence
 number field is the 8 byte sequence: (s0, s1, s2, s3, di, di, di,
 di), where 'di' is the direction-indicator (Hex 0 - sender is the
 context initiator, Hex FF - sender is the context acceptor).

 The field is then DES-CBC encrypted using the context key and an IV
 formed from the first 8 bytes of the SEAL_CKSUM field.

 After sending a gss_sign() or gss_seal() token, the sender's sequence
 numbers are incremented by one.

1.2.2.3: Padding

 Data padding: Before encryption and/or signature calculation,
 plaintext data is padded to the next highest multiple of 8 bytes, by
 appending between 1 and 8 bytes, the value of each such byte being
 the total number of pad bytes. For example, given data of length 20
 bytes, four pad bytes will be appended, and each byte will contain
 the hex value 04. An 8-byte random confounder is prepended to the
 data, and signatures are calculated over the resulting padded
 plaintext.

 After padding, the data is encrypted according to the algorithm
 specified in the SEAL_ALG field. For SEAL_ALG=DES (the only non-null
 algorithm currently supported), the data is encrypted using DES-CBC,
 with an IV of zero. The key used is derived from the established
 context key by XOR-ing the context key with the hexadecimal constant
 f0f0f0f0f0f0f0f0.

1.2.3. Context deletion token

 The token emitted by gss_delete_sec_context() is based on the packet
 format for tokens emitted by gss_sign(). The context-deletion token
 has the following format:

 Byte no Name Description
 0..1 TOK_ID Identification field.
 Tokens emitted by
 gss_delete_sec_context() contain
 the hex value 01 02 in this field.

Linn Document Expiration: 31 January 1995 [Page 10]

Internet-Draft July 1994

 2..3 SGN_ALG Integrity algorithm indicator.
 00 00 - DES MAC MD5
 01 00 - MD2.5
 02 00 - DES MAC
 4..7 Filler Contains ff ff ff ff
 8..15 SND_SEQ Sequence number field.
 16..23 SGN_CKSUM Checksum of "to-be-signed data",
 calculated according to algorithm
 specified in SGN_ALG field.

 SGN_ALG and SND_SEQ will be calculated as for tokens emitted by
 gss_sign(). The SGN_CKSUM will be calculated as for tokens emitted
 by gss_sign(), except that the user-data component of the "to-be-
 signed" data will be a zero-length string.

2. Name Types and Object Identifiers

 This section discusses the name types which may be passed as input to
 the Kerberos V5 GSS-API mechanism's gss_import_name() call, and their
 associated identifier values. It defines interface elements in
 support of portability, and assumes use of C language bindings per

RFC-1509. In addition to specifying OID values for name type
 identifiers, symbolic names are included and recommended to GSS-API
 implementors in the interests of convenience to callers. It is
 understood that not all implementations of the Kerberos V5 GSS-API
 mechanism need support all name types in this list, and that
 additional name forms will likely be added to this list over time.
 Further, the definitions of some or all name types may later migrate
 to other, mechanism-independent, specifications. The occurrence of a
 name type in this specification is specifically not intended to
 suggest that the type may be supported only by an implementation of
 the Kerberos V5 mechanism. In particular, the occurrence of the
 string "_KRB5_" in the symbolic name strings constitutes a means to
 unambiguously register the name strings, avoiding collision with
 other documents; it is not meant to limit the name types' usage or
 applicability.

 For purposes of clarification to GSS-API implementors, this section's
 discussion of some name forms describes means through which those
 forms can be supported with existing Kerberos technology. These
 discussions are not intended to preclude alternative implementation
 strategies for support of the name forms within Kerberos mechanisms
 or mechanisms based on other technologies. To enhance application
 portability, implementors of mechanisms are encouraged to support
 name forms as defined in this section, even if their mechanisms are
 independent of Kerberos V5.

2.1. Mandatory Name Forms

https://datatracker.ietf.org/doc/html/rfc1509

Linn Document Expiration: 31 January 1995 [Page 11]

Internet-Draft July 1994

 This section discusses name forms which are to be supported by all
 conformant implementations of the Kerberos V5 GSS-API mechanism.

2.1.1 Kerberos Principal Name Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 krb5(2) krb5_name(1)}. The recommended symbolic name for this type is
 "GSS_KRB5_NT_PRINCIPAL_NAME".

 This name type represents any valid Kerberos name parseable by the
 Kerberos V5 routine krb5_parse_name; such names have characteristics
 as follows: Components of a name are separated by `/`. The separator
 `@` may be used instead of `/`, signifying that the remainder of the
 string following the `@` is to be interpreted as a realm identifier;
 if no `@` is encountered, the name is interpreted in the context of
 the local realm. Once a `@` is encountered, a non-null realm name,
 with no embedded `/` separators, must follow. The `\` character is
 used to quote the immediately-following character.

2.1.2. Host-Based Service Name Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) service_name(4)}. The recommended symbolic name for this
 type is "GSS_KRB5_NT_HOSTBASED_SERVICE_NAME".

 This name type is used to represent services associated with host
 computers. The two parts of this name form, which is constructed as:

 service@hostname

 can be supported with Kerberos V5 technology by passing those name
 parts as the first two arguments to the Kerberos V5 library function
 krb5_sname_to_principal, with the type argument set to
 KRB5_NT_SRV_HST. This processing canonicalizes the hostname (by
 attempting a DNS lookup and using the fully-qualified domain name
 returned, or using the name as input should the DNS lookup fail), and
 ensures that its characters are lower case. No facility is currently
 provided for explicit specification of a Kerberos realm.

2.2. Optional Name Forms

 This section discusses additional name forms which may optionally be
 supported by implementations of the Kerberos V5 GSS-API mechanism.
 It is recognized that the set of name forms cited here are derived
 from UNIX(tm) operating system platforms; some listed forms may be
 irrelevant to non-UNIX platforms, and definition of additional forms

Linn Document Expiration: 31 January 1995 [Page 12]

Internet-Draft July 1994

 corresponding to such platforms may also be appropriate. It is also
 recognized that OS-specific functions outside GSS-API are likely to
 exist in order to perform translations among these forms, and that
 GSS-API implementations supporting these forms may themselves be
 layered atop such OS-specific functions. Inclusion of this support
 within GSS-API implementations is intended as a convenience to
 applications.

2.2.1. User Name Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) user_name(1)}. The recommended symbolic name for this
 type is "GSS_KRB5_NT_USER_NAME".

 This name type is used to indicate a named user on a local system.
 Its interpretation is OS-specific. This name form is constructed as:

 username

 Assuming that users' principal names are the same as their local
 operating system names, an implementation of gss_import_name() based
 on Kerberos V5 technology can process names of this form by
 postfixing an "@" sign and the name of the local realm.

2.2.2. Machine UID Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) machine_uid_name(2)}. The recommended symbolic name for
 this type is "GSS_KRB5_NT_MACHINE_UID_NAME".

 This name type is used to indicate a numeric user identifier
 corresponding to a user on a local system. Its interpretation is
 OS-specific. The gss_buffer_desc representing a name of this type
 should contain a locally-significant uid_t, represented in host byte
 order. The gss_import_name() operation resolves this uid into a
 username, which is then treated as the User Name Form.

2.2.3. String UID Form

 This name form shall be represented by the Object Identifier {iso(1)
 member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
 generic(1) string_uid_name(3)}. The recommended symbolic name for
 this type is "GSS_KRB5_NT_STRING_UID_NAME".

 This name type is used to indicate a string of digits representing
 the numeric user identifier of a user on a local system. Its

Linn Document Expiration: 31 January 1995 [Page 13]

Internet-Draft July 1994

 interpretation is OS-specific. This name type is similar to the
 Machine UID Form, except that the buffer contains a string
 representing the uid_t.

2.3. Internal Name Object Support

 This section defines optional routines for use by implementations of
 the Kerberos V5 mechanism which enable support for input and output
 of Kerberos principal objects as naming structures, and defines an
 identifier for this name form. Implementors should note that use of
 these routines, and associated mechanism-specific name objects, by an
 application is a construct unlikely to be portable to other
 mechanisms.

2.3.1. GSS_Import_internal_name routine

 OM_uint32 gss_import_internal_name(
 OM_uint32 minor_status,
 void * input_name,
 gss_oid_t name_type,
 gss_name_t * output_name);

 Converts an implementation-specific name <input_name> into a
 gss_name_t. The name_type argument specifies the format of
 input_name.

2.3.2. GSS_Export_internal_name routine

 OM_uint32 gss_export_internal_name(
 OM_uint32 minor_status,
 gss_name_t input_name,
 gss_oid_t desired_name_type,
 void ** output_name);

 Converts a gss_name_t name into an implementation-specific
 representation. The desired representation is specified by the
 <desired_name_type> argument. Note that it may not be possible to
 convert some gss_name_t values into some supported internal name
 types.

2.3.3. krb5_principal Form

 This mechanism-internal name form shall be represented by the Object
 Identifier {iso(1) member-body(2) United States(840) mit(113554)
 infosys(1) gssapi(2) krb5(2) krb5_principal(2)}. The recommended
 symbolic name for this type is "GSS_KRB5_NT_PRINCIPAL". A name of
 this type shall be referenced via a krb5_principal object (which is
 defined within the MIT Kerberos V5 implementation as a pointer to a

Linn Document Expiration: 31 January 1995 [Page 14]

Internet-Draft July 1994

 krb5_principal_data object), with the krb5_principal's data type cast
 to (void *).

3. Parameter Definitions

 This section defines parameter values used by the Kerberos V5 GSS-API
 mechanism. It defines interface elements in support of portability,
 and assumes use of C language bindings per RFC-1509.

3.1. Minor Status Codes

 This section recommends common symbolic names for minor_status values
 to be returned by the Kerberos V5 GSS-API mechanism. Use of these
 definitions will enable independent implementors to enhance
 application portability across different implementations of the
 mechanism defined in this specification. (In all cases,
 implementations of gss_display_status() will enable callers to
 convert minor_status indicators to text representations.) Each
 implementation should make available, through include files or other
 means, a facility to translate these symbolic names into the concrete
 values which a particular GSS-API implementation uses to represent
 the minor_status values specified in this section. It is recognized
 that this list may grow over time, and that the need for additional
 minor_status codes specific to particular implementations may arise.

3.1.1. Non-Kerberos-specific codes

 GSS_KRB5_S_G_BAD_SERVICE_NAME
 /* "No @ in SERVICE-NAME name string" */
 GSS_KRB5_S_G_BAD_STRING_UID
 /* "STRING-UID-NAME contains nondigits" */
 GSS_KRB5_S_G_NOUSER
 /* "UID does not resolve to username" */
 GSS_KRB5_S_G_VALIDATE_FAILED
 /* "Validation error" */
 GSS_KRB5_S_G_BUFFER_ALLOC
 /* "Couldn't allocate gss_buffer_t data" */
 GSS_KRB5_S_G_BAD_MSG_CTX
 /* "Message context invalid" */
 GSS_KRB5_S_G_WRONG_SIZE
 /* "Buffer is the wrong size" */
 GSS_KRB5_S_G_BAD_USAGE
 /* "Credential usage type is unknown" */
 GSS_KRB5_S_G_UNKNOWN_QOP
 /* "Unknown quality of protection specified" */

3.1.2. Kerberos-specific-codes

https://datatracker.ietf.org/doc/html/rfc1509

Linn Document Expiration: 31 January 1995 [Page 15]

Internet-Draft July 1994

 GSS_KRB5_S_KG_CCACHE_NOMATCH
 /* "Principal in credential cache does not match desired name" */
 GSS_KRB5_S_KG_KEYTAB_NOMATCH
 /* "No principal in keytab matches desired name" */
 GSS_KRB5_S_KG_TGT_MISSING
 /* "Credential cache has no TGT" */
 GSS_KRB5_S_KG_NO_SUBKEY
 /* "Authenticator has no subkey" */
 GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
 /* "Context is already fully established" */
 GSS_KRB5_S_KG_BAD_SIGN_TYPE
 /* "Unknown signature type in token" */
 GSS_KRB5_S_KG_BAD_LENGTH
 /* "Invalid field length in token" */
 GSS_KRB5_S_KG_CTX_INCOMPLETE
 /* "Attempt to use incomplete security context" */

3.2. Quality of Protection Values

 The following Quality of Protection (QOP) values are currently
 defined for the Kerberos V5 GSS-API mechanism, and are used as input
 to gss_sign() and gss_seal() to select among alternate integrity
 checking algorithms. Additional QOP values corresponding to
 additional integrity and/or confidentiality algorithms may be added
 in future versions of this specification.

 GSS_KRB5_INTEG_C_QOP_MD5
 /* Integrity using partial MD5 ("MD2.5") of plaintext */
 GSS_KRB5_INTEG_C_QOP_DES_MD5
 /* Integrity using DES MAC of MD5 of plaintext */
 GSS_KRB5_INTEG_C_QOP_DES_MAC
 /* Integrity using DES MAC of plaintext */

3.3. Buffer Sizes

 All implementations of this specification shall be capable of
 accepting buffers of at least 2 Kbytes as input to GSS_Sign(),
 GSS_Verify(), and GSS_Seal(), and shall be capable of accepting the
 output_token generated by GSS_Seal() for a 2 Kbyte input buffer as
 input to GSS_Unseal(). Support for larger buffer sizes is optional
 but recommended.

4. Security Considerations

 Security issues are discussed throughout this memo.

5. References

Linn Document Expiration: 31 January 1995 [Page 16]

Internet-Draft July 1994

 [RFC-1321]: R. Rivest, "The MD5 Message-Digest Algorithm", RFC 1321.

 [RFC-1508]: J. Linn, "Generic Security Service Application Program
 Interface", RFC 1508.

 [RFC-1509]: J. Wray, "Generic Security Service Application Program
 Interface: C-bindings", RFC 1509.

 [RFC-1510]: J. Kohl and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510.

 [FIPS-PUB-113]: National Bureau of Standards, Federal Information
 Processing Standard 113, "Computer Data Authentication", May 1985.

Linn Document Expiration: 31 January 1995 [Page 17]

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1509
https://datatracker.ietf.org/doc/html/rfc1509
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Internet-Draft July 1994

AUTHOR'S ADDRESS

John Linn
OpenVision Technologies
One Main St.
Cambridge, MA 02142 USA

Phone: +1 617.374.2245

E-mail: Linn@cam.ov.com

Linn Document Expiration: 31 January 1995 [Page 18]

