
INTERNET-DRAFT Matthew Hur
draft-ietf-cat-kerberos-pk-cross-07.txt Cisco Systems
Updates: RFC 1510 Brian Tung
expires May 15, 2001 Tatyana Ryutov
 Clifford Neuman
 ISI
 Ari Medvinsky
 Keen.com
 Gene Tsudik
 UC Irvine
 Bill Sommerfeld
 Sun Microsystems

 Public Key Cryptography for Cross-Realm Authentication in Kerberos

0. Status Of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF),
 its areas, and its working groups. Note that other groups may
 also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as ``work in
 progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 To learn the current status of any Internet-Draft, please check
 the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
 Shadow Directories on ftp.ietf.org (US East Coast),
 nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
 munnari.oz.au (Pacific Rim).

 The distribution of this memo is unlimited. It is filed as
draft-ietf-cat-kerberos-pk-cross-07.txt, and expires May 15, 2001.

 Please send comments to the authors.

1. Abstract

 This document defines extensions to the Kerberos protocol

https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-cross-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-cross-07.txt

 specification [1] to provide a method for using public key
 cryptography to enable cross-realm authentication. The methods
 defined here specify the way in which message exchanges are to be
 used to transport cross-realm secret keys protected by encryption
 under public keys certified as belonging to KDCs.

2. Introduction

 Symmetric and asymmetric key systems may co-exist within hybrid
 architectures in order to leverage the advantages and mitigiate
 issues within the respective systems. An example of a hybrid
 solution that may employ both symmetric and asymmetric technologies
 is Kerberos ciphersuires in TLS [KERBTLS] which utilizes the
 Kerberos protocol [KERB] [KERB94] in conjunction with TLS [TLS]
 which has commonly been thought of as a public key protocol.

 The Kerberos can leverage the advantages provided by public key
 cryptography. PKINIT [PKINIT] describes the use of public key
 cryptography in the initial authentication exchange in Kerberos.
 PKTAPP [PKTAPP] describes how an application service can essentially
 issue a kerberos ticket to itself after utilizing public key
 cryptography for authentication. This specification describes the
 use of public key crpytography in cross-realm authentication.

 Without the use of public key cryptography, administrators must
 maintain separate keys for every realm which wishes to exchange
 authentication information with another realm (which implies n(n-1)
 keys), or they must utilize a hierachichal arrangement of realms,
 which may increase network traffic and complicate the trust model by
 requiring evaluation of transited realms.

 Even with the multi-hop cross-realm authentication, there must be
 some way to locate the path by which separate realms are to be
 transited. The current method, which makes use of the DNS-like
 realm names typical to Kerberos, requires trust of the intermediate
 KDCs.

 PKCROSS utilizes a public key infrastructure (PKI) [X509] to
 simplify the administrative burden of maintaining cross-realm keys.
 Such usage leverages a PKI for a non-centrally-administratable
 environment (namely, inter-realm). Thus, a shared key for cross-
 realm authentication can be established for a set period of time,
 and a remote realm is able to issue policy information that is
 returned to itself when a client requests cross-realm
 authentication. Such policy information may be in the form of
 restrictions [NEUMAN]. Furthermore, these methods are transparent
 to the client; therefore, only the KDCs need to be modified to use
 them. In this way, we take advantage of the the distributed trust
 management capabilities of public key crypography while maintaining
 the advantages of localized trust management provided by Kerberos.

 Although this specification utilizes the protocol specfied in the
 PKINIT specification, it is not necessary to implement client
 changes in order to make use of the changes in this document.

3. Objectives

 The objectives of this specification are as follows:

 1. Simplify the administration required to establish Kerberos
 cross-realm keys.

 2. Avoid modification of clients and application servers.

 3. Allow remote KDC to control its policy on cross-realm
 keys shared between KDCs, and on cross-realm tickets
 presented by clients.

 4. Remove any need for KDCs to maintain state about keys
 shared with other KDCs.

 5. Leverage the work done for PKINIT to provide the public key
 protocol for establishing symmetric cross realm keys.

4. Definitions

 The following notation is used throughout this specification:
 KDC_l local KDC
 KDC_r remote KDC
 XTKT_(l,r) PKCROSS ticket that the remote KDC issues to the
 local KDC
 TGT_(c,r) cross-realm TGT that the local KDC issues to the
 client for presentation to the remote KDC

 This specification defines the following new types to be added to
 the Kerberos specification:
 PKCROSS kdc-options field in the AS_REQ is bit 9
 TE-TYPE-PKCROSS-KDC 2
 TE-TYPE-PKCROSS-CLIENT 3

 This specification defines the following ASN.1 type for conveying
 policy information:
 CrossRealmTktData ::= SEQUENCE OF TypedData

 This specification defines the following types for policy
 information conveyed in CrossRealmTktData:
 PLC_LIFETIME 1
 PLC_SET_TKT_FLAGS 2
 PLC_NOSET_TKT_FLAGS 3

 TicketExtensions are defined per the Kerberos specification
 [KERB-REV]:
 TicketExtensions ::= SEQUENCE OF TypedData
 Where
 TypedData ::= SEQUENCE {
 data-type[0] INTEGER,
 data-value[1] OCTET STRING OPTIONAL
 }

5. Protocol Specification

 We assume that the client has already obtained a TGT. To perform
 cross-realm authentication, the client does exactly what it does
 with ordinary (i.e. non-public-key-enabled) Kerberos; the only
 changes are in the KDC; although the ticket which the client
 forwards to the remote realm may be changed. This is acceptable
 since the client treats the ticket as opaque.

5.1. Overview of Protocol

 The basic operation of the PKCROSS protocol is as follows:

 1. The client submits a request to the local KDC for
 credentials for the remote realm. This is just a typical
 cross realm request that may occur with or without PKCROSS.

 2. The local KDC submits a PKINIT request to the remote KDC to
 obtain a "special" PKCROSS ticket. This is a standard
 PKINIT request, except that PKCROSS flag (bit 9) is set in
 the kdc-options field in the AS_REQ.

 3. The remote KDC responds as per PKINIT, except that
 the ticket contains a TicketExtension, which contains
 policy information such as lifetime of cross realm tickets
 issued by KDC_l to a client. The local KDC must reflect
 this policy information in the credentials it forwards to
 the client. Call this ticket XTKT_(l,r) to indicate that
 this ticket is used to authenticate the local KDC to the
 remote KDC.

 4. The local KDC passes a ticket, TGT_(c,r) (the cross realm
 TGT between the client and remote KDC), to the client.
 This ticket contains in its TicketExtension field the
 ticket, XTKT_(l,r), which contains the cross-realm key.
 The TGT_(c,r) ticket is encrypted using the key sealed in
 XTKT_(l,r). (The TicketExtension field is not encrypted.)
 The local KDC may optionally include another TicketExtension
 type that indicates the hostname and/or IP address for the
 remote KDC.

 5. The client submits the request directly to the remote
 KDC, as before.

 6. The remote KDC extracts XTKT_(l,r) from the TicketExtension
 in order to decrypt the encrypted part of TGT_(c,r).

 --

 Client Local KDC (KDC_l) Remote KDC (KDC_r)
 ------ ----------------- ------------------
 Normal Kerberos
 request for
 cross-realm
 ticket for KDC_r
 ---------------------->

 PKINIT request for
 XTKT(l,r) - PKCROSS flag
 set in the AS-REQ
 * ------------------------->

 PKINIT reply with
 XTKT_(l,r) and
 policy info in
 ticket extension
 <-------------------------- *

 Normal Kerberos reply
 with TGT_(c,r) and
 XTKT(l,r) in ticket
 extension
 <---------------------------------

 Normal Kerberos
 cross-realm TGS-REQ
 for remote
 application
 service with
 TGT_(c,r) and
 XTKT(l,r) in ticket
 extension
 --->

 Normal Kerberos
 cross-realm
 TGS-REP
 <---

 * Note that the KDC to KDC messages occur only periodically, since
 the local KDC caches the XTKT_(l,r).
 --

 Sections 5.2 through 5.4 describe in detail steps 2 through 4
 above. Section 5.6 describes the conditions under which steps
 2 and 3 may be skipped.

 Note that the mechanism presented above requires infrequent KDC to
 KDC communication (as dictated by policy - this is discussed
 later). Without such an exchange, there are the following issues:
 1) KDC_l would have to issue a ticket with the expectation that
 KDC_r will accept it.
 2) In the message that the client sends to KDC_r, KDC_l would have
 to authenticate KDC_r with credentials that KDC_r trusts.
 3) There is no way for KDC_r to convey policy information to KDC_l.
 4) If, based on local policy, KDC_r does not accept a ticket from
 KDC_l, then the client gets stuck in the middle. To address such
 an issue would require modifications to standard client
 processing behavior.
 Therefore, the infreqeunt use of KDC to KDC communication assures
 that inter-realm KDC keys may be established in accordance with local
 policies and that clients may continue to operate without
 modification.

5.2. Local KDC's Request to Remote KDC

 When the local KDC receives a request for cross-realm
 authentication, it first checks its ticket cache to see if it has a
 valid PKCROSS ticket, XTKT_(l,r). If it has a valid XTKT_(l,r),
 then it does not need to send a request to the remote KDC (see

section 5.5).

 If the local KDC does not have a valid XTKT_(l,r), it sends a
 request to the remote KDC in order to establish a cross realm key
 and obtain the XTKT_(l,r). This request is in fact a PKINIT request
 as described in the PKINIT specification; i.e., it consists of an AS-
 REQ with a PA-PK-AS-REQ included as a preauthentication field.
 Note, that the AS-REQ MUST have the PKCROSS flag (bit 9) set in the
 kdc_options field of the AS-REQ. Otherwise, this exchange exactly
 follows the description given in the PKINIT specification.

5.3. Remote KDC's Response to Local KDC

 When the remote KDC receives the PKINIT/PKCROSS request from the
 local KDC, it sends back a PKINIT response as described in
 the PKINIT specification with the following exception: the encrypted
 part of the Kerberos ticket is not encrypted with the krbtgt key;
 instead, it is encrypted with the ticket granting server's PKCROSS
 key. This key, rather than the krbtgt key, is used because it
 encrypts a ticket used for verifying a cross realm request rather
 than for issuing an application service ticket. Note that, as a

 matter of policy, the session key for the XTKT_(l,r) MAY be of
 greater strength than that of a session key for a normal PKINIT
 reply, since the XTKT_(l,r) SHOULD be much longer lived than a
 normal application service ticket.

 In addition, the remote KDC SHOULD include policy information in the
 XTKT_(l,r). This policy information would then be reflected in the
 cross-realm TGT, TGT_(c,r). Otherwise, the policy for TGT_(c,r)
 would be dictated by KDC_l rather than by KDC_r. The local KDC MAY
 enforce a more restrictive local policy when creating a cross-realm
 ticket, TGT_(c,r). For example, KDC_r may dictate a lifetime
 policy of eight hours, but KDC_l may create TKT_(c,r) with a
 lifetime of four hours, as dictated by local policy. Also, the
 remote KDC MAY include other information about itself along with the
 PKCROSS ticket. These items are further discussed in section 6
 below.

5.4. Local KDC's Response to Client

 Upon receipt of the PKINIT/CROSS response from the remote KDC,
 the local KDC formulates a response to the client. This reply
 is constructed exactly as in the Kerberos specification, except
 for the following:

 A) The local KDC places XTKT_(l,r) in the TicketExtension field of
 the client's cross-realm, ticket, TGT_(c,r), for the remote
 realm.
 Where
 data-type equals 3 for TE-TYPE-PKCROSS-CLIENT
 data-value is ASN.1 encoding of XTKT_(l,r)

 B) The local KDC adds the name of its CA to the transited field of
 TGT_(c,r).

5.5 Remote KDC's Processing of Client Request

 When the remote KDC, KDC_r, receives a cross-realm ticket,
 TGT_(c,r), and it detects that the ticket contains a ticket
 extension of type TE-TYPE-PKCROSS-CLIENT, KDC_r must first decrypt
 the ticket, XTKT_(l,r), that is encoded in the ticket extension.
 KDC_r uses its PKCROSS key in order to decrypt XTKT_(l,r). KDC_r
 then uses the key obtained from XTKT_(l,r) in order to decrypt the
 cross-realm ticket, TGT_(c,r).

 KDC_r MUST verify that the cross-realm ticket, TGT_(c,r) is in
 compliance with any policy information contained in XTKT_(l,r) (see

section 6). If the TGT_(c,r) is not in compliance with policy, then
 the KDC_r responds to the client with a KRB-ERROR message of type
 KDC_ERR_POLICY.

5.6. Short-Circuiting the KDC-to-KDC Exchange

 As we described earlier, the KDC to KDC exchange is required only
 for establishing a symmetric, inter-realm key. Once this key is
 established (via the PKINIT exchange), no KDC to KDC communication
 is required until that key needs to be renewed. This section
 describes the circumstances under which the KDC to KDC exchange
 described in Sections 5.2 and 5.3 may be skipped.

 The local KDC has a known lifetime for TGT_(c,r). This lifetime may
 be determined by policy information included in XTKT_(l,r), and/or
 it may be determined by local KDC policy. If the local KDC already
 has a ticket XTKT(l,r), and the start time plus the lifetime for
 TGT_(c,r) does not exceed the expiration time for XTGT_(l,r), then
 the local KDC may skip the exchange with the remote KDC, and issue a
 cross-realm ticket to the client as described in Section 5.4.

 Since the remote KDC may change its PKCROSS key (referred to in
Section 5.2) while there are PKCROSS tickets still active, it SHOULD

 cache the old PKCROSS keys until the last issued PKCROSS ticket
 expires. Otherwise, the remote KDC will respond to a client with a
 KRB-ERROR message of type KDC_ERR_TGT_REVOKED.

6. Extensions for the PKCROSS Ticket

 As stated in section 5.3, the remote KDC SHOULD include policy
 information in XTKT_(l,r). This policy information is contained in
 a TicketExtension, as defined by the Kerberos specification, and the
 authorization data of the ticket will contain an authorization
 record of type AD-IN-Ticket-Extensions. The TicketExtension defined
 for use by PKCROSS is TE-TYPE-PKCROSS-KDC.
 Where
 data-type equals 2 for TE-TYPE-PKCROSS-KDC
 data-value is ASN.1 encoding of CrossRealmTktData

 CrossRealmTktData ::= SEQUENCE OF TypedData

 --
 CrossRealmTktData types and the corresponding data are interpreted
 as follows:

 ASN.1 data
 type value interpretation encoding
 ---------------- ----- -------------- ----------
 PLC_LIFETIME 1 lifetime (in seconds) INTEGER
 for TGT_(c,r)
 - cross-realm tickets
 issued for clients by
 TGT_l

 PLC_SET_TKT_FLAGS 2 TicketFlags that must BITSTRING
 be set
 - format defined by
 Kerberos specification

 PLC_NOSET_TKT_FLAGS 3 TicketFlags that must BITSTRING
 not be set
 - format defined by
 Kerberos specification

 Further types may be added to this table.
 --

7. Usage of Certificates

 In the cases of PKINIT and PKCROSS, the trust in a certification
 authority is equivalent to Kerberos cross realm trust. For this
 reason, an implementation MAY choose to use the same KDC certificate
 when the KDC is acting in any of the following three roles:
 1) KDC is authenticating clients via PKINIT
 2) KDC is authenticating another KDC for PKCROSS
 3) KDC is the client in a PKCROSS exchange with another KDC

 Note that per PKINIT, the KDC X.509 certificate (the server in a
 PKINIT exchange) MUST contain the principal name of the KDC in the
 subjectAltName field.

8. Transport Issues

 Because the messages between the KDCs involve PKINIT exchanges, and
 PKINIT recommends TCP as a transport mechanism (due to the length of
 the messages and the likelihood that they will fragment), the same
 recommendation for TCP applies to PKCROSS as well.

9. Security Considerations

 Since PKCROSS utilizes PKINIT, it is subject to the same security
 considerations as PKINIT. Administrators should assure adherence
 to security policy - for example, this affects the PKCROSS policies
 for cross realm key lifetime and for policy propogation from the
 PKCROSS ticket, issued from a remote KDC to a local KDC, to
 cross realm tickets that are issued by a local KDC to a client.

10. Bibliography

 [KERBTLS] A. Medvinsky and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712,

https://datatracker.ietf.org/doc/html/rfc2712

 October 1999.

 [KERB] J. Kohl and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510, September 1993.

 [TLS] T. Dierks and C. Allen, "The TLS Protocol, Version 1.0",
RFC 2246, January 1999.

 [PKINIT] B. Tung, C. Neuman, M. Hur, A. Medvinsky, S. Medvinsky,
 J. Wray, J. Trostle. Public Key Cryptography for Initial
 Authentication in Kerberos.

draft-ietf-cat-kerberos-pk-init-12.txt

 [PKTAPP] A. Medvinsky, M. Hur, S. Medvinsky, C. Neuman.
 Public Key Utilizing Tickets for Application
 Servers (PKTAPP). draft-ietf-cat-kerberos-pk-tapp-03.txt

 [X509] ITU-T (formerly CCITT) Information technology - Open
 Systems Interconnection - The Directory: Authentication
 Framework Recommendation X.509 ISO/IEC 9594-8

 [NEUMAN] B.C. Neuman, "Proxy-Based Authorization and Accounting for
 Distributed Systems". Proceedings of the 13th
 International Conference on Distributed Computing Systems,
 May 1993

 [KERB94] B.C. Neuman, Theodore Ts'o. Kerberos: An Authentication
 Service for Computer Networks, IEEE Communications,
 32(9):33-38. September 1994.

 [KERB-REV] C.Neuman, J. Kohl, T. Ts'o. The Kerberos Network
 Authentication Service (V5).

draft-ietf-cat-kerberos-revisions-07.txt

11. Authors' Addresses

 Matthew Hur
 Cisco Systems
 500 108th Ave. NE, Suite 500
 Bellevue, WA 98004
 Phone:
 EMail: mhur@cisco.com

 Brian Tung
 Tatyana Ryutov
 Clifford Neuman
 USC/Information Sciences Institute
 4676 Admiralty Way Suite 1001
 Marina del Rey, CA 90292-6695
 Phone: +1 310 822 1511
 E-Mail: {brian, tryutov, bcn}@isi.edu

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-init-12.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-tapp-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-revisions-07.txt

 Ari Medvinsky
 Keen.com
 2480 Sand Hill Road, Suite 200
 Menlo Park, CA 94025
 Phone +1 650 289 3134
 E-mail: ari@keen.com

 Gene Tsudik
 ICS Dept, 458 CS Building
 Irvine CA 92697-3425
 Phone: +1 310 448 9329
 E-Mail: gts@ics.uci.edu

 Bill Sommerfeld
 Sun Microsystems
 E-Mail: sommerfeld@east.sun.com

