
INTERNET-DRAFT Jonathan Trostle
draft-ietf-cat-kerberos-pk-recovery-01.txt Cisco Systems
Updates: RFC 1510
expires May 23, 1999

Public Key Cryptography for KDC Recovery in Kerberos V5

0. Status Of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other docu-
 ments at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as ``work in pro-
 gress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Sha-
 dow Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

 The distribution of this memo is unlimited. It is filed as
draft-ietf-cat-kerberos-pk-recovery-01.txt, and expires May 23,

 1999. Please send comments to the authors.

1. Abstract

 This document defines extensions to the Kerberos protocol
 specification (RFC 1510, "The Kerberos Network Authentication
 Service (V5)", September 1993) to enable the recovery of a
 compromised Kerberos V5 KDC using public key cryptography.
 The document specifies the recovery protocol which uses
 preauthentication data fields and error data fields in Kerberos
 messages to transport recovery data.

2. Motivation

 For both secret key based systems and public key based systems,
 compromise of the security server (KDC in the secret key system and
 CA or certificate authority in the public key system) leads to a
 complete breakdown of the authentication service. The difference
 between the two systems comes when the compromise is detected.
 Assuming that a root key is intact in the public key system, new
 high-level certificates can be signed, any suspicious certificates
 can be revoked, and the system can eventually return to normal

https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-recovery-01.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pk-recovery-01.txt
https://datatracker.ietf.org/doc/html/rfc1510

 operation without excessive administrator involvement. For a pure
 secret key based system such as Kerberos V5, the recovery
 operation is very difficult from an administrative point of view,
 since all users must receive new passwords out of band.

 This document describes an extension to Kerberos V5 that can be
 used in conjunction with the protocol in [2]
 (draft-ietf-cat-kerberos-pkinit-07.txt) to allow a KDC to be
 automatically recovered once the administrator has reinstalled
 the operating system and loaded (and certified) the new KDC public
 key. Although the protocols in [2] are a step towards making the KDC
 recovery problem easier, there are still potentially many secret keys
 stored on the KDC. For example, when the user private key is stored
 on the KDC, the user and the KDC share a secret key that is used for
 authentication. The two main issues for recovery are updating the KDC
 public key with all clients, which will happen automatically since we
 assume the KDC public keys are signed as part of a public key
 infrastructure with a revocation capability, and updating the shared
 secret keys that are stored on the KDC.

 We now describe the requirements for the recovery extension:
 (1) Users that use password based keys to authenticate to the KDC
 (as in section 3.4 of [2] will have those keys automatically changed
 by the recovery protocol; the users will not have to change their
 passwords. We will satisfy this requirement by obtaining the secret
 key K2 of section 3.4 of [2] by hashing the key K1 with a salt value
 supplied by the KDC. The update operation during recovery consists
 of changing the salt value. Optionally, the KDC can ask users to
 change their passwords in order to support recovery in an environment
 where users use both recovery capable and non-recovery capable clients.
 (2) The recovery extension requires the KDC public keys to be signed
 in certificates as part of a public key infrastructure that includes
 a revocation capability.
 (3) Recovery capable clients must be pkinit [2] capable.

 We will use the definitions and ASN.1 structures from [2]; we assume
 familiarity on the part of the reader.

3. The Recovery Extension Protocol

 We now briefly overview the proposed recovery extension. When the
 recovery operation is launched, the KDC host operating system(s) for
 the realm along with the KDC database is reloaded from backup media.
 The new KDC public key certificate is placed into the appropriate
 certificate database (if needed), and the old certificate is revoked
 by administrator action. For all principals that have symmetric keys
 in the database, the keys are zeroized.

 To complete recovery, the newly created kdcSalt value (a randomly
 generated 16 byte string) will be sent to user principals to allow
 them to update their shared secrets in the KDC database. This exchange

https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pkinit-07.txt

 allows users to maintain the same passwords. This task is completed
 by the following sequence of messages:

 KDC <-------- AS_REQ message ----------- client

 KDC -------- KRB_ERROR message -------> client
 (error code KDC_ERR_RECOVERY_USER_NEEDED)
 error data: KDC DH parameters, kdcSalt value,
 optional PA-PK-KEY-REP (encrypted user private keys),
 optional change password flag

 KDC <-------- AS_REQ message ---------- client
 (with PA-PK-AS-REQ and PA-PK-RECOVERY-DATA (with new user
 secret key K2 encrypted in Diffie-Hellman shared secret
 key) preauthentication fields)

 KDC -------- AS_REP message ---------> client
 (with PA-PK-AS-REP preauthentication field)

 This exchange of messages is only necessary between the KDC and each
 user principal that has a shared secret key stored in the KDC
 database.

 A recovery capable principal that receives a ticket with an encrypted
 part using a key with an unexpected kvno, should perform a pkinit [2]
 AS exchange with the KDC, including the
 PA-PK-RECOVERY-SET-PRINCKEY-TO-SKEY padata-type to obtain a TGT
 with a ticket session key that will be used as the new principal
 secret key. In this case, the KDC would have previously generated
 the secret key to encrypt the ticket, based on the TGS_REQ from the
 client, and the database bits indicating that the server principal
 should have a valid symmetric key but one does not exist in the
 database. The KDC will always use the symmetric key with the
 appropriate keytype from the database as the ticket session key
 when receiving a pkinit request with the
 PA-PK-RECOVERY-SET-PRINCKEY-TO-SKEY padata-type. The padata-value
 for this padata-type is an empty octet string.

3.1 Definitions

 The proposed extension includes a new algorithm for computing the
 shared key between a user and the KDC. The new algorithm involves
 computing the SHA1 hash of a string (kdcSalt) supplied by the KDC
 concatenated with the RFC 1510 shared key (the key K1 from section

3.4 of [2]) to obtain a new DES key K2 that is shared between the
 user and the KDC. We propose etype and keytype 16 for this
 algorithm:

 DES-recoverable-key 16

 Similarly, we propose the same definition for 3DES where the key

https://datatracker.ietf.org/doc/html/rfc1510

 K2 or RFC 1510 shared key is a 3DES key:

 3DES-recoverable-key 17

 If the KDC expects the client to preauthenticate using the key K2
 with a recoverable key keytype, and the client does not
 preauthenticate, then the e-data for the error
 KDC_ERR_PREAUTH_REQUIRED will be present containing the kdcSalt
 value encoded as an OCTET STRING. If the client preauthenticates
 with the key K2 having keytype DES-recoverable-key, the
 preauthentication fails, and the KDC has a key of the same keytype

 in the database, then the e-data for the error KDC_ERR_PREAUTH_FAILED
 will be present containing the kdcSalt value encoded as an OCTET
 STRING.

 As a performance optimization, the kdcSalt can be locally stored on
 the workstation along with the corresponding realm. If the local
 configuration is missing, or incorrect, the above error messages
 allow the client to find out the correct salt. Clients which are
 configured for symmetric key with a recoverable key keytype,
 attempt to preauthenticate with the salt from the local configuration
 as an input into their key, and if the local configuration is not
 present, the client does not use preauthentication.

 The following new preauthentication types are proposed:

 PA-PK-RECOVERY-USER-SUPPORTED 19
 PA-PK-RECOVERY-DATA 20
 PA-PK-RECOVERY-SET-SKEY-TO-PRINCKEY 21

 The following new error code is proposed:

 KDC_ERR_RECOVER_USER_NEEDED 67

 We propose the following additional KDC database bits. The first
 database bit applies to all principals to indicate whether a principal
 should have a valid symmetric key in the database. The second bit
 applies to all principals that should have a valid symmetric key
 to indicate if the principal symmetric key is valid.

 The second database bit is cleared when the KDC undergoes a recovery
 operation, and all principal secret keys are zeroized as well. The
 non-human principal keys are then regenerated when a request comes
 in, and the corresponding validity bits are set.

3.2 Protocol Specification

 We now describe the recovery protocol. The recovery operation can be
 set into motion either because a compromise is detected, or as part of
 a periodic preventative operation. The KDC host operating system and
 KDC executable is restored from backup media, and the KDC is loaded

https://datatracker.ietf.org/doc/html/rfc1510

 with a backup private/public key pair. The KDC database is also
 reloaded, and any secret keys are zeroized. The new KDC public key is
 signed by the appropriate authority and placed in the appropriate
 location and any necessary revocation steps are taken for the old
 certificate.

 To complete the recovery process, the KDC will also notify users
 that need to update any shared secrets that are stored in the KDC
 database: a KRB_ERROR message with the error code
 KDC_ERR_RECOVERY_USER_NEEDED is sent in response to these user's
 AS_REQ messages that do not contain the PA-PK-RECOVERY-DATA
 preauthentication type, contain the PA-PK-RECOVERY-USER-SUPPORTED
 preauthentication type, when there is no valid symmetric key in
 the KDC database, but there needs to be one.

 The following ASN.1 structure is encoded
 and placed into the error message e-data field (an OCTET STRING):

 UserRecoveryError ::= SEQUENCE {
 kdcSalt [0] OCTET STRING, -- to be hashed
 -- with password
 -- key K1
 kdcPublicValue [1] SubjectPublicKeyInfo,
 -- DH algorithm
 kdcPubValueId [2] INTEGER, -- DH algorithm
 nonce [3] INTEGER OPTIONAL, -- copy nonce
 -- from AS_REQ
 -- if paPkKeyRep
 -- is not below
 paPkKeyRep [4] OCTET STRING OPTIONAL
 -- ASN.1 encoded
 -- PA-PK-KEY-REP
 -- from section
 -- 3.4 of [2]
 -- (encrypted
 -- user private
 -- keys)
 kdcCert [5] SEQUENCE OF Certificate, OPTIONAL
 -- cert chain
 changePassword [6] BOOLEAN OPTIONAL, -- user client
 -- should use
 -- change password
 -- protocol if
 -- present
 }

 The purpose of the kdcPubValueId identifier in the error message is
 to enable the KDC to offload state to the client; the client will then
 send this identifier to the KDC in an AS_REQ message; the identifier
 allows the KDC to look up the Diffie Hellman private value corresponding
 to the identifier. Depending on how often the KDC updates its private

 Diffie Hellman parameters, it will have to store anywhere between one
 and several dozen of these identifiers and their parameters.

 The e-cksum field of the error message is not optional for this error
 code; it will contain the signature of the entire error message (as
 described in [1]: the signature is computed over the ASN.1 encoded
 error message without the e-cksum field, and then the signature is
 placed into the e-cksum field and the message is re-encoded.) The
 KDC will sign using the private half of its new active key pair.

 Upon checking the KRB_ERROR message, the client obtains the user
 password and uses the kdcSalt to compute the new key K2 which is
 computed by SHA1 hashing the concatenation of the kdcSalt and the
 key K1 obtained from the user password. The result of the hash is
 converted into a DES key by truncating the last 12 bytes and fixing
 the parity on each of the first 8 bytes. The client then responds
 with a new AS_REQ message that includes both a PA-PK-RECOVERY-DATA
 padata-type preauthentication field along with a PA-PK-AS-REQ
 preauthentication field (see [2]). The PA-PK-RECOVERY-DATA must
 contain the newUserKey field. If the user's AS_REQ message passes
 the security checks, the KDC will reply with an AS_REP message
 that contains a PA-PK-AS-REP preauthentication field. The client
 will validate this message as described in [2]. (The procedure
 for 3DES needs to be defined).

 We also define the PA-PK-RECOVERY-USER-SUPPORTED preauthentication
 field; it will accompany all AS_REQ messages from clients that
 support the recovery protocol that originate from user principals.
 The padata-value for this padata-type is an empty octet string.

 If the KRB_ERROR message passes the security checks (the nonce should
 match the client AS_REQ nonce if the error message is a reply, and
 the KDC signature validates), the client replies to the KDC with an
 AS_REQ message containing the PA-PK-RECOVERY-DATA padata-type
 preauthentication field along with a PA-PK-AS-REQ preauthentication
 field (see [2]):

 PA-PK-RECOVERY-DATA ::= SEQUENCE {
 kdcPubValueId [0] INTEGER, -- Copied from error
 -- message
 newUserKey [2] EncryptedData -- only present in
 OPTIONAL -- reply to
 -- KDC_ERR_RECOVERY_
 -- USER_NEEDED error;
 -- uses DH shared
 -- key to encrypt the
 -- new key K2.
 sigAll [3] Signature -- uses shared DH key
 -- computed over
 -- entire encoded
 -- AS_REQ without

 -- this field, then
 -- re-encode message
 -- with this field
 }

 The clientPublicValue field in the AuthPack structure must be filled
 in by the client (in the PA-PK-AS-REQ preauthentication field, since
 Diffie-Hellman is required).

 Upon receiving this message from the client, the KDC then makes the
 normal PA-PK-AS-REQ validation and also checks that the sigAll seal
 is valid after computing the shared Diffie-Hellman key. We note that
 the KDC should use the ctime and cusec fields in the PA-PK-AS-REQ
 message to ensure that the client AS_REQ message is not a replay.
 (The KDC also checks that the kdcPublicKeyKvno is correct (that it
 is the current version), and uses the kdcPubValueId to look up its
 own Diffie-Hellman parameters).

 The KDC now sends an AS_REP message with the PA-PK-AS-REP
 preauthentication fields. The client should validate this message
 (including the normal PA-PK-AS-REP checks).

 If the changePassword flag was present in the KDC error message, the
 client should immediately obtain a change password service ticket
 and use the protocol in [3] to change the user password. This option
 is useful to support an environment where both non-recovery capable
 and recovery capable clients exist. Since multiple keytypes will
 exist on the KDC for a given user, the change password protocol
 password field is the raw user inputted password; the KDC is
 responsible for deriving the appropriate keys from this password.
 In particular, any change password requests should result in
 the recoverable keytypes being derived by the RFC 1510 string
 to key transformation with salt and then hashing as described
 above using the kdcSalt value.

4. Acknowledgement

 This work was previously published as part of draft-ietf-cat-
kerberos-pkinit-02.txt while the author was employed at Cybersafe

 Corporation, 1605 NW Sammamish Rd., Suite 310, Issaquah, WA 98027.
 Thanks to John Wray, Mark Davis, and the CAT working group for
 some valuable suggestions on how to improve the draft.

5. Bibliography

 [1] J. Kohl, C. Neuman. The Kerberos Network Authentication
 Service (V5). Request for Comments 1510.

 [2] B. Tung, C. Neuman, J. Wray, A. Medvinsky, S. Medvinsky, M. Hur,
 J. Trostle. Public Key Cryptography for Initial Authentication
 in Kerberos. ftp://ds.internic.net/internet-drafts/

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pkinit-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pkinit-02.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-cat-kerberos-pkinit-07.txt

draft-ietf-cat-kerberos-pkinit-07.txt

 [3] M. Horowitz. Kerberos Change Password Protocol.
ftp://ds.internic.net/internet-drafts/
draft-ietf-cat-kerb-chg-password-02.txt

6. Expiration Date

This draft expires on May 23, 1999.

7. Authors' Addresses

 Jonathan Trostle
 Cisco Systems
 170 W. Tasman Dr.
 San Jose, CA 95134

 Email: jtrostle@cisco.com, jtrostle@world.std.com

ftp://ds.internic.net/internet-drafts/draft-ietf-cat-kerberos-pkinit-07.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-cat-kerb-chg-password-02.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-cat-kerb-chg-password-02.txt

