
INTERNET-DRAFT                                                    Tom Yu
Common Authentication Technology WG                                  MIT
draft-ietf-cat-krb5gss-mech2-03.txt                        04 March 2000

The Kerberos Version 5 GSSAPI Mechanism, Version 2

Status of This Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   Comments on this document should be sent to
   "ietf-cat-wg@lists.stanford.edu", the IETF Common Authentication
   Technology WG discussion list.

Abstract

   This document defines protocols, procedures, and conventions to be
   employed by peers implementing the Generic Security Service
   Application Program Interface (as specified in RFC 2743) when using
   Kerberos Version 5 technology (as specified in RFC 1510).  This
   obsoletes RFC 1964.

Acknowledgements

   Much of the material in this specification is based on work done for
   Cygnus Solutions by Marc Horowitz.

Table of Contents

   Status of This Memo ............................................    1
   Abstract .......................................................    1
   Acknowledgements ...............................................    1
   Table of Contents ..............................................    1

1.  Introduction ...............................................    3
2.  Token Formats ..............................................    3

https://datatracker.ietf.org/doc/html/draft-ietf-cat-krb5gss-mech2-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964


2.1.  Packet Notation .......................................    3

Yu                  Document Expiration: 04 Sep 2000            [Page 1]



Internet-Draft             krb5-gss-mech2-03                  March 2000

2.2.  Mechanism OID .........................................    4
2.3.  Context Establishment .................................    4

2.3.1.  Option Format ....................................    4
2.3.1.1.  Delegated Credentials Option ................    5
2.3.1.2.  Null Option .................................    5

2.3.2.  Initial Token ....................................    6
2.3.2.1.  Data to be Checksummed in APREQ .............    8

2.3.3.  Response Token ...................................   10
2.4.  Per-message Tokens ....................................   12

2.4.1.  Sequence Number Usage ............................   12
2.4.2.  MIC Token ........................................   12

2.4.2.1.  Data to be Checksummed in MIC Token .........   13
2.4.3.  Wrap Token .......................................   14

2.4.3.1.  Wrap Token With Integrity Only ..............   14
2.4.3.2.  Wrap Token With Integrity and Encryption

                      .............................................   15
2.4.3.2.1.  Data to be Encrypted in Wrap Token .....   16

3.  ASN.1 Encoding of Octet Strings ............................   17
4.  Name Types .................................................   18

4.1.  Mandatory Name Forms ..................................   18
4.1.1.  Kerberos Principal Name Form .....................   18

         4.1.2.  Exported Name Object Form for Kerberos5
                 Mechanism ........................................   19

5.  Credentials ................................................   20
6.  Parameter Definitions ......................................   20

6.1.  Minor Status Codes ....................................   20
6.1.1.  Non-Kerberos-specific codes ......................   21
6.1.2.  Kerberos-specific-codes ..........................   21

7.  Kerberos Protocol Dependencies .............................   22
8.  Security Considerations ....................................   22
9.  References .................................................   22
10.  Author's Address ..........................................   23



Yu                  Document Expiration: 04 Sep 2000            [Page 2]



Internet-Draft             krb5-gss-mech2-03                  March 2000

1.  Introduction

   The original Kerberos 5 GSSAPI mechanism[RFC1964] has a number of
   shortcomings.  This document attempts to remedy them by defining a
   completely new Kerberos 5 GSSAPI mechanism.

   The context establishment token format requires that the
   authenticator of AP-REQ messages contain a cleartext data structure
   in its checksum field, which is a needless and potentially confusing
   overloading of that field.  This is implemented by a special checksum
   algorithm whose purpose is to copy the input data directly into the
   checksum field of the authenticator.

   The number assignments for checksum algorithms and for encryption
   types are inconsistent between the Kerberos protocol and the original
   GSSAPI mechanism.  If new encryption or checksum algorithms are added
   to the Kerberos protocol at some point, the GSSAPI mechanism will
   need to be separately updated to use these new algorithms.

   The original mechanism specifies a crude method of key derivation (by
   using the XOR of the context key with a fixed constant), which is
   incompatible with newer cryptosystems which specify key derivation
   procedures themselves.  The original mechanism also assumes that both
   checksums and cryptosystem blocksizes are eight bytes.

   Defining all GSSAPI tokens for the new Kerberos 5 mechanism in terms
   of the Kerberos protocol specification ensures that new encryption
   types and checksum types may be automatically used as they are
   defined for the Kerberos protocol.

2.  Token Formats

   All tokens, not just the initial token, are framed as the
   InitialContextToken described in RFC 2743 section 3.1.  The
   innerContextToken element of the token will not itself be encoded in
   ASN.1, with the exception of caller-provided application data.

   One rationale for avoiding the use of ASN.1 in the inner token is
   that some implementors may wish to implement this mechanism in a
   kernel or other similarly constrained application where handling of
   full ASN.1 encoding may be cumbersome.  Also, due to the poor
   availability of the relevant standards documents, ASN.1 encoders and
   decoders are difficult to implement completely correctly, so keeping
   ASN.1 usage to a minimum decreases the probability of bugs in the
   implementation of the mechanism.  In particular, bit strings need to
   be transferred at certain points in this mechanism.  There are many
   conflicting common misunderstandings of how to encode and decode
   ASN.1 bit strings, which have led difficulties in the implementaion
   of the Kerberos protocol.

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1


Yu                  Document Expiration: 04 Sep 2000            [Page 3]



Internet-Draft             krb5-gss-mech2-03                  March 2000

2.1.  Packet Notation

   The order of transmission of this protocol is described at the octet
   level.  Packet diagrams depict bits in the order of transmission,
   assuming that individual octets are transmitted with the most
   significant bit (MSB) first.  The diagrams read from left to right
   and from top to bottom, as in printed English.  In each octet, bit
   number 7 is the MSB and bit number 0 is the LSB.

   Numbers prefixed by the characters "0x" are in hexadecimal notation,
   as in the C programming language.  Even though packet diagrams are
   drawn 16 bits wide, no padding should be used to align the ends of
   variable-length fields to a 32-bit or 16-bit boundary.

   All integer fields are in network byte order.  All other fields have
   the size shown in the diagrams, with the exception of variable length
   fields.

2.2.  Mechanism OID

   The Object Identifier (OID) of the new krb5 v2 mechanism is:

   {iso(1) member-body(2) us(840) mit(113554) infosys(1) gssapi(2)
   krb5v2(3)}

2.3.  Context Establishment

2.3.1.  Option Format

   Context establishment tokens, i.e., the initial ones that the
   GSS_Init_sec_context() and the GSS_Accept_sec_context() calls emit
   while a security context is being set up, may contain options that
   influence the subsequent behavior of the context.  This document
   describes only a small set of options, but additional types may be
   added by documents intended to supplement this one.  The generic
   format is as follows:

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                          option type                          |
     +-------------------------------+-------------------------------+
  2  |                                                               |
     +--                  option length (32 bits)                  --+
  4  |                                                               |
     +-------------------------------+-------------------------------+
  6  |                               .                               |
     /                 option data (variable length)                 /
     |                               .                               |
     +-------------------------------+-------------------------------+



Yu                  Document Expiration: 04 Sep 2000            [Page 4]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   option type (16 bits)
        The type identifier of the following option.

   option length (32 bits)
        The length in bytes of the following option.

   option data (variable length)
        The actual option data.

   Any number of options may appear in an initator or acceptor token.
   The final option in a token must be the null option, in order to mark
   the end of the list.  Option type 0xffff is reserved.

   The initiator and acceptor shall ignore any options that they do not
   understand.

2.3.1.1.  Delegated Credentials Option

   Only the initiator may use this option.  The format of the delegated
   credentials option is as follows:

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                     option type = 0x00001                     |
     +-------------------------------+-------------------------------+
  2  |                                                               |
     +--                      KRB-CRED length                      --+
  4  |                                                               |
     +-------------------------------+-------------------------------+
  6  |                               .                               |
     /                        KRB-CRED message                       /
     |                               .                               |
     +-------------------------------+-------------------------------+

   option type (16 bits)
        The option type for this option shall be 0x0001.

   KRB-CRED length (32 bits)
        The length in bytes of the following KRB-CRED message.

   KRB-CRED message (variable length)
        The option data for this option shall be the KRB-CRED message
        that contains the credentials being delegated (forwarded) to the
        context acceptor.  Only the initiator may use this option.

2.3.1.2.  Null Option

   The Null option terminates the option list, and must be used by both
   the initiator and the acceptor.  Its format is as follows:



Yu                  Document Expiration: 04 Sep 2000            [Page 5]



Internet-Draft             krb5-gss-mech2-03                  March 2000

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                        option type = 0                        |
     +-------------------------------+-------------------------------+
  2  |                                                               |
     +--                         length = 0                        --+
  4  |                                                               |
     +-------------------------------+-------------------------------+

   option type (16 bits)
        The option type of this option must be zero.

   option length (32 bits)
        The length of this option must be zero.

2.3.2.  Initial Token

   This is the initial token sent by the context initiator, generated by
   GSS_Init_sec_context().

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                   initial token id = 0x0101                   |
     +-------------------------------+-------------------------------+
  2  |                                                               |
     +--         reserved flag bits          +-----------------------+
  4  |                                       | I | C | S | R | M | D |
     +-------------------------------+-------------------------------+
  6  |                      checksum type count                      |
     +-------------------------------+-------------------------------+
  8  |                               .                               |
     /                       checksum type list                      /
     |                               .                               |
     +-------------------------------+-------------------------------+
  n  |                               .                               |
     /                            options                            /
     |                               .                               |
     +-------------------------------+-------------------------------+
  m  |                                                               |
     +--                       AP-REQ length                       --+
 m+2 |                                                               |
     +-------------------------------+-------------------------------+
 m+4 |                               .                               |
     /                          AP-REQ data                          /
     |                               .                               |
     +-------------------------------+-------------------------------+



   initial token ID (16 bits)
        Contains the integer 0x0101, which identifies this as the
        initial token in the context setup.

Yu                  Document Expiration: 04 Sep 2000            [Page 6]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   reserved flag bits (26 bits)
        These bits are reserved for future expansion.  They must be set
        to zero by the initiator and be ignored by the acceptor.

   I flag (1 bit)
        0x00000020 -- GSS_C_INTEG_FLAG

   C flag (1 bit)
        0x00000010 -- GSS_C_CONF_FLAG

   S flag (1 bit)
        0x00000008 -- GSS_C_SEQUENCE_FLAG

   R flag (1 bit)
        0x00000004 -- GSS_C_REPLAY_FLAG

   M flag (1 bit)
        0x00000002 -- GSS_C_MUTUAL_FLAG

   D flag (1 bit)
        0x00000001 -- GSS_C_DELEG_FLAG; This flag must be set if the
        "delegated credentials" option is included.

   checksum type count (16 bits)
        The number of checksum types supported by the initiator.

   checksum type list (variable length)
        A list of Kerberos checksum types, as defined in RFC 1510
        section 6.4. These checksum types must be collision-proof and
        keyed with the context key; no checksum types that are
        incompatible with the encryption key shall be used.  Each
        checksum type number shall be 32 bits wide.  This list should
        contain all the checksum types supported by the initiator.  If
        mutual authentication is not used, then this list shall contain
        only one checksum type.

   options (variable length)
        The context initiation options, described in section 2.3.1.

   AP-REQ length (32 bits)
        The length of the following KRB_AP_REQ message.

   AP-REQ data (variable length)
        The AP-REQ message as described in RFC 1510.  The checksum in
        the authenticator will be computed over the items listed in the
        next section.

   The optional sequence number field shall be used in the AP-REQ.  The
   initiator should generate a subkey in the authenticator, and the
   acceptor should generate a subkey in the AP-REP.  The key used for

https://datatracker.ietf.org/doc/html/rfc1510#section-6.4
https://datatracker.ietf.org/doc/html/rfc1510#section-6.4
https://datatracker.ietf.org/doc/html/rfc1510


   the per-message tokens will be the AP-REP subkey, or if that is not
   present, the authenticator subkey, or if that is not present, the
   session key.  When subkeys are generated, it is strongly recommended

Yu                  Document Expiration: 04 Sep 2000            [Page 7]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   that they be of the same type as the associated session key.

   XXX The above is not secure.  There should be an algorithmic process
   to arrive at a subsession key which both sides of the authentication
   exchange can perform based on the ticket sessions key and data known
   to both parties, and this should probably be part of the revised
   Kerberos protocol rather than bound to the GSSAPI mechanism.

2.3.2.1.  Data to be Checksummed in AP-REQ

   The checksum in the AP-REQ message is calculated over the following
   items.  Like in the actual tokens, no padding should be added to
   force integer fields to align on 32 bit boundaries.  This particular
   set of data should not be sent as a part of any token; it merely
   specifies what is to be checksummed in the AP-REQ.  The items in this
   encoding that precede the initial token ID correspond to the channel
   bindings passed to GSS_Init_sec_context().



Yu                  Document Expiration: 04 Sep 2000            [Page 8]



Internet-Draft             krb5-gss-mech2-03                  March 2000

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                                                               |
     +--                   initiator address type                  --+
  2  |                                                               |
     +-------------------------------+-------------------------------+
  4  |                    initiator address length                   |
     +-------------------------------+-------------------------------+
  6  |                               .                               |
     /                       initiator address                       /
     |                               .                               |
     +-------------------------------+-------------------------------+
  n  |                                                               |
     +--                   acceptor address type                   --+
     |                                                               |
     +-------------------------------+-------------------------------+
 n+4 |                    acceptor address length                    |
     +-------------------------------+-------------------------------+
 n+6 |                               .                               |
     /                        acceptor address                       /
     |                               .                               |
     +-------------------------------+-------------------------------+
  m  |                               .                               |
     /                        application data                       /
     |                               .                               |
     +-------------------------------+-------------------------------+
  k  |                   initial token id = 0x0101                   |
     +-------------------------------+-------------------------------+
 k+2 |                                                               |
     +--                           flags                           --+
 k+4 |                                                               |
     +-------------------------------+-------------------------------+
 k+6 |                      checksum type count                      |
     +-------------------------------+-------------------------------+
 k+8 |                               .                               |
     /                       checksum type list                      /
     |                               .                               |
     +-------------------------------+-------------------------------+
  j  |                               .                               |
     /                            options                            /
     |                               .                               |
     +-------------------------------+-------------------------------+

   initiator address type (32 bits)
        The initiator address type, as defined in the Kerberos protocol
        specification.  If no initiator address is provided, this must
        be zero.



   initiator address length (16 bits)
        The length in bytes of the following initiator address.  If
        there is no inititator address provided, this must be zero.

Yu                  Document Expiration: 04 Sep 2000            [Page 9]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   initiator address (variable length)
        The actual initiator address, in network byte order.

   acceptor address type (32 bits)
        The acceptor address type, as defined in the Kerberos protocol
        specification.  If no acceptor address is provided, this must be
        zero.

   acceptor address length (16 bits)
        The length in bytes of the following acceptor address.  This
        must be zero is there is no acceptor address provided.

   initiator address (variable length)
        The actual acceptor address, in network byte order.

   applicatation data (variable length)
        The application data, if provided, encoded as a ASN.1 octet
        string using DER.  If no application data are passed as input
        channel bindings, this shall be a zero-length ASN.1 octet
        string.

   initial token ID (16 bits)
        The initial token ID from the initial token.

   flags (32 bits)
        The context establishment flags from the initial token.

   checksum type count (16 bits)
        The number of checksum types supported by the initiator.

   checksum type list (variable length)
        The same list of checksum types contained in the initial token.

   options (variable length)
        The options list from the initial token.

2.3.3.  Response Token

   This is the reponse token sent by the context acceptor, if mutual
   authentication is enabled.



Yu                  Document Expiration: 04 Sep 2000           [Page 10]



Internet-Draft             krb5-gss-mech2-03                  March 2000

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                   response token id = 0x0202                  |
     +-------------------------------+-------------------------------+
  2  |                                                               |
     +--                  reserved flag bits                 +-------+
  4  |                                                       | D | E |
     +-------------------------------+-------------------------------+
  6  |                                                               |
     +--                       checksum type                       --+
  8  |                                                               |
     +-------------------------------+-------------------------------+
 10  |                               .                               |
     /                            options                            /
     |                               .                               |
     +-------------------------------+-------------------------------+
  n  |                                                               |
     +--                 AP-REP or KRB-ERROR length                --+
 n+2 |                                                               |
     +-------------------------------+-------------------------------+
 n+4 |                               .                               |
     /                    AP-REP or KRB-ERROR data                   /
     |                               .                               |
     +-------------------------------+-------------------------------+
  m  |                               .                               |
     /                            MIC data                           /
     |                               .                               |
     +-------------------------------+-------------------------------+

   response token id (16 bits)
        Contains the integer 0x0202, which identifies this as the
        response token in the context setup.

   reserved flag bits (30 bits)
        These bits are reserved for future expansion.  They must be set
        to zero by the acceptor and be ignored by the initiator.

   D flag -- delegated creds accepted (1 bit)
        0x00000002 -- If this flag is set, the acceptor processed the
        delegated credentials, and GSS_C_DELEG_FLAG should be returned
        to the caller.

   E flag -- error (1 bit)
        0x00000001 -- If this flag is set, a KRB-ERROR message shall be
        present, rather than an AP-REP message.  If this flag is not
        set, an AP-REP message shall be present.

   checksum type count (16 bits)



        The number of checksum types supported by both the initiator and
        the acceptor.

Yu                  Document Expiration: 04 Sep 2000           [Page 11]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   checksum type (32 bits)
        A Kerberos checksum type, as defined in RFC 1510 section 6.4.
        This checksum type must be among the types listed by the
        initiator, and will be used in for subsequent checksums
        generated during this security context.

   options (variable length)
        The option list, as described earlier.  At this time, no options
        are defined for the acceptor, but an implementation might make
        use of these options to acknowledge an option from the initial
        token.  After all the options are specified, a null option must
        be used to terminate the list.

   AP-REP or KRB-ERROR length (32 bits)
        Depending on the value of the error flag, length in bytes of the
        AP-REP or KRB-ERROR message.

   AP-REP or KRB-ERROR data (variable length)
        Depending on the value of the error flag, the AP-REP or
        KRB-ERROR message as described in RFC 1510.  If this field
        contains an AP-REP message, the sequence number field in the
        AP-REP shall be filled.  If this is a KRB-ERROR message, no
        further fields will be in this message.

   MIC data (variable length)
        A MIC token, as described in section 2.4.2, computed over the
        concatentation of the response token ID, flags, checksum length
        and type fields, and all option fields.  This field and the
        preceding length field must not be present if the error flag is
        set.

2.4.  Per-message Tokens

2.4.1.  Sequence Number Usage

   Sequence numbers for per-message tokens are 31 bit unsigned integers,
   which are incremented by 1 after each token.  An overflow condition
   should result in a wraparound of the sequence number to zero.  The
   initiator and acceptor each keep their own sequence numbers per
   connection.

   The intial sequence number for tokens sent from the initiator to the
   acceptor shall be the least significant 31 bits of sequence number in
   the AP-REQ message.  The initial sequence number for tokens sent from
   the acceptor to the initiator shall be the least significant 31 bits
   of the sequence number in the AP-REP message if mutual authentication
   is used; if mutual authentication is not used, the initial sequence
   number from acceptor to initiator shall be the least significant 31
   bits of the sequence number in the AP-REQ message.

https://datatracker.ietf.org/doc/html/rfc1510#section-6.4
https://datatracker.ietf.org/doc/html/rfc1510


Yu                  Document Expiration: 04 Sep 2000           [Page 12]



Internet-Draft             krb5-gss-mech2-03                  March 2000

2.4.2.  MIC Token

   Use of the GSS_GetMIC() call yields a token, separate from the user
   data being protected, which can be used to verify the integrity of
   that data when it is received.  The MIC token has the following
   format:

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                     MIC token id = 0x0303                     |
     +-------------------------------+-------------------------------+
  2  | D |                                                           |
     +---+                     sequence number                     --+
  4  |                                                               |
     +-------------------------------+-------------------------------+
  6  |                        checksum length                        |
     +-------------------------------+-------------------------------+
  8  |                               .                               |
     /                         checksum data                         /
     |                               .                               |
     +-------------------------------+-------------------------------+

   MIC token id (16 bits)
        Contains the integer 0x0303, which identifies this as a MIC
        token.

   D -- direction bit (1 bit)
        This bit shall be zero if the message is sent from the context
        initiator.  If the message is sent from the context acceptor,
        this bit shall be one.

   sequence number (31 bits)
        The sequence number.

   checksum length (16 bits)
        The number of bytes in the following checksum data field.

   checksum data (variable length)
        The checksum itself, as defined in RFC 1510 section 6.4.  The
        checksum is calculated over the encoding described in the
        following section.  The key usage GSS_TOK_MIC -- 22 [XXX need to
        register this] shall be used in cryptosystems that support key
        derivation.

   The mechanism implementation shall only use the checksum type
   returned by the acceptor in the case of mutual authentication.  If
   mutual authentication is not requested, then only the checksum type
   in the initiator token shall be used.

https://datatracker.ietf.org/doc/html/rfc1510#section-6.4


Yu                  Document Expiration: 04 Sep 2000           [Page 13]



Internet-Draft             krb5-gss-mech2-03                  March 2000

2.4.2.1.  Data to be Checksummed in MIC Token

   The checksum in the MIC token shall be calculated over the following
   elements.  This set of data is not actually included in the token as
   is; the description only appears for the purpose of specifying the
   method of calculating the checksum.

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                     MIC token id = 0x0303                     |
     +-------------------------------+-------------------------------+
  2  | D |                                                           |
     +---+                     sequence number                     --+
  4  |                                                               |
     +-------------------------------+-------------------------------+
  6  |                               .                               |
     /                        application data                       /
     |                               .                               |
     +-------------------------------+-------------------------------+

   MIC token ID (16 bits)
        The MIC token ID from the MIC message.

   D -- direction bit (1 bit)
        This bit shall be zero if the message is sent from the context
        initiator.  If the message is sent from the context acceptor,
        this bit shall be one.

   sequence number (31 bits)
        The sequence number.

   application data (variable length)
        The application-supplied data, encoded as an ASN.1 octet string
        using DER.

2.4.3.  Wrap Token

   Use of the GSS_Wrap() call yields a token which encapsulates the
   input user data (optionally encrypted) along with associated
   integrity check quantities.

2.4.3.1.  Wrap Token With Integrity Only



Yu                  Document Expiration: 04 Sep 2000           [Page 14]



Internet-Draft             krb5-gss-mech2-03                  March 2000

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  |                integrity wrap token id = 0x0404               |
     +-------------------------------+-------------------------------+
  2  | D |                                                           |
     +---+                     sequence number                     --+
  4  |                                                               |
     +-------------------------------+-------------------------------+
  6  |                               .                               |
     /                        application data                       /
     |                               .                               |
     +-------------------------------+-------------------------------+
  n  |                        checksum length                        |
     +-------------------------------+-------------------------------+
 n+2 |                               .                               |
     /                         checksum data                         /
     |                               .                               |
     +-------------------------------+-------------------------------+

   integrity wrap token id (16 bits)
        Contains the integer 0x0404, which identifies this as a Wrap
        token with integrity only.

   D -- direction bit (1 bit)
        This bit shall be zero if the message is sent from the context
        initiator.  If the message is sent from the context acceptor,
        this bit shall be one.

   sequence number (31 bits)
        The sequence number.

   application data (variable length)
        The application-supplied data, encoded as an ASN.1 octet string
        using DER.

   checksum length (16 bits)
        The number of bytes in the following checksum data field.

   checksum data (variable length)
        The checksum itself, as defined in RFC 1510 section 6.4,
        computed over the concatenation of the token ID, sequence
        number, direction field, application data length, and
        application data, as in the MIC token checksum in the previous
        section.  The key usage GSS_TOK_WRAP_INTEG -- 23 [XXX need to
        register this] shall be used in cryptosystems that support key
        derivation.

   The mechanism implementation should only use checksum types which it

https://datatracker.ietf.org/doc/html/rfc1510#section-6.4


   knows to be valid for both peers, as described for MIC tokens.

Yu                  Document Expiration: 04 Sep 2000           [Page 15]



Internet-Draft             krb5-gss-mech2-03                  March 2000

2.4.3.2.  Wrap Token With Integrity and Encryption

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
     |                encrypted wrap token id = 0x0505               |
     +-------------------------------+-------------------------------+
  2  |                               .                               |
     /                         encrypted data                        /
     |                               .                               |
     +-------------------------------+-------------------------------+

   encrypted wrap token id (16 bits)
        Contains the integer 0x0505, which identifies this as a Wrap
        token with integrity and encryption.

   encrypted data (variable length)
        The encrypted data itself, as defined in RFC 1510 section 6.3,
        encoded as an ASN.1 octet string using DER.  Note that this is
        not the ASN.1 type EncryptedData as defined in RFC 1510
        section 6.1, but rather the ciphertext without encryption type
        or kvno information.  The encryption is performed using the
        key/enctype exchanged during context setup.  The confounder and
        checksum are as specified in the Kerberos protocol
        specification.  The key usage GSS_TOK_WRAP_PRIV -- 24 [XXX need
        to register this] shall be used in cryptosystems that support
        key derivation.  The actual data to be encrypted are specified
        below.

2.4.3.2.1.  Data to be Encrypted in Wrap Token

  bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
byte +-------------------------------+-------------------------------+
  0  | D |                                                           |
     +---+                     sequence number                     --+
  2  |                                                               |
     +-------------------------------+-------------------------------+
  4  |                               .                               |
     /                        application data                       /
     |                               .                               |
     +-------------------------------+-------------------------------+

   D -- direction bit (1 bit)
        This bit shall be zero if the message is sent from the context
        initiator.  If the message is sent from the context acceptor,
        this bit shall be one.

   sequence number (31 bits)
        The sequence number.

https://datatracker.ietf.org/doc/html/rfc1510#section-6.3
https://datatracker.ietf.org/doc/html/rfc1510#section-6.1
https://datatracker.ietf.org/doc/html/rfc1510#section-6.1


   application data (variable length)
        The application-supplied data, encoded as an ASN.1 octet string

Yu                  Document Expiration: 04 Sep 2000           [Page 16]



Internet-Draft             krb5-gss-mech2-03                  March 2000

        using DER.

3.  ASN.1 Encoding of Octet Strings

   In order to encode arbitirarly-sized application data, ASN.1 octet
   string encoding is in this protocol.  The Distinguished Encoding
   Rules (DER) shall always be used in such cases.  For reference
   purposes, the DER encoding of an ASN.1 octet string, adapted from
   ITU-T X.690, follows:

   +--------+-------//-------+-------//-------+
   |00000100| length octets  |contents octets |
   +--------+-------//-------+-------//-------+
    |
    +-- identifier octet = 0x04 = [UNIVERSAL 4]

   In this section only, the bits in each octet shall be numbered as in
   the ASN.1 specification, from 8 to 1, with bit 8 being the MSB of the
   octet, and with bit 1 being the LSB of the octet.

   identifier octet (8 bits)
        Contains the constant 0x04, the tag for primitive encoding of an
        octet string with the default (UNIVERSAL 4) tag.

   length octets (variable length)
        Contains the length of the contents octets, in definite form
        (since this encoding uses DER).

   contents octets (variable length)
        The contents of the octet string.

   The length octets shall consist of either a short form (one byte
   only), which is to be used only if the number of octets in the
   contents octets is less than or equal to 127, or a long form, which
   is to be used in all other cases.  The short form shall consist of a
   single octet with bit 8 (the MSB) equal to zero, and the remaining
   bits encoding the number of contents octets (which may be zero) as an
   unsigned binary integer.

   The long form shall consist of an initial octet and one or more
   subsequent octets.  The first octet shall have bit 8 (the MSB) set to
   one, and the remaining bits shall encode the number of subsequent
   octets in the length encoding as an unsigned binary integer.  The
   length must be encoded in the minimum number of octets.  An initial
   octet of 0xFF is reserved by the ASN.1 specification.  Bits 8 to 1 of
   the first subsequent octet, followed by bits 8 to 1 of each
   subsequent octet in order, shall be the encoding of an unsigned
   binary integer, with bit 8 of the first octet being the most
   significant bit.  Thus, the length encoding within is in network byte



   order.

Yu                  Document Expiration: 04 Sep 2000           [Page 17]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   An initial length octet of 0x80 shall not be used, as that is
   reserved by the ASN.1 specification for indefinite lengths in
   conjunction with constructed contents encodings, which are not to be
   used with DER.

4.  Name Types

   This section discusses the name types which may be passed as input to
   the Kerberos 5 GSSAPI mechanism's GSS_Import_name() call, and their
   associated identifier values.  It defines interface elements in
   support of portability, and assumes use of C language bindings per

RFC 2744.  In addition to specifying OID values for name type
   identifiers, symbolic names are included and recommended to GSSAPI
   implementors in the interests of convenience to callers.  It is
   understood that not all implementations of the Kerberos 5 GSSAPI
   mechanism need support all name types in this list, and that
   additional name forms will likely be added to this list over time.
   Further, the definitions of some or all name types may later migrate
   to other, mechanism-independent, specifications.  The occurrence of a
   name type in this specification is specifically not intended to
   suggest that the type may be supported only by an implementation of
   the Kerberos 5 mechanism.  In particular, the occurrence of the
   string "_KRB5_" in the symbolic name strings constitutes a means to
   unambiguously register the name strings, avoiding collision with
   other documents; it is not meant to limit the name types' usage or
   applicability.

   For purposes of clarification to GSSAPI implementors, this section's
   discussion of some name forms describes means through which those
   forms can be supported with existing Kerberos technology.  These
   discussions are not intended to preclude alternative implementation
   strategies for support of the name forms within Kerberos mechanisms
   or mechanisms based on other technologies.  To enhance application
   portability, implementors of mechanisms are encouraged to support
   name forms as defined in this section, even if their mechanisms are
   independent of Kerberos 5.

4.1.  Mandatory Name Forms

   This section discusses name forms which are to be supported by all
   conformant implementations of the Kerberos 5 GSSAPI mechanism.

4.1.1.  Kerberos Principal Name Form

   This name form shall be represented by the Object Identifier {iso(1)
   member-body(2) us(840) mit(113554) infosys(1) gssapi(2) krb5(2)
   krb5_name(1)}.  The recommended symbolic name for this type is
   "GSS_KRB5_NT_PRINCIPAL_NAME".

https://datatracker.ietf.org/doc/html/rfc2744


   This name type corresponds to the single-string representation of a
   Kerberos name.  (Within the MIT Kerberos 5 implementation, such names
   are parseable with the krb5_parse_name() function.)  The elements
   included within this name representation are as follows, proceeding

Yu                  Document Expiration: 04 Sep 2000           [Page 18]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   from the beginning of the string:

        (1) One or more principal name components; if more than one
        principal name component is included, the components are
        separated by '/'.  Arbitrary octets may be included within
        principal name components, with the following constraints and
        special considerations:

           (1a) Any occurrence of the characters '@' or '/' within a
           name component must be immediately preceded by the '\'
           quoting character, to prevent interpretation as a component
           or realm separator.

           (1b) The ASCII newline, tab, backspace, and null characters
           may occur directly within the component or may be
           represented, respectively, by '\n', '\t', '\b', or '\0'.

           (1c) If the '\' quoting character occurs outside the contexts
           described in (1a) and (1b) above, the following character is
           interpreted literally.  As a special case, this allows the
           doubled representation '\\' to represent a single occurrence
           of the quoting character.

           (1d) An occurrence of the '\' quoting character as the last
           character of a component is illegal.

        (2) Optionally, a '@' character, signifying that a realm name
        immediately follows. If no realm name element is included, the
        local realm name is assumed.  The '/' , ':', and null characters
        may not occur within a realm name; the '@', newline, tab, and
        backspace characters may be included using the quoting
        conventions described in (1a), (1b), and (1c) above.

4.1.2.  Exported Name Object Form for Kerberos 5 Mechanism

   When generated by the Kerberos 5 mechanism, the Mechanism OID within
   the exportable name shall be that of the original Kerberos 5
   mechanism[RFC1964].  The Mechanism OID for the original Kerberos 5
   mechanism is:

   {iso(1) member-body(2) us(840) mit(113554) infosys(1) gssapi(2)
   krb5(2)}

   The name component within the exportable name shall be a contiguous
   string with structure as defined for the Kerberos Principal Name
   Form.

   In order to achieve a distinguished encoding for comparison purposes,
   the following additional constraints are imposed on the export
   operation:



        (1) all occurrences of the characters '@', '/', and '\' within
        principal components or realm names shall be quoted with an

Yu                  Document Expiration: 04 Sep 2000           [Page 19]



Internet-Draft             krb5-gss-mech2-03                  March 2000

        immediately-preceding '\'.

        (2) all occurrences of the null, backspace, tab, or newline
        characters within principal components or realm names will be
        represented, respectively, with '\0', '\b', '\t', or '\n'.

        (3) the '\' quoting character shall not be emitted within an
        exported name except to accomodate cases (1) and (2).

5.  Credentials

   The Kerberos 5 protocol uses different credentials (in the GSSAPI
   sense) for initiating and accepting security contexts.  Normal
   clients receive a ticket-granting ticket (TGT) and an associated
   session key at "login" time; the pair of a TGT and its corresponding
   session key forms a credential which is suitable for initiating
   security contexts.  A ticket-granting ticket, its session key, and
   any other (ticket, key) pairs obtained through use of the
   ticket-granting-ticket, are typically stored in a Kerberos 5
   credentials cache, sometimes known as a ticket file.

   The encryption key used by the Kerberos server to seal tickets for a
   particular application service forms the credentials suitable for
   accepting security contexts.  These service keys are typically stored
   in a Kerberos 5 key table (keytab), or srvtab file (the Kerberos 4
   terminology).  In addition to their use as accepting credentials,
   these service keys may also be used to obtain initiating credentials
   for their service principal.

   The Kerberos 5 mechanism's credential handle may contain references
   to either or both types of credentials.  It is a local matter how the
   Kerberos 5 mechanism implementation finds the appropriate Kerberos 5
   credentials cache or key table.

   However, when the Kerberos 5 mechanism attempts to obtain initiating
   credentials for a service principal which are not available in a
   credentials cache, and the key for that service principal is
   available in a Kerberos 5 key table, the mechanism should use the
   service key to obtain initiating credentials for that service.  This
   should be accomplished by requesting a ticket-granting-ticket from
   the Kerberos Key Distribution Center (KDC), and decrypting the KDC's
   reply using the service key.

6.  Parameter Definitions

   This section defines parameter values used by the Kerberos V5 GSSAPI
   mechanism.  It defines interface elements in support of portability,
   and assumes use of C language bindings per RFC 2744.

6.1.  Minor Status Codes

https://datatracker.ietf.org/doc/html/rfc2744


   This section recommends common symbolic names for minor_status values
   to be returned by the Kerberos 5 GSSAPI mechanism.  Use of these

Yu                  Document Expiration: 04 Sep 2000           [Page 20]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   definitions will enable independent implementors to enhance
   application portability across different implementations of the
   mechanism defined in this specification.  (In all cases,
   implementations of GSS_Display_status() will enable callers to
   convert minor_status indicators to text representations.)  Each
   implementation should make available, through include files or other
   means, a facility to translate these symbolic names into the concrete
   values which a particular GSSAPI implementation uses to represent the
   minor_status values specified in this section.

   It is recognized that this list may grow over time, and that the need
   for additional minor_status codes specific to particular
   implementations may arise.  It is recommended, however, that
   implementations should return a minor_status value as defined on a
   mechanism-wide basis within this section when that code is accurately
   representative of reportable status rather than using a separate,
   implementation-defined code.

6.1.1.  Non-Kerberos-specific codes

   These symbols should likely be incorporated into the generic GSSAPI
   C-bindings document, since they really are more general.

GSS_KRB5_S_G_BAD_SERVICE_NAME
        /* "No @ in SERVICE-NAME name string" */
GSS_KRB5_S_G_BAD_STRING_UID
        /* "STRING-UID-NAME contains nondigits" */
GSS_KRB5_S_G_NOUSER
        /* "UID does not resolve to username" */
GSS_KRB5_S_G_VALIDATE_FAILED
        /* "Validation error" */
GSS_KRB5_S_G_BUFFER_ALLOC
        /* "Couldn't allocate gss_buffer_t data" */
GSS_KRB5_S_G_BAD_MSG_CTX
        /* "Message context invalid" */
GSS_KRB5_S_G_WRONG_SIZE
        /* "Buffer is the wrong size" */
GSS_KRB5_S_G_BAD_USAGE
        /* "Credential usage type is unknown" */
GSS_KRB5_S_G_UNKNOWN_QOP
        /* "Unknown quality of protection specified" */

6.1.2.  Kerberos-specific-codes



Yu                  Document Expiration: 04 Sep 2000           [Page 21]



Internet-Draft             krb5-gss-mech2-03                  March 2000

GSS_KRB5_S_KG_CCACHE_NOMATCH
        /* "Principal in credential cache does not match desired name" */
GSS_KRB5_S_KG_KEYTAB_NOMATCH
        /* "No principal in keytab matches desired name" */
GSS_KRB5_S_KG_TGT_MISSING
        /* "Credential cache has no TGT" */
GSS_KRB5_S_KG_NO_SUBKEY
        /* "Authenticator has no subkey" */
GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
        /* "Context is already fully established" */
GSS_KRB5_S_KG_BAD_SIGN_TYPE
        /* "Unknown signature type in token" */
GSS_KRB5_S_KG_BAD_LENGTH
        /* "Invalid field length in token" */
GSS_KRB5_S_KG_CTX_INCOMPLETE
        /* "Attempt to use incomplete security context" */

7.  Kerberos Protocol Dependencies

   This protocol makes several assumptions about the Kerberos protocol,
   which may require changes to the successor of RFC 1510.

   Sequence numbers, checksum types, and address types are assumed to be
   no wider than 32 bits.  The Kerberos protocol specification might
   need to be modified to accomodate this.  This obviously requires some
   further discussion.

   Key usages need to be registered within the Kerberos protocol for use
   with GSSAPI per-message tokens.  The current specification of the
   Kerberos protocol does not include descriptions of key derivations or
   key usages, but planned revisions to the protocol will include them.

   This protocol also makes the assumption that any cryptosystem used
   with the session key will include integrity protection, i.e., it
   assumes that no "raw" cryptosystems will be used.

8.  Security Considerations

   The GSSAPI is a security protocol; therefore, security considerations
   are discussed throughout this document.  The original Kerberos 5
   GSSAPI mechanism's constraints on possible cryptosystems and checksum
   types do not permit it to be readily extended to accomodate more
   secure cryptographic technologies with larger checksums or encryption
   block sizes.  Sites are strongly encouraged to adopt the mechanism
   specified in this document in the light of recent publicity about the
   deficiencies of DES.

9.  References

https://datatracker.ietf.org/doc/html/rfc1510


   [X.680] ISO/IEC, "Information technology -- Abstract Syntax Notation
   One (ASN.1): Specification of basic notation", ITU-T X.680 (1997) |
   ISO/IEC 8824-1:1998

Yu                  Document Expiration: 04 Sep 2000           [Page 22]



Internet-Draft             krb5-gss-mech2-03                  March 2000

   [X.690] ISO/IEC, "Information technology -- ASN.1 encoding rules:
   Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
   (CER) and Distinguished Encoding Rules (DER)", ITU-T X.690 (1997) |
   ISO/IEC 8825-1:1998.

   [RFC1510] Kohl, J., Neumann, C., "The Kerberos Network Authentication
   Service (V5)", RFC 1510.

   [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964.

   [RFC2743] Linn, J., "Generic Security Service Application Program
   Interface, Version 2, Update 1", RFC 2743.

   [RFC2744] Wray, J., "Generic Security Service API Version 2:
   C-bindings", RFC 2744.

10.  Author's Address

   Tom Yu
   Massachusetts Institute of Technology
   Room E40-345
   77 Massachusetts Avenue
   Cambridge, MA 02139
   USA

   email: tlyu@mit.edu
   phone: +1 617 253 1753

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744


Yu                  Document Expiration: 04 Sep 2000           [Page 23]


