
Internet-Draft ERIC BAIZE, BULL
IETF Common Authentication Technology WG STEPHEN FARRELL, SSE
Expire in six months TOM PARKER, ICL
<draft-ietf-cat-sesamemech-01.txt> November 22, 1996

The SESAME V5 GSS-API Mechanism

STATUS OF THIS MEMO

This specification is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

To learn the current status of any Internet Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ds.internic.net (US East Coast), nic.nordu.net
(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
Rim).

Comments on this specification should be sent to "cat-ietf@mit.edu", the
IETF Common Authentication Technology WG discussion list.

ABSTRACT

 This specification defines protocols, data elements, and
 conventions to be employed by peers implementing the Generic
 Security Service Application Program Interface (as specified in
 RFCs 1508 and 1509) when using the SESAME Version 5 Mechanism.

1. BACKGROUND

 Although the Kerberos Version 5 GSS-API mechanism [KRB5] is becoming
 well-established in many environments, it is important in some
 applications to have a GSS-API mechanism, which is able to support
 privileges rather than only a single identity, which is scalable
 because it supports public key technology and which is flexible
 in a distributed environment due to its fine granularity delegation
 properties.

 The mechanism described in this specification has been designed
 to provide the following features.

https://datatracker.ietf.org/doc/html/draft-ietf-cat-sesamemech-01.txt

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 1]

internet-draft November 22, 1996

 1) SESAME allows both unilateral and mutual authentication
 to be accomplished using loosely synchronous clocks. One key
 advantage of this feature is that, when unilateral
 authentication is used, no additional message (as in a
 challenge-response mechanism) is needed and thus it is
 possible to concatenate in a single message, for example,
 an "init-sec token", a "wrapped token" and a "close token".

 2) In addition to authentication, SESAME supports the
 transmission of the access control privileges of a user.
 These privileges are carried in a data structure called the
 PAC (Privileges Attribute Certificate). Privileges supported
 in SESAME V5 are group-memberships, roles and administration
 defined local types. In the future support for clearances or
 capabilities is envisaged. SESAME supports the "push model"
 where the privileges are pushed towards the target. This
 allows the principle of least privilege to be supported,
 where only the privileges that are necessary for performing
 an operation are presented and disclosed to the target.

 3) Privileges are always directly guaranteed by the
 authority which originally vouched for them. This allows
 the concept of "direct trust" to be supported because no
 intermediate security domain is needed to translate the
 original guaranteed privileges when they are delegated, even
 across security domains. In practice, this is made possible
 because the privileges are placed in a data structure that is
 signed by the issuing domain authority, and thus is directly
 verifiable.

 4) The scheme used to transmit privileges is
 independent of the scheme used for key management. This
 allows several key management schemes and their extensions
 to be supported. In practice, SESAME allows each security
 domain manager to chose its own key management scheme.
 Cross-domain relationships can either be based on public
 key technology or on secret key technology.

 5) The control of delegation is a key feature of SESAME. This
 allows privileges to be transmitted and their use to be
 restricted to nominated targets or groups of targets.

 6) The SESAME GSS-API protocols re-use data structures developed
 in Kerberos V5 [Kerberos] and SPKM [SPKM] for key management
 and authentication. SESAME has merged these into a wider
 framework supporting distributed access control and
 delegation features.

 A more complete overview of SESAME is available in [SESOV].

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 2]

internet-draft November 22, 1996

1.1 Table of Contents

1. BACKGROUND 1
2. THE SESAME TECHNOLOGY 4
2.1. Overview 4
2.2. SESAME Concepts 5
2.2.1. Access Control Concepts 5
2.2.1.1. Domains 5
2.2.1.2. Identities 5
2.2.1.3. Privilege Attributes 5
2.2.1.4. Delegation 6
2.2.1.5. Application Trust Groups (ATGs) 6
2.2.2. Target Access Enforcement Function (targetAEF) 6
2.2.3. SESAME Key Distribution 7
2.2.3.1. Basic keys and dialogue keys 7
2.2.3.2. Basic symmetric key distribution scheme (symmIntradomain) 7
2.2.3.3. Hybrid key distribution scheme (hybridInterdomain) 8
2.2.3.4. Full public key distribution scheme (asymmetric) 8
2.2.3.5. Derivation of Dialogue Keys 8
2.2.4. Use of Cryptography in SESAME 8
3. GSS-API TOKEN FORMATS 9
3.1. Token framings 9
3.2. InitialContextToken format 10
3.3. TargetResultToken 14
3.4. ErrorToken 15
3.5. Per Message Token formats 15
3.5.1. MICToken 17
3.5.2. WrapToken 17
3.6 ContextDeleteToken format 18
4. DATA ELEMENT DEFINITIONS 18
4.1. Access Control Data Elements 19
4.1.1. Generalised certificate (GeneralisedCertificate) 19
4.1.1.1. Common Contents fields (CommonContents) 19
4.1.1.2. PAC Specific Certificate Contents (PACSpecificContents) 20
4.1.1.3. Check value (CheckValue) 21
4.1.2. Security Attributes (SecurityAttribute) 21
4.1.3. Protection Methods 22
4.1.3.1. "Control/Protection Values" protection method 22
4.1.3.2. "Primary Principal Qualification" protection method 23
4.1.3.3. "Target Qualification" protection method 24
4.1.3.4. "Delegate/Target Qualification" protection method 24
4.1.3.5. Combining the methods 25
4.1.4. External Control Values Construct (ECV) 25
4.2. Basic Key Distribution 26
4.2.1. Data elements for the Symmetric Intradomain kd-scheme 28
4.2.2. Data elements for the Hybrid interdomain kd-scheme. 29
4.2.3. Data elements for the asymmetric kd-scheme 30
4.3. Dialogue Key Block 30
4.4. Attribute Definitions 31

4.4.1. Privilege attributes 31
4.4.1.1. Access Identity 31
4.4.1.2. Group 31

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 3]

internet-draft November 22, 1996

4.4.1.3. Primary group 32
4.4.1.4. Role attribute 32
4.4.2. Miscellaneous attributes 32
4.4.2.1. Audit Identity 32
4.4.3. Qualifier Attributes 32
4.4.3.1. Target Attributes 32
4.4.3.2. Application Trust Groups 32
5. ALGORITHMS AND CIPHERTEXT FORMATS 32
6. SESAME MECHANISM NEGOTIATION 35
7. NAME TYPES 36
7.1. Kerberos naming 36
7.2. Directory Naming 37
8. SECURITY CONSIDERATIONS 38
9. PATENTS 38
9.1. BULL PATENT 38
9.2. ICL PATENTS 39
9.2.1. PAC USE MONITOR (C1167) 39
9.2.2. PROXY CONTROL (C1179) 39
10. ACKNOWLEDGEMENTS 39
11. REFERENCES 40
12. AUTHOR'S ADDRESSES 41
APPENDIX A: ASN.1 MODULE DEFINITIONS 42
A.1. SESAME ASN.1 Definitions 42
A.2. Kerberos ASN.1 Definitions 51
A.3. SPKM ASN.1 Definitions 53
APPENDIX B: Profiling of KD-schemes 57
B.1. Profile of Ticket as used in symmIntradomain scheme 57
B.2. Profile of PublicTicket as used in hybridInterdomain scheme 57
B.3. Profile of SPKM_REQ as used in asymmetric scheme 58
APPENDIX C: ECMA BACKGROUND MATERIAL. 60

2. THE SESAME TECHNOLOGY

2.1. Overview

 The tokens defined in SESAME are intended to be used by application
 programs according to the GSS API "operational paradigm" (see
 [RFC-1508] for further details):

 The operational paradigm in which GSS-API operates is as follows.
 A typical GSS-API caller is itself a communications protocol [or
 is an application program which uses a communications protocol],
 calling on GSS-API in order to protect its communications with
 authentication, integrity, and/or confidentiality security
 services. A GSS-API caller accepts tokens provided to it by its
 local GSS-API implementation [i.e., its GSS-API mechanism] and
 transfers the tokens to a peer on a remote system; that peer

https://datatracker.ietf.org/doc/html/rfc1508

 passes the received tokens to its local GSS-API implementation for
 processing.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 4]

internet-draft November 22, 1996

 Some extensions to the base GSS-API are required in order for
 applications to take full advantage of the access control and
 delegation capabilities of SESAME. As these extensions are
 independent of the SESAME mechanism they are specified in a
 separate draft [XGSSAPI].

2.2. SESAME Concepts

2.2.1. Access Control Concepts

2.2.1.1. Domains

 A `security domain' is a set of elements, a security authority
 and a set of security relevant activities in which the set of
 elements are subject to the security policy, administered by the
 security authority, for the specified activities [ISO 10181-1].
 A security domain must support at least, one authentication server
 (AS), one privilege attribute server (PAS) and may need a key
 distribution server (KDS).

2.2.1.2. Identities

SESAME supports the three following types of identity:

 Authenticated Identity which is the identity held in the PAS
 ticket obtained from Authentication
 Server. This is used to permit the
 release of Privilege Attributes for use in
 access control decisions.

 Access Identity which is used in PACs as a Privilege
 Attribute. This attribute reflects a value
 given by the PAS administrator. Note that
 the access identity does not need to be
 always present within a PAC, because access
 can be granted using, for example, group-
 memberships or roles rather than
 individual identities.

 Audit Identity a value unique to an individual which is
 used in PACs only for accountability
 purposes. This is a separate field in the
 PAC, which reflects a value given by the
 PAS administrator.

2.2.1.3. Privilege Attributes

 Standard Privilege Attribute types are defined so they can be
 independent of specific end-system representations but which can

 be mapped as appropriate in the receiving system.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 5]

internet-draft November 22, 1996

 The privilege attributes which are supported in this specification are :

 access identity
 primary group
 group
 role attribute
 Domain defined attributes (i.e. defined by the PAS
 administrator)

 Together these provide for the support of a variety of formulations
 of access control policy, for example Role Based Access Control.

2.2.1.4. Delegation

 An initiator may not wish to delegate all his rights, and may want
 to restrict the area within which the PAC may be used. For that
 purpose, PACs can be arranged to be valid only for specific
 nominated targets. A PAC may contain many target names or other
 target attributes (though in SESAME V5 the only attribute type
 supported is the Application Trust Group - see next).

 Mechanisms are also provided to prevent a PAC from being delegated
 where this is appropriate.

2.2.1.5. Application Trust Groups (ATGs)

 A PAC may contain one or more target or delegate application or
 "Trust Group" names specifying which targets or delegate-targets
 the PAC is valid for. A Trust Group name is simply the name of a
 group of applications, defined by the security administrator,
 that mutually trust each other not to spoof each others'
 identities.

 In order to allow for a PAC which is usable at all targets a
 special trust group is defined - the "universal" trust group. A
 PAC targeted at the universal trust group can still be protected
 using target controls (as in delegation) which means that such a
 PAC still cannot be stolen.

2.2.2. Target Access Enforcement Function (targetAEF)

 In SESAME the security processing functionality on the target is
 split between two different entities - the target application and
 the target access enforcement function (targetAEF)(see ISO IEC
 10181-3). This has a number of advantages:

 - the number of long-term keys in the system can be reduced
 since only the targetAEF need share a symmetric key with the
 security server or possess an asymmetric key pair,

 - the security critical code is isolated which makes security
 evaluation simpler,

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 6]

internet-draft November 22, 1996

 - administration is simplified as one targetAEF may "serve" many
 target applications,

 - different administrators can be responsible for the target
 application and targetAEF,

 - as the initiator establishes a key with the targetAEF (see
 later) this keying information can be re-used whenever another
 target served by the same AEF is accessed.

A patent from ICL applies to this method (see section 9).

2.2.3. SESAME Key Distribution

 There are different key distribution schemes in SESAME.
 Each depends upon the existence of long term cryptographic keys
 which held by targets AEFs and KDSs. These keys may be either
 symmetric or asymmetric. In the case where the keys are symmetric
 they are always shared between the targetAEF and its KDS.

 Initiators may also possess symmetric or asymmetric keys. In the
 case where an initiator possesses a symmetric key it is a temporary
 key that will have been established as a result of an earlier
 authentication.

2.2.3.1. Basic keys and dialogue keys

 In SESAME, two separate symmetric keys are established between the
 initiator and target for the purpose of application data protection.
 These are known as the integrity and confidentiality dialogue keys.

 Another symmetric key, called the basic key, is established
 between the initiator and targetAEF which is used in PAC
 protection and to derive the dialogue keys.

 The basic key is transmitted from the initiator to the target in
 a structure called a TargetKeyBlock. The information required to
 derive the dialogue keys is transmitted in a structure called a
 DialogueKeyPackage.

2.2.3.2. Basic symmetric key distribution scheme (symmIntradomain)

 In this scheme, the initiator shares a temporary secret key with
 the KDS and the target AEF shares a long term secret key with the
 same KDS.

 To establish a basic key between an initiator and a targetAEF,
 the initiator KDS returns, as a result of an initiator request, a
 targetKeyBlock containing a basic key encrypted under the
 targetAEF's long term secret key. On receipt of the targetKeyBlock,

 the targetAEF can extract the basic key directly from it.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 7]

internet-draft November 22, 1996

 An unmodified Kerberos TGS is used as the KDS in this case.

2.2.3.3. Hybrid key distribution scheme (hybridInterdomain)

 In this scheme, the initiator shares a temporary secret key with
 a KDS that is different from the KDS with which the targetAEF shares
 its long term key. In addition, each KDS possesses an asymmetric key
 pair.

 To establish a basic key between an initiator and a targetAEF,
 the initiator KDS returns, as a result of an initiator request, a
 TargetKeyBlock containing a basic key encrypted under a temporary
 key and the temporary key encrypted under the targetAEF KDS's
 public key. The TargetKeyBlock is signed using the initiator
 KDS's private key.

 On receipt of the TargetKeyBlock, the targetAEF transmits it to
 its own KDS, and gets back the basic key encrypted under the long
 term secret key it (the targetAEF) shares with its KDS.

 A modified Kerberos TGS can be used as the KDS in this case.

2.2.3.4. Full public key distribution scheme (asymmetric)

 In this scheme, neither the initiator nor the targetAEF uses a
 KDS. Both the initiator and the targetAEF possesses a
 private/public key pair.

 To establish a basic key with a targetAEF, the initiator
 constructs a TargetKeyBlock containing a basic key encrypted
 under the targetAEF's public key. The TargetKeyBlock is signed
 using the initiator's private key.

 On receipt of the TargetKeyBlock, the targetAEF directly
 establishes a basic key from it.

 Modified SPKM code can be used for this scheme.

2.2.3.5. Derivation of Dialogue Keys

 Once a basic key has been established between the initiator and
 targetAEF, the derivation of the dialogue keys can take place.
 The dialogue keys are derived using key offsetting - see the
 description of the dialogue key package below.

2.2.4. Use of Cryptography in SESAME

 In several countries of the world the use of cryptography is
 subject to government control, particularly in relation to the
 hiding of information by enciphering it.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 8]

internet-draft November 22, 1996

 The SESAME architecture has been designed to address these
 problems. The use of confidentiality is kept to a minimum. It is
 provided only where it is an essential function (for example in
 the SESAME key distribution protocols it is necessary to encipher
 the basic key being distributed). PACs are cryptographically
 signed, not enciphered. When encipherment of user and system data
 is a requirement, SESAME allows the algorithms and keys used to
 be separately specified, permitting them to have characteristics
 acceptable to the prevailing political environment.

3. GSS-API TOKEN FORMATS

3.1. Token framings

 All tokens including context-establishment tokens, per-message
 tokens, and context-deletion token are enclosed within framing as
 follows:

 Token ::= [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType, -- the OBJECT IDENTIFIER specified below
 innerContextToken ANY DEFINED BY thisMech
 }

 The SESAME mechanism type is identified by an OBJECT IDENTIFIER
 with value:

 { generic-sesame-mech (v) (y) (z) }

 Where:

 generic-sesame-mech ::= OBJECT IDENTIFIER

 iso.org.icd-ecma.technical-report.security-in-open-systems.
 authentication-machanism {1.3.12.1.46.1}

 The value v represents the version of the mechanism. The current
 version is version 5. The current oid is therefore:
 {1.3.12.1.46.1.5}

 The values of y and z represent architectural options and
 cryptographic algorithm profiles which are specified in section 5.
 These values are intended to be negotiated using a generic GSS-API
 mechanism negotiation scheme like that given in [SNEGO].

 The innerContextToken field of context establishment tokens for
 the SESAME GSS-API mechanism will consist of a SESAME token
 (InitialContextToken, TargetResultToken, ErrorToken) containing a
 token identifier (tokenId) field having the value 01 00 (hex) for
 InitialContextToken, 02 00 (hex) for TargetResultToken, and 03 00
 (hex) for ErrorToken. These are defined to be:

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 9]

internet-draft November 22, 1996

 InitialContextToken sent by the initiator to a target, to start
 the process of establishing a Security
 Association. Returned by the
 GSS_Init_sec_context call.

 TargetResultToken sent to the initiator by the target
 following receipt of an Initial Context
 Token. Returned by the
 GSS_Accept_sec_context call.

 ErrorToken sent by target on detection of an error
 during Security Association establishment.
 Returned by either the GSS_Init_sec_context
 call or the GSS_Accept_sec_context call.

 The innerContextToken field of context-deletion token for the
 SESAME GSS-API mechanism will consist of a SESAME token
 (ContextDeleteToken) containing a tokenId field having the value
 01 02 (hex). This is defined to be:

 ContextDeleteToken sent either by the initiator, or the target
 to release a Security Association. Returned
 by GSS_Delete_sec_context.

 The innerContextToken field of per-message tokens for the SESAME
 GSS-API mechanism will consist of a token (MICToken, WrapToken)
 containing a tokenId field having the value 01 01 (hex) for
 MICToken, and 02 01 (hex) for WrapToken. These are defined to be:

 MICToken sent either by the initiator or the target
 to verify the integrity of the user data
 sent separately. Returned by GSS_GetMIC.

 WrapToken sent either by the initiator or the target.
 Encapsulates the input user data
 (optionally encrypted) along with integrity
 check values. Returned by GSS_Wrap.

3.2. InitialContextToken format

 InitialContextToken ::= SEQUENCE{
 ictContents [0] ICTContents,
 ictSeal [1] Seal
 }

 ictContents
 Body of the initial context token

 ictSeal
 Seal of ictContents computed with the integrity dialogue key.

 Only the sealValue field of the Seal data structure is present.
 The cryptographic algorithms that apply are specified by

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 10]

internet-draft November 22, 1996

 integDKUseInfo in the dialogueKeyBlock field of the targetAEFPart
 from the initial context token.

 ICTContents ::= SEQUENCE {
 tokenId [0] INTEGER, -- shall contain X'0100'
 SAId [1] OCTET STRING,
 targetAEFPart [2] TargetAEFPart,
 targetAEFPartSeal [3] Seal,
 contextFlags [4] BIT STRING {
 delegation (0),
 mutual-auth (1),
 replay-detect (2),
 sequence (3),
 conf-avail (4),
 integ-avail (5)
 }
 utcTime [5] UTCTime OPTIONAL,
 usec [6] INTEGER OPTIONAL,
 seq-number [7] INTEGER OPTIONAL,
 initiatorAddress [8] HostAddress OPTIONAL,
 targetAddress [9] HostAddress OPTIONAL
 -- imported from [Kerberos] and used as channel bindings
 }

 tokenId
 Identifies the initial-context token. Its value is 01 00 (hex)

 SAId
 A random number for identifying the Security Association being
 formed; it is one which (with high probability) has not been used
 previously. This random number is generated by the initiator GSS-
 API implementation and processed by the target GSS-API
 implementation as follows :

 - If no targetResultToken is expected, the SAId value is taken
 to be the identifier of the Security Association being
 established (if this is unacceptable to the target, then an
 error token with etContents value of
 gss_ses_s_sg_sa_already_established must be generated).

 - If a targetResultToken is expected, the target generates its
 random number and concatenates it to the end on the
 initiator's random number. The concatenated value is then
 taken to be the identifier of the Security Association being
 established.

 targetAEFPart
 Part of the initial-context token to be passed to the target
 access enforcement function.

 targetAEFPartSeal
 Seal of the targetAEFPart computed with the basic key. Only the

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 11]

internet-draft November 22, 1996

 sealValue field of the Seal data structure is present. The
 cryptographic algorithms that apply are specified by algorithm
 profile in the SESAME mechanism option (see section 6).

 contextFlags
 Combination of flags that indicates context-level functions
 requested by the GSS-API initiator implementation.

 delegation when set to 0, indicates that the initiator
 explicitly forbids delegation of the PAC in the
 targetAEFPart.

 mutual-auth indicates that mutual authentication is
 requested.

 replay-detect indicates that replay detection features are
 requested to be applied to messages transferred
 on the established Security Association.

 sequence indicates that sequencing features are
 requested to be enforced to messages
 transferred on the established Security
 Association.

 conf-avail indicates that a confidentiality service is
 available on the initiator side for the
 established Security Association.

 integ-avail indicates that an integrity service is
 available on the initiator side for the
 established Security Association.

 utcTime
 The initiator's UTC time.

 usec
 Microsecond part of the initiator's time stamp. This field along
 with utcTime are used together to avoid collision between tokens
 generated by two initiators at the same time. This field enables a
 simple scheme for replay detection of initial tokens to be
 supported.

 seq-number
 When present, specifies the initiator's initial sequence number.
 Otherwise, the default value of 0 is to be used as an initial
 sequence number.

 initiatorAddress
 Initiator's network address part of the channel bindings. This
 field is only present when channel bindings are transmitted by

 the GSS-API caller to the SESAME GSS-API implementation.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 12]

internet-draft November 22, 1996

 targetAddress
 Target's network address part of the channel bindings. This field
 is only present when channel bindings are transmitted by the GSS-
 API caller to the SESAME GSS-API implementation.

 TargetAEFPart ::= SEQUENCE {
 pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,
 targetKeyBlock [1] TargetKeyBlock,
 dialogueKeyBlock [2] DialogueKeyBlock,
 targetIdentity [3] SecurityAttribute,
 flags [4] BIT STRING {
 delegation (0)
 }
 }

 Note 1: Individual PACs have validity of their own, thus
 it is not sensible to have an overall separately
 specified validity period for the whole context.

 pacAndCVs
 The initiator's privileges and security attributes to be used for
 this Security Association. This field is not present when the
 association does not require initiator privileges or security
 attributes. This field contains the PAC together with associated
 PAC protection information. In this specification exactly one of
 these should be present.

 targetKeyBlock
 The targetKeyBlock carrying the basic key to be used for the
 Security Association being established.

 dialogueKeyBlock
 A dialogue key block used by the targetAEF along with the basic
 key to establish an integrity dialogue key and a confidentiality
 dialogue key for per-message protection over the Security
 Association being established.

 targetIdentity
 The identity of the intended target of the Security Association.
 Used by the targetAEF to validate the PAC. Can also be used by
 the targetAEF to help protect the delivery of dialogue keys.

 flags
 flags required by the Target AEF for its validation process. Only
 contains a delegation flag, the value of which is the same as the
 value of delegation flag in contextFlag field of ictContents.
 When the flag is set, all ECVs sent in pacAndCVs are made
 available to the target. Other bits are reserved for future use.

 The Seal structure is used in this Token and other tokens.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 13]

internet-draft November 22, 1996

 Seal ::= SEQUENCE{
 sealValue [0] BIT STRING,
 symmetricAlgId [1] AlgorithmIdentifier OPTIONAL,
 hashAlgId [2] AlgorithmIdentifier OPTIONAL,
 targetName [3] SecurityAttribute OPTIONAL,
 keyId [4] INTEGER OPTIONAL
 }

 sealValue
 The value of the seal. It is the result of a symmetric encryption
 of a hash value of a set of octets (which are the DER encoding of
 some ASN.1 type)

 symmetricAlgId
 An optional indicator of the sealing algorithm.

 hashAlgId
 Only present if the symmetricAlgId does not specify which hashing
 algorithm is used.

 targetName
 This field identifies the targetAEF or target with which the
 symmetric key used for the seal is shared.

 keyId
 This serial number together with the targetName uniquely
 identifies the symmetric key used in the seal.

3.3. TargetResultToken

 This token is returned by the target if the mutual-req flag is set
 in the Initial Context Token. It serves to authenticate the target
 to the initiator, since only the genuine target could derive the
 integrity dialogue key needed to seal the TargetResultToken.

 TargetResultToken ::= SEQUENCE{
 trtContents [0] TRTContents,
 trtSeal [1] Seal
 }

 TRTContents ::= SEQUENCE {
 tokenId [0] INTEGER, -- shall contain X'0200'
 SAId [1] OCTET STRING,
 utcTime [5] UTCTime OPTIONAL,
 usec [6] INTEGER OPTIONAL,
 seq-number [7] INTEGER OPTIONAL,
 }

 trtContents

 This contains only administrative fields, identifying the token
 type, the context and providing exchange integrity.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 14]

internet-draft November 22, 1996

 seq-number
 When present, specifies the target's initial sequence
 number, otherwise, the default value of 0 is to be used as
 an initial sequence number.

 The other administrative fields are as described in above.

 trtSeal
 Seal of trtContents computed with the integrity dialogue key.
 Only the sealValue field of the Seal data structure is present.
 The cryptographic algorithms that apply are specified by
 integDKUseInfo in the dialogueKeyBlock field of the targetAEFPart
 from the initial context token.

3.4. ErrorToken

 ErrorToken ::= SEQUENCE {
 tokenType [0] OCTET STRING VALUE X'0300',
 etContents [1] ErrorArgument,
 }

 etContents
 Contains the reason for the creation of the error token. The
 different reasons are given as minor status return values.

 ErrorArgument ::= ENUMERATED {
 gss_ses_s_sg_server_sec_assoc_open (1),
 gss_ses_s_sg_incomp_cert_syntax (2),
 gss_ses_s_sg_bad_cert_attributes (3),
 gss_ses_s_sg_inval_time_for_attrib (4),
 gss_ses_s_sg_pac_restrictions_prob (5),
 gss_ses_s_sg_issuer_problem (6),
 gss_ses_s_sg_cert_time_too_early (7),
 gss_ses_s_sg_cert_time_expired (8),
 gss_ses_s_sg_invalid_cert_prot (9),
 gss_ses_s_sg_revoked_cert (10),
 gss_ses_s_sg_key_constr_not_supp (11),
 gss_ses_s_sg_init_kd_server_ unknown (12),
 gss_ses_s_sg_init_unknown (13),
 gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
 gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
 gss_ses_s_sg_key_distrib_prob (16),
 gss_ses_s_sg_invalid_user_cert_in_key_block (17),
 gss_ses_s_sg_unspecified (18),
 gss_ses_s_g_unavail_qop (19),
 gss_ses_s_sg_invalid_token_format (20)
 }

3.5. Per Message Token formats

 The syntax of the Per Message Token has the same general
 structure for both MIC and Wrap tokens:

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 15]

internet-draft November 22, 1996

 PMToken ::= SEQUENCE{
 pmtContents [0] PMTContents,
 pmtSeal [1] Seal
 -- seal over the pmtContents being protected
 }

 PMTContents ::= SEQUENCE {
 tokenId [0] INTEGER, -- shall contain X'0101'
 -- for a MIC token and
 -- X'0201' for a Wrap token.

 SAId [1] OCTET STRING,
 seq-number [2] INTEGER
 OPTIONAL,
 userData [3] CHOICE {
 plaintext OCTET STRING,
 ciphertext OCTET STRING
 } OPTIONAL,
 directionIndicator [4] BOOLEAN OPTIONAL
 }

 pmtContents

 tokenId
 SAId
 See above for a description of these fields

 seq-number
 This field must be present if replay detection or message
 sequencing have been specified as being required at
 Security Association initiation time. The field contains a
 message sequence number whose value is incremented by one
 for each message in a given direction, as specified by
 directionIndicator. The first message sent by the initiator
 following the InitialContextToken shall have the message
 sequence number specified in that token, or if this is
 missing, the value 0. The first message returned by the
 target shall have the message sequence number specified in
 the TargetReplyToken if present, or failing this, the value
 0.
 The receiver of the token will verify the sequence number
 field by comparing the sequence number with the expected
 sequence number and the direction indicator with the
 expected direction indicator. If the sequence number in the
 token is higher than the expected number, then the expected
 sequence number is adjusted and GSS_S_GAP_TOKEN is
 returned. If the token sequence number is lower than the
 expected number, then the expected sequence number is not
 adjusted and GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is

 returned, whichever is appropriate. If the direction
 indicator is wrong, then the expected sequence number is
 not adjusted and GSS_S_UNSEQ_TOKEN is returned

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 16]

internet-draft November 22, 1996

 userData
 See specific token type narratives below.

 directionIndicator
 FALSE indicates that the sender is the context initiator,
 TRUE that the sender is the target.

 pmtSeal
 See specific token type narratives below.

3.5.1. MICToken

 Use of the GSS_Get_MIC() call yields a per-message token,
 separate from the user data being protected, which can be used to
 verify the integrity of that data as received. The token and the
 data may be sent separately by the sending application and it is
 the receiving application's responsibility to associate the
 received data with the received token. The syntax of the token
 is:

 MICToken ::= PMToken

 The overall structure and field contents of the token are
 described above. Fields specific to the MICToken are:

 userData
 Not present for MIC Tokens.

 pmtSeal
 The Checksum is calculated over the DER encoding of the
 pmtContents field with the user data temporarily placed in the
 userData field. The userData field is not transmitted.

3.5.2. WrapToken

 Use of the GSS_Wrap() call yields a token which encapsulates the
 input user data (optionally encrypted) along with associated
 integrity check values. The token emitted by GSS_Wrap() consists
 of an integrity header followed by a body portion that contains
 either the plaintext data (if conf_alg == NULL) or encrypted data.
 The syntax of the token is:

 WrapToken ::= PMToken

 The overall structure and field contents of the token are
 described above. Fields specific to the WrapToken are:

 userData

 Present either in plain text form (the choice is plaintext), or
 encrypted (choice ciphertext). If the data is encrypted, it is

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 17]

internet-draft November 22, 1996

 performed using the Confidentiality Dialogue Key, and as in
 [Kerberos], an 8-byte random confounder is first prepended to the
 data to be encrypted.

 pmtSeal
 The Checksum is calculated over the pmtContents field, including
 the userData. However if the userData field is to be encrypted,
 the seal value is computed prior to the encryption.

3.6 ContextDeleteToken format

 The ContextDeleteToken is issued by either the context initiator
 or the target to indicate to the other party that the context is
 to be deleted.

 ContextDeleteToken ::= SEQUENCE {
 cdtContents [0] CDTContents,
 cdtSeal [1] Seal
 -- seal over cdtContents, encrypted
 -- under the Integrity Dialogue Key
 -- contains only the sealValue field
 }

 CDTContents ::= SEQUENCE {
 tokenType [0] OCTET STRING VALUE X'0301',
 SAId [1] OCTET STRING,
 utcTime [2] UTCTime OPTIONAL,
 usec [3] INTEGER OPTIONAL,
 seq-number [4] INTEGER OPTIONAL,
 }

 cdtContents
 This contains only administrative fields, identifying the token
 type, the context and providing exchange integrity.

 seq-number
 When present, this field contains a value one greater than
 that of the seq-number field of the last token issued from
 this issuer.

 The other administrative fields are as described
 above.

 cdtSeal
 See above for a general description of the use of this construct.

4. DATA ELEMENT DEFINITIONS

 In this section we give the details of the structures which are
 present in the tokens defined above.

 These ASN.1 definitions represent the profile of the ASN.1 types

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 18]

internet-draft November 22, 1996

 defined in [ECMA-219] which are implemented in the SESAME
 project. In some cases CHOICEs and OPTIONAL fields which are
 defined by ECMA have been omitted as they are not supported in
 this version of SESAME. In order to retain compatibility this
 leads to a non-obvious numbering for tags.

 In this specification all of the type specifying object
 identifiers are below the arc:

 generic-sesame-mech ::= OBJECT IDENTIFIER {1.3.12.1.46}
 -- top of the SESAME types arc

4.1. Access Control Data Elements

 The ASN.1 definitions for the PAC and related data structures. The full
 ASN.1 specification can be found in [ECMA-219] and in Annex A.

4.1.1. Generalised certificate (GeneralisedCertificate)

 A Generalised Certificate (PAC) consists of a certificateBody and
 checkValue, the latter containing a digital signature applied to
 the former. The CertificateBody is formed of two parts:
 a commonContents and a specificContents part.

 The "commonContents" fields collectively serve to provide
 generally required management and control over the use of the
 PAC.

 The "specificContents" fields are different for different types
 of certificate, and contain a type identifier to indicate the
 type. In this specification only one type is defined: the Privilege
 Attribute Certificate (PAC).

 The "checkValue" fields are used to guarantee the origin of the
 certificate.

 The next sections describe these three main structural components
 of the Generalised Certificate.

4.1.1.1. Common Contents fields (CommonContents)

The common contents field of the PAC is made of the following fields:

 comConSyntaxVersion
 Identifies the version of the syntax of the combination of the
 commonContents and the checkValue fields parts of the
 certificate.

 issuerDomain

 The security domain of the issuing authority. Not required if the
 form of issuerIdentity is a full distinguished name, but required

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 19]

internet-draft November 22, 1996

 if other forms of naming are in use, such as proprietary
 identifiers.

 issuerIdentity
 The identity of the issuing authority for the certificate.

 serialNumber
 The serial number of the certificate (PAC) as allocated by the
 issuing authority.

 creationTime
 The UTC time that the certificate was created, according to the
 authority that created it.

 validity
 A pair of start and end times within which the certificate is
 deemed to be valid.

 algId
 The identifier of the symmetric or of the asymmetric
 cryptographic algorithm used to seal or to sign the certificate.
 If there is a single identifier for both the encryption algorithm
 and the hash function, it appears in this field.

 hashAlgId
 The identifier of the hash algorithm used in the seal or in the
 signature.

4.1.1.2. PAC Specific Certificate Contents (PACSpecificContents)

The specific contents field of the PAC is made of the following fields:

 The pacSyntaxVersion is defaulted.

 protectionMethods
 A sequence of optional groups of Method fields used to protect the
 certificate from being stolen or misused. For a full description
 see section 4.1.3.

 The pacType is defaulted.

 privileges
 Privilege Attributes of the principal in the form of security
 attributes. For a full description ofsecurity attributes see

section 4.1.2.

 restrictions
 not supported in SESAME V5 - see [ECMA-219] for a full description.

 miscellaneousAtts

 Attributes that are neither privilege attributes nor restrictions.
 Audit identity is one such attribute.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 20]

internet-draft November 22, 1996

 TimePeriods
 further time period restriction over and above that specified in
 commonContents.

4.1.1.3. Check value (CheckValue)

 In this specification a PAC is protected by being digitally
 signed by the issuer.

 A signature may be accompanied by information identifying the
 Certification Authority under which the signature can be
 verified, and with an optional convenient reference to or the
 actual value of the user certificate for the private key that the
 signing authority used to sign the certificate.

A signature is composed of the following fields:

 signatureValue
 The value of the signature. It is the result of an asymmetric
 encryption of a hash value of the certificateBody.

 issuerCAName
 The identity of the Certification Authority that has signed the
 user certificate corresponding to the private key used to sign
 this certificate.

 caCertInformation
 Contains either just a certificate serial number which together
 with the issuerCAName uniquely identifies the user certificate
 corresponding to the private key used to sign this certificate,
 or a full specification of a certification path via which the
 validity of the signature can be verified. The latter option
 follows the approach used in [ISO/IEC 9594-8].

4.1.2. Security Attributes (SecurityAttribute)

 The security attribute is a basic construct made up of :

 attributeType
 Defines the type of the attribute. Attributes of the same type
 have the same semantics when used in Access Decision Functions,
 though they may have different defining authorities.

 definingAuthority
 Indicates the authority responsible for defining the value
 within the attribute type. Some policies demand that multiple
 sources of values for a given attribute type be supported (e.g. a
 policy accepting attribute values defined outside the security
 domain), These policies give rise to a risk of value clashes. The
 definingAuthority field is used to separate these values. When not

 present, the value defaults to the name of the authority that
 issued the certificate containing the attribute.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 21]

internet-draft November 22, 1996

 securityValue
 The value of the security attribute. Its syntax is can be either
 one of the basic syntaxes for attributes or a more complex one
 determined by the attribute type.

4.1.3. Protection Methods

 Protection methods are grouped in methodGroups. See section 4.1.3.5
 for the significance of these groups. Protection methods are formed
 as a combination of methodId and methodParams. The methodParams are
 formed as a sequence of Mparm constructs. Each methodId determines
 a syntax for Mparm.

 methodId
 Identifies a protection method. Methods can be used in any
 combination, and except where stated otherwise, multiple occurrences
 of the same method are permitted. The choice of methodId determines
 the permitted choices of method parameters in the methodParams
 construct .

 methodParams
 Parameters for a protection method formed as a sequence of
 individual method parameter constructs (Mparm).

There are four basic protection methods, as described below.

4.1.3.1. "Control/Protection Values" protection method

 This is known as the CV/PV method. A patent from Bull applies to
 this method (see section 9).

 This method allows a PAC to be used by proxy while at the same time
 preventing it from being stolen by an eavesdropper. The PAC can be
 forwarded to any target or group of targets. The owner of the PAC
 need not know in advance. But if this information is known, use of
 the PAC can be confined to any nominated target or group of targets.
 Ownership of a PAC can be proven by presenting a CV value which
 matches a public value contained in the PAC. The two values must
 relate through the relationship: PV = OWF (CV), where OWF is a one
 way collision resistant hash function. Unless otherwise specified,
 the one-way function that is used for this method is MD5.

 The MethodId for this is: controlProtectionValues

 The syntax choice of Mparm for this method is: pValue.

 A maximum of one PV method is permitted in each method group. More
 than one method group can be specified, each containing a PV.

 Associated with each PV is a certificate Control Value (CV)

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 22]

internet-draft November 22, 1996

 external to the certificate. The CVs are carried encrypted in the
 ECV construct.

 When the client sends a PAC to a targetAEF, one or more CVs
 are also sent encrypted under the basic key used to communicate
 with the target AEF. The targetAEF knows the one-way function and
 therefore is able to verify that the client knows a CV which
 corresponds to a PV in the certificate. If the other controls in
 the PV's method group are passed, the PAC is acceptable under this
 method group.

 The targetAEF now knows the value of the CVs that have been sent
 to it, and can make available one or more of the values to the
 infrastructure supporting that application for forwarding with the
 certificate to other applications. By including target qualification
 controls in the method group, proxy can be confined to nominated
 target applications. One use for this might be, for example, all of
 the application servers in a distributed service.

4.1.3.2. "Primary Principal Qualification" protection method

 This is known as the PPID (Primary Principal IDentifier) method.
 A patent from ICL applies to this method.

 The MethodId for this is: ppQualification

 This method protects the certificate from being stolen, by confining
 its use to be from one or more nominated "Primary Principals" as
 defined in [ECMA-219]. In its most restrictive form it permits a
 certificate to be used only from the Primary Principal of the client
 entity to which it was originally issued, preventing delegation of
 the certificate. However it can also be used to permit delegation,
 when the required attributes of the proxy application are precisely
 known in advance. The method by itself does not limit the number of
 target applications at which a PAC might be accepted. However, by
 including separate target qualification controls in the method
 group, delegation can be confined to nominated target applications.

 The syntax choice of Mparm for this method is : securityAttribute

 A sequence of Mparm constructs is permissible, resulting in multiple
 nominated Primary Principals being capable of being permitted.

 At least one of these attributes must be possessed by any Primary
 Principal from which this certificate is to be validly used if the
 PAC is to be accepted under this method. When a targetAEF receives
 such a certificate, it is responsible for comparing these attributes
 with attributes placed within the targetKeyBlock construct and
 associated with the initiating Primary Principal.

 When a symmetric key distribution scheme is in use the attribute
 values are placed in the target key block by the trusted server

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 23]

internet-draft November 22, 1996

 (the KDS) which created it. If there is no KDS, as in the case of
 pure asymmetric key distribution, they are present in the public key
 certificate of the initiator that is sent with the PAC.

 The attribute value used here is termed the primary principal
 identifier (PPID) and takes one of two forms depending on the key
 distribution scheme used by the initiator. For the symmetric
 intradomain and hybrid interdomain schemes the PPID takes the
 form of a random bit string which is also sent in the authorization
 data field of the Kerberos ticket. For the asymmetric scheme the
 PPID is constructed from the certificate serial number and the CA
 name for the initiator's X.509 public key certificate.

4.1.3.3. "Target Qualification" protection method

 The MethodId for this is: targetQualification.

 This method protects the PAC from misuse by allowing its use only
 by one or more nominated target applications and at the same time
 instructing the target AEF to prevent it from being forwarded.

 The syntax choice of Mparm for this method is : securityAttribute

 A sequence of Mparm constructs is permissible, resulting in
 multiple security attributes being present.

 Target AEFs receiving such PACs will compare the values found in
 the PAC with the attributes of the target application. If the
 target application possesses one of the attributes in one of the
 occurrences of this method that is present in a method group, the
 Certificate is deemed to be acceptable under this method in this
 group but the target AEF is expected not to allow the use of the
 certificate for access to further target applications.

4.1.3.4. "Delegate/Target Qualification" protection method

 The MethodId for this is: delegateTargetQualification

 This method protects the PAC from misuse by confining its validity
 to one or more nominated target applications and at the same time
 instructing the target AEF to allow the PAC to be forwarded.

 The syntax choice of Mparm for this method is: securityAttribute

 A sequence of Mparm constructs is permissible, resulting in
 multiple security attributes being present.

 The target AEF makes the comparisons described in the previous
 section, but if the checks are passed, the nominated target
 application(s) is/are acceptable as both an accessible target and

 as a delegate. The attributes carried by the certificate are valid
 at the target application(s) for authentication or access control

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 24]

internet-draft November 22, 1996

 purposes and the target AEF will allow the PAC to be forwarded to
 further target applications.

4.1.3.5. Combining the methods

 The general rule for validating a PAC when received by a target AEF
 is as follows:

 If the PAC is properly signed by an authority recognised by this
 targetAEF and is within the valid time periods then the
 protection methods in each group are tested in turn as described
 below until one of the groups is passed or the PAC is declared
 invalid.

 A method group is passed if it is empty, or if:

 the PAC is for the nominated target application under any
 target or delegateTarget qualification method in this group

 and

 tests on any ppQualification or controlProtectionValues
 method in the group succeed. If more than one of these is
 present, at least one must be passed. If only one is
 present it must be passed. If none of them is present this
 last check is not required.

 If the group that has been passed only validates the certificate
 for its recipient being a target, then further groups are checked
 to see if the recipient is also valid as a delegate/target. If,
 following these additional checks, a recipient is still valid
 only as a target, the targetAEF is responsible for preventing its
 use for access to further target applications.

4.1.4. External Control Values Construct (ECV)

 Whenever the protection controlProtectionValues method is in
 place, when a PAC protected under that method is being presented
 as authorisation for an operation, it may be accompanied by one
 or more control values and indices to the method occurrences in
 the certificate to which they apply.

 crypAlgIdentifier
 This specifies the encryption algorithm of the control values.

 cValues
 An ECV construct contains in the encryptedCvalueList field a list
 of control values encrypted under the basic key protecting the
 operation. The whole list is encrypted in bulk, but the in-clear
 contents of this field are expected to have the syntax CValues.

 The CValues is composed of a sequence of tuples, each one being

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 25]

internet-draft November 22, 1996

 composed of an index of the method occurrence in the certificate,
 starting at 1, and the value of the CV.

4.2. Basic Key Distribution

 The TargetKeyBlock is structured as follows:

 - an identifier (kdSchemeOID) for the key distribution scheme
 being used, which takes the form of an OBJECT IDENTIFIER,

 - a part which, if present, the target AEF needs to pass on to
 its KDS (targetKDSPart - will be present only when the target
 AEF's KDS is different from the initiator's),

 - a part which, if present, can be used directly by the target
 AEF (targetPart).

 When a targetAEF using a separate KDS receives the
 targetKeyBlock, it first checks whether it supports the key
 distribution scheme indicated in kdsSchemeOID. Two different
 cases need to be considered:

 1) Only the targetPart is present. The target AEF computes the
 basic key directly, using the information present in the
 TargetPart. The syntax of targetPart is scheme dependent.
 Expiry information can optionally be present in targetPart. If
 supported by the scheme, the Primary Principal attributes of
 the initiator will also be present for PAC protection under
 the Primary Principal Qualification method (see above).

 2) Only the targetKDSPart is present. The targetAEF forwards
 TargetKeyBlock to its KDS. In return it receives a scheme
 dependent data structure which by itself allows the target AEF
 to determine the basic key and, if supported by the scheme,
 the Primary Principal attributes of the initiator for PAC
 protection purposes. Expiry information can optionally be
 present in the targetKDSPart.

 The form of this information depends on the key distribution
 configuration in place.

 The TargetKeyBlock is composed of the following fields:

 kdSchemeOID
 Identifies the key distribution scheme used. Allows the targetAEF
 to determine rapidly whether or not the scheme is supported. It
 also allows for the easy addition of future schemes.

 targetKDSpart

 Part of the Target Key Block which is processable only by the KDS
 of the target AEF. This part is sent by the target AEF to its

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 26]

internet-draft November 22, 1996

 local KDS, in order to get the basic key which is in it. It must
 always contain the name of a target "served" by the targetAEF in
 question. The mapping between the name of the application and the
 name of the target AEF is known to the target AEF's KDS which is
 able to authenticate which target AEF is issuing the request for
 translating the targetKDSpart. It can then verify that the AEF is
 one which is responsible for the application name contained in
 the targetKDSpart. If it is, the key is released and is sent
 protected back to the requesting AEF. The targetKDSpart
 includes data that enables the KDS of the target AEF to
 authenticate the KDS of the initiator. When the "Primary
 Principal Qualification" protection method needs to be used for
 the PAC, unless there is an accompanying targetPart,
 targetKDSpart contains the appropriate primary principal
 security attributes.

 targetPart
 Part of the Target Key Block which is processed only by the target
 AEF. When there is no targetKDSpart it is processable directly;
 otherwise it can only be processed after the targetKDSpart has been
 processed by the KDS of the target AEF, and the appropriate Keying
 Information has been returned to the AEF. The targetPart construct
 should include data that enables the target AEF to authenticate the
 KDS of the initiator. When the "Primary Principal Qualification"
 protection method needs to be used for the PAC, targetPart must
 contain the primary principal security attributes.

 The following table shows the different syntaxes used for
 targetKDSpart and targetPart for the defined KD-schemes. "Missing"
 in the tables means that the relevant construct is not supplied.

 KD-Scheme name kdSchemeOID targetKDSpart targetPart

 symmIntradomain {kd-schemes 1} Missing Ticket
 hybridInterdomain {kd-schemes 3} PublicTicket Missing
 asymmetric {kd-schemes 6} Missing SPKM_REQ

 Table 1 - Key Distribution Scheme OBJECT IDENTIFIERs

 The syntax of PublicTicket is given in appendix A.1, and the syntax
 of Ticket (copied from [Kerberos]) is given in appendix A.2. The
 syntax of SPKM_REQ (copied from [SPKM])is given in appendix A.3.

 The OBJECT IDENTIFIERs that are for use in the kdSchemeOID field
 of TargetKeyBlock are formally derived from the kd-schemes OBJECT
 IDENTIFIER

 The SPKM_REQ construct used in scheme 6 requires a sequence of key
 establishment algorithm identifier values to be inserted into the

 key_estb_set field. The OBJECT IDENTIFIER sesame-key-estb-alg is
 defined as the (single) key establishment "algorithm" for the
 SESAME mechanism.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 27]

internet-draft November 22, 1996

 kd-schemes
 This OBJECT IDENTIFIER is the top of the arc of key distribution
 scheme OBJECT IDENTIFIERs defined in this specification.

 symmIntradomain
 This OBJECT IDENTIFIER indicates the basic symmetric key
 distribution scheme described in section 2.2.3.2. As indicated in
 the third column of Table 1, the targetKDSpart of the
 TargetKeyBlock is not supplied and the targetPart contains a
 Kerberos Ticket (see [Kerberos] and appendix A.2). The profile of
 the ticket that is supported this scheme can be found in Table 2.

 hybridInterdomain
 This OBJECT IDENTIFIER indicates the hybrid scheme described in

section 2.2.3.3. The targetKDSpart contains a PublicTicket (defined
 in section 4.2.2). The targetPart field is not supplied. The
 PublicTicket contains a Kerberos Ticket. The profile supported in
 this scheme can be found in Table 3.

 asymmetric
 This OBJECT IDENTIFIER indicates the scheme described in section

2.2.3.4. The targetKDSpart is not supplied and the targetPart
 contains an SPKM_REQ. The syntax of SPKM_REQ is given in

appendix A.3. The profile of SPKM_REQ that is supported in this
 scheme is given in Table 4.

 sesame-key-estb-alg
 This AlgorithmIdentifier identifies the key establishment
 algorithm value to be used within the key_estb_set field of an
 SPKM_REQ data element as the one defined by SESAME.

 This algorithm is used to establish a symmetric key for use by
 both the initiator and the target AEF as part of the context
 establishment. The corresponding key_estb_req field of the
 SPKM_REQ will be a BIT STRING the content of which is a DER
 encoding of the KeyEstablishmentData element defined later.

4.2.1. Data elements for the Symmetric Intradomain kd-scheme

 The full ASN.1 for the Kerberos elements used by the SESAME GSS-
 API mechanism is given in appendix A.2. This section specifies
 the specific contents of the Kerberos Ticket's authorization_data
 field required by the SESAME GSS-API mechanism.

 Essentially this construct (SESAME-AUTHORIZATION-DATA) contains the
 PPID of the context initiator.

 ppidType
 Indicates the type of authorisation data as being SESAME
 authorisation data.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 28]

internet-draft November 22, 1996

 ppidValue
 This value is used in the ppQualification PAC protection method
 as defined in section 4.1.3.2.

4.2.2. Data elements for the Hybrid interdomain kd-scheme.

 The PublicTicket contains the following fields:

 krb5Ticket
 The Kerberos Ticket which contains the basic key. The encrypted
 part of this ticket is encrypted using the key found within the
 encryptedPlainKey field of the KeyEstablishmentData in the
 PublicKeyBlock.

 publicKeyBlock
 Contains the key used to protect the krb5Ticket encrypted using
 the public key of the recipient and signed by the encryptor (i.e.
 the context initiator's KD-Server).

 signedPKBPart
 The part of the publicKeyBlock which is signed. The
 keyEstablishmentData field contains the
 KeyEstablishementData (defined in section 4.2.4), i.e. the
 actual encrypted temporary key (see section 2.2.3). The
 encryptionMethod indicates the algorithm used to encrypt
 the encryptedKey. The issuingKDS is the name of the KD-
 Server who produced the PublicTicket. The uniqueNumber is a
 value (containing a timestamp and a random number) which
 prevents replay of the PublicTicket. validityTime specifies
 the times for which the PublicTicket is valid. creationTime
 contains the time at which the PublicTicket was created.

 signature
 Contains the signature calculated by the issuingKDS on the
 signedPKBPart field.

 certificate
 If present, contains the public key certificate of the
 issuing KDS.

The KeyEstablishmentData contains the following fields :

 encryptedPlainKey
 Contains the encrypted key. The BIT STRING contains the result of
 encrypting a PlainKey structure.

 targetName
 If present, contains the name of the target application. This is
 necessary for some of the SESAME KD-schemes.

 nameHashingAlg
 Specifies the algorithm which is used to calculate the hashedName

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 29]

internet-draft November 22, 1996

 field of the PlainKey.

 hniPlainKey
 hniIssuingKDS
 Used as input to a hashing algorithm as a general means to
 prevent ciphertext stealing attacks.

 plainKey
 Contains the actual bits of the plaintext key which is to be
 established.

 hashedName
 A hash of the name of the encrypting KDS calculated using the
 plainkey and KDS name as input (within the HashedNameInput
 structure). The algorithm identified in nameHashingAlg is used to
 calculate this value.

 targetName
 If present, contains the name of the target for which the
 PublicTicket was originally produced. This may be different from
 the targetIdentity field of the initialContextToken if caching of
 PublicTickets has been implemented.

4.2.3. Data elements for the asymmetric kd-scheme

 The targetPart contains an SPKM_REQ. The syntax of SPKM_REQ is
 given in appendix A.3. The profile of SPKM_REQ that is supported
 in this scheme is given in Table 4.

4.3. Dialogue Key Block

 Dialogue Key Block constructs are used to specify how the
 integrity dialogue key and confidentiality dialogue key should be
 derived from the basic key, and specify the cryptographic
 algorithms with which the keys should be used.

 The DialogueKeyBlock is composed of the following fields:

 integKeySeed
 A random number, optionally concatenated with a time value to
 ensure uniqueness, used as input to the one way function
 specified in integKeyDerivationInfo.

 confKeySeed
 A random number, optionally concatenated with a time value to
 ensure uniqueness, used as input to the one way function
 specified in confKeyDerivationInfo.

 integKeyDerivationInfo
 Key derivation information for the integrity dialogue key, as

 follows:

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 30]

internet-draft November 22, 1996

 owfId
 The one way algorithm which takes the basic key XOR the
 seed as input, resulting in the integrity dialogue key.

 keySize
 The size of the key in bits. If the algorithm identified by
 owfId produces a larger key, it is reduced by masking to
 this length, losing its most significant end.

 confKeyDerivationInfo
 Key derivation information for the confidentiality dialogue key.
 The fields in this construct have the same meanings as defined
 above for the integrity dialogue key.

 Note:
 It may be insecure to specify the same derivation algorithms and
 seeds for both integrity and confidentiality dialogue keys,
 particularly if they are to be of different lengths.

 integDKuseInfo
 Information describing how the integrity dialogue key is to be
 used, as follows:

 useAlgId
 The symmetric or asymmetric reversible encryption algorithm
 with which the integrity dialogue key is to be used.

 useHashAlgId
 The one way function with which the integrity dialogue key
 is to be used. It is the hash produced by this algorithm on
 the data to be protected which is encrypted using useAlgId.

 confDKuseInfo
 Information describing how the confidentiality key is to be used.
 The useHashAlgId construct is not used here.

4.4. Attribute Definitions

4.4.1. Privilege attributes

4.4.1.1. Access Identity

 The access identity represents an identity that the principal is
 permitted to use for access control purposes.

4.4.1.2. Group

 The group represents a characteristic common to several
 principals. A security context may contain more than one group
 for a given principal.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 31]

internet-draft November 22, 1996

4.4.1.3. Primary group

 The primary group represents a unique group to which a principal
 belongs. A security context must not contain more than one
 primary group for a given principal.

4.4.1.4. Role attribute

 The role attribute represents a principal's role as might be used
 in a role based access control policy. For example it can represent
 a job position an individual may have within a company.

4.4.2. Miscellaneous attributes

4.4.2.1. Audit Identity

 Audit identity represents an identity unique to principal to be
 used for accountability purposes.
4.4.2.2 Other

Other miscellaneous attributes are
defined in ECMA-219 but are not currently supported in SESAME V5.

4.4.3. Qualifier Attributes

 When a targetQualifiication or delegateTargetQualification method
 is present in the PAC, the syntax used for the method parameters
 is securityAttribute.

4.4.3.1. Target Attributes

 Within a PAC protection method, targets can be identified by name
 or other attributes to indicate whether they are allowed to accept
 or both accept and forward that PAC.

Other than name, the only target attribute supported in SESAME V5 is the
Application Trust Group (see below)..

4.4.3.2. Application Trust Groups

 Within a PAC protection method, an application trust group name
 specifies the name of a set of targets allowed to accept or both
 accept and forward that PAC.

 The universal application trust group (see section 2) is specified
 by using an empty string value. See also section 2.2.1.5.

5. ALGORITHMS AND CIPHERTEXT FORMATS

 Cryptographic and hashing algorithms are used for various

 purposes within the SESAME GSS-API mechanism. This section
 categorises these algorithms according to usage so that context

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 32]

internet-draft November 22, 1996

 initiators and acceptors can more easily determine if they have
 the cryptographic support required to allow inter-operation. The
 categorisation is then refined into cryptographic profiles that
 can be incorporated into specific mechanism identifiers for the
 purpose of mechanism negotiation.

 The table below summarises the different uses to which algorithms
 are put within the SESAME GSS-API mechanism.

 Use Description of use Type of Algorithm
 Reference
 2 PAC protection OWF + asymmetric
 using signature signature
 3 basic key usage symmetric
 confidentiality and
 integrity
 4 integrity dialogue OWF
 key derivation
 5 integrity dialogue symmetric integrity
 key usage
 6 CA public keys OWF + asymmetric
 signature
 7 encryption using symmetric
 shared long term confidentiality.
 symmetric key
 8 name hash to OWF
 prevent ciphertext
 stealing
 9 asymmetric basic asymmetric encryption
 key distribution and OWF + signature
 10 key estab. within (fixed value)
 SPKM_REQ
 11 confidentiality OWF
 dialogue key
 derivation
 12 confidentiality symmetric
 dialogue key use confidentiality

 Table 5 - Summary of algorithm uses:

 The algorithms can now be further categorised into broader
 classes as follows:

 Class 1: symmetric for security of mechanism:
 Uses 3, 5, 7
 Class 2: all OWFs:
 Uses 2, 4, 6, 8, 11
 Class 3: internal mechanism asymmetric, encrypting:

 Use 9
 Class 4: internal mechanism asymmetric, non-encrypting:
 Use 2

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 33]

internet-draft November 22, 1996

 Class 5: CA's asymmetric non-encrypting:
 Use 6
 Class 6: Data confidentiality, symmetric:
 Use 12

 Use 10 is a fixed value, and does not contribute to mechanism use
 options. The fixed value for this has already been defined above.

 Based on these classes, the following cryptographic algorithm
 usage profiles are defined. Other profiles are possible and can
 be defined as required. Note that symmetric algorithm key sizes
 are included in this profiling, thus DES/64 indicates DES with a
 64 bit key.

 Profile 1: Profile 2: Profile 3: Profile 5:
 Full No user Exportable Defaulted
 data
 Confiden
 tiality
 Class 1 DES/64 DES/64 RC4/128 separately
 agreed
 default
 Class 2 MD5 MD5 MD5 separately
 agreed
 default
 Class 3 RSA RSA RSA separately
 agreed
 default
 Classes 4 and 5 RSA RSA RSA separately
 agreed
 default
 Class 6 DES/64 None RC4/40 separately
 agreed
 default
 Table 6 - Algorithm profiles

 Where:

 - Profile 1 provides full security, using standard cryptographic
 algorithms with commonly accepted key sizes.

 - Profile 2 is the same but without supporting any
 confidentiality of user data.

 - Profile 3 is exportable under many countries' legislations,

 - Profile 5 uses algorithms identified by a separately specified
 default. It is intended for use by organisations who wish to
 use their own proprietary or government algorithms by separate

 agreement or negotiation.

 The next section shows how these algorithm profiles can be used

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 34]

internet-draft November 22, 1996

 to extend the architectural key distribution schemes to form
 negotiable SESAME mechanism choices.

6. SESAME MECHANISM NEGOTIATION

 Preceding sections have separately defined the alternatives
 allowed by the generic SESAME mechanism in terms of key
 distribution schemes and the use of cryptographic and hash
 algorithms within the data elements.

 This section brings these together by defining the specific
 SESAME mechanism identifiers which correspond to each combination
 of the available options under these headings. These specific
 mechanism identifiers are intended to be negotiable using a
 generic GSS-API negotiation scheme (like [SNEGO]).

 The approach is to use the key distribution schemes to form
 broad architectural mechanism options, as follows (more options
 are defined by ECMA, hence the numbering):

 Architectural Description of Key Distribution
 Mechanism Mechanism Option Scheme(s)
 Number
 2 Symmetric key symmIntradomain
 distribution
 3 Symmetric initiator symmIntradomain;
 and target; hybridInterdomain
 Asymmetric KD-
 Servers;
 6 Asymmetric Initiator asymmetric
 and Target

 Table 7 - Key Distribution Mechanism Options

 Each of the security mechanism options described above represents
 a key distribution scheme.

 Generic GSS-API mechanism negotiation will be carried out on the
 basis of the generic SESAME mechanism OBJECT IDENTIFIER
 concatenated with an architectural mechanism number from table 7,
 and an algorithm profile reference number from table 6. Thus the
 form of a negotiable SESAME mechanism is:

 SESAME Mechanism OID , V , Y , Z
 ^ ^ ^
 | | |
 | | +-- algorithm
 | | profile
 | |
 | +---------- architectural option

 |
 +------------------ version

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 35]

internet-draft November 22, 1996

 Thus a SESAME V5 mechanism using a fully symmetric key distribution
 scheme and an exportable cryptographic algorithm profile would
 have an OBJECT IDENTIFIER of:

 { generic-sesame-mech (5) (2) (3) }

 A SESAME mechanism using a fully asymmetric initiator and target
 architectural scheme, and an algorithm profile not supporting
 user data confidentiality would have an OBJECT IDENTIFIER of:

 { generic-sesame-mech (5) (6) (2) }

 Not all combinations of key distribution scheme and algorithm
 profile are meaningful, however, but those that are, are intended
 to be negotiable using a generic GSS-API negotiation scheme such
 as [SNEGO].

 Where information is returned from the target to the initiator as
 a result of negotiation then for the SESAME mechanism the
 information should contain the public key certificates required
 for the initiator to be able to use the selected KD-Scheme. For
 example, if the asymmetric KD-Scheme is to be used the target
 should return to the initiator the public key certificate of the
 targetAEF (containing the target's own name in the extensions
 field). The syntax of the mechanism specific information is the
 `Certificates' ASN.1 type defined in the AuthenticationFramework.
 (To allow multiple certificates to be passed to the initiator.)

7. NAME TYPES

 Because [Kerberos] does not support Directory Names (DNs), SESAME
 uses two distinct naming conventions, Kerberos and X.500.

7.1. Kerberos naming

 SESAME uses the Kerberos V5 Authentication Server protocol for
 password based authentication, so SESAME principals are given
 Kerberos principal names. Moreover, the SESAME security domain is
 equivalent to a Kerberos realm, so Kerberos realm names are used
 to identify SESAME security domains. In SESAME, an entity that
 uses the normal Kerberos V5 authentication via a password is
 given a printable Kerberos principal name of the form :

 <principal_name>@<realm_name>
 Notes:
 1. Components of a name can be separated by `/`.
 2. The separator `@` signifies that the remainder of the string
 following the `@` is to be interpreted as a realm identifier. If
 no `@` is encountered, the name is interpreted in the context of

 the local realm. Once an `@` is encountered, a non-null realm
 name, with no embedded `/` separators, must follow. The `\`

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 36]

internet-draft November 22, 1996

 character is used to quote the immediately-following character.

 SESAME reserves two specific Kerberos principal names for its own
 use:

 - for the SESAME Security Server (containing the AS, PAS and KDS):

 krbtgt/<realm_name>@<realm_name>

 - for the SESAME PVF :

 pvf/<host_name>/<realm_name>@<realm_name>

 The realm_name in each of these constructs is repeated for
 compatibility with Kerberos.

 Note that a <host_name> or a <realm_name> might take the form of
 an Internet Protocol domain name, and so a name like:

 pvf/mybox.bull.fr/sesame.bull.fr@sesame.bull.fr

 is a valid principal name for a SESAME PVF.

 When invoking gss_import_name, a Kerberos principal name type can
 be identified using either gss_ses_krb5_oid or
 GSS_KRB5_NT_PRINCIPAL_NAME symbolic names. A Kerberos service
 name type can be identified using either gss_ses_krb5_oid or
 GSS_KRB5_NT_HOSTBASED_ SERVICE_NAME symbolic names.

7.2. Directory Naming

 As described elsewhere, SESAME uses public key technology
 supported by Directory Certificates, so for this purpose SESAME
 entities are given DNs. Such names are built from components
 separated by a semicolon. The standardised keywords supported by
 SESAME are :

 CN (common-name).
 S (surname),
 OU (organisational-unit),
 O (organisation),
 C (country),

 So an example of a DN supported at SESAME is:

 CN=Martin;OU=sesame;O=bull;C=fr

 SESAME defines a set of reserved common-name parts for DNs for
 the core SESAME security components, as follows:

 the PAS: CN=SesamePAS.<realm_name>[;...]
 the AS: CN=SesameAS.<realm_name>[;...]

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 37]

internet-draft November 22, 1996

 the KDS: CN=SesameKDS.<realm_name>[;...]
 the PVF: CN=pvf.<host_name>[;...]
 the security domain: CN=SesameDomain.<realm_name>[;...]
 where <realm_name> is the name of the Kerberos
 realm to which the entity belongs.

 Note that there is no generic rule for mapping the Directory Name
 of a SESAME entity to its Kerberos principal name, so SESAME
 provides an explicit mapping in a principal's Directory
 Certificate, using the extensions field of the extended Directory
 Certificate syntax (version 3) to carry the principal's Kerberos
 name.

 Note also that in the case of a PVF's Directory Certificate, the
 names of the applications supported by the PVF are also held in
 this field, preceded by the Kerberos principal name of the PVF
 itself. In the absence of such a certificate (i.e. if the PVF
 does not have a key pair of its own) the list of application
 names can be held (e.g. in a file) in the KDS.

 In SESAME the syntax of the Login Name is imported from the
 Kerberos Version 5 GSS-API Mechanism. This form of name is
 referred to using the symbolic name: GSS_KRB5_NT_PRINCIPAL.
 Syntax details are given in [KRB5GSS].When a principal possesses
 a private key for authentication, the login name is also stored
 in an extension field of the principal's Directory Certificate so
 that it can be linked to the principal's Distinguished Name.

8. SECURITY CONSIDERATIONS

 Security issues are discussed throughout this memo.

9. PATENTS

 Three patents apply. One from Bull and two from ICL.

9.1. BULL PATENT

 A patent with the French number 2,662,007 and the French title
 "Procedure d'obtention d'une attestation en clair securisee dans
 un environnement de systeme informatique distribue " (Method for
 obtaining a securitized clear text attestation in a distributed
 data processing system environment) has been filed on May 10, 1990
 under the number 90.05829 and is also registered in the following
 countries under the following numbers :

 - European Patent No 91401138.2 (designated states: Germany,
 France, GB, Italy, Netherlands, and Sweden),
 - Canadian Patent No 2,041,761,
 - US Patent No 5,214,700.

 The inventors are : Philippe Caille and Denis Pinkas.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 38]

internet-draft November 22, 1996

9.2. ICL PATENTS

9.2.1. PAC USE MONITOR (C1167)

 A patent based on GB 9010603.0 with the title "Access Control in
 a Distributed Computer System" has been filed on May 11, 1990 and
 has also be registered in the following countries under the
 following numbers :

 - Australia Patent No: 634653 granted: 25/02/93
 - European Application No: 91303752.9 filed: 25/04/91
 (Designated states: Germany, France, GB, Italy, Netherlands.)
 - United States Patent No: 5339403 granted: 16/08/94
 - South Africa Patent No: 91/3322 granted: 12/12/91

The inventor is : Parker T A.

 It uses the term "PAC use monitor" which corresponds to what is
 called in this specification the "targetAEF".

9.2.2. PROXY CONTROL (C1179)

 A patent based on GB 9104909.8 with the title "Access Control in
 a Distributed Computer System" has been filed on August 3, 1991 and
 has also be registered in the following countries under the
 following numbers :

 - Australia Patent No: 655960 granted: 19/01/95
 - European Application No:92301081.3 filed: 19/02/92
 (Designated states: Belgium, Germany, France, GB, Italy)
 - Japan Application No 48618/1992 filed: 05/03/92
 - United States Patent No: 5220603 granted: 15/06/93
 - South Africa Patent No: 92/1425 granted: 15/09/92

The inventor is : Parker T A.

 It uses the term "Proxy control" which corresponds to what is
 called in this specification the PPID method.

10. ACKNOWLEDGEMENTS

 The SESAME project has been carried out by Bull SA, ICL and
 Siemens (SNI, Siemens ZFE and SSE) under part funding from the
 CEC as RACE project R2051.

 With apologies to those omitted, the following are amongst the
 people who have made significant contributions to the ECMA and
 SESAME work: Helmut Baumgaertner, John Cosgrove, Philippe Caille,
 Hiep Doan, Belinda Fairthorne, Peter Hartmann, Keith Howker,
 Per Kaijser, Jacques Lebastard, Ronan Long, Piers McMahon,

 Frank O'Dwyer, Denis Pinkas, Mike Roe, Laurent Rouilhac, Jean Louis
 Roule, Don Salmon, Asmund Skomedal and Mark Van DenWauver.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 39]

internet-draft November 22, 1996

11. REFERENCES

 ECMA-219 ECMA-219 Second Edition, March 1996, Authentication
 and Privilege Attribute Application with related key
 distribution functions. This standard is available
 free of charge from: ECMA 114 Rue du Rhone
 CH-1204 Geneva (Switzerland).
 Internet : helpdesk@ecma.ch
 This standard can also be downloaded using one of the
 following URLs:

ftp://ftp.ecma.ch/ecma-st/e219-doc.exe ;
ftp://ftp.ecma.ch/ecma-st/e219-exp.txt ;
ftp://ftp.ecma.ch/ecma-st/e219-pdf.pdf ;
ftp://ftp.ecma.ch/ecma-st/e219-psc.exe .

 GSS-API 1. Internet RFC 1508 Generic Security Service API
 (J. Linn, September 1993)
 2. X/Open P308 Generic Security Service API
 (GSS-API) Base
 3. Internet RFC 1509 "Generic Security Service API:
 C-Bindings"

 Kerberos Internet RFC 1510 The Kerberos Network
 Authentication Service (V5) (J. Kohl and C.
 Neumann, September 1993)

 ISO/IEC 9594-8 ISO/IEC 9594-8, Information Processing Systems -
 Open Systems Interconnection - The Directory -
 Part 8: Authentication Framework (X.509)

 KERB5GSS Internet RFC 1964, The Kerberos Version 5
 GSS-API Mechanism (J. Linn, June 1996)

 XGSSAPI draft-ietf-cat-xgssapi-acc-cntrl-01.txt: Extended
 Generic Security Service APIs: XGSS-APIs (Denis
 Pinkas and Piers McMahon, July 1996)

 SESOV SESAME Overview, Version 4, (Tom Parker and Denis
 Pinkas, December 1995)

 SPKM RFC 2025 The Simple Public-Key GSS-API Mechanism
 (C. Adams, OCtober 1996)

 SNEGO draft-ietf-cat-snego-01 Simple GSS-API
 Negotiation Mechanism (Eric Baize and Denis
 Pinkas, October 1996)

ftp://ftp.ecma.ch/ecma-st/e219-doc.exe
ftp://ftp.ecma.ch/ecma-st/e219-exp.txt
ftp://ftp.ecma.ch/ecma-st/e219-pdf.pdf
ftp://ftp.ecma.ch/ecma-st/e219-psc.exe
https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc1509
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/draft-ietf-cat-xgssapi-acc-cntrl-01.txt
https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/draft-ietf-cat-snego-01

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 40]

internet-draft November 22, 1996

12. AUTHOR'S ADDRESSES

 Eric Baize,
 Bull HN - MA02/211S
 Technology Park
 Billerica, MA 01821,
 USA.

 email: E.Baize@ma02.bull.com

 Stephen Farrell
 Software and Systems Engineering Ltd.
 Fitzwilliam Court,
 Dublin 2,
 IRELAND.

 email: Stephen.Farrell@sse.ie

 Tom Parker,
 The Solution Centre,
 ICL,
 Lovelace Road,
 Bracknell,
 Berkshire RG12 8SN
 UK

 email: t.a.parker@win0199.wins.icl.co.uk

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 41]

internet-draft November 22, 1996

APPENDIX A: ASN.1 MODULE DEFINITIONS

A.1. SESAME ASN.1 Definitions

 SESAME-gss-api-types { tbs }

 DEFINITIONS ::=

 BEGIN

 -- exports everything

 IMPORTS

 Name
 FROM InformationFramework
 {joint-iso-ccitt(2) ds(5) module(1)
 informationFramework(1) }

 Certificate, AlgorithmIdentifier, Validity,
 CertificationPath
 FROM AuthenticationFramework
 {joint-iso-ccitt(2) ds(5) module(1)
 authenticationFramework(7) }

 HostAddress, Ticket
 FROM SESAME-Kerberos-Definitions { tbs }

 SPKM-REQ
 FROM SESAME-SPKM-Definitions { tbs };

 -- OBJECT IDENTIFIERS

 access-identity-privilege ::= OBJECT IDENTIFIER
 { privilege-attribute 2 }

 audit-id-misc ::= OBJECT IDENTIFIER { misc-attribute 2 }

 generic-sesame-mech ::= OBJECT IDENTIFIER {1.3.12.1.46.1}

 generic-sesame-oids ::= OBJECT IDENTIFIER {1.3.12.1.46}
 -- top of the SESAME types arc

 group-privilege ::= OBJECT IDENTIFIER { privilege-attribute 4 }

 kd-schemes OBJECT IDENTIFIER ::= { generic-sesame-oids 9}
 -- ECMA-defined arc for SESAME key distribution schemes
 symmIntradomain OBJECT IDENTIFIER ::= {kd-schemes 1}
 hybridInterdomain OBJECT IDENTIFIER ::= {kd-schemes 3}
 asymmetric OBJECT IDENTIFIER ::= {kd-schemes 6}

 -- supported key distribution schemes

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 42]

internet-draft November 22, 1996

 misc-attribute OBJECT IDENTIFIER ::=
 { generic-sesame-oids misc-attribute(3) }
 -- OID below which miscellaneous attributes are defined

 primary-group-privilege ::= OBJECT IDENTIFIER{privilege-attribute 3}

 privilege-attribute OBJECT IDENTIFIER ::=
 { generic-sesame-oids privilege-attribute(4) }
 -- OID below which privilege attributes are defined

 qualifier-attribute OBJECT IDENTIFIER ::=
 { generic-sesame-oids qualifier-attribute (4) }
 -- OID below which qualifier attributes are defined

 role-privilege ::= OBJECT IDENTIFIER { privilege-attribute 1 }

 sesame-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }
 -- indicates a SESAME key establishment structure within
 -- an SPKM_REQ structure

 target-name-qualifier OBJECT IDENTIFIER ::= { qualifier-attribute 1 }

 trust-group-qualifier OBJECT IDENTIFIER ::= { qualifier-attribute 2 }

 -- Types in alphabetical order

 AccessPrivilegeValueSyntax ::= Identifier

 AuditIdValueSyntax ::= Identifier

 CDTContents ::= SEQUENCE {
 tokenType [0] OCTET STRING VALUE X'0301',
 SAId [1] OCTET STRING,
 utcTime [2] UTCTime OPTIONAL,
 usec [3] INTEGER OPTIONAL,
 seq-number [4] INTEGER OPTIONAL,
 }

 CertandECV ::= SEQUENCE {
 certificate [0] GeneralisedCertificate,
 ecv [1] ECV, OPTIONAL}
 -- ECV is defined in later

 CertificateBody ::= CHOICE{
 encryptedBody [0] BIT STRING,
 normalBody [1] SEQUENCE{
 commonContents [0] CommonContents,
 specificContents[1] SpecificContents

 }
 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 43]

internet-draft November 22, 1996

 CertificateId ::= SEQUENCE {
 issuerDomain [0] Identifier OPTIONAL,
 issuerIdentity [1] Identifier,
 serialNumber [2] INTEGER
 }
 -- serialNumber is the same as in [ISO/IEC 9594-8]

 CheckValue ::= CHOICE{
 signature [0] Signature
 -- only signature supported here
 }

 CommonContents ::= SEQUENCE{

 comConSyntaxVersion [0] INTEGER { version1 (1) }DEFAULT 1,
 issuerDomain [1] Identifier OPTIONAL,
 issuerIdentity [2] Identifier,
 serialNumber [3] INTEGER,
 creationTime [4] UTCTime OPTIONAL,
 validity [5] Validity,
 algId [6] AlgorithmIdentifier,
 hashAlgId [7] AlgorithmIdentifier OPTIONAL
 }

 ContextDeleteToken ::= SEQUENCE {
 cdtContents [0] CDTContents,
 cdtSeal [1] Seal
 -- seal over cdtContents, encrypted
 -- under the Integrity Dialogue Key
 -- contains only the sealValue field
 }

 CValues ::= SEQUENCE OF SEQUENCE {
 index [0] INTEGER,
 value [1] BIT STRING
 }

 DialogueKeyBlock ::= SEQUENCE {
 integKeySeed [0] SeedValue,
 confKeySeed [1] SeedValue,
 integKeyDerivationInfo [2] KeyDerivationInfo OPTIONAL,
 confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,
 integDKuseInfo [4] DKuseInfo OPTIONAL,
 confDKuseInfo [5] DKuseInfo OPTIONAL
 }

 DKuseInfo ::= SEQUENCE {
 useAlgId [0] AlgorithmIdentifier,
 useHashAlgId [1] AlgorithmIdentifier OPTIONAL

 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 44]

internet-draft November 22, 1996

 ECV ::= SEQUENCE {
 crypAlgIdentifier [0] AlgorithmIdentifier OPTIONAL,
 cValues [1] CHOICE {
 encryptedCvalueList [0] BIT STRING,
 individualCvalues [1] CValues
 }
 }

 ErrorArgument ::= ENUMERATED {
 gss_ses_s_sg_server_sec_assoc_open (1),
 gss_ses_s_sg_incomp_cert_syntax (2),
 gss_ses_s_sg_bad_cert_attributes (3),
 gss_ses_s_sg_inval_time_for_attrib (4),
 gss_ses_s_sg_pac_restrictions_prob (5),
 gss_ses_s_sg_issuer_problem (6),
 gss_ses_s_sg_cert_time_too_early (7),
 gss_ses_s_sg_cert_time_expired (8),
 gss_ses_s_sg_invalid_cert_prot (9),
 gss_ses_s_sg_revoked_cert (10),
 gss_ses_s_sg_key_constr_not_supp (11),
 gss_ses_s_sg_init_kd_server_ unknown (12),
 gss_ses_s_sg_init_unknown (13),
 gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
 gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
 gss_ses_s_sg_key_distrib_prob (16),
 gss_ses_s_sg_invalid_user_cert_in_key_block (17),
 gss_ses_s_sg_unspecified (18),
 gss_ses_s_g_unavail_qop (19),
 gss_ses_s_sg_invalid_token_format (20)
 }

 ErrorToken ::= {
 tokenType [0] OCTET STRING VALUE X'0300',
 etContents [1] ErrorArgument,
 }

 GeneralisedCertificate ::= SEQUENCE{
 certificateBody [0] CertificateBody,
 checkValue [1] CheckValue}

 GroupPrivilegeValueSyntax ::= SEQUENCE OF Identifier

 HashedNameInput ::= SEQUENCE {
 hniPlainKey [0] BIT STRING,-- the same value as plainKey
 hniIssuingKDS [1] Identifier
 }

 ICTContents ::= SEQUENCE {
 tokenId [0] INTEGER, -- shall contain X'0100'

 SAId [1] OCTET STRING,
 targetAEFPart [2] TargetAEFPart,
 targetAEFPartSeal [3] Seal,

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 45]

internet-draft November 22, 1996

 contextFlags [4] BIT STRING {
 delegation (0),
 mutual-auth (1),
 replay-detect (2),
 sequence (3),
 conf-avail (4),
 integ-avail (5)
 }
 utcTime [5] UTCTime OPTIONAL,
 usec [6] INTEGER OPTIONAL,
 seq-number [7] INTEGER OPTIONAL,
 initiatorAddress [8] HostAddress OPTIONAL,
 targetAddress [9] HostAddress OPTIONAL
 -- imported from [Kerberos] and used as channel bindings
 }

 Identifier ::= CHOICE{
 objectId [0] OBJECT IDENTIFIER,
 directoryName [1] Name,
 -- imported from the Directory Standard
 printableName [2] PrintableString,
 octets [3] OCTET STRING,
 intVal [4] INTEGER,

 bits [5] BIT STRING,
 pairedName [6] SEQUENCE{
 printableName [0] PrintableString,
 uniqueName [1] OCTET STRING
 }
 }

 InitialContextToken ::= SEQUENCE{
 ictContents [0] ICTContents,
 ictSeal [1] Seal
 }

 KeyDerivationInfo::= SEQUENCE {
 owfId [0] AlgorithmIdentifier,
 keySize [1] INTEGER
 }

 KeyEstablishmentData ::= SEQUENCE {
 encryptedPlainKey [0] BIT STRING,-- encrypted PlainKey
 targetName [1] SecurityAttribute OPTIONAL,
 nameHashingAlg [2] AlgorithmIdentifier OPTIONAL
 }

 Method ::= SEQUENCE{
 methodId [0] MethodId,

 methodParams [1] SEQUENCE OF Mparm OPTIONAL
 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 46]

internet-draft November 22, 1996

 MethodGroup ::= SEQUENCE OF Method

 MethodId ::= CHOICE{
 predefinedMethod [0] ENUMERATED {
 controlProtectionValues (1),
 ppQualification (2),
 targetQualification (3),
 delegateTargetQualification (4)
 }
 }

 MICToken ::= PMToken

 Mparm ::= CHOICE{
 pValue [0] PValue,
 securityAttribute [1] SecurityAttribute
 }

 PACSpecificContents ::= SEQUENCE{
 pacSyntaxVersion [0] INTEGER{ version1 (1)} DEFAULT 1,
 protectionMethods [2] SEQUENCE OF MethodGroup OPTIONAL,
 pacType [4] ENUMERATED{
 primaryPrincipal (1),
 temperedSecPrincipal (2),
 untemperedSecPrincipal (3)
 } DEFAULT 3,
 privileges [5] SEQUENCE OF PrivilegeAttribute,
 restrictions [6] SEQUENCE OF Restriction OPTIONAL,

 miscellaneousAtts [7] SEQUENCE OF SecurityAttribute OPTIONAL,
 timePeriods [8] TimePeriods OPTIONAL
 }

 PlainKey ::= SEQUENCE {
 plainKey [0] BIT STRING, -- The cleartext key
 hashedName [1] BIT STRING
 }

 PMTContents ::= SEQUENCE {
 tokenId [0] INTEGER, -- shall contain X'0101' for a MIC
 -- token and X'0201' for a Wrap
 -- token.

 SAId [1] OCTET STRING,
 seq-number [2] INTEGER OPTIONAL,
 userData [3] CHOICE {
 plaintextBIT STRING,
 ciphertext OCTET STRING
 } OPTIONAL,

 directionIndicator [4] BOOLEAN OPTIONAL
 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 47]

internet-draft November 22, 1996

 PMToken ::= SEQUENCE{
 pmtContents [0] PMTContents,
 pmtSeal [1] Seal
 -- seal over the pmtContents being protected
 }

 PrimaryGroupValueSyntax ::= Identifier

 PrivilegeAttribute ::= SecurityAttribute

 PublicKeyBlock ::= SEQUENCE{
 signedPKBPart [0] SignedPKBPart,
 signature [1] Signature OPTIONAL,
 certificate [2] Certificate OPTIONAL
 }

 PublicTicket ::= SEQUENCE{
 krb5Ticket [0] Ticket,
 publicKeyBlock [1] PublicKeyBlock}

 PValue ::= SEQUENCE{
 pv [0] BIT STRING,
 algorithmIdentifier [1] AlgorithmIdentifier OPTIONAL
 }

 Restriction ::= SEQUENCE {
 howDefined [0] CHOICE {
 hashedExternal [0] BIT STRING, -- the hash value
 signedExternal [1] BIT STRING, -- the public key
 certExternal [2] CertificateId, -- user certificate
 included [3] BIT STRING
 },
 -- the actual restriction in a form
 -- undefined here
 algId [1] AlgorithmIdentifier OPTIONAL,
 -- either identifies the hash algorithm
 -- or the public key algorithm
 -- for choices 1 or 2 above.
 type [2] ENUMERATED {
 mandatory (1),
 optional (2)} DEFAULT mandatory,
 targets [3] SEQUENCE OF SecurityAttribute OPTIONAL
 }
 -- applies to all targets if this is omitted

 RolePrivilegeValueSyntax ::= Identifier

 Seal ::= SEQUENCE{
 sealValue [0] BIT STRING,

 symmetricAlgId [1] AlgorithmIdentifier OPTIONAL,
 hashAlgId [2] AlgorithmIdentifier OPTIONAL,
 targetName [3] SecurityAttribute OPTIONAL,

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 48]

internet-draft November 22, 1996

 keyId [4] INTEGER OPTIONAL
 }

 SecurityAttribute ::= SEQUENCE{
 attributeType Identifier,
 attributeValue SET OF SEQUENCE {
 definingAuthority [0] Identifier OPTIONAL,
 securityValue [1] SecurityValue
 }
 }
 -- NOTE: SecurityAttribute is not tagged, for compatibility
 -- with the Directory Standard.

 SecurityValue ::= CHOICE{
 directoryName [0] Name,
 printableName [1] PrintableString,
 octets [2] OCTET STRING,
 intVal [3] INTEGER,
 bits [4] BIT STRING,
 any [5] ANY -- defined by attributeType
 }

 SeedValue ::= SEQUENCE {
 timeStamp [0] UTCTime OPTIONAL,
 random [1] BIT STRING
 }

 SESAME-AUTHORISATION-DATA ::= SEQUENCE {
 sesame-ad-type [0] ENUMERATED {
 ppidType (0)
 },
 sesame-ad-value [1] CHOICE {
 ppidValue [0]SecurityAttribute
 }
 }

 SESAME-AUTHORISATION-DATA-TYPE ::= INTEGER { SESAME-ADATA (65) }

 Signature ::= SEQUENCE{
 signatureValue [0] BIT STRING,

 asymmetricAlgId [1] AlgorithmIdentifier OPTIONAL,
 hashAlgId [2] AlgorithmIdentifier OPTIONAL,
 issuerCAName [3] Identifier OPTIONAL,
 caCertInformation [4] CHOICE {
 caCertSerialNumber [0] INTEGER,
 certificationPath [1] CertificationPath
 } OPTIONAL
 }

 --CertificationPath is imported from [ISO/IEC 9594-8]

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 49]

internet-draft November 22, 1996

 SignedPKBPart ::= SEQUENCE{
 keyEstablishmentData [0] KeyEstablishmentData,
 encryptionMethod [1] AlgorithmIdentifier OPTIONAL,
 issuingKDS [2] Identifier,
 uniqueNumber [3] UniqueNumber,
 validityTime [4] TimePeriods,
 creationTime [5] UTCTime
 }

 SpecificContents ::= CHOICE{
 pac [1] PACSpecificContents
 -- only the PAC is used here
 }

 TargetAEFPart ::= SEQUENCE {
 pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,
 targetKeyBlock [1] TargetKeyBlock,
 dialogueKeyBlock [2] DialogueKeyBlock,
 targetIdentity [3] SecurityAttribute,
 flags [4] BIT STRING {
 delegation (0)
 }
 }

 TargetKeyBlock ::= SEQUENCE {
 kdSchemeOID [2] OBJECT IDENTIFIER,
 targetKDSpart [3] ANY OPTIONAL,
 -- depending on kdSchemeOID
 targetPart [4] ANY OPTIONAL
 -- depending on kdSchemeOID
 }

 TargetResultToken ::= SEQUENCE{
 trtContents [0] TRTContents,
 trtSeal [1] Seal
 }

 Token ::=
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType, -- the OBJECT IDENTIFIER specified below
 innerContextToken ANY DEFINED BY thisMech
 }

 TRTContents ::= SEQUENCE {

 tokenId [0] INTEGER, -- shall contain X'0200'
 SAId [1] OCTET STRING,
 utcTime [5] UTCTime OPTIONAL,

 usec [6] INTEGER OPTIONAL,
 seq-number [7] INTEGER OPTIONAL,
 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 50]

internet-draft November 22, 1996

 TrustGroupValueSyntax ::= Identifier

 UniqueNumber ::= SEQUENCE{
 timeStamp [0] UTCTime,
 random [1] BIT STRING
 }

 Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime
 } -- as in [ISO/IEC 9594-8]
 -- Note: Validity is not tagged, for compatibility with the
 -- Directory Standard.

 WrapToken ::= PMToken

 END

A.2. Kerberos ASN.1 Definitions

 The SESAME GSS-API mechanism re-uses the HostAddress and Ticket
 types from [Kerberos]. These are reproduced here for ease of
 reference.

 SESAME-Kerberos-Definitions {tbs }

 DEFINITIONS ::=

 BEGIN

 -- exports everything

 IMPORTS

 -- imports nothing

 -- data types

 AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type [0] INTEGER,
 ad-data [1] OCTET STRING}

 EncryptedData ::= SEQUENCE {
 etype [0] INTEGER, -- EncryptionType
 kvno [1] INTEGER OPTIONAL,
 cipher [2] OCTET STRING -- ciphertext}

 EncryptionKey ::= SEQUENCE {

 keytype [0] INTEGER,
 keyvalue [1] OCTET STRING}

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 51]

internet-draft November 22, 1996

 EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] Realm,
 cname [3] PrincipalName,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL}

 HostAddress ::= SEQUENCE {
 addr-type [0] INTEGER,
 address [1] OCTET STRING}

 HostAddresses ::= SEQUENCE OF SEQUENCE {
 addr-type [0] INTEGER,
 address [1] OCTET STRING}

 KerberosTime ::= GeneralizedTime
 -- Specifying UTC time zone (Z)

 PrincipalName ::= SEQUENCE {
 name-type [0] INTEGER,
 name-string [1] SEQUENCE OF GeneralString}

 Realm ::= GeneralString

 Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER,
 realm [1] Realm,
 sname [2] PrincipalName,
 enc-part [3] EncryptedData} -- decrypts to
 EncTicketPart

 TicketFlags ::= BIT STRING {
 reserved (0), -- not supported in the SESAME mechanism
 forwardable (1), -- not supported in the SESAME mechanism
 forwarded (2), -- not supported in the SESAME mechanism
 proxiable (3), -- not supported in the SESAME mechanism
 proxy (4), -- not supported in the SESAME mechanism
 may-postdate (5), -- not supported in the SESAME mechanism
 postdated (6),
 invalid (7), -- not supported in the SESAME mechanism
 renewable (8), -- not supported in the SESAME mechanism
 initial (9), -- not supported in the SESAME mechanism
 pre-authent (10),

 hw-authent (11)}

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 52]

internet-draft November 22, 1996

 TransitedEncoding ::= SEQUENCE {

 tr-type [0] INTEGER, -- must be registered
 contents [1] OCTET STRING}
 -- the TransitedEncoding construct is not used in the SESAME
 -- mechanism.

 END

A.3. SPKM ASN.1 Definitions

 The SESAME GSS-API mechanism re-uses the SPKM-REQ type from
 [SPKM]. These are reproduced here for ease of reference.

 SESAME-SPKM-Definitions {tbs }

 DEFINITIONS ::=

 BEGIN

 -- exports everything

 IMPORTS

 AuthorizationData
 FROM SESAME-Kerberos-Defintions { tbs }

 AlgorithmIdentifier, Certificate, CertificateList,
 CertificatePair, CertificatePath
 FROM AuthenticationFramework {
 joint-iso-ccitt ds(5) modules(1)
 authenticationFramework(7) }

 Name
 FROM InformationFramework {
 joint-iso-ccitt ds(5) modules(1)
 informationFramework(1) }

 -- data types

 CertificationData ::= SEQUENCE {
 certificationPath [0] CertificationPath OPTIONAL,
 certificateRevocationList [1] CertificateList OPTIONAL
 } -- at least one of the above shall be present

 CertificationPath ::= SEQUENCE {
 userKeyId [0] OCTET STRING OPTIONAL,
 -- identifier for user's public key
 userCertif [1] Certificate OPTIONAL,
 -- certificate containing user's public key

 verifKeyId [2] OCTET STRING OPTIONAL,
 -- identifier for user's public

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 53]

internet-draft November 22, 1996

 -- verification key

 userVerifCertif [3] Certificate OPTIONAL,
 -- certificate containing user's public
 -- verification key
 theCACertificates [4] SEQUENCE OF CertificatePair OPTIONAL
 -- certification path from target to source
 }

 ChannelId ::= OCTET STRING

 Conf_Algs ::= CHOICE {
 SEQUENCE OF AlgorithmIdentifier,
 NULL -- used when conf. is not available
 -- over context
 } -- for C-ALG

 Context_Data ::= SEQUENCE {
 channelId ChannelId, -- channel bindings
 seq_number INTEGER OPTIONAL, -- sequence number
 options Options,
 conf_alg Conf_Algs, -- confidentiality. algs.
 intg_alg Intg_Algs -- integrity algorithm
 }

 ENCRYPTED MACRO ::=
 BEGIN
 TYPE NOTATION ::= type(ToBeEnciphered)
 VALUE NOTATION ::= value(VALUE BIT STRING)
 END -- of ENCRYPTED

 HASHED MACRO ::=
 BEGIN
 TYPE NOTATION ::= type (ToBeHashed)
 VALUE NOTATION ::= value (VALUE OCTET STRING)
 END -- hash used is the one specified for the MANDATORY I-ALG

 Intg_Algs ::= SEQUENCE OF AlgorithmIdentifier -- for I-ALG

 Key_Estb_Algs ::= SEQUENCE OF AlgorithmIdentifier -- to allow
 negotiation of K-ALG

 MAC MACRO ::=
 BEGIN
 TYPE NOTATION ::= type (ToBeMACed)
 VALUE NOTATION ::= value (VALUE
 SEQUENCE {
 algId AlgorithmIdentifier,
 mac BIT STRING
 }

)
 END

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 54]

internet-draft November 22, 1996

 Options ::= BIT STRING {
 delegation_state (0),

 mutual_state (1),
 replay_det_state (2), -- used for replay det.
 -- during context
 sequence_state (3), -- used for sequencing
 -- during context
 conf_avail (4),
 integ_avail (5),
 target_certif_data_required (6) -- used to request
 -- targ's certif. data
 }

 Random_Integer ::= BIT STRING

 Req_Integrity ::= CHOICE {
 sig_integ [0] SIGNATURE REQ_TOKEN,
 mac_integ [1] MAC REQ_TOKEN
 }

 REQ_TOKEN ::= SEQUENCE {
 tok_id INTEGER, -- shall contain 0100 (hex)
 context_id Random_Integer,
 pvno BIT STRING, -- protocol version number
 timestamp UTCTime OPTIONAL,
 -- mandatory for SPKM-2
 randSrc Random_Integer,
 targ_name Name,
 src_name Name, -- may be a value indicating
 -- "anonymous"
 req_data Context_Data,
 validity [0] Validity OPTIONAL,
 -- validity interval for key
 -- (may be used in the
 -- computation of security
 -- context lifetime)
 key_estb_set [1] Key_Estb_Algs, -- specifies set of key
 -- establishment algorithms
 key_estb_req BIT STRING OPTIONAL,
 -- key estb. parameter corresponding to first K-ALG in set
 -- (not used if initiator is unable or unwilling to
 -- generate and securely transmit key material to target).
 -- Established key must be sufficiently long to be used
 -- with any of the offered confidentiality algorithms.
 key_src_bind HASHED SEQUENCE {
 src_name Name,
 symm_key BIT STRING}OPTIONAL
 -- used to bind the source name to the symmetric key

 -- (i.e., the unprotected version of what is
 -- transmitted in key_estb_req).
 }

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 55]

internet-draft November 22, 1996

 SIGNATURE MACRO ::=
 BEGIN
 TYPE NOTATION ::= type (OfSignature)
 VALUE NOTATION ::= value(VALUE
 SEQUENCE {
 AlgorithmIdentifier,
 ENCRYPTED OCTET STRING
 }
)
 END

 SPKM_REQ ::= SEQUENCE {
 requestToken REQ_TOKEN,
 req_integrity Req_Integrity,
 certif_data [2] CertificationData OPTIONAL,
 auth_data [3] AuthorizationData OPTIONAL
 -- see [Kerberos] for a discussion of authorization data
 }

 Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime }

 END

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 56]

internet-draft November 22, 1996

APPENDIX B: Profiling of KD-schemes

 The following tables provide profiling information for the data
 elements defined above and in appendices A.1 and A.2. The tables
 indicate which optional fields must be present for each of the
 KD-Schemes and indicate the values which are required to be present
 in all fields.

B.1. Profile of Ticket as used in symmIntradomain scheme

 Field Value/Constraint
 ----- ----------------
 tkt-vno 5
 realm ticket issuer's domain name in Kerberos realm
 name form
 sname target application name including the realm of
 the target
 - EncTicketPart encrypted with long term key of target AEF
 -- flags only bits 6, 10 and 11 can be meaningful in
 the context of the SESAME mechanism, the rest
 are ignored
 -- key the basic key
 -- crealm initiator domain name in Kerberos realm name
 form
 -- cname principal name of the initiator (in the case
 of delegation the cname will be that of the
 delegate)
 -- transited not used
 -- authtime the time at which the initiator was
 authenticated
 -- starttime not used
 -- endtime the time at which the ticket becomes invalid
 -- renew-till not used
 -- caddr not used
 -- authorization- contains the PPID corresponding to cname
 data

 Table 2 - Kerberos ticket fields supported

B.2. Profile of PublicTicket as used in hybridInterdomain scheme

 Field Value/Constraint
 ----- ----------------
 krb5Ticket
 - tkt-vno 5
 - realm initiator domain name in Kerberos realm name
 form
 - sname target application name including the realm
 of the target

 -- EncTicketPart encrypted with temporary key (which is in
 turn encrypted within the
 keyEstablishmentData field)

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 57]

internet-draft November 22, 1996

 --- flags only bits 6, 10 and 11 can be meaningful in
 the context of the SESAME mechanism, the
 rest are ignored
 --- key the basic key
 --- crealm initiator domain name in Kerberos realm name
 form
 --- cname principal name of the initiator (in the case
 of delegation the cname will be that of the
 delegate)
 --- transited not used
 --- authtime the time at which the initiator was
 authenticated
 --- starttime not used
 --- endtime the time at which the ticket becomes invalid
 --- renew-till not used
 --- caddr not used
 --- authorization- contains the PPID corresponding to cname
 data publicKeyBlock
 - signedPKBPart
 -- encryptedKey KeyEstablishmentData structure
 -- encryptionMethod sesame-key-estb-alg
 -- issuingKDS X.500 name of initiator's KDS (the signer)
 -- uniqueNumber creation time of publicKeyBlock plus a
 random bit string
 -- validityTime only one period allowed
 -- creationTime creation time of publicKeyBlock
 - signature contains all the signing information as well
 as the actual signature bits
 - certificate optional

 Table 3 - PublicTicket fields supported

B.3. Profile of SPKM_REQ as used in asymmetric scheme

 Field Value/Constraint
 ----- ----------------
 requestToken
 - tok_id not used - fixed value of `0'
 - context_id not used - fixed value of bit string
 containing one zero bit
 - pvno not used - fixed value of bit string
 containing one zero bit
 - timestamp creation time of SPKM_REQ - required
 - randSrc random bit string
 - targ_name X.500 Name of target AEF
 - src_name X.500 Name of initiator
 - req_data
 -- channelId not used - octet string of length one value

 `00'H

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 58]

internet-draft November 22, 1996

 -- seq_number missing
 -- options not used - all bits set to zero
 -- conf_alg not used - use NULL CHOICE
 -- intg_alg not used - use a SEQUENCE OF with zero
 elements
 - validity mandatory
 - key_estb_set only one element supplied containing sesame-
 -key-estb-alg
 - key_estb_req contains KeyEstablishmentData with
 targetApplication field missing
 - key_src_bind missing
 req_integrity sig_integ mandatory
 certif_data only userCertificate field supported
 auth_data missing

 Table 4 - SPKM_REQ fields supported

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 59]

internet-draft November 22, 1996

APPENDIX C: ECMA BACKGROUND MATERIAL.

 ECMA's work was based on the OSI Architecture [ISO 7498-2], and
 the series of Security Frameworks developed in ISO/IEC JTC1 [ISO
 10181]. A Technical Report, [ECMA TR/46] published in 1988,
 concentrates on the application layer and describes a security
 framework in terms of application functions necessary to build
 secure open systems. The continuation of this report, [ECMA-138],
 defines the abstract security services for use in a distributed
 system. A parallel standard, [ECMA-206], describes a model for
 establishing secure relationships between applications in a
 distributed system. ECMA has recently completed work to define
 the functionality and the protocols for a distributed security
 service in charge of authenticating and distributing access
 rights to human and application principals, along with supportive
 key distribution functions. The ECMA standard which is the result
 of that work is called ECMA-219 [ECMA-219]. It was approved by
 the ECMA General Assembly in December 1994 and released in
 January 1995.

Baize, Farrell, Parker Document Expiration: 22 May 1997 [Page 60]

