
Internet-Draft Eric Baize, Denis Pinkas
IETF Common Authentication Technology WG Bull
<draft-ietf-cat-snego-08.txt> 4 March 1998

The Simple and Protected GSS-API Negotiation Mechanism

STATUS OF THIS MEMO

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as ``work in progress.''

To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

Comments on this document should be sent to "cat-ietf@mit.edu", the
IETF Common Authentication Technology WG discussion list. Distribution
of this document is unlimited.

2. ABSTRACT

This draft document specifies a Security Negotiation Mechanism for the
Generic Security Service Application Program Interface (GSS-API) which
is described in [1].

The GSS-API provides a generic interface which can be layered atop
different security mechanisms such that if communicating peers acquire
GSS-API credentials for the same security mechanism, then a security
context may be established between them (subject to policy). However,
GSS-API doesn't prescribe the method by which GSS-API peers can
establish whether they have a common security mechanism.

The Simple and Protected GSS-API Negotiation Mechanism defined here
is a pseudo-security mechanism, represented by the object identifier
iso.org.dod.internet.security.mechanism.snego (1.3.6.1.5.5.2) which
enables GSS-API peers to determine in-band whether their credentials
share common GSS-API security mechanism(s), and if so, to invoke
normal security context establishment for a selected common security

https://datatracker.ietf.org/doc/html/draft-ietf-cat-snego-08.txt

mechanism. This is most useful for applications that are based on
GSS-API implementations which support multiple security mechanisms.

Baize, Pinkas Document Expiration: 4 September 1998 [Page 1]

Internet-Draft March 4, 1998

This allows to negotiate different security mechanisms, different
options within a given security mechanism or different options from
several security mechanisms.

Once the common security mechanism is identified, the security
mechanism may also negotiate mechanism-specific options during its
context establishment. This will be inside the mechanism tokens, and
invisible to the SPNEGO protocol.

The simple and protected GSS-API mechanism negotiation is based on the
following negotiation model : the initiator proposes one security
mechanism or an ordered list of security mechanisms, the target either
accepts the proposed security mechanism, or chooses one from an
offered set, or rejects the proposed value(s). The target then informs
the initiator of its choice.

In its basic form this protocol requires an extra-round trip. Network
connection setup is a critical performance characteristic of any
network infrastructure and extra round trips over WAN links, packet
radio networks, etc. really make a difference. In order to avoid such
an extra round trip the initial security token of the preferred
mechanism for the initiator may be embedded in the initial token.
If the target preferred mechanism matches the initiator's preferred
mechanism, no additional round trips are incurred by using the
negotiation protocol.

The simple and protected GSS-API mechanism negotiation provides a
technique to protect the negotiation that must be used when the
underlying mechanism selected by the target is capable of integrity
protection.

When all the mechanisms proposed by the initiator support integrity
protection or when the selected mechanism supports integrity
protection, then the negotiation mechanism becomes protected since
this guarantees that the appropriate mechanism supported by both
peers has been selected.

The Simple and Protected GSS-API Negotiation Mechanism uses the
concepts developed in the GSS-API specification [1]. The negotiation
data is encapsulated in context-level tokens. Therefore, callers of
the GSS-API do not need to be aware of the existence of the
negotiation tokens but only of the new pseudo-security mechanism.
A failure in the negotiation phase causes a major status code to be
returned: GSS_S_BAD_MECH.

3. NEGOTIATION MODEL

3.1. Negotiation description

The model for security mechanism negotiation reuses a subset of the
concepts specified in [2].

Baize, Pinkas Document Expiration: 4 September 1998 [Page 2]

Internet-Draft March 4, 1998

Each OID represents one GSS-API mechanism or one variant of it.

 - When one security mechanism is proposed by the initiator, it
 represents the only security mechanism supported or
 selected (when the additional APIs defined in the Annex A
 are used) by the initiator.

 - When several security mechanisms are proposed by the initiator,
 they represent a set of security mechanisms supported or selected
 (when the additional APIs defined in the Annex A are used) by the
 initiator.

The first negotiation token sent by the initiator contains an ordered
list of mechanisms, a set of options (e.g. deleg, replay, conf flags)
that should be supported by the selected mechanism and optionally the
initial security token for the desired mechanism of the initiator
(i.e. the first of the list).

The first negotiation token sent by the target contains the result of
the negotiation (accept_completed, accept_incomplete or reject) and,
in case of accept, the agreed security mechanism. It may also include
the response to the initial security token from the initiator, when
the first proposed mechanism of the initiator has been selected. When
the first mechanism is acceptable to the target,it should respond to
the initial security token for the desired mechanism of the initiator
when it is present. However, if this is not possible, the target can
simply ignore it and omit the responseToken from the first reply.

Implementations that can piggyback the initial token will be rewarded
by faster connection setup.

In case of a successful negotiation, the security mechanism represents
the value suitable for the target, and picked up from the list offered
by the initiator. The policy by which the target chooses a mechanism
is an implementation-specific local matter. In the absence of other
policy, the target should chose the first mechanism in the list for
which valid credentials are available.

Once a mechanism has been selected, the tokens specific to the
selected mechanism are carried within the negotiation tokens (in the
mechToken for the initiator and in the responseToken for the target).

3.2. Negotiation procedure

The negotiation procedure is summarised as follows:

(a) the GSS-API initiator invokes GSS_Init_sec_context as normal, but
requests (either explicitly, with the negotiation mechanism, or
through accepting a default, when the default is the negotiation
mechanism) that the Simple and Protected GSS-API Negotiation Mechanism

be used;

(b) the initiator GSS-API implementation emits a negotiation token
containing a list of supported security mechanisms for the credentials

Baize, Pinkas Document Expiration: 4 September 1998 [Page 3]

Internet-Draft March 4, 1998

used for this context establishment, and optionally an initial
security token for the first mechanism from that list (i.e. the
preferred mechanism), and indicates GSS_S_CONTINUE_NEEDED status;

(c) The GSS-API initiator sends the token to the target application;

(d) The GSS-API target deposits the token through invoking
GSS_Accept_sec_context. The target GSS-API implementation emits a
negotiation token containing which if any of the proposed mechanisms
it supports (or has selected).

If the mechanism selected by the target matches the preferred
mechanism identified by the initiator and the initiator provides a
mechToken, the negotiation token response may contain also an initial
security token from that mechanism.

If the preferred mechanism is accepted, GSS_Accept_sec_context()
indicates GSS_S_COMPLETE when unilateral or mutual authentication has
been performed and involves a single token in either direction.

If a proposed mechanism other than the preferred mechanism is
accepted, the negotiation token response may contain also an initial
security token from that mechanism (e.g. to transmit a certificate).

If a proposed mechanism other than the preferred mechanism is accepted,
or the preferred mechanism is accepted but involves multiple exchanges
(e.g. challenge-response authentication), then GSS_Accept_sec_context()
indicates GSS_S_CONTINUE_NEEDED status.

If the proposed mechanism(s) are rejected, GSS_Accept_sec_context()
indicates GSS_S_BAD_MECH status. The security context initialisation
has failed.

(e) The GSS-API target returns the token to the initiator application;

(f) The GSS-API initiator deposits the token through invoking
GSS_Init_sec_context.

GSS_Init_sec_context() may then indicate GSS_S_CONTINUE_NEEDED,
GSS_S_COMPLETE or GSS_S_BAD_MECH status.

 The GSS_S_BAD_MECH status is returned when the negotiation token
 carries a reject result or when the negotiation token carries an
 accept result and the mechanism selected by the target is not
 included in the initial list sent by the initiator.

 The GSS_S_BAD_SIG status is returned when the selected mechanism
 supports a MIC token but the MIC computed over the list of
 mechanisms sent by the initiator is missing or incorrect.

 If the negotiation token carries a reject result, the
 context establishment is impossible. For example, a rejection
 will occur if the target doesn't support the initiator's proposed
 mechanism type(s). Upon failure of the mechanism negotiation

Baize, Pinkas Document Expiration: 4 September 1998 [Page 4]

Internet-Draft March 4, 1998

 procedure, the mech_type output parameter value is the
 negotiation mechanism type.

 The GSS_S_CONTINUE_NEEDED status is returned when the negotiation
 token carries an accept result and further tokens must be
 transferred in order to complete context establishment for the
 selected mechanism. In that case GSS_Init_sec_context() returns
 an initial context token as output_token (with the selected
 mechanism's context token encapsulated within that output_token).

 The initiator then sends the output_token to the target. The
 security context initialisation is then continued according to
 the standard GSS-API conventions for the selected mechanism,
 where the tokens of the selected mechanism are encapsulated until
 the GSS_S_COMPLETE is returned for both the initiator and the
 target. When GSS_S_CONTINUE_NEEDED is returned, the mech_type
 output parameter is not yet valid.

 When GSS_S_COMPLETE is returned, the mech_type output parameter
 indicates the selected mechanism. When the final negotiation token
 does not contain a MIC, the initiator GSS-API implementation must
 check the returned/selected mechanism is on the originally
 submitted list of mechanisms and also verify that the
 selected mechanism is not able to support a MIC. When the final
 negotiation token contains a MIC over the initial mechanisms list
 sent by the initiator, the MIC must be verified.

Note that the *_req_flag input parameters for context establishment
are relative to the selected mechanism, as are the *_state output
parameters. i.e., these parameters are not applicable to the
negotiation process per se.

The initiator GSS-API calling application may need to know when the
negotiation exchanges were protected or not. For this, when
GSS_S_COMPLETE is returned, it can simply test the integ_avail flag.
When this flag is set it indicates that the negotiation was protected.

On receipt of a negotiation token on the target side, a GSS-API
implementation that does not support negotiation would indicate the
GSS_S_BAD_MECH status as if a particular basic security mechanism had
been requested but was not supported.

When GSS_Acquire_cred is invoked with the negotiation mechanism as
desired_mechs, an implementation-specific default credential is used
to carry on the negotiation. A set of mechanisms as specified locally
by the system administrator is then available for negotiation. If there
is a desire for the caller to make its own choice, then an additional
API has to be used (see Appendix A).

4. DATA ELEMENTS

4.1. Mechanism Type

MechType::= OBJECT IDENTIFIER

Baize, Pinkas Document Expiration: 4 September 1998 [Page 5]

Internet-Draft March 4, 1998

mechType
 Each security mechanism is as defined in [1].

4.2. Negotiation Tokens

The syntax of the negotiation tokens follows the InitialContextToken
syntax defined in [1]. The security mechanism of the initial
negotiation token is identified by the Object Identifier
iso.org.dod.internet.security.mechanism.snego (1.3.6.1.5.5.2).

4.2.1. Syntax

This section specifies the syntax of the corresponding
"innerContextToken" field for the first token and subsequent
negotiation tokens. During the mechanism negociation,
the "innerContextToken" field contains the ASN.1 structure
"NegociationToken" given below, encoded using the BER/DER encoding
conventions.

NegotiationToken ::= CHOICE {
 negTokenInit [0] NegTokenInit,
 negTokenTarg [1] NegTokenTarg }

MechTypeList ::= SEQUENCE OF MechType

NegTokenInit ::= SEQUENCE {
 mechTypes [0] MechTypeList OPTIONAL,
 reqFlags [1] ContextFlags OPTIONAL,
 mechToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL
 }

ContextFlags ::= BIT STRING {
 delegFlag (0),
 mutualFlag (1),
 replayFlag (2),
 sequenceFlag (3),
 anonFlag (4),
 confFlag (5),
 integFlag (6)
}

negTokenInit
 Negotiation token sent by the initiator to the target, which
 contains, for the first token sent, one or more security
 mechanisms supported by the initiator (as indicated in the field
 mechTypes) and the service options (reqFlags) that are requested
 to establish the context. The context flags should be filled in
 from the req_flags parameter of init_sec_context().

 The mechToken field is optional for the first token sent that
 all target implementations would not have to support. However
 for those targets that do support piggybacking the initial
 mechToken, an optimistic negotiation response is possible.

Baize, Pinkas Document Expiration: 4 September 1998 [Page 6]

Internet-Draft March 4, 1998

 Otherwise the mechToken is used to carry the tokens specific to
 the mechanism selected.

 The mechListMIC is an optional field. In the case that the chosen
 mechanism supports integrity, the initiator may optionally include
 a mechListMIC which is the result of a GetMIC of the MechTypes in
 the initial NegTokenInit and return GSS_S_COMPLETE.

 When the chosen mechanism uses an odd number of messages, the
 final mechanism token will be sent from the initiator to the
 acceptor. In this case, there is a tradeoff between using the
 optimal number of messages, or using an additional message from
 the acceptor to the initiator in order to give the initiator
 assurance that no modification of the initiator's mechanism list
 occurred. The implementation can choose which tradeoff to make
 (see section 4.2.2 for further details for the processing of that
 field).

NegTokenTarg ::= SEQUENCE {
 negResult [0] ENUMERATED {
 accept_completed (0),
 accept_incomplete (1),
 reject (2) } OPTIONAL,
 supportedMech [1] MechType OPTIONAL,
 responseToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL
}

negTokenTarg
 Negotiation token returned by the target to the initiator which
 contains, for the first token returned, a global negotiation
 result and the security mechanism selected (if any).

negResult
 The result accept_completed indicates that a context has been
 successfully established, while the result accept_incomplete
 indicates that additional token exchanges are needed.

 Note: For the case where (a) a single-token context setup
 is used and (b) the preferred mechanism does not support
 the integrity facility which would cause a mechListMIC to be
 generated and enclosed, this feature allows to make a
 difference between a mechToken sent by the initiator
 but not processed by the target (accept_incomplete) and
 a mechToken sent by the initiator and processed by
 the target (accept_completed).

 For those targets that support piggybacking the initial
 mechToken, an optimistic negotiation response is possible

 and includes in that case a responseToken which may continue
 the authentication exchange (e.g. when mutual authentication has
 been requested or when unilateral authentication requires several
 round trips). Otherwise the responseToken is used to carry the
 tokens specific to the mechanism selected.

Baize, Pinkas Document Expiration: 4 September 1998 [Page 7]

Internet-Draft March 4, 1998

 For subsequent tokens (if any) returned by the target, negResult,
 and supportedMech are not present.

 For the last token returned by the target, the mechListMIC, when
 present, is a MIC computed over the MechTypes using the selected
 mechanism.

negResult
 Result of the negotiation exchange, specified by the target.

 This can be either :

 accept_completed
 The target accepts the preferred security mechanism,
 and the context is established for the target or,

 accept_incomplete
 The target accepts one of the proposed security
 mechanisms and further exchanges are necessary, or,

 reject
 The target rejects all the proposed security
 mechanisms.

supportedMech
 This field has to be present when negResult is "accept_completed"
 or "accept_incomplete". It is a choice from the mechanisms offered
 by the initiator.

responseToken
 This field may be used either to transmit the response to the
 mechToken when sent by the initiator and when the first
 mechanism from the list has been selected by the target or
 to carry the tokens specific to the selected security mechanism.

mechListMIC
 If the selected mechanism is capable of integrity protection,
 this field must be present in the last message of the negotiation,
 (i.e., when the underlying mechanism returns a non-empty token
 and a major status of GSS_S_COMPLETE); it contains the result of a
 GetMIC of the MechTypes field in the initial NegTokenInit.
 It allows to verify that the list initially sent by the initiator
 has been received unmodified by the target.

4.2.2. Processing of mechListMIC.

 If the mechanism selected by the negotiation does not support
 integrity, then no mechListMIC is included, otherwise a
 mechListMIC must be used and validated as indicated below.

 If the mechanism supports integrity and uses an even number of
 messages, then the target must compute a MIC as described above,
 and send this in the final NegTokenTarg along with the final
 mechToken. The initiator when receiving the last token must

Baize, Pinkas Document Expiration: 4 September 1998 [Page 8]

Internet-Draft March 4, 1998

 require that the mechListMIC field be present and valid. In the
 absence of a valid mechListMIC, the negotiation must fail as if
 the last context establishment token was invalid.

 In the case that the chosen mechanism supports integrity and uses
 an odd number of messages, the final mechanism token will be sent
 from the initiator to the target. In this case, there is a
 tradeoff between using the optimal number of messages, or using an
 additional message from the target to the initiator in order to
 give the initiator assurance that no modification of the
 initiator's mechanism list occurred. The implementation can choose
 which tradeoff to make.

 When generating the final NegTokenInit message, the NegTokenInit
 may optionally include a mechListMIC which is the result of a
 GetMIC of the MechTypes in the initial NegTokenInit and return
 GSS_S_COMPLETE. The target must check the presence of the MIC
 computed over the mechList sent in the initial NegTokenInit.
 Three cases may then be considered:

 1) If the mechListMIC is present and correct the context is
 established by the target.

 2) If the mechList is present but corrupted, then the context
 establishment must fail.

 3) If the mechListMIC is not included in the final
 NegTokenInit, then GSS_S_CONTINUE_NEEDED must be returned
 to the target. The MIC must then be included in the
 NegTokenTarg as described above, and the NegTokenTarg must
 be sent back to the initiator, which must verify that the
 mechListMIC field is present and valid.

 Note : If the MIC was originally sent by the initiator, but
 thenafter deleted by an attacker, the target will send
 back a token according to the description above, but
 the initiator will be unable to process that returned
 token and the context establishment must then fail.

5. EXAMPLES : SECURITY MECHANISM NEGOTIATION

Here are some examples of security mechanism negotiation between an
initiator (I) and a target (T).

5.1. Initial steps

(I) supports two security mechanism types (GSS-MECH1 and GSS-MECH2).

(I) invokes GSS_Init_sec_context() with :

Input
 mech_type = OID for negotiation mechanism or NULL, if the
 negotiation mechanism is the default mechanism.

Baize, Pinkas Document Expiration: 4 September 1998 [Page 9]

Internet-Draft March 4, 1998

Output
 major_status = GSS_S_CONTINUE_NEEDED
 output_token = negTokenInit

The negotiation token (negTokenInit) contains two security mechanisms
with :
 mechType = GSS-MECH1 or
 mechType = GSS-MECH2

(I) sends to (T) the negotiation token.

5.2 Successful negotiation steps

(T) supports GSS-MECH2
(T) receives the negotiation token (negTokenInit) from (I)
(T) invokes GSS_Accept_sec_context() with :

Input
 input_token = negTokenInit

Output
 major_status = GSS_S_CONTINUE_NEEDED
 output_token = negTokenTarg

The negotiation token (negTokenTarg) contains :
 negResult = accept (the negotiation result)
 supportedMech : mechType = GSS-MECH2

(T) returns the negotiation token (negTokenTarg) to (I)
(I) invokes GSS_Init_sec_context() with :

Input
 input_token = negTokenTarg

Output
 major_status = GSS_S_COMPLETE
 output_token = initialContextToken (initial context token
 for GSS-MECH2)
 mech_type = GSS-MECH2

The subsequent steps are security mechanism specific, and work as
specified in [1]. The output tokens from the security mechanism are
encapsulated in a NegTokenTarg message (with the supportedMech field
omitted, and the mechListMIC included with the last token).

5.3. Failed negotiation steps

(T) supports GSS-MECH3.
(T) receives the negotiation token (negTokenInit) from (I)
(T) invokes GSS_Accept_sec_context() with :

Input
 input_token = negTokenInit

Baize, Pinkas Document Expiration: 4 September 1998 [Page 10]

Internet-Draft March 4, 1998

Output
 major_status = GSS_S_BAD_MECH
 output_token = negTokenTarg

The negotiation token (negTokenTarg) contains :

 negResult = reject (the negotiation result)

(T) returns the negotiation token (negTokenTarg) to (I)
(I) invokes GSS_Init_sec_context() with :

Input
 input_token = negTokenTarg

Output
 major_status = GSS_S_BAD_MECH

The security context establishment has failed.

5.4 Successful Negotiation with preferred mechanism info

(I) supports two security mechanism types (GSS-MECH1 and GSS-MECH2).

(I) invokes GSS_Init_sec_context() with :

Input
 mech_type = OID for negotiation mechanism or NULL, if the
 negotiation mechanism is the default mechanism.

Output
 major_status = GSS_S_CONTINUE_NEEDED
 output_token = negTokenInit

The negotiation token (negTokenInit) contains two security mechanisms
with :
 mechType = GSS-MECH1 or
 mechType = GSS-MECH2

 mechToken = output_token from GSS_Init_sec_context
 (first mechType) as described in [1]

(I) sends to (T) the negotiation token.

(T) supports GSS-MECH1.
(T) receives the negotiation token (negTokenInit) from (I)
(T) invokes GSS_Accept_sec_context() with :

Input
 input_token = negTokenInit

Output
 major_status = GSS_S_CONTINUE_NEEDED
 output_token = negTokenTarg

Baize, Pinkas Document Expiration: 4 September 1998 [Page 11]

Internet-Draft March 4, 1998

The negotiation token (negTokenTarg) contains :
 negResult = accept (the negotiation result)
 supportedMech : mechType = GSS-MECH1

 mechToken = output_token from
 GSS_Accept_sec_context(mechToken)

(T) returns the negotiation token (negTokenTarg) to (I)
(I) invokes GSS_Init_sec_context() with :

Input
 input_token = negTokenTarg

Output
 major_status = GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED as needed
 output_token = ContextToken (initial or subsequent context token
 for GSS-MECH1)
 mech_type = GSS-MECH1

Specific implementations of the protocol can support the optimistic
negotiation by completing the security context establishment using the
agreed upon mechanism as described in [1]. As described above in
section 5.2, the output tokens from the security mechanisms are
encapsulated in a NegTokenTarg message (with the negResult and
supportedMech fields omitted, and the mechListMIC included with the
last token).

6. ACKNOWLEDGMENTS

Acknowledgments are due to Piers McMahon and Tom Parker of ICL,
Stephen Farrell of SSE, Doug Rosenthal of EINet, John Linn of
RSA Laboratories, and Marc Horowitz of Cygnus Solutions for reviewing
earlier versions of this document and for providing useful inputs.
Acknowledgments are also due to Peter Brundrett of Microsoft for
his proposal for an optimistic negotiation, and for Bill Sommerfeld
of Hewlett-Packard for his proposal for protecting the negotiation.

7. SECURITY CONSIDERATIONS

When the mechanism selected by the target from the list supplied by
the initiator supports integrity protection, then the negotiation is
protected.

When one of the mechanisms proposed by the initiator does not support
integrity protection, then the negotiation is exposed to all threats
a non secured service is exposed. In particular, an active attacker
can force to use a security mechanism which is not the common
preferred one (when multiple security mechanisms are shared between
peers) but which is acceptable anyway to the target.

In any case, the communicating peers may be exposed to the denial of
service threat.

Baize, Pinkas Document Expiration: 4 September 1998 [Page 12]

Internet-Draft March 4, 1998

APPENDIX A

GSS-API NEGOTIATION SUPPORT API

In order to provide to a GSS-API caller (either the initiator or the
target or both) the ability to choose among the set of supported
mechanisms a reduced set of mechanisms for negotiation, two
additional APIs are defined:

GSS_Get_neg_mechs() indicates the set of security mechanisms available
on the local system to the caller for negotiation.

GSS_Set_neg_mechs() specifies the set of security mechanisms to be
used on the local system by the caller for negotiation.

A.1. GSS_Set_neg_mechs call

Input:
 cred_handle CREDENTIAL HANDLE
 - NULL specifies default credentials
 mech_set SET OF OBJECT IDENTIFIER

Outputs:
 major_status INTEGER,
 minor_status INTEGER,

Return major_status codes :
 GSS_S_COMPLETE indicates that the set of security mechanisms
 available for negotiation has been set to mech_set.
 GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

Allows callers to specify the set of security mechanisms that
may be negotiated with the credential identified by cred_handle.
This call is intended for support of specialised callers who need
to restrict the set of negotiable security mechanisms from the set
of all security mechanisms available to the caller (based on
available credentials). Note that if more than one mechanism is
specified in mech_set, the order in which those mechanisms are
specified implies a relative mechanism preference for the target.

A.2. GSS_Get_neg_mechs call

Input:
 cred_handle CREDENTIAL HANDLE
 - NULL specifies default credentials

Outputs:

 major_status INTEGER,
 minor_status INTEGER,
 mech_set SET OF OBJECT IDENTIFIER

Baize, Pinkas Document Expiration: 4 September 1998 [Page 13]

Internet-Draft March 4, 1998

Return major_status codes :
 GSS_S_COMPLETE indicates that the set of security mechanisms
 available for negotiation has been returned in
 mech_option_set.
 GSS_S_FAILURE indicates that the requested operation could not
 be performed for reasons unspecified at the GSS-API level.

Allows callers to determine the set of security mechanisms available
for negotiation with the credential identified by cred_handle. This
call is intended for support of specialised callers who need to
reduce the set of negotiable security mechanisms from the set of
supported security mechanisms available to the caller (based on
available credentials).

Note: The GSS_Indicate_mechs() function indicates the full set of
mechanism types available on the local system. Since this call has no
input parameter, the returned set is not necessarily available for all
credentials.

REFERENCES

 [1] Linn, J., "Generic Security Service Application Program
 Interface", RFC 2078, OpenVision, January 1997. Available on

ftp://ds.internic.net/rfc/rfc2078.txt

 [2] Standard ECMA-206, "Association Context Management including
 Security Context Management", December 1993. Available on

http://www.ecma.ch

AUTHORS'S ADDRESSES

 Eric Baize Internet email: E.Baize@bull.com
 Bull HN - MA02/211S Phone: +1 508 294 61 37
 Technology Park Fax: +1 508 294 61 09
 Billerica, MA 01821 - USA

 Denis Pinkas Internet email: D.Pinkas@bull.net
 Bull Phone: +33 1 30 80 34 87
 Rue Jean-Jaures Fax: +33 1 30 80 33 21
 BP 68
 78340 Les Clayes-sous-Bois - FRANCE

https://datatracker.ietf.org/doc/html/rfc2078
ftp://ds.internic.net/rfc/rfc2078.txt
http://www.ecma.ch

Baize, Pinkas Document Expiration: 4 September 1998 [Page 14]

