
CAT Working Group Michael M. Swift
INTERNET-DRAFT Microsoft
<draft-ietf-cat-user2user-01.txt >
Expires April 30, 1998 October, 31, 1997

User to User Kerberos Authentication using GSS-API

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force
 (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum
 of six months and may be updated, replaced, or obsoleted
 by other documents at any time. It is inappropriate to
 use Internet-Drafts as reference material or to cite them
 other than as "work in progress".

 To learn the current status of any Internet-Draft, please
 check the "1id-abstracts.txt" listing contained in the
 Internet-Drafts Shadow Directories on ftp.is.co.za
 (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific
 Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US
 West Coast).

 Distribution of this document is unlimited. Please send
 comments to the CAT working group at cat-ietf@mit.edu or
 the authors.

ABSTRACT

 This draft proposes a simple extension to the Kerberos
 GSS-API mechanism to support user to user authentication
 both in the case where the client application explicitly
 requests user to user authentication and when it does not
 know whether the server supports user to user
 authentication.

Table of Contents

1. Introduction 2

https://datatracker.ietf.org/doc/html/draft-ietf-cat-user2user-01.txt

2. User to User as a New Mechanism 2

3. User to User With The Existing Mechanism 4

4. Security Considerations 4

5. References 4

1. Introduction

 The Kerberos user to user authentication mechanism allows
 for a client application to connect to a service that is
 not in possession of a long term secret key. Instead, the
 authentication request (AP request) is encrypted using
 the session key from the service's ticket granting
 ticket. According to RFC 1510 [1]:

 If the ENC-TKT-IN-SKEY option has been specified and
 an additional ticket has been included in the
 request, the KDC will decrypt the additional ticket
 using the key for the server to which the additional
 ticket was issued and verify that it is a ticket-
 granting ticket. ... If the request succeeds, the
 session key from the additional ticket will be used
 to encrypt the new ticket that is issued instead of
 using the key of the server for which the new ticket
 will be used (This allows easy implementation of user-
 to- user authentication, which uses ticket-granting
 ticket session keys in lieu of secret server keys in
 situations where such secret keys could be easily
 compromised.).

 The current Kerberos GSS-API mechanism does not support
 this flavor of authentication, and new messages and flags
 are defined to add this support. For the case that the
 client knows that the service requires user-to-user
 authentication, a new message (KERB-TGT-REQUEST) is
 defined. In the case that a client sends a normal AP
 request but the service only supports user-to-user
 authentication, a new Kerberos error as well as error
 data type is defined.

2. User to User as a New Mechanism

 In the case that the client application knows that the
 server only supports user-to-user authentication, then it

https://datatracker.ietf.org/doc/html/rfc1510

 is easiest to add this functionality as a new mechanism.
 The new protocol extends the existing Kerberos GSS-API
 protocol by adding an additional round trip to request
 the TGT from the service. As with all Kerberos GSS-API
 messages, the following tokens are encapsulated in the
 GSS-API framing. The first token of the exchange is as
 follows:

 KERB-TGT-REQUEST ::= SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 server-name[2] PrincipalName
 OPTIONAL,
 realm[3] Realm OPTIONAL
 }

 The TGT request consists of four fields:

 pvno and msg-type are as defined in RFC1510 section
5.4.1. msg-type is

 KRB_TGT_REQ (16).

 server-name - this field optionally contains the name
 of the server. If the client application doesn't
 know the server name this can be left blank and
 the server application will pick the appropriate
 server credentials.

 realm - this field optionally contains the realm of
 the server. If the client application doesn't know
 the server realm this field can be left blank and
 the server application will pick the appropriate
 server credentials.

 The server name and realm are included to allow a server
 application to act for multiple principles in different
 realms and to choose which credentials to use. Depending
 on the implementation of the Kerberos mechanism, the
 application may call gss_accept_sec_context() multiple
 times until the token is accepted.

 The response to the KERB-TGT-REQUEST message is as
 follows:

 KERB-TGT-REPLY ::= SEQUENCE {

 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 ticket[2] Ticket,
 server-name[4] PrincipalName
 OPTIONAL,

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.1

 }

 The TGT reply contains the following fields:

 pvno and msg-type are as defined in RFC1510 section
5.4.1. msg-type is KRB_TGT_REP (17)

 ticket - contains the TGT for the service specified
 by the server name and realm passed by the client
 or the default service.

 server-name - server's principal name. If the client
 does not supply the server name, the server will
 return the name. This allows the client to
 discover the server's principal name in situations
 where it isn't known. However, if the client
 doesn't know the server's principal name then
 authentication is not mutual - any server can
 respond to the client. The server realm is not
 returned separately because it is in the ticket
 structure.

 If the service does not possess a ticket granting ticket,
 it should return the error KRB_AP_ERR_NO_TGT (0x42).

 If the server name and realm in the TGT request message
 do not match the name of the service, then the service
 should return the error KRB_AP_ERR_NOT_US.

 The mechanism ID for user to user GSS-API Kerberos, in
 accordance with the mechanism proposed by SPNEGO for
 negotiating protocol variations, is:

 {iso(1) member-body(2) United States(840) mit(113554)
 infosys(1) gssapi(2) krb5(2) usertouser(3)}

 Following the exchange of the TGT request messages, the
 rest of the authentication is identical to the Kerberos
 GSS-API mechanism defined in RFC 1964 [2].

 As with the Kerberos GSS-API mechanism, the
 innerContextToken field of the context establishment
 tokens contain context message (KERB-TGT-REQUEST, KERB-
 TGT-REPLY) preceded by a 2-byte TOK_ID field containing
 04 03 for the KERB_TGT_REQUEST message and 05 03 for the
 KERB_TGT_REPLY message

3. User to User With The Existing Mechanism

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc1964

 In the case that the client application doesn't know that
 a service requires user-to-user authentication and sends
 a normal AP request, it may be useful to recover and have
 the server return the TGT in the error message. In this
 case, the server returns a KRB-ERROR message with the
 KRB_AP_ERR_USER_TO_USER_REQUIRED (0x42). The error data
 for contains a KERB-TGT-REPLY structure without the
 server name and realm fields, as they are already
 included in the KERB-ERROR message. The Kerberos
 mechanism then continues as in [2] but with a user-to-
 user ticket instead of a normal session ticket.

4. Security Considerations

 There is some risk in a server handing out its ticket-
 granting-ticket to any client that requests it, in that
 it gives an attacker a piece of encrypted material to
 decrypt. However, the same material may be obtained from
 listening to any legitimate client connect. In addition,
 the server may divulge its name in the KERB-TGT-RESPONSE
 message allowing, but again this may be obtained from
 capturing any legitimate request to the server.

5. References

 [1] J. Kohl, C. Neuman. The Kerberos Network
 Authentication Service(V5). Request for Comments 1510.

 [2] J. Linn. The Kerberos Version 5 GSS-API Mechanism.
 Request for Comments 1964

 [3] J. Linn. Generic Security Service Application
 Programming Interface. Request For Comments 1508.

 Author's address

 Michael Swift
 Microsoft
 One Microsoft Way
 Redmond, Washington, 98052, U.S.A.

 Email: mikesw@microsoft.com

