Network Working Group C. Bormann

Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track P. Hoffman
Expires: March 24, 2019 ICANN

September 20, 2018

Concise Binary Object Representation (CBOR)
draft-ietf-chbor-7049bis-03

Abstract

The Concise Binary Object Representation (CBOR) is a data format
whose design goals include the possibility of extremely small code
size, fairly small message size, and extensibility without the need
for version negotiation. These design goals make it different from
earlier binary serializations such as ASN.1 and MessagePack.

Contributing
This document is being worked on in the CBOR Working Group. Please

contribute on the mailing list there, or in the GitHub repository for
this draft: https://github.com/cbor-wg/CBORbis

The charter for the CBOR Working Group says that the WG will update
RFC 7049 to fix verified errata. Security issues and clarifications
may be addressed, but changes to this document will ensure backward
compatibility for popular deployed codebases. This document will be
targeted at becoming an Internet Standard.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 24, 2019.

Bormann & Hoffman Expires March 24, 2019 [Page 1]


https://github.com/cbor-wg/CBORbis
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft CBOR September 2018

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
1.1. Objectives 4
1.2. Terminology 5

2. CBOR Data Models . 6
2.1. Extended Generic Data Models 7
2.2. Specific Data Models .o 8

3. Specification of the CBOR Encoding 8
3.1. Major Types 9
3.2 Indefinite Lengths for Some MaJor Types 11

3.2.1. Indefinite-Length Arrays and Maps . 11
3.2.2. Indefinite-Length Byte Strings and Text Strlngs 13
3.3. Floating-Point Numbers and Values with No Content 14
3.4. Optional Tagging of Items 16
3.4.1. Date and Time 18
3.4.2 Bignums 18
3.4.3 Decimal Fractions and Blgfloats 19
3.4.4. Content Hints . . 20
3.4.4.1. Encoded CBOR Data Item 20
3.4.4.2. Expected Later Encoding for CBOR to JSON

Converters 20

3.4.4.3. Encoded Text 21
3.4.5. Self-Describe CBOR 21
4. Creating CBOR-Based Protocols 22
4.1. CBOR in Streaming Applications 23
4.2. Generic Encoders and Decoders 23
4.3 Syntax Errors . 24
4.3.1. Incomplete CBOR Data Items . 24
4.3.2. Malformed Indefinite-Length Items 24
4.3.3 Unknown Additional Information Values 25
4.4. Other Decoding Errors . 25
4.5. Handling Unknown Simple Values and Tags 26


https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bormann & Hoffman Expires March 24, 2019 [Page 2]



Internet-Draft CBOR

=

o
(6]

o

[~

|co

l©

IN

4.6. Numbers
7. Specifying Keys for Maps

N

4.7.1. Equivalence of Keys
4.8. Undefined Values
4.,9. Canonical CBOR

4.9.1. Length-first map key orderlng
4.10. Strict Mode .
Converting Data between CBOR and JSON
1. Converting from CBOR to JSON
5.2. Converting from JSON to CBOR
Future Evolution of CBOR
6.1. Extension Points
6.2. Curating the Additional Informatlon Space
Diagnostic Notation
7.1. Encoding Indicators

)]

IANA Considerations .
8.1. Simple Values Registry
8.2. Tags Registry
8.3. Media Type ("MIME Type")
8.4. COAP Content-Format
8.5. The +cbor Structured Syntax Sufflx Reglstratlon

Securlty Considerations

10. Acknowledgements

11

1. References e
11.1. Normative References
11.2. Informative References

Appendix A. Examples
Appendix B. Jump Table
Appendix C. Pseudocode
Appendix D. Half-Precision

Appendix E.
Objectives .

E.1. ASN.1 DER, BER, and PER

E.2. MessagePack

E.3 BSON

E.4 UBJSON .

E.5 MSDTP: REC 713

E.6. Conciseness on the Wire
Appendix F. Changes from RFC 7049

A

uthors' Addresses

Introduction

September 2018

Aol PRI IRDD(W[WIWIWI[WI[W[WI[W([WI[W[W([WIwWw(NINNININ
GREERGERKEREEIEEBELRKERIEEERRREERRNIS

Comparison of Other Blnary Formats to CBOR S De51gn

Q1 o1 |o1 |Oo1 (o1 ot |or |on ot
‘@‘@‘m‘m‘m‘m‘ﬂ‘ﬂ‘m

There are hundreds of standardized formats for binary representation
of structured data (also known as binary serialization formats). Of

t
g

hose, some are for specific domains of information, wh
eneralized for arbitrary data. In the IETF, probably

ile others are
the best-known

formats in the latter category are ASN.1's BER and DER [ASN.1].
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The format defined here follows some specific design goals that are
not well met by current formats. The underlying data model is an
extended version of the JSON data model [REC8259]. It is important
to note that this is not a proposal that the grammar in RFC 8259 be
extended in general, since doing so would cause a significant
backwards incompatibility with already deployed JSON documents.
Instead, this document simply defines its own data model that starts
from JSON.

Appendix E lists some existing binary formats and discusses how well
they do or do not fit the design objectives of the Concise Binary
Object Representation (CBOR).

1.1. Objectives

The objectives of CBOR, roughly in decreasing order of importance,
are:

1. The representation must be able to unambiguously encode most
common data formats used in Internet standards.

* It must represent a reasonable set of basic data types and
structures using binary encoding. '"Reasonable" here is
largely influenced by the capabilities of JSON, with the major
addition of binary byte strings. The structures supported are
limited to arrays and trees; loops and lattice-style graphs
are not supported.

* There is no requirement that all data formats be uniquely
encoded; that is, it is acceptable that the number "7" might
be encoded in multiple different ways.

2. The code for an encoder or decoder must be able to be compact in
order to support systems with very limited memory, processor
power, and instruction sets.

* An encoder and a decoder need to be implementable in a very
small amount of code (for example, in class 1 constrained
nodes as defined in [REC7228]).

* The format should use contemporary machine representations of
data (for example, not requiring binary-to-decimal
conversion).

3. Data must be able to be decoded without a schema description.

* Similar to JSON, encoded data should be self-describing so
that a generic decoder can be written.


https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
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4. The serialization must be reasonably compact, but data
compactness is secondary to code compactness for the encoder and
decoder.

* "Reasonable" here is bounded by JSON as an upper bound in
size, and by implementation complexity maintaining a lower
bound. Using either general compression schemes or extensive
bit-fiddling violates the complexity goals.

5. The format must be applicable to both constrained nodes and high-
volume applications.

* This means it must be reasonably frugal in CPU usage for both
encoding and decoding. This is relevant both for constrained
nodes and for potential usage in applications with a very high
volume of data.

6. The format must support all JSON data types for conversion to and
from JSON.

It must support a reasonable level of conversion as long as
the data represented is within the capabilities of JSON. It
must be possible to define a unidirectional mapping towards
JSON for all types of data.

7. The format must be extensible, and the extended data must be
decodable by earlier decoders.

* The format is designed for decades of use.
The format must support a form of extensibility that allows
fallback so that a decoder that does not understand an

extension can still decode the message.

* The format must be able to be extended in the future by later
IETF standards.

=

.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY'", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119, BCP 14
[REC2119] and indicate requirement levels for compliant CBOR
implementations.

The term "byte" is used in its now-customary sense as a synonym for
"octet". All multi-byte values are encoded in network byte order
(that is, most significant byte first, also known as "big-endian").


https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
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IN

This specification makes use of the following terminology:

Data item: A single piece of CBOR data. The structure of a data
item may contain zero, one, or more nested data items. The term
is used both for the data item in representation format and for
the abstract idea that can be derived from that by a decoder.

Decoder: A process that decodes a CBOR data item and makes it
available to an application. Formally speaking, a decoder
contains a parser to break up the input using the syntax rules of
CBOR, as well as a semantic processor to prepare the data in a
form suitable to the application.

Encoder: A process that generates the representation format of a
CBOR data item from application information.

Data Stream: A sequence of zero or more data items, not further
assembled into a larger containing data item. The independent
data items that make up a data stream are sometimes also referred
to as "top-level data items".

Well-formed: A data item that follows the syntactic structure of
CBOR. A well-formed data item uses the initial bytes and the byte
strings and/or data items that are implied by their values as
defined in CBOR and is not followed by extraneous data.

Valid: A data item that is well-formed and also follows the semantic
restrictions that apply to CBOR data items.

Stream decoder: A process that decodes a data stream and makes each
of the data items in the sequence available to an application as
they are received.

Where bit arithmetic or data types are explained, this document uses
the notation familiar from the programming language C, except that
"**" denotes exponentiation. Similar to the "Ox" notation for
hexadecimal numbers, numbers in binary notation are prefixed with
"Ob". Underscores can be added to such a number solely for
readability, so 0b00100001 (0x21) might be written 0b001_00001 to
emphasize the desired interpretation of the bits in the byte; in this
case, it is split into three bits and five bits.

CBOR Data Models

CBOR is explicit about its generic data model, which defines the set
of all data items that can be represented in CBOR. Its basic generic
data model is extensible by the registration of simple type values
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and tags. Applications can then subset the resulting extended
generic data model to build their specific data models.

within environments that can represent the data items in the generic
data model, generic CBOR encoders and decoders can be implemented
(which usually involves defining additional implementation data types
for those data items that do not already have a natural
representation in the environment). The ability to provide generic
encoders and decoders is an explicit design goal of CBOR; however
many applications will provide their own application-specific
encoders and/or decoders.

In the basic (un-extended) generic data model, a data item is one of:
0 an integer in the range -2**64..2**64-1 inclusive

o a simple value, identified by a number between © and 255, but
distinct from that number

o a floating point value, distinct from an integer, out of the set
representable by IEEE 754 binary64 (including non-finites)

o a sequence of zero or more bytes ("byte string")
0 a sequence of zero or more Unicode code points ("text string")
0 a sequence of zero or more data items ("array")

0o a mapping (mathematical function) from zero or more data items
("keys") each to a data item ("values"), ("map")

0 a tagged data item, comprising a tag (an integer in the range
0..2**64-1) and a value (a data item)

Note that integer and floating-point values are distinct in this
model, even if they have the same numeric value.

2.1. Extended Generic Data Models
This basic generic data model comes pre-extended by the registration
of a number of simple values and tags right in this document, such

as:

o "false", "true", "null", and "undefined" (simple values identified
by 20..23)

o integer and floating point values with a larger range and
precision than the above (tags 2 to 5)
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[eM]

0 application data types such as a point in time or an RFC 3339
date/time string (tags 1, 0)

Further elements of the extended generic data model can be (and have
been) defined via the IANA registries created for CBOR. Even if such
an extension is unknown to a generic encoder or decoder, data items
using that extension can be passed to or from the application by
representing them at the interface to the application within the
basic generic data model, i.e., as generic values of a simple type or
generic tagged items.

In other words, the basic generic data model is stable as defined in
this document, while the extended generic data model expands by the
registration of new simple values or tags, but never shrinks.

While there is a strong expectation that generic encoders and
decoders can represent "false", "true", and "null" ("undefined" is
intentionally omitted) in the form appropriate for their programming
environment, implementation of the data model extensions created by
tags is truly optional and a matter of implementation quality.

.2. Specific Data Models

The specific data model for a CBOR-based protocol usually subsets the
extended generic data model and assigns application semantics to the
data items within this subset and its components. When documenting
such specific data models, where it is desired to specify the types
of data items, it is preferred to identify the types by their names
in the generic data model ('"negative integer", "array") instead of by
referring to aspects of their CBOR representation ("major type 1",
"major type 4").

Specific data models can also specify that values of different types
are equivalent for the purposes of map keys and encoder freedom. For
example, in the generic data model, a valid map MAY have both "0@" and
"0.0" as keys, and an encoder MUST NOT encode "0.0" as an integer
(major type 0, Section 3.1). However, if a specific data model
declares that floating point and integer representations of integral
values are equivalent, map keys "0" and "0.0" would be considered
duplicates and so invalid, and an encoder could encode integral-
valued floats as integers or vice versa, perhaps to save encoded
bytes.

Specification of the CBOR Encoding
A CBOR data item (Section 2) is encoded to or decoded from a byte

string as described in this section. The encoding is summarized in
Table 5.


https://datatracker.ietf.org/doc/html/rfc3339
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The initial byte of each encoded data item contains both information
about the major type (the high-order 3 bits, described in

Section 3.1) and additional information (the low-order 5 bits).
Additional information value 31 is used for indefinite-length items,
described in Section 3.2. Additional information values 28 to 30 are
reserved for future expansion.

Additional information values from @ to 27 describes how to construct
an "argument", possibly consuming additional bytes. For major type 7
and additional information 25 to 27 (floating point numbers), there
is a special case; in all other cases the additional information
value, possibly combined with following bytes, the argument
constructed is an unsigned integer.

When the value of the additional information is less than 24, it is
directly used as the argument's value. When it is 24 to 27, the
argument's value is held in the following 1, 2, 4, or 8§,
respectively, bytes, in network byte order.

The meaning of this argument depends on the major type. For example,
in major type O, the argument is the value of the data item itself
(and in major type 1 the value of the data item is computed from the
argument); in major type 2 and 3 it gives the length of the string
data in bytes that follows; and in major types 4 and 5 it is used to
determine the number of data items enclosed.

If the encoded sequence of bytes ends before the end of a data item
would be reached, that encoding is not well-formed. If the encoded
sequence of bytes still has bytes remaining after the outermost
encoded item is parsed, that encoding is not a single well-formed
CBOR item.

A CBOR decoder implementation can be based on a jump table with all
256 defined values for the initial byte (Table 5). A decoder in a
constrained implementation can instead use the structure of the
initial byte and following bytes for more compact code (see
Appendix C for a rough impression of how this could look).

3.1. Major Types

The following lists the major types and the additional information
and other bytes associated with the type.

Major type 0: an integer in the range 0..2**64-1 inclusive. The
value of the encoded item is the argument itself. For example,
the integer 10 is denoted as the one byte 0b000_01010 (major type
0, additional information 10). The integer 500 would be
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0b00O_11001 (major type 0, additional information 25) followed by
the two bytes 0x01f4, which is 500 in decimal.

Major type 1: a negative integer in the range -2**64..-1 inclusive.
The value of the item is -1 minus the argument. For example, the
integer -500 would be 0b001_11001 (major type 1, additional
information 25) followed by the two bytes 0x01f3, which is 499 in
decimal.

Major type 2: a byte string. The number of bytes in the string is
equal to the argument. For example, a byte string whose length is
5 would have an initial byte of 0b010_00101 (major type 2,
additional information 5 for the length), followed by 5 bytes of
binary content. A byte string whose length is 500 would have 3
initial bytes of 0b010_11001 (major type 2, additional information
25 to indicate a two-byte length) followed by the two bytes 0x01f4
for a length of 500, followed by 500 bytes of binary content.

Major type 3: a text string (Section 2), encoded as UTF-8
([REC3629]). The number of bytes in the string is equal to the
argument. A string containing an invalid UTF-8 sequence is well-
formed but invalid. This type is provided for systems that need
to interpret or display human-readable text, and allows the
differentiation between unstructured bytes and text that has a
specified repertoire and encoding. In contrast to formats such as
JSON, the Unicode characters in this type are never escaped.
Thus, a newline character (U+000A) is always represented in a
string as the byte 0x0a, and never as the bytes 0x5c6e (the
characters "\" and "n") or as 0x5c7530303061 (the characters "\",
"u", "e", "e", "e", and "a").

Major type 4: an array of data items. Arrays are also called lists,
sequences, or tuples. The argument is the number of data items in
the array. 1Items in an array do not need to all be of the same
type. For example, an array that contains 10 items of any type
would have an initial byte of 0b100_01010 (major type of 4,
additional information of 10 for the length) followed by the 10
remaining items.

Major type 5: a map of pairs of data items. Maps are also called
tables, dictionaries, hashes, or objects (in JSON). A map is
comprised of pairs of data items, each pair consisting of a key
that is immediately followed by a value. The argument is the
number of _pairs_ of data items in the map. For example, a map
that contains 9 pairs would have an initial byte of 0b101_01001
(major type of 5, additional information of 9 for the number of
pairs) followed by the 18 remaining items. The first item is the
first key, the second item is the first value, the third item is


https://datatracker.ietf.org/doc/html/rfc3629
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the second key, and so on. A map that has duplicate keys may be
well-formed, but it is not valid, and thus it causes indeterminate
decoding; see also Section 4.7.

Major type 6: a tagged data item whose tag is the argument and whose
value is the single following encoded item. See Section 3.4.

Major type 7: floating-point numbers and simple values, as well as
the "break" stop code. See Section 3.3.

These eight major types lead to a simple table showing which of the
256 possible values for the initial byte of a data item are used
(Table 5).

In major types 6 and 7, many of the possible values are reserved for
future specification. See Section 8 for more information on these
values.

3.2. Indefinite Lengths for Some Major Types

Four CBOR items (arrays, maps, byte strings, and text strings) can be
encoded with an indefinite length using additional information value
31. This is useful if the encoding of the item needs to begin before
the number of items inside the array or map, or the total length of
the string, is known. (The application of this is often referred to
as "streaming" within a data item.)

Indefinite-length arrays and maps are dealt with differently than
indefinite-length byte strings and text strings.

3.2.1. Indefinite-Length Arrays and Maps

Indefinite-length arrays and maps are simply opened without
indicating the number of data items that will be included in the
array or map, using the additional information value of 31. The
initial major type and additional information byte is followed by the
elements of the array or map, just as they would be in other arrays
or maps. The end of the array or map is indicated by encoding a
"break" stop code in a place where the next data item would normally
have been included. The "break" is encoded with major type 7 and
additional information value 31 (Ob111 11111) but is not itself a
data item: it is just a syntactic feature to close the array or map.
That is, the "break" stop code comes after the last item in the array
or map, and it cannot occur anywhere else in place of a data item.

In this way, indefinite-length arrays and maps look identical to
other arrays and maps except for beginning with the additional
information value 31 and ending with the "break" stop code.



Bormann & Hoffman Expires March 24, 2019 [Page 11]



Internet-Draft CBOR September 2018

Arrays and maps with indefinite lengths allow any number of items
(for arrays) and key/value pairs (for maps) to be given before the
"break" stop code. There is no restriction against nesting
indefinite-length array or map items. A "break" only terminates a
single item, so nested indefinite-length items need exactly as many
"break" stop codes as there are type bytes starting an indefinite-
length item.

For example, assume an encoder wants to represent the abstract array
[1, [2, 3], [4, 5]]. The definite-length encoding would be
0x8301820203820405:

83 -- Array of length 3
01 -- 1
82 -- Array of length 2
02 -- 2
03 -- 3
82 -- Array of length 2
04 -- 4
05 -- 5

Indefinite-length encoding could be applied independently to each of
the three arrays encoded in this data item, as required, leading to
representations such as:

0x9f018202039f0405Ffff

9F -- Start indefinite-length array
01 --1
82 -- Array of length 2
02 -- 2
03 -- 3
9F -- Start indefinite-length array
04 -- 4
05 -- 5
FF -- "break" (inner array)
FF -- "break" (outer array)
0x9f01820203820405ff
9F -- Start indefinite-length array
01 -- 1
82 -- Array of length 2
02 -- 2
03 -- 3
82 -- Array of length 2
04 -- 4
05 -- 5

FF -- "break"
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3.2.

0x83018202039f0405ff
83 -- Array of length 3
01 -- 1
82 -- Array of length 2
02 -- 2
03 -- 3
9F -- Start indefinite-length array
04 -- 4
05 -- 5
FF -- "break"
0x83019f0203ff820405
83 -- Array of length 3
01 -- 1
9F -- Start indefinite-length array
02 -- 2
03 -- 3
FF -- "break"
82 -- Array of length 2
04 -- 4
05 -- 5

An example of an indefinite-length map (that happens to have two key/
value pairs) might be:

Oxbf6346756ef563416d7421ff

BF -- Start indefinite-length map
63 -- First key, UTF-8 string length 3
46756e -- "Fun"
F5 -- First value, true
63 -- Second key, UTF-8 string length 3
416d74 -- "Amt"
21 -- Second value, -2
FF -- "break"
2. Indefinite-Length Byte Strings and Text Strings

Indefinite-length byte strings and text strings are actually a
concatenation of zero or more definite-length byte or text strings
("chunks") that are together treated as one contiguous string.
Indefinite-length strings are opened with the major type and
additional information value of 31, but what follows are a series of
byte or text strings that have definite lengths (the chunks). The
end of the series of chunks is indicated by encoding the "break" stop
code (Ob111_11111) in a place where the next chunk in the series
would occur. The contents of the chunks are concatenated together,
and the overall length of the indefinite-length string will be the
sum of the lengths of all of the chunks. In summary, an indefinite-
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length string is encoded similarly to how an indefinite-length array
of its chunks would be encoded, except that the major type of the
indefinite-length string is that of a (text or byte) string and
matches the major types of its chunks.

For indefinite-length byte strings, every data item (chunk) between

the indefinite-length indicator and the "break" MUST be a definite-

length byte string item; if the parser sees any item type other than
a byte string before it sees the "break", it is an error.

For example, assume the sequence:

0b010_11111 0bO16_00100 Oxaabbccdd 0b010_00011 Oxeeff99 Ob111_11111

5F -- Start indefinite-length byte string
44 -- Byte string of length 4
aabbccdd -- Bytes content
43 -- Byte string of length 3
eeff99 -- Bytes content
FF -- "break"

After decoding, this results in a single byte string with seven
bytes: Oxaabbccddeeff99.

Text strings with indefinite lengths act the same as byte strings
with indefinite lengths, except that all their chunks MUST be
definite-length text strings. Note that this implies that the bytes
of a single UTF-8 character cannot be spread between chunks: a new
chunk can only be started at a character boundary.

3.3. Floating-Point Numbers and Values with No Content

Major type 7 is for two types of data: floating-point numbers and
"simple values" that do not need any content. Each value of the
5-bit additional information in the initial byte has its own separate
meaning, as defined in Table 1. Like the major types for integers,
items of this major type do not carry content data; all the
information is in the initial bytes.
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S o e oo o e e e e e e e e e e e aoooo - +
| 5-Bit Value | Semantics [
o m e e e oo o e e e e e e e e e e e e e e e e e e e +
| 0..23 | Simple value (value 0..23) |
I | |
| 24 | Simple value (value 32..255 in following byte) |
I I I
| 25 | IEEE 754 Half-Precision Float (16 bits follow) |
I | |
| 26 | IEEE 754 Single-Precision Float (32 bits follow) |
I I I
| 27 | IEEE 754 Double-Precision Float (64 bits follow) |
I I I
| 28-30 | (Unassigned) |
I I I
| 31 | "break" stop code for indefinite-length items [
D RSP eSS +

Table 1: Values for Additional Information in Major Type 7

As with all other major types, the 5-bit value 24 signifies a single-
byte extension: it is followed by an additional byte to represent the
simple value. (To minimize confusion, only the values 32 to 255 are
used.) This maintains the structure of the initial bytes: as for the
other major types, the length of these always depends on the
additional information in the first byte. Table 2 lists the values
assigned and available for simple types.

S - e e e e e e aaaa +
| value | Semantics |
[ Y e +
| 0..19 | (Unassigned) |
| I I
| 20 | False |
I I I
| 21 | True |
I I I
| 22 | Null |
I I I
| 23 | Undefined value |
I I I
| 24..31 | (Reserved) |
I I I
| 32..255 | (Unassigned) |
Fommmm oo Fom e oo oo oo +

Table 2: Simple Values
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The 5-bit values of 25, 26, and 27 are for 16-bit, 32-bit, and 64-bit
IEEE 754 binary floating-point values. These floating-point values
are encoded in the additional bytes of the appropriate size. (See
Appendix D for some information about 16-bit floating point.)

An encoder MUST NOT encode False as the two-byte sequence of 0xf814,
MUST NOT encode True as the two-byte sequence of 0xf815, MUST NOT
encode Null as the two-byte sequence of 0xf816, and MUST NOT encode
Undefined value as the two-byte sequence of 0xf817. A decoder MUST
treat these two-byte sequences as an error. Similar prohibitions
apply to the unassigned simple values as well.

3.4. Optional Tagging of Items

In CBOR, a data item can optionally be preceded by a tag to give it
additional semantics while retaining its structure. The tag is major
type 6, and represents an integer number as indicated by the tag's
argument (Section 3); the (sole) data item is carried as content
data. If a tag requires structured data, this structure is encoded
into the nested data item. The definition of a tag usually restricts
what kinds of nested data item or items are valid.

The initial bytes of the tag follow the rules for positive integers
(major type 0). The tag is followed by a single data item of any
type. For example, assume that a byte string of length 12 is marked
with a tag to indicate it is a positive bignum (Section 3.4.2). This
would be marked as 0b110_00010 (major type 6, additional information
2 for the tag) followed by 0b010_01100 (major type 2, additional
information of 12 for the length) followed by the 12 bytes of the
bignum.

Decoders do not need to understand tags, and thus tags may be of
little value in applications where the implementation creating a
particular CBOR data item and the implementation decoding that stream
know the semantic meaning of each item in the data flow. Their
primary purpose in this specification is to define common data types
such as dates. A secondary purpose is to allow optional tagging when
the decoder is a generic CBOR decoder that might be able to benefit
from hints about the content of items. Understanding the semantic
tags is optional for a decoder; it can just jump over the initial
bytes of the tag and interpret the tagged data item itself.

A tag always applies to the item that is directly followed by it.
Thus, if tag A is followed by tag B, which is followed by data item
C, tag A applies to the result of applying tag B on data item C.
That is, a tagged item is a data item consisting of a tag and a
value. The content of the tagged item is the data item (the value)
that is being tagged.
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IANA maintains a registry of tag values as described in Section 8.2.
Table 3 provides a list of initial values, with definitions in the
rest of this section.

UTF-8 string Standard date/time string; see

Section 3.4.1

I I I I
I | I I
I I I I
| 1 | multiple | Epoch-based date/time; see |
| [ | Section 3.4.1 |
I | I |
| 2 | byte string | Positive bignum; see Section 3.4.2 |
I I I I
| 3 | byte string | Negative bignum; see Section 3.4.2 |
I | I |
| 4 | array | Decimal fraction; see Section 3.4.3 |
I I I I
| 5 | array | Bigfloat; see Section 3.4.3 |
I | I |
| 6..20 | (Unassigned) | (Unassigned) |
I I I I
| 21 | multiple | Expected conversion to base64url |
| [ | encoding; see Section 3.4.4.2 |
I I I I
| 22 | multiple | Expected conversion to base64 |
| | | encoding; see Section 3.4.4.2 |
I I I I
| 23 | multiple | Expected conversion to basel6 [
| | | encoding; see Section 3.4.4.2 |
I | I |
| 24 | byte string | Encoded CBOR data item; see [
| | | Section 3.4.4.1 [
I | I |
| 25..31 | (Unassigned) | (Unassigned) |
I I I I
| 32 | UTF-8 string | URI; see Section 3.4.4.3 |
I | I |
| 33 | UTF-8 string | base64url; see Section 3.4.4.3 |
I I I I
| 34 | UTF-8 string | base64; see Section 3.4.4.3 |
I | I |
| 35 | UTF-8 string | Regular expression; see |
| | | Section 3.4.4.3 [
I | I |
| 36 | UTF-8 string | MIME message; see Section 3.4.4.3 |
I I I I
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| 37..55798 | (Unassigned) | (Unassigned) |
I I I I
| 55799 | multiple | Self-describe CBOR; see Section 3.4.5 |
I I I I
| 55800+ | (Unassigned) | (Unassigned) |
Fommmm e aaaas O - R . +

Table 3: Values for Tags
3.4.1. Date and Time

Protocols using tag values 0 and 1 extend the generic data model
(Section 2) with data items representing points in time.

Tag value 0 is for date/time strings that follow the standard format
described in [RFC3339], as refined by Section 3.3 of [RFC4287].

Tag value 1 is for numerical representation of seconds relative to
1970-01-01TO0:00Z in UTC time. (For the non-negative values that the
Portable Operating System Interface (POSIX) defines, the number of
seconds is counted in the same way as for POSIX "seconds since the
epoch" [TIME T].) The tagged item can be a positive or negative
integer (major types 0 and 1), or a floating-point number (major type
7 with additional information 25, 26, or 27). Note that the number
can be negative (time before 1970-01-01T00:00Z) and, if a floating-
point number, indicate fractional seconds.

3.4.2. Bignums

Protocols using tag values 2 and 3 extend the generic data model
(Section 2) with "bignums" representing arbitrary integers. 1In the
generic data model, bignum values are not equal to integers from the
basic data model, but specific data models can define that
equivalence.

Bignums are encoded as a byte string data item, which is interpreted
as an unsigned integer n in network byte order. For tag value 2, the
value of the bignum is n. For tag value 3, the value of the bignum
is -1 - n. Decoders that understand these tags MUST be able to
decode bignums that have leading zeroes.

For example, the number 18446744073709551616 (2**64) is represented
as 0b110_00010 (major type 6, tag 2), followed by 0b010_01001 (major
type 2, length 9), followed by 0x010000000000000000 (one byte 0x01
and eight bytes 0x00). In hexadecimal:


https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4287#section-3.3
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Cc2 -- Tag 2
49 -- Byte string of length 9
010000000000000000 -- Bytes content

3.4.3. Decimal Fractions and Bigfloats

Protocols using tag value 4 extend the generic data model with data
items representing arbitrary-length decimal fractions m*(10*e).
Protocols using tag value 5 extend the generic data model with data
items representing arbitrary-length binary fractions m*(2*e). As
with bignums, values of different types are not equal in the generic
data model.

Decimal fractions combine an integer mantissa with a base-10 scaling
factor. They are most useful if an application needs the exact
representation of a decimal fraction such as 1.1 because there is no
exact representation for many decimal fractions in binary floating
point.

Bigfloats combine an integer mantissa with a base-2 scaling factor.
They are binary floating-point values that can exceed the range or
the precision of the three IEEE 754 formats supported by CBOR
(Section 3.3). Bigfloats may also be used by constrained
applications that need some basic binary floating-point capability
without the need for supporting IEEE 754.

A decimal fraction or a bigfloat is represented as a tagged array
that contains exactly two integer numbers: an exponent e and a
mantissa m. Decimal fractions (tag 4) use base-10 exponents; the
value of a decimal fraction data item is m*(10**e). Bigfloats (tag
5) use base-2 exponents; the value of a bigfloat data item is
m*(2**e). The exponent e MUST be represented in an integer of major
type 0 or 1, while the mantissa also can be a bignum (Section 3.4.2).

An example of a decimal fraction is that the number 273.15 could be
represented as 0b110_00100 (major type of 6 for the tag, additional
information of 4 for the type of tag), followed by 0b100_00010 (major
type of 4 for the array, additional information of 2 for the length
of the array), followed by 0b001_00001 (major type of 1 for the first
integer, additional information of 1 for the value of -2), followed
by 0b0060_11001 (major type of 0 for the second integer, additional
information of 25 for a two-byte value), followed by
0b0110101010110011 (27315 in two bytes). 1In hexadecimal:

ca -- Tag 4
82 -- Array of length 2
21 -- -2
19 6ab3 -- 27315
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An example of a bigfloat is that the number 1.5 could be represented
as 0b110_00101 (major type of 6 for the tag, additional information
of 5 for the type of tag), followed by 0bl100_00010 (major type of 4
for the array, additional information of 2 for the length of the
array), followed by 0b001_00000 (major type of 1 for the first
integer, additional information of © for the value of -1), followed
by 0b000_00011 (major type of 0 for the second integer, additional
information of 3 for the value of 3). 1In hexadecimal:

C5 -- Tag 5
82 -- Array of length 2
20 -- -1
03 -- 3

Decimal fractions and bigfloats provide no representation of
Infinity, -Infinity, or NaN; if these are needed in place of a
decimal fraction or bigfloat, the IEEE 754 half-precision
representations from Section 3.3 can be used. For constrained
applications, where there is a choice between representing a specific
number as an integer and as a decimal fraction or bigfloat (such as
when the exponent is small and non-negative), there is a quality-of-
implementation expectation that the integer representation is used
directly.

3.4.4. Content Hints

The tags in this section are for content hints that might be used by
generic CBOR processors. These content hints do not extend the
generic data model.

3.4.4.1. Encoded CBOR Data Item

Sometimes it is beneficial to carry an embedded CBOR data item that
is not meant to be decoded immediately at the time the enclosing data
item is being parsed. Tag 24 (CBOR data item) can be used to tag the
embedded byte string as a data item encoded in CBOR format.

3.4.4.2. Expected Later Encoding for CBOR-to-JSON Converters

Tags 21 to 23 indicate that a byte string might require a specific
encoding when interoperating with a text-based representation. These
tags are useful when an encoder knows that the byte string data it is
writing is likely to be later converted to a particular JSON-based
usage. That usage specifies that some strings are encoded as base64,
base64url, and so on. The encoder uses byte strings instead of doing
the encoding itself to reduce the message size, to reduce the code
size of the encoder, or both. The encoder does not know whether or
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not the converter will be generic, and therefore wants to say what it
believes is the proper way to convert binary strings to JSON.

The data item tagged can be a byte string or any other data item. 1In
the latter case, the tag applies to all of the byte string data items
contained in the data item, except for those contained in a nested
data item tagged with an expected conversion.

These three tag types suggest conversions to three of the base data
encodings defined in [RFC4648]. For base64url encoding, padding is
not used (see Section 3.2 of RFC 4648); that is, all trailing equals
signs ("=") are removed from the base64url-encoded string. Later
tags might be defined for other data encodings of RFC 4648 or for
other ways to encode binary data in strings.

3.4.4.3. Encoded Text

Some text strings hold data that have formats widely used on the
Internet, and sometimes those formats can be validated and presented
to the application in appropriate form by the decoder. There are
tags for some of these formats.

o Tag 32 is for URIs, as defined in [REC3986];

0 Tags 33 and 34 are for base64url- and base64-encoded text strings,
as defined in [RFC4648];

0 Tag 35 is for regular expressions that are roughly in Perl
Compatible Regular Expressions (PCRE/PCRE2) form [PCRE] or a
version of the JavaScript regular expression syntax [ECMA262].
(Note that more specific identification may be necessary if the
actual version of the specification underlying the regular
expression, or more than just the text of the regular expression
itself, need to be conveyed.)

o Tag 36 is for MIME messages (including all headers), as defined in
[RFC2045];

Note that tags 33 and 34 differ from 21 and 22 in that the data is
transported in base-encoded form for the former and in raw byte
string form for the latter.

3.4.5. Self-Describe CBOR

In many applications, it will be clear from the context that CBOR is
being employed for encoding a data item. For instance, a specific
protocol might specify the use of CBOR, or a media type is indicated
that specifies its use. However, there may be applications where


https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2045
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[

such context information is not available, such as when CBOR data is
stored in a file and disambiguating metadata is not in use. Here, it
may help to have some distinguishing characteristics for the data
itself.

Tag 55799 is defined for this purpose. It does not impart any
special semantics on the data item that follows; that is, the
semantics of a data item tagged with tag 55799 is exactly identical
to the semantics of the data item itself.

The serialization of this tag is 0xd9d9f7, which appears not to be in
use as a distinguishing mark for frequently used file types. 1In
particular, it is not a valid start of a Unicode text in any Unicode
encoding if followed by a valid CBOR data item.

For instance, a decoder might be able to parse both CBOR and JSON.
Such a decoder would need to mechanically distinguish the two
formats. An easy way for an encoder to help the decoder would be to
tag the entire CBOR item with tag 55799, the serialization of which
will never be found at the beginning of a JSON text.

Creating CBOR-Based Protocols

Data formats such as CBOR are often used in environments where there
is no format negotiation. A specific design goal of CBOR is to not

need any included or assumed schema: a decoder can take a CBOR item

and decode it with no other knowledge.

Of course, in real-world implementations, the encoder and the decoder
will have a shared view of what should be in a CBOR data item. For
example, an agreed-to format might be "the item is an array whose
first value is a UTF-8 string, second value is an integer, and
subsequent values are zero or more floating-point numbers" or "the
item is a map that has byte strings for keys and contains at least
one pair whose key is 0xabol".

This specification puts no restrictions on CBOR-based protocols. An
encoder can be capable of encoding as many or as few types of values
as is required by the protocol in which it is used; a decoder can be
capable of understanding as many or as few types of values as is
required by the protocols in which it is used. This lack of
restrictions allows CBOR to be used in extremely constrained
environments.

This section discusses some considerations in creating CBOR-based
protocols. It is advisory only and explicitly excludes any language
from REC 2119 other than words that could be interpreted as "MAY" in
the sense of RFC 2119.


https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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4.1. CBOR in Streaming Applications

In a streaming application, a data stream may be composed of a
sequence of CBOR data items concatenated back-to-back. 1In such an
environment, the decoder immediately begins decoding a new data item
if data is found after the end of a previous data item.

Not all of the bytes making up a data item may be immediately
available to the decoder; some decoders will buffer additional data
until a complete data item can be presented to the application.

Other decoders can present partial information about a top-level data
item to an application, such as the nested data items that could
already be decoded, or even parts of a byte string that hasn't
completely arrived yet.

Note that some applications and protocols will not want to use
indefinite-length encoding. Using indefinite-length encoding allows
an encoder to not need to marshal all the data for counting, but it
requires a decoder to allocate increasing amounts of memory while
waiting for the end of the item. This might be fine for some
applications but not others.

.2. Generic Encoders and Decoders

'S

A generic CBOR decoder can decode all well-formed CBOR data and
present them to an application. CBOR data is well-formed if it uses
the initial bytes, as well as the byte strings and/or data items that
are implied by their values, in the manner defined by CBOR, and no
extraneous data follows (Appendix C).

Even though CBOR attempts to minimize these cases, not all well-
formed CBOR data is valid: for example, the format excludes simple
values below 32 that are encoded with an extension byte. Also,
specific tags may make semantic constraints that may be violated,
such as by including a tag in a bignum tag or by following a byte
string within a date tag. Finally, the data may be invalid, such as
invalid UTF-8 strings or date strings that do not conform to
[REC3339]. There is no requirement that generic encoders and
decoders make unnatural choices for their application interface to
enable the processing of invalid data. Generic encoders and decoders
are expected to forward simple values and tags even if their specific
codepoints are not registered at the time the encoder/decoder is
written (Section 4.5).

Generic decoders provide ways to present well-formed CBOR values,
both valid and invalid, to an application. The diagnostic notation
(Section 7) may be used to present well-formed CBOR values to humans.


https://datatracker.ietf.org/doc/html/rfc3339
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Generic encoders provide an application interface that allows the
application to specify any well-formed value, including simple values
and tags unknown to the encoder.

4.3. Syntax Errors

A decoder encountering a CBOR data item that is not well-formed
generally can choose to completely fail the decoding (issue an error
and/or stop processing altogether), substitute the problematic data
and data items using a decoder-specific convention that clearly
indicates there has been a problem, or take some other action.

4.3.1. Incomplete CBOR Data Items

4.3.2. Malformed Indefinite-Length Items

3

The representation of a CBOR data item has a specific length,
determined by its initial bytes and by the structure of any data
items enclosed in the data items. If less data is available, this
can be treated as a syntax error. A decoder may also implement
incremental parsing, that is, decode the data item as far as it is
available and present the data found so far (such as in an event-
based interface), with the option of continuing the decoding once
further data is available.

Examples of incomplete data items include:

0 A decoder expects a certain number of array or map entries but
instead encounters the end of the data.

0 A decoder processes what it expects to be the last pair in a map
and comes to the end of the data.

0 A decoder has just seen a tag and then encounters the end of the
data.

0 A decoder has seen the beginning of an indefinite-length item but
encounters the end of the data before it sees the "break" stop
code.

Examples of malformed indefinite-length data items include:

o Within an indefinite-length byte string or text, a decoder finds
an item that is not of the appropriate major type before it finds
the "break" stop code.

0 Within an indefinite-length map, a decoder encounters the "break"
stop code immediately after reading a key (the value is missing).
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Another error is finding a "break" stop code at a point in the data
where there is no immediately enclosing (unclosed) indefinite-length
item.

4.3.3. Unknown Additional Information Values

At the time of writing, some additional information values are
unassigned and reserved for future versions of this document (see
Section 6.2). Since the overall syntax for these additional
information values is not yet defined, a decoder that sees an
additional information value that it does not understand cannot
continue parsing.

4.4. Other Decoding Errors

A CBOR data item may be syntactically well-formed but present a
problem with interpreting the data encoded in it in the CBOR data
model. Generally speaking, a decoder that finds a data item with
such a problem might issue a warning, might stop processing
altogether, might handle the error and make the problematic value
available to the application as such, or take some other type of
action.

Such problems might include:

Duplicate keys in a map: Generic decoders (Section 4.2) make data
available to applications using the native CBOR data model. That
data model includes maps (key-value mappings with unique keys),
not multimaps (key-value mappings where multiple entries can have
the same key). Thus, a generic decoder that gets a CBOR map item
that has duplicate keys will decode to a map with only one
instance of that key, or it might stop processing altogether. On
the other hand, a "streaming decoder" may not even be able to
notice (Section 4.7).

Inadmissible type on the value following a tag: Tags (Section 3.4)
specify what type of data item is supposed to follow the tag; for
example, the tags for positive or negative bignums are supposed to
be put on byte strings. A decoder that decodes the tagged data
item into a native representation (a native big integer in this
example) is expected to check the type of the data item being
tagged. Even decoders that don't have such native representations
available in their environment may perform the check on those tags
known to them and react appropriately.

Invalid UTF-8 string: A decoder might or might not want to verify
that the sequence of bytes in a UTF-8 string (major type 3) is
actually valid UTF-8 and react appropriately.
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4.5. Handling Unknown Simple Values and Tags

A decoder that comes across a simple value (Section 3.3) that it does
not recognize, such as a value that was added to the IANA registry
after the decoder was deployed or a value that the decoder chose not
to implement, might issue a warning, might stop processing
altogether, might handle the error by making the unknown value
available to the application as such (as is expected of generic
decoders), or take some other type of action.

A decoder that comes across a tag (Section 3.4) that it does not
recognize, such as a tag that was added to the IANA registry after
the decoder was deployed or a tag that the decoder chose not to
implement, might issue a warning, might stop processing altogether,
might handle the error and present the unknown tag value together
with the contained data item to the application (as is expected of
generic decoders), might ignore the tag and simply present the
contained data item only to the application, or take some other type
of action.

4.6. Numbers

An application or protocol that uses CBOR might restrict the
representations of numbers. For instance, a protocol that only deals
with integers might say that floating-point numbers may not be used
and that decoders of that protocol do not need to be able to handle
floating-point numbers. Similarly, a protocol or application that
uses CBOR might say that decoders need to be able to handle either
type of number.

CBOR-based protocols should take into account that different language
environments pose different restrictions on the range and precision
of numbers that are representable. For example, the JavaScript
number system treats all numbers as floating point, which may result
in silent loss of precision in decoding integers with more than 53
significant bits. A protocol that uses numbers should define its
expectations on the handling of non-trivial numbers in decoders and
receiving applications.

A CBOR-based protocol that includes floating-point numbers can
restrict which of the three formats (half-precision, single-
precision, and double-precision) are to be supported. For an
integer-only application, a protocol may want to completely exclude
the use of floating-point values.

A CBOR-based protocol designed for compactness may want to exclude
specific integer encodings that are longer than necessary for the
application, such as to save the need to implement 64-bit integers.
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There is an expectation that encoders will use the most compact
integer representation that can represent a given value. However, a
compact application should accept values that use a longer-than-
needed encoding (such as encoding "0@" as 0b000_11001 followed by two
bytes of 0x00) as long as the application can decode an integer of
the given size.

4.7. Specifying Keys for Maps

The encoding and decoding applications need to agree on what types of
keys are going to be used in maps. In applications that need to
interwork with JSON-based applications, keys probably should be
limited to UTF-8 strings only; otherwise, there has to be a specified
mapping from the other CBOR types to Unicode characters, and this
often leads to implementation errors. 1In applications where keys are
numeric in nature and numeric ordering of keys is important to the
application, directly using the numbers for the keys is useful.

If multiple types of keys are to be used, consideration should be
given to how these types would be represented in the specific
programming environments that are to be used. For example, in
JavaScript Maps [ECMA262], a key of integer 1 cannot be distinguished
from a key of floating point 1.0. This means that, if integer keys
are used, the protocol needs to avoid use of floating-point keys the
values of which happen to be integer numbers in the same map.

Decoders that deliver data items nested within a CBOR data item
immediately on decoding them ("streaming decoders") often do not keep
the state that is necessary to ascertain uniqueness of a key in a
map. Similarly, an encoder that can start encoding data items before
the enclosing data item is completely available ("streaming encoder")
may want to reduce its overhead significantly by relying on its data
source to maintain uniqueness.

A CBOR-based protocol should make an intentional decision about what
to do when a receiving application does see multiple identical keys
in a map. The resulting rule in the protocol should respect the CBOR
data model: it cannot prescribe a specific handling of the entries
with the identical keys, except that it might have a rule that having
identical keys in a map indicates a malformed map and that the
decoder has to stop with an error. Duplicate keys are also
prohibited by CBOR decoders that are using strict mode

(Section 4.10).

The CBOR data model for maps does not allow ascribing semantics to
the order of the key/value pairs in the map representation. Thus, a
CBOR-based protocol MUST NOT specify that changing the key/value pair
order in a map would change the semantics, except to specify that
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some, e.g. non-canonical, orders are disallowed. Timing, cache
usage, and other side channels are not considered part of the
semantics.

Applications for constrained devices that have maps with 24 or fewer
frequently used keys should consider using small integers (and those
with up to 48 frequently used keys should consider also using small
negative integers) because the keys can then be encoded in a single
byte.

4.7.

Equivalence of Keys

This notion of equivalence must be used to determine whether keys in
maps are duplicates or distinct.

o

All numbers are compared by their numeric value.

* Integer data items with the same value are equal regardless of
how many bytes are used to encode them.

* Floating point data items with the same value are equal
regardless of how many bytes are used to encode them.

* An integer value encoded as a floating point data item is
equivalent to the same value encoded as an integer

Byte strings and text strings are compared by their binary
content.

* A different length encoding has no effect on equivalence.

* A byte string is equal to a text string if they have the same
binary content.

Two arrays are equal if all their items are in the same order and
equal.

Two maps are equal if they have the same set of pairs regardless
of their order; pairs are equal if both the key and value are
equal.

Tags have no effect in determining equality of a data item, if two
items are equal then they are equal irrespective of any tags that

either or both may have.

Simple values are equal if they simply have the same value.
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Nothing else is equal, a simple value 2 is not equivalent to an
integer 2 and an array cannot be equivalent to a map with the same
values and sequential integer keys.

4.8. Undefined Values

In some CBOR-based protocols, the simple value (Section 3.3) of
Undefined might be used by an encoder as a substitute for a data item
with an encoding problem, in order to allow the rest of the enclosing
data items to be encoded without harm.

4.9. Canonical CBOR

Some protocols may want encoders to only emit CBOR in a particular
canonical format; those protocols might also have the decoders check
that their input is canonical. Those protocols are free to define
what they mean by a canonical format and what encoders and decoders
are expected to do. This section defines a set of restrictions that
can serve as the base of such a canonical format.

A CBOR encoding satisfies the '"core canonicalization requirements" if
it satisfies the following restrictions:

o Integers MUST be as short as possible. 1In particular:

* 0 to 23 and -1 to -24 MUST be expressed in the same byte as the
major type;

* 24 to 255 and -25 to -256 MUST be expressed only with an
additional uint8_t;

* 256 to 65535 and -257 to -65536 MUST be expressed only with an
additional uintil6_t;

* 65536 to 4294967295 and -65537 to -4294967296 MUST be expressed
only with an additional uint32_t.

0o The expression of lengths in major types 2 through 5 MUST be as
short as possible. The rules for these lengths follow the above
rule for integers.

o The keys in every map MUST be sorted in the bytewise lexicographic
order of their canonical encodings. For example, the following
keys are sorted correctly:

1. 10, encoded as 0Ox0Oa.

2. 100, encoded as 0x1864.
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3. -1, encoded as 0x20.

4. "z", encoded as 0x617a.

5. "aa", encoded as 0x626161.
6. [100], encoded as 0x811864.
7. [-1], encoded as 0x8120.

8. false, encoded as 0xf4.

o Indefinite-length items MUST NOT appear. They can be encoded as
definite-length items instead.

If a protocol allows for IEEE floats, then additional
canonicalization rules might need to be added. One example rule
might be to have all floats start as a 64-bit float, then do a test
conversion to a 32-bit float; if the result is the same numeric
value, use the shorter value and repeat the process with a test
conversion to a 16-bit float. (This rule selects 16-bit float for
positive and negative Infinity as well.) Also, there are many
representations for NaN. If NaN is an allowed value, it must always
be represented as Oxf97e00.

CBOR tags present additional considerations for canonicalization.
The absence or presence of tags in a canonical format is determined
by the optionality of the tags in the protocol. 1In a CBOR-based
protocol that allows optional tagging anywhere, the canonical format
must not allow them. 1In a protocol that requires tags in certain
places, the tag needs to appear in the canonical format. A CBOR-
based protocol that uses canonicalization might instead say that all
tags that appear in a message must be retained regardless of whether
they are optional.

Protocols that include floating, big integer, or other complex values
need to define extra requirements on their canonical encodings. For
example:

o If a protocol includes a field that can express floating values
(Section 3.3), the protocol's canonicalization needs to specify
whether the integer 1.0 is encoded as 0x01, 0xf93c00,
Oxfa3f800000, or Oxfb3ffOOEOEOEOEOEOE. Three sensible rules for
this are:

1. Encode integral values that fit in 64 bits as values from
major types 0 and 1, and other values as the smallest of 16-,
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4.9.

32-, or 64-bit floating point that accurately represents the
value,

2. Encode all values as the smallest of 16-, 32-, or 64-bit
floating point that accurately represents the value, even for
integral values, or

3. Encode all values as 64-bit floating point.

If NaN is an allowed value, the protocol needs to pick a single
representation, for example 0xf97e00.

o If a protocol includes a field that can express integers larger
than 2764 using tag 2 (Section 3.4.2), the protocol's
canonicalization needs to specify whether small integers are
expressed using the tag or major types 0 and 1.

0 A protocol might give encoders the choice of representing a URL as
either a text string or, using Section 3.4.4.3, tag 32 containing
a text string. This protocol's canonicalization needs to either
require that the tag is present or require that it's absent, not
allow either one.

1. Length-first map key ordering

The core canonicalization requirements sort map keys in a different
order from the one suggested by [REC7049]. Protocols that need to be
compatible with [REC7049]'s order can instead be specified in terms
of this specification's "length-first core canonicalization
requirements":

A CBOR encoding satisfies the "length-first core canonicalization
requirements" if it satisfies the core canonicalization requirements

except that the keys in every map MUST be sorted such that:

1. If two keys have different lengths, the shorter one sorts
earlier;

2. If two keys have the same length, the one with the lower value in
(byte-wise) lexical order sorts earlier.

For example, under the length-first core canonicalization
requirements, the following keys are sorted correctly:

1. 10, encoded as 0x0Oa.

2. -1, encoded as 0x20.


https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7049

Bormann & Hoffman Expires March 24, 2019 [Page 31]



Internet-Draft CBOR September 2018

3. false, encoded as 0Oxf4.
4, 100, encoded as 0x1864.
5. "z", encoded as 0x617a.
6. [-1], encoded as 0x8120.
7. "aa", encoded as 0x626161.
8. [100], encoded as 0x811864.

4.10. Strict Mode

Some areas of application of CBOR do not require canonicalization
(Section 4.9) but may require that different decoders reach the same
(semantically equivalent) results, even in the presence of
potentially malicious data. This can be required if one application
(such as a firewall or other protecting entity) makes a decision
based on the data that another application, which independently
decodes the data, relies on.

Normally, it is the responsibility of the sender to avoid ambiguously
decodable data. However, the sender might be an attacker specially
making up CBOR data such that it will be interpreted differently by
different decoders in an attempt to exploit that as a vulnerability.
Generic decoders used in applications where this might be a problem
need to support a strict mode in which it is also the responsibility
of the receiver to reject ambiguously decodable data. It is expected
that firewalls and other security systems that decode CBOR will only
decode in strict mode.

A decoder in strict mode will reliably reject any data that could be
interpreted by other decoders in different ways. It will reliably
reject data items with syntax errors (Section 4.3). It will also
expend the effort to reliably detect other decoding errors

(Section 4.4). 1In particular, a strict decoder needs to have an API
that reports an error (and does not return data) for a CBOR data item
that contains any of the following:

o a map (major type 5) that has more than one entry with the same
key

0 a tag that is used on a data item of the incorrect type

o a data item that is incorrectly formatted for the type given to
it, such as invalid UTF-8 or data that cannot be interpreted with
the specific tag that it has been tagged with
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A decoder in strict mode can do one of two things when it encounters
a tag or simple value that it does not recognize:

o It can report an error (and not return data).

o It can emit the unknown item (type, value, and, for tags, the
decoded tagged data item) to the application calling the decoder
with an indication that the decoder did not recognize that tag or
simple value.

The latter approach, which is also appropriate for non-strict
decoders, supports forward compatibility with newly registered tags
and simple values without the requirement to update the encoder at
the same time as the calling application. (For this, the API for the
decoder needs to have a way to mark unknown items so that the calling
application can handle them in a manner appropriate for the program.)

Since some of this processing may have an appreciable cost (in
particular with duplicate detection for maps), support of strict mode
is not a requirement placed on all CBOR decoders.

Some encoders will rely on their applications to provide input data
in such a way that unambiguously decodable CBOR results. A generic
encoder also may want to provide a strict mode where it reliably
limits its output to unambiguously decodable CBOR, independent of
whether or not its application is providing API-conformant data.

Converting Data between CBOR and JSON

This section gives non-normative advice about converting between CBOR
and JSON. Implementations of converters are free to use whichever
advice here they want.

It is worth noting that a JSON text is a sequence of characters, not
an encoded sequence of bytes, while a CBOR data item consists of
bytes, not characters.

.1. Converting from CBOR to JSON

Most of the types in CBOR have direct analogs in JSON. However, some
do not, and someone implementing a CBOR-to-JSON converter has to
consider what to do in those cases. The following non-normative
advice deals with these by converting them to a single substitute
value, such as a JSON null.

o An integer (major type @ or 1) becomes a JSON number.
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o A byte string (major type 2) that is not embedded in a tag that
specifies a proposed encoding is encoded in base64url without
padding and becomes a JSON string.

o A UTF-8 string (major type 3) becomes a JSON string. Note that
JSON requires escaping certain characters ([RFC8259], Section 7):
gquotation mark (U+0022), reverse solidus (U+005C), and the "CO
control characters" (U+0000 through U+001F). All other characters
are copied unchanged into the JSON UTF-8 string.

0 An array (major type 4) becomes a JSON array.

o A map (major type 5) becomes a JSON object. This is possible
directly only if all keys are UTF-8 strings. A converter might
also convert other keys into UTF-8 strings (such as by converting
integers into strings containing their decimal representation);
however, doing so introduces a danger of key collision.

o False (major type 7, additional information 20) becomes a JSON
false.

o True (major type 7, additional information 21) becomes a JSON
true.

o Null (major type 7, additional information 22) becomes a JSON
null.

o A floating-point value (major type 7, additional information 25
through 27) becomes a JSON number if it is finite (that is, it can
be represented in a JSON number); if the value is non-finite (NaN,
or positive or negative Infinity), it is represented by the
substitute value.

0 Any other simple value (major type 7, any additional information
value not yet discussed) is represented by the substitute value.

0o A bignum (major type 6, tag value 2 or 3) is represented by
encoding its byte string in base64url without padding and becomes
a JSON string. For tag value 3 (negative bignum), a "~" (ASCII
tilde) is inserted before the base-encoded value. (The conversion
to a binary blob instead of a number is to prevent a likely
numeric overflow for the JSON decoder.)

0 A byte string with an encoding hint (major type 6, tag value 21
through 23) is encoded as described and becomes a JSON string.


https://datatracker.ietf.org/doc/html/rfc8259#section-7
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o For all other tags (major type 6, any other tag value), the
embedded CBOR item is represented as a JSON value; the tag value
is ignored.

o Indefinite-length items are made definite before conversion.

al
N

Converting from JSON to CBOR
All JSON values, once decoded, directly map into one or more CBOR
values. As with any kind of CBOR generation, decisions have to be
made with respect to number representation. In a suggested
conversion:

0 JSON numbers without fractional parts (integer numbers) are
represented as integers (major types 0 and 1, possibly major type
6 tag value 2 and 3), choosing the shortest form; integers longer
than an implementation-defined threshold (which is usually either
32 or 64 bits) may instead be represented as floating-point
values. (If the JSON was generated from a JavaScript
implementation, its precision is already limited to 53 bits
maximum. )

0o Numbers with fractional parts are represented as floating-point
values. Preferably, the shortest exact floating-point
representation is used; for instance, 1.5 is represented in a
16-bit floating-point value (not all implementations will be
capable of efficiently finding the minimum form, though). There
may be an implementation-defined limit to the precision that will
affect the precision of the represented values. Decimal
representation should only be used if that is specified in a
protocol.

CBOR has been designed to generally provide a more compact encoding
than JSON. One implementation strategy that might come to mind is to
perform a JSON-to-CBOR encoding in place in a single buffer. This
strategy would need to carefully consider a number of pathological
cases, such as that some strings represented with no or very few
escapes and longer (or much longer) than 255 bytes may expand when
encoded as UTF-8 strings in CBOR. Simi