
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-cbor-cddl-control-07

Published: 22 October 2021

Intended Status: Standards Track

Expires: 25 April 2022

Authors: C. Bormann

Universität Bremen TZI

Additional Control Operators for CDDL

Abstract

The Concise Data Definition Language (CDDL), standardized in RFC

8610, provides "control operators" as its main language extension

point.

The present document defines a number of control operators that were

not yet ready at the time RFC 8610 was completed: .plus, .cat

and .det for the construction of constants, .abnf/.abnfb for

including ABNF (RFC 5234/RFC 7405) in CDDL specifications, and

.feature for indicating the use of a non-basic feature in an

instance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Computed Literals

2.1. Numeric Addition

2.2. String Concatenation

2.3. String Concatenation with Dedenting

3. Embedded ABNF

4. Features

5. IANA Considerations

6. Implementation Status

7. Security considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

Author's Address

1. Introduction

The Concise Data Definition Language (CDDL), standardized in

[RFC8610], provides "control operators" as its main language

extension point (Section 3.8 of [RFC8610]).

The present document defines a number of control operators that were

not yet ready at the time RFC 8610 was completed:

Name Purpose

.plus Numeric addition

.cat String Concatenation

.det String Concatenation, pre-dedenting

.abnf ABNF in CDDL (text strings)

.abnfb ABNF in CDDL (byte strings)

.feature Indicate name of feature used (extension point)

Table 1: New control operators in this document

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#section-3.8

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses terminology from [RFC8610]. In particular,

with respect to control operators, "target" refers to the left-hand

side operand, and "controller" to the right-hand side operand.

"Tool" refers to tools along the lines of that described in

Appendix F of [RFC8610]. Note also that the data model underlying

CDDL provides for text strings as well as byte strings as two

separate types, which are then collectively referred to as

"strings".

The term ABNF in this specification stands for the combination of

[RFC5234] and [RFC7405], i.e., the ABNF control operators defined by

this document allow use of the case-sensitive extensions defined in

[RFC7405].

2. Computed Literals

CDDL as defined in [RFC8610] does not have any mechanisms to compute

literals. To cover a large part of the use cases, this specification

adds three control operators: .plus for numeric addition, .cat for

string concatenation, and .det for string concatenation with

dedenting of both sides (target and controller).

For these operators, as with all control operators, targets and

controllers are types. The resulting type is therefore formally a

function of the elements of the cross-product of the two types. Not

all tools may be able to work with non-unique targets or

controllers.

2.1. Numeric Addition

In many cases in a specification, numbers are needed relative to a

base number. The .plus control identifies a number that is

constructed by adding the numeric values of the target and of the

controller.

Target and controller MUST be numeric. If the target is a floating

point number and the controller an integer number, or vice versa,

the sum is converted into the type of the target; converting from a

floating point number to an integer selects its floor (the largest

integer less than or equal to the floating point number, i.e.,

rounding towards negative infinity).

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-F

interval<BASE> = (

 BASE => int ; lower bound

 (BASE .plus 1) => int ; upper bound

 ? (BASE .plus 2) => int ; tolerance

)

X = 0

Y = 3

rect = {

 interval<X>

 interval<Y>

}

Figure 1: Example: addition to a base value

The example in Figure 1 contains the generic definition of a CDDL

group interval that gives a lower and an upper bound and optionally

a tolerance. The parameter BASE allows the non-conflicting use of

multiple of these interval groups in one map, by assigning different

labels to the entries of the interval. rect combines two of these

interval groups into a map, one group for the X dimension (using 0,

1, and 2 as labels) and one for Y dimension (using 3, 4, and 5 as

labels).

2.2. String Concatenation

It is often useful to be able to compose string literals out of

component literals defined in different places in the specification.

The .cat control identifies a string that is built from a

concatenation of the target and the controller. Target and

controller MUST be strings. The result of the operation has the type

of the target. The concatenation is performed on the bytes in both

strings. If the target is a text string, the result of that

concatenation MUST be valid UTF-8.

a = "foo" .cat '

 bar

 baz

'

; on a system where the newline is \n, is the same string as:

b = "foo\n bar\n baz\n"

Figure 2: Example: concatenation of text and byte string

The example in Figure 2 builds a text string named a out of

concatenating the target text string "foo" and the controller byte

string entered in a text form byte string literal. (This particular

idiom is useful when the text string contains newlines, which, as

¶

¶

¶

shown in the example for b, may be harder to read when entered in

the format that the pure CDDL text string notation inherits from

JSON.)

2.3. String Concatenation with Dedenting

Multi-line string literals for various applications, including

embedded ABNF (Section 3), need to be set flush left, at least

partially. Often, having some indentation in the source code for the

literal can promote readability, as in Figure 3.

oid = bytes .abnfb ("oid" .det cbor-tags-oid)

roid = bytes .abnfb ("roid" .det cbor-tags-oid)

cbor-tags-oid = '

 oid = 1*arc

 roid = *arc

 arc = [nlsb] %x00-7f

 nlsb = %x81-ff *%x80-ff

'

Figure 3: Example: dedenting concatenation

The control operator .det works like .cat, except that both

arguments (target and controller) are independently dedented before

the concatenation takes place.

For the first rule in Figure 3, the result is equivalent to Figure

4.

oid = bytes .abnfb 'oid

oid = 1*arc

roid = *arc

arc = [nlsb] %x00-7f

nlsb = %x81-ff *%x80-ff

'

Figure 4: Dedenting example: result of first .det

For the purposes of this specification, we define dedenting as:

determining the smallest amount of left-most blank space

(number of leading space characters) present in all the non-

blank lines, and

removing exactly that number of leading space characters from

each line. For blank (blank space only or empty) lines, there

¶

¶

¶

¶

¶

1.

¶

2.

may be less (or no) leading space characters than this amount,

in which case all leading space is removed.

(The name .det is a shortcut for "dedenting cat". The maybe more

obvious name .dedcat has not been chosen as it is longer and may

invoke unpleasant images.)

Occasionally, dedenting of only a single item is needed. This can be

achieved by using this operator with an empty string, e.g., "" .det

rhs or lhs .det "", which can in turn be combined with a .cat: in

the construct lhs .cat ("" .det rhs), only rhs is dedented.

3. Embedded ABNF

Many IETF protocols define allowable values for their text strings

in ABNF [RFC5234] [RFC7405]. It is often desirable to define a text

string type in CDDL by employing existing ABNF embedded into the

CDDL specification. Without specific ABNF support in CDDL, that ABNF

would usually need to be translated into a regular expression (if

that is even possible).

ABNF is added to CDDL in the same way that regular expressions were

added: by defining a .abnf control operator. The target is usually

text or some restriction on it, the controller is the text of an

ABNF specification.

There are several small issues, with solutions given here:

ABNF can be used to define byte sequences as well as UTF-8 text

strings interpreted as Unicode scalar sequences. This means this

specification defines two control operators: .abnfb for ABNF

denoting byte sequences and .abnf for denoting sequences of

Unicode scalar values (codepoint) represented as UTF-8 text

strings. Both control operators can be applied to targets of

either string type; the ABNF is applied to sequence of bytes in

the string interpreting that as a sequence of bytes (.abnfb) or

as a sequence of code points represented as an UTF-8 text string

(.abnf). The controller string MUST be a text string.

ABNF defines a list of rules, not a single expression (called

"elements" in [RFC5234]). This is resolved by requiring the

controller string to be one valid "element", followed by zero or

more valid "rule" separated from the element by a newline; so the

controller string can be built by preceding a piece of valid ABNF

by an "element" that selects from that ABNF and a newline.

For the same reason, ABNF requires newlines; specifying newlines

in CDDL text strings is tedious (and leads to essentially

unreadable ABNF). The workaround employs the .cat operator

introduced in Section 2.2 and the syntax for text in byte

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

strings. As is customary for ABNF, the syntax of ABNF itself (NOT

the syntax expressed in ABNF!) is relaxed to allow a single

linefeed as a newline:

 CRLF = %x0A / %x0D.0A

One set of rules provided in an ABNF specification is often used

in multiple positions, in particular staples such as DIGIT and

ALPHA. (Note that all rules referenced need to be defined in each

ABNF operator controller string -- there is no implicit import of

[RFC5234] Core ABNF or other rules.) The composition this calls

for can be provided by the .cat operator, and/or by .det if there

is indentation to be disposed of.

These points are combined into an example in Figure 5, which uses

ABNF from [RFC3339] to specify one each of the CBOR tags defined in

[RFC8943] and [RFC8949].

¶

¶

*

¶

¶

Figure 5: Example: employing RFC 3339 ABNF for defining CBOR Tags

4. Features

Commonly, the kind of validation enabled by languages such as CDDL

provides a Boolean result: valid, or invalid.

In rapidly evolving environments, this is too simplistic. The data

models described by a CDDL specification may continually be enhanced

by additional features, and it would be useful even for a

specification that does not yet describe a specific future feature

to identify the extension point the feature can use, accepting such

extensions while marking them as such.

; for RFC 8943

Tag1004 = #6.1004(text .abnf full-date)

; for RFC 8949

Tag0 = #6.0(text .abnf date-time)

full-date = "full-date" .cat rfc3339

date-time = "date-time" .cat rfc3339

; Note the trick of idiomatically starting with a newline, separating

; off the element in the concatenations above from the rule-list

rfc3339 = '

 date-fullyear = 4DIGIT

 date-month = 2DIGIT ; 01-12

 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on

 ; month/year

 time-hour = 2DIGIT ; 00-23

 time-minute = 2DIGIT ; 00-59

 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap sec

 ; rules

 time-secfrac = "." 1*DIGIT

 time-numoffset = ("+" / "-") time-hour ":" time-minute

 time-offset = "Z" / time-numoffset

 partial-time = time-hour ":" time-minute ":" time-second

 [time-secfrac]

 full-date = date-fullyear "-" date-month "-" date-mday

 full-time = partial-time time-offset

 date-time = full-date "T" full-time

' .det rfc5234-core

rfc5234-core = '

 DIGIT = %x30-39 ; 0-9

 ; abbreviated here

'

¶

¶

The .feature control annotates the target as making use of the

feature named by the controller. The latter will usually be a

string. A tool that validates an instance against that specification

may mark the instance as using a feature that is annotated by the

specification.

More specifically, the tool's diagnostic output might contain the

controller (right-hand side) as a feature name, and the target

(left-hand side) as a feature detail. However, in some cases, the

target has too much detail, and the specification might want to hint

the tool that more limited detail is appropriate. In this case, the

controller should be an array, with the first element being the

feature name (that would otherwise be the entire controller), and

the second element being the detail (usually another string), as

illustrated in Figure 6.

foo = {

 kind: bar / baz .feature (["foo-extensions", "bazify"])

}

bar = ...

baz = ... ; complex stuff that doesn't all need to be in the detail

Figure 6: Providing explicit detail with .feature

Figure 7 shows what could be the definition of a person, with

potential extensions beyond name and organization being marked

further-person-extension. Extensions that are known at the time this

definition is written can be collected into $$person-extensions.

However, future extensions would be deemed invalid unless the

wildcard at the end of the map is added. These extensions could then

be specifically examined by a user or a tool that makes use of the

validation result; the label (map key) actually used makes a fine

feature detail for the tool's diagnostic output.

Leaving out the entire extension point would mean that instances

that make use of an extension would be marked as whole-sale invalid,

making the entire validation approach much less useful. Leaving the

extension point in, but not marking its use as special, would render

mistakes such as using the label "organisation" instead of

"organization" invisible.

¶

¶

¶

¶

person = {

 ? name: text

 ? organization: text

 $$person-extensions

 * (text .feature "further-person-extension") => any

}

$$person-extensions //= (? bloodgroup: text)

Figure 7: Map extensibility with .feature

Figure 8 shows another example where .feature provides for type

extensibility.

allowed-types = number / text / bool / null

 / [* number] / [* text] / [* bool]

 / (any .feature "allowed-type-extension")

Figure 8: Type extensibility with .feature

A CDDL tool may simply report the set of features being used; the

control then only provides information to the process requesting the

validation. One could also imagine a tool that takes arguments

allowing the tool to accept certain features and reject others

(enable/disable). The latter approach could for instance be used for

a JSON/CBOR switch, as illustrated in Figure 9, using SenML

[RFC8428] as the example data model used with both JSON and CBOR.

SenML-Record = {

; ...

 ? v => number

; ...

}

v = JC<"v", 2>

JC<J,C> = J .feature "json" / C .feature "cbor"

Figure 9: Describing variants with .feature

It remains to be seen if the enable/disable approach can lead to new

idioms of using CDDL. The language currently has no way to enforce

mutually exclusive use of features, as would be needed in this

example.

5. IANA Considerations

This document requests IANA to register the contents of Table 2 into

the registry "CDDL Control Operators" of [IANA.cddl]:

¶

¶

¶

¶

https://www.iana.org/assignments/cddl#cddl-control-operators

[IANA.cddl]

[RFC2119]

Name Reference

.plus [RFCthis]

.cat [RFCthis]

.det [RFCthis]

.abnf [RFCthis]

.abnfb [RFCthis]

.feature [RFCthis]

Table 2: New control

operators to be

registered

6. Implementation Status

This section is to be removed before publishing as an RFC.

An early implementation of the control operator .feature has been

available in the CDDL tool described in Appendix F of [RFC8610]

since version 0.8.11. The validator warns about each feature being

used and provides the set of target values used with the feature.

The other control operators defined in this specification are also

implemented as of version 0.8.21 and 0.8.26 (double-handed .det).

Andrew Weiss' [CDDL-RS] has an ongoing implementation of this draft

which is feature-complete except for the ABNF and dedenting support

(https://github.com/anweiss/cddl/pull/79).

7. Security considerations

The security considerations of [RFC8610] apply.

While both [RFC5234] and [RFC7405] state that security is truly

believed to be irrelevant to the respective document, the use of

formal description techniques cannot only simplify, but sometimes

also complicate a specification. This can lead to security problems

in implementations and in the specification itself. As with CDDL

itself, ABNF should be judiciously applied, and overly complex (or

"cute") constructions should be avoided.

8. References

8.1. Normative References

IANA, "Concise Data Definition Language (CDDL)",

<https://www.iana.org/assignments/cddl>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-F
https://github.com/anweiss/cddl/pull/79
https://www.iana.org/assignments/cddl
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5234]

[RFC7405]

[RFC8174]

[RFC8610]

[CDDL-RS]

[RFC3339]

[RFC8428]

[RFC8943]

[RFC8949]

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

8.2. Informative References

Weiss, A., "cddl-rs", n.d., <https://github.com/anweiss/

cddl>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.

Bormann, "Sensor Measurement Lists (SenML)", RFC 8428,

DOI 10.17487/RFC8428, August 2018, <https://www.rfc-

editor.org/info/rfc8428>.

Jones, M., Nadalin, A., and J. Richter, "Concise Binary

Object Representation (CBOR) Tags for Date", RFC 8943,

DOI 10.17487/RFC8943, November 2020, <https://www.rfc-

editor.org/info/rfc8943>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Acknowledgements

Jim Schaad suggested several improvements. The .feature feature was

developed out of a discussion with Henk Birkholz. Paul Kyzivat

helped isolate the need for .det.¶

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://github.com/anweiss/cddl
https://github.com/anweiss/cddl
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc8428
https://www.rfc-editor.org/info/rfc8428
https://www.rfc-editor.org/info/rfc8943
https://www.rfc-editor.org/info/rfc8943
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

.det is an abbreviation for "dedenting cat", but Det is also the

name of a German TV Cartoon character created in the 1960s.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

¶

tel:+49-421-218-63921
mailto:cabo@tzi.org

	Additional Control Operators for CDDL
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Computed Literals
	2.1. Numeric Addition
	2.2. String Concatenation
	2.3. String Concatenation with Dedenting

	3. Embedded ABNF
	4. Features
	5. IANA Considerations
	6. Implementation Status
	7. Security considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Author's Address

