
Workgroup: CBOR Working Group

Internet-Draft: draft-ietf-cbor-file-magic-03

Published: 4 August 2021

Intended Status: Best Current Practice

Expires: 5 February 2022

Authors: M. Richardson

Sandelman Software Works

On storing CBOR encoded items on stable storage

Abstract

This document proposes an on-disk format for CBOR objects that is

friendly to common on-disk recognition systems like the Unix file(1)

command.

This document is being discussed at: https://github.com/cbor-wg/

cbor-magic-number

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

2. Requirements for a Magic Number

3. Protocol

3.1. The CBOR Protocol Specific Tag

3.2. CBOR Tag Wrapped

3.3. CBOR Tag Sequence

4. Advice to Protocol Developers

4.1. Is the on-wire format new?

4.2. Can many items be trivially concatenated?

4.3. Are there tags at the start?

5. Security Considerations

6. IANA Considerations

6.1. CBOR Sequence Tag

6.2. CBOR Tags for CoAP Content-Format Numbers

7. References

7.1. Normative References

7.2. Informative References

Appendix A. CBOR Tags for CoAP Content Formats

A.1. Content-Format Tag Examples

Appendix B. Example from Openswan

Appendix C. Changelog

Acknowledgements

Contributors

Author's Address

1. Introduction

Since very early in computing, operating systems have sought ways to

mark which files could be processed by which programs.

For instance, the Unix file(1) command, which has existed since 1973

[file], has been able to identify many file formats for decades.

Many systems (Linux, MacOS, Windows) will select the correct

application based upon the file contents, if the system can not

determine it by other means: for instance, the classic MacOS

maintained a resource fork that includes media type ("MIME type")

information and therefore ideally never needs to know anything about

the file. Other systems do this by file extensions.

While having a media type associated with the file is a better

solution in general, when files become disconnected from their type

information, such as when attempting to do forensics on a damaged

system, then being able to identify a file type can become very

important.

¶

¶

¶

It is noted that in the media type registration, that a magic number

is asked for, if available, as is a file extension.

A challenge for the file(1) program is often that it can be confused

by the encoding vs the content. For instance, an Android "apk" used

to transfer and store an application may be identified as a ZIP

file. Both OpenOffice or MSOffice files are ZIP files of XML files.

(Unless OpenOffice files are flat (fodp) files, in which case they

may appear to be generic XML files.)

As CBOR becomes a more and more common encoding for a wide variety

of artifacts, identifying them as just "CBOR" is probably not

sufficient. This document provides a way to encode a magic number

into the beginning of a CBOR format file. Two options are presented:

typically a CBOR Protocol author will specify one.

A CBOR Protocol is a specification which uses CBOR as its encoding.

Examples of CBOR Protocols currently under development include

CoSWID [I-D.ietf-sacm-coswid], and EAT [I-D.ietf-rats-eat]. COSE

itself [RFC8152] is considered infrastructure, however the encoding

of public keys in CBOR as described in [I-D.ietf-cose-cbor-encoded-

cert] would be an identified CBOR Protocol.

A major inspiration for this document is observing the mess in ASN.1

based systems where most files are PEM encoded, identified by the

extension "pem", confusing public keys, private keys, certificate

requests and S/MIME content.

These proposals are invasive to how CBOR protocols are written to

disk, but in both cases, the proposed envelope does not require that

the tag be transferred on the wire.

In addition to the on-disk identification aspects, there are some

protocols which may benefit from having such a magic number on the

wire if they presently using a different (legacy) encoding scheme.

The presence of the identifiable magic sequence signals that CBOR is

being used or a legacy scheme.

1.1. Terminology

The term "diagnostic notation" refers to the human-readable notation

for CBOR data items defined in Section 8 of [RFC8949] and Appendix G

of [RFC8610].

The term CDDL (Concise Data Definition Language) refers to the

language defined in [RFC8610].

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

2. Requirements for a Magic Number

A magic number is ideally a unique fingerprint, present in the first

4 or 8 bytes of the file, which does not change when the contents

change, and does not depend upon the length of the file.

Less ideal solutions have a pattern that needs to be matched, but in

which some bytes need to be ignored. While the Unix file(1) command

can be told to ignore bytes, this can lead to ambiguities.

3. Protocol

There are two variations of this practice. Both use CBOR Tags in a

way that results in a deterministic first 8 to 12 bytes.

3.1. The CBOR Protocol Specific Tag

CBOR Protocol designers should obtain a tag for each major type of

object that they might store on disk. As there are more than 4

billion available 4-byte tags, there should be little issue in

allocating a few to each available CBOR Protocol.

The policy is First Come First Served, so all that is required is an

email to IANA, having filled in the small template provided in

Section 9.2 of [RFC8949].

This tag should be allocated by the author of the CBOR Protocol, and

to be in the four-byte range, it should be at least 0x01000000

(decimal 16777216) in value.

The use of a sequence of four US-ASCII codes which are mnemonic to

the protocol is encouraged, but not required.

For CBOR byte strings that happen to contain a representation that

is described by a CoAP Content-Format Number (Section 12.3 of

[RFC7252], Subregistry Content-Formats of [IANA.core-parameters]), a

tag number has been allocated in Section 6.2 (see Appendix A for

details and examples).

3.2. CBOR Tag Wrapped

This proposal starts with the Self-described CBOR tag, 55799, as

described in Section 3.4.6 of [RFC8949].

A second CBOR Tag is then allocated to describe the specific

Protocol involved, as described above.

This proposal wraps the CBOR value as tags usually do. Applications

that need to send the CBOR value across a constrained link may wish

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-9.2
https://rfc-editor.org/rfc/rfc7252#section-12.3
http://www.iana.org/assignments/core-parameters#content-formats
https://rfc-editor.org/rfc/rfc8949#section-3.4.6

to remove the two tags if the use is implicitly understood. This is

a decision of the CBOR Protocol specification.

3.3. CBOR Tag Sequence

This proposal makes use of CBOR Sequences as described in [RFC8742].

This proposal consists of two tags and a constant string for a total

of 12 bytes.

The file shall start with the Self-described CBOR Sequence tag,

55800.

The file shall continue with a CBOR tag, from the First Come

First Served space, which uniquely identifies the CBOR

Protocol. The use of a four-byte tag is encouraged.

The three byte CBOR byte string containing 0x42_4F_52.

The first part identifies the file as being a CBOR Sequence, and

does so with all the desirable properties explained in Section 3.4.6

of [RFC8949]. Specifically, it does not seem to conflict with any

known file types, and it is not valid Unicode in any Unicode

encoding.

The second part identifies which CBOR Protocol is used, as described

above.

The third part is represented as a constant byte sequence

0x43_42_4f_52, the ASCII characters "CBOR", which is the CBOR

encoded data item for the three byte sequence 0x42_4f_52 ('BOR' in

diagnostic notation). This is the data item that is being tagged.

The actual CBOR Protocol value then follows as the next data item(s)

in the CBOR sequence, without a need for any further specific tag.

The use of a CBOR Sequence allows the application to trivially

remove the first item with the two tags.

This means that should a file be reviewed by a human (directly in an

editor, or in a hexdump display), it will include the ASCII

characters "CBOR" prominently. This value is also included simply

because the two tags need to tag something.

4. Advice to Protocol Developers

This document introduces a choice between a CBOR Sequence and a

wrapped CBOR Tag. Which should a protocol designer use?

¶

¶

¶

1.

¶

2.

¶

3. ¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6

In this discussion, one assumes that there is an object stored in a

file, perhaps specified by a system operator in a configuration

file.

For example: a private key used in COSE operations, a public key/

certificate in C509 or CBOR format, a recorded sensor reading stored

for later transmission, or a COVID vaccination certificate that

needs to be displayed in QRcode form.

Both the CBOR Tag Sequence and the wrapped tag can be trivially

removed by an application before sending the CBOR content out on the

wire.

The CBOR Tag Sequence is a little bit easier to remove as in most

cases, CBOR parsers will return it as a unit, and then return the

actual CBOR item, which could be anything at all, and could include

CBOR tags that do need to be sent on wire.

On the other hand, having the CBOR Tag Sequence in the file requires

that all programs that expect to examine that file are able to skip

what appears to be an empty CBOR item. Programs which might not

expect the CBOR Tag Sequence, but which would operate without a

problem would include any program that expects to process CBOR

Sequences from the file.

As an example of where there was a problem with previous security

systems, "PEM" format certificate files grew to be able to contain

multiple certificates by simple concatenation. The PKCS1 format

could also contain a private key object followed by a one or more

certificate objects: but only when in PEM format. But, when in

binary DER format, concatenation of certificates was not compatible

with most programs.

The use of CBOR Tag Wrapped format is easier to retrofit to an

existing format with existing and unchangeable on-disk format. This

new sequence of tags are expected to be trivially ignored by an

existing program when reading CBOR from disk, even if the program

only supports decoding a single data item (and not a CBOR sequence).

But, a naive program might also then transmit the additional tags

across the network. Removing the CBOR Tag Wrapped format requires

knowledge of the two tags involved. Other tags present might be

needed. For a representation matching a specific media-type that is

carried in a CBOR byte string, the byte string head will already

have to be removed for use as such a representation, so it should be

easy to remove the enclosing tag heads as well. This is of

particular interest with the pre-defined tags provided by Appendix A

for media-types with CoAP Content-Format numbers.

Here are some considerations:

¶

¶

¶

¶

¶

¶

¶

¶

4.1. Is the on-wire format new?

If the on-wire format is new, then it could be specified with the

CBOR Tag Wrapped format if the extra eight bytes are not a problem.

The disk format is then identical to the on-wire format.

If the eight bytes are a problem (and they usually are if CBOR is

being considered), then the CBOR Tag Sequence format should be

adopted for on-disk storage.

4.2. Can many items be trivially concatenated?

If the programs that read the contents of the file already expect to

process all of the items in the file (not just the first), then the

CBOR Tag Sequence format may be easily retrofitted.

The program involved may throw errors or warnings on the CBOR Tag

Sequence if they have not yet been updated, but this may not be a

problem. If it is, then consideration should be given to CBOR Tag

Wrapped.

If only one item is ever expected in the file, the the use of CBOR

Tag Sequence may present an implementation hurdle to programs that

previously just read a single value and used it.

4.3. Are there tags at the start?

If the Protocol expects to use other tags values at the top-level,

then it may be easier to explain if the CBOR Tag Sequence format is

used.

5. Security Considerations

This document provides a way to identify CBOR Protocol objects.

Clearly identifying CBOR contents on disk may have a variety of

impacts.

The most obvious is that it may allow malware to identify

interesting objects on disk, and then corrupt them.

6. IANA Considerations

Section 6.1 documents the allocation that was done for a CBOR tag to

be used in a CBOR sequence to identify the sequence (an example for

using this tag is found in Appendix B). Section 6.2 allocates a CBOR

tag for each actual or potential CoAP Content-Format number

(examples are in Appendix A).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Data Item:

Semantics:

Data Item:

Semantics:

Reference:

[RFC8742]

6.1. CBOR Sequence Tag

IANA has allocated tag 55800 as the CBOR Sequence tag. This tag is

from the First Come/First Served area.

The value has been picked to have properties similar to the 55799

tag (Section 3.4.6 of [RFC8949]).

The hexadecimal representation is: 0xd9_d9_f8.

This is not valid UTF-8: the first 0xd9 puts the value into the

three-byte value of UTF-8, but the 0xd9 as the second value is not a

valid second byte for UTF-8.

This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian

order) puts this value into the UTF-16 high-half zone, which would

signal that this a 32-bit Unicode value. However, the following 16-

bit big-endian value 0xf8.. is not a valid second sequence according

to [RFC2781]. On a little-endian system, it would be necessary to

examine the fourth byte to determine if it is valid. That next byte

is determined by the subsequent encoding, and Section 3.4.6 of

[RFC8949] has already determined that no valid CBOR encodings result

in a valid UTF-16.

byte string

indicates that the file contains CBOR Sequences

6.2. CBOR Tags for CoAP Content-Format Numbers

IANA is requested to allocate the tag numbers 1668546560

(0x63740000) to 1668612095 (0x6374FFFF) as follows:

byte string

for each tag number NNNN, the representation of content-format

(RFC7252) NNNN-1668546560

RFCthis

7. References

7.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6
https://rfc-editor.org/rfc/rfc8949#section-3.4.6

[RFC8949]

[file]

[I-D.ietf-cose-cbor-encoded-cert]

[I-D.ietf-rats-eat]

[I-D.ietf-sacm-coswid]

[IANA.core-parameters]

[RFC2781]

[RFC7252]

[RFC8152]

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

7.2. Informative References

Wikipedia, "file (command)", 20 January 2021, <https://

en.wikipedia.org/wiki/File_%28command%29>.

Mattsson, J. P., Selander, G., Raza, S., Höglund, J.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-02, 12 July 2021, <https://

www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-

cert-02.txt>.

Mandyam, G., Lundblade, L., Ballesteros, M.,

and J. O'Donoghue, "The Entity Attestation Token (EAT)",

Work in Progress, Internet-Draft, draft-ietf-rats-eat-10,

7 June 2021, <https://www.ietf.org/archive/id/draft-ietf-

rats-eat-10.txt>.

Birkholz, H., Fitzgerald-McKay, J., Schmidt,

C., and D. Waltermire, "Concise Software Identification

Tags", Work in Progress, Internet-Draft, draft-ietf-sacm-

coswid-18, 12 July 2021, <https://www.ietf.org/archive/

id/draft-ietf-sacm-coswid-18.txt>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <http://www.iana.org/assignments/

core-parameters>.

Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO

10646", RFC 2781, DOI 10.17487/RFC2781, February 2000,

<https://www.rfc-editor.org/info/rfc2781>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://en.wikipedia.org/wiki/File_%28command%29
https://en.wikipedia.org/wiki/File_%28command%29
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-02.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-02.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-02.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-10.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-10.txt
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-18.txt
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-18.txt
http://www.iana.org/assignments/core-parameters
http://www.iana.org/assignments/core-parameters
https://www.rfc-editor.org/info/rfc2781
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152

[RFC8610]
Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Appendix A. CBOR Tags for CoAP Content Formats

Often, there is a need to identify a media type (or content type,

i.e., media type optionally used with parameters) that describes a

byte string in a CBOR data item.

Section 5.10.3 of [RFC7252] defines the concept of a Content-Format,

which is a short 16-bit unsigned integer that identifies a specific

content type (media type plus optionally parameters), optionally

together with a content encoding.

This specification allocates CBOR tag numbers 1668546560

(0x63740000) to 1668612095 (0x6374FFFF) for the tagging of

representations of specific content formats. The tag content tagged

with tag number NNNN (in above range) is a byte string that is to be

interpreted as a representation of the content format

NNNN-1668546560.

A.1. Content-Format Tag Examples

Subregistry Content-Formats of [IANA.core-parameters] defines

content formats that can be used as examples:

Content-Format 432 stands for media type application/td+json (no

parameters). The corresponding tag number is 1668546992 (i.e.,

1668546560+432).

So the following CDDL snippet can be used to identify

application/td+json representations:

td-json = #6.1668546992(bstr)

Note that a byte string is used as the type of the tag content,

because a media type representation in general can be any byte

string.

Content-Format 11050 stands for media type application/json in

deflate encoding.

The corresponding tag number is 1668557610 (i.e.,

1668546560+11050).

¶

¶

¶

¶

*

¶

¶

¶

¶

*

¶

¶

https://www.rfc-editor.org/info/rfc8610
https://rfc-editor.org/rfc/rfc7252#section-5.10.3
http://www.iana.org/assignments/core-parameters#content-formats

So the following CDDL snippet can be used to identify

application/json representations compressed in deflate encoding:

json-deflate = #6.1668557610(bstr)

The byte string is appropriate here as the type for the tag

content, because the compressed form is an instance of a general

byte string.

Appendix B. Example from Openswan

The Openswan IPsec project has a daemon ("pluto"), and two control

programs ("addconn", and "whack"). They communicate via a Unix-

domain socket, over which a C-structure containing pointers to

strings is serialized using a bespoke mechanism. This is normally

not a problem as the structure is compiled by the same compiler; but

when there are upgrades it is possible for the daemon and the

control programs to get out of sync by the bespoke serialization. As

a result, there are extra compensations to deal with shutting the

daemon down. During testing it is sometimes the case that upgrades

are backed out.

In addition, when doing unit testing, the easiest way to load policy

is to use the normal policy reading process, but that is not

normally loaded in the daemon. Instead the IPC that is normally sent

across the wire is compiled/serialized and placed in a file. The

above magic number is included in the file, and also on the IPC in

order to distinguish the "shutdown" command CBOR operation.

In order to reduce the problems due to serialization, the

serialization is being changed to CBOR. Additionally, this change

allows the IPC to be described by CDDL, and for any language that

encode to CBOR can be used.

IANA has allocated the tag 1330664270, or 0x4f_50_53_4e for this

purpose. As a result, each file and each IPC is prefixed with:

In diagnostic notation:

Or in hex:

¶

¶

¶

¶

¶

¶

¶

¶

55800(1330664270(h'424F52'))¶

¶

00000000 d9 d9 f8 da 4f 50 53 4e 43 42 4f 52 |....OPSNCBOR|¶

Appendix C. Changelog

Acknowledgements

The CBOR WG brainstormed this protocol on January 20, 2021.

Contributors

Carsten Bormann

Universität Bremen TZI

Germany

Email: cabo@tzi.org

Josef 'Jeff' Sipek

Email: jeffpc@josefsipek.net

Author's Address

Michael Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

¶

mailto:cabo@tzi.org
mailto:jeffpc@josefsipek.net
mailto:mcr+ietf@sandelman.ca

	On storing CBOR encoded items on stable storage
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Requirements for a Magic Number
	3. Protocol
	3.1. The CBOR Protocol Specific Tag
	3.2. CBOR Tag Wrapped
	3.3. CBOR Tag Sequence

	4. Advice to Protocol Developers
	4.1. Is the on-wire format new?
	4.2. Can many items be trivially concatenated?
	4.3. Are there tags at the start?

	5. Security Considerations
	6. IANA Considerations
	6.1. CBOR Sequence Tag
	6.2. CBOR Tags for CoAP Content-Format Numbers

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. CBOR Tags for CoAP Content Formats
	A.1. Content-Format Tag Examples

	Appendix B. Example from Openswan
	Appendix C. Changelog
	Acknowledgements
	Contributors
	Author's Address

