
Workgroup: CBOR Working Group

Internet-Draft: draft-ietf-cbor-file-magic-10

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: M. Richardson

Sandelman Software Works

C. Bormann

Universität Bremen TZI

On storing CBOR encoded items on stable storage

Abstract

This document defines an on-disk format for CBOR objects that is

friendly to common on-disk recognition systems such as the Unix

file(1) command.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-cbor-file-magic/.

Discussion of this document takes place on the cbor Working Group

mailing list (mailto:cbor@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cbor/.

Source for this draft and an issue tracker can be found at https://

github.com/cbor-wg/cbor-magic-number.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-cbor-file-magic/
https://datatracker.ietf.org/doc/draft-ietf-cbor-file-magic/
mailto:cbor@ietf.org
https://mailarchive.ietf.org/arch/browse/cbor/
https://mailarchive.ietf.org/arch/browse/cbor/
https://github.com/cbor-wg/cbor-magic-number
https://github.com/cbor-wg/cbor-magic-number
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements for a Magic Number

2. Protocol

2.1. The CBOR Protocol Specific Tag

2.2. Enveloping Method: CBOR Tag Wrapped

2.2.1. Example

2.3. Enveloping Method: Labeled CBOR Sequence

3. Advice to Protocol Developers

3.1. Is the on-wire format new?

3.2. Can many items be trivially concatenated?

3.3. Are there tags at the start?

4. Security Considerations

5. IANA Considerations

5.1. Labeled CBOR Sequence Tag

5.2. CBOR-Labeled Non-CBOR Data Tag

5.3. CBOR Tags for CoAP Content-Format Numbers

6. References

6.1. Normative References

6.2. Informative References

Appendix A. CBOR Tags for CoAP Content Formats

A.1. Content-Format Tag Examples

Appendix B. Example from Openswan

Appendix C. Using CBOR Labels for non-CBOR data

C.1. Content-Format Tag Examples

Appendix D. Changelog

Acknowledgements

Contributors

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Since very early in computing, operating systems have sought ways to

mark which files could be processed by which programs. In Unix,

everything is a stream of bytes (related to the TCP/IP socket model,

where all network connectivity also is a stream of bytes);

identifying the contents of a stream of bytes became a heuristic

activity.

For instance, the Unix file(1) command, which has existed since 1973

[file], has for decades been able to identify many file formats

based upon the contents of the file.

Many systems (Linux, macOS, Windows) will select the correct

application based upon the file contents, if the system can not

determine it by other means. For instance, in classical MacOS, a

resource fork was maintained that includes media type ("MIME type")

information and therefore ideally never needs to know anything about

the file.

But, many other systems do this by file extensions. Many common web

servers derive the MIME-type information from file extensions.

Having a media type associated with the file is a better solution in

general. When files become disconnected from their type information,

such as when attempting to do forensics on a damaged system, then

being able to identify a file type can become very important.

It is noted that in the media type registration, that a magic number

is asked for, if available, as is a file extension.

A challenge for the file(1) program is often that it can be confused

by the encoding vs the content. For instance, an Android "apk" used

to transfer and store an application may be identified as a ZIP

file. Additionally, both OpenOffice and MSOffice files are ZIP files

of XML files, and may also be identified as a ZIP file.

As CBOR becomes a more and more common encoding for a wide variety

of artifacts, identifying them as just "CBOR" is probably not

sufficient. This document provides a way to encode a magic number

into the beginning of a CBOR format file. Two possible methods of

enveloping data are presented: a CBOR Protocol author will specify

one. (A CBOR Protocol is a specification which uses CBOR as its

encoding.)

A third method is also proposed by which this CBOR format prepended

tag is used to identify non-CBOR files. This third method has been

placed in an appendix because it is not about identifying media

types containing CBOR-encoded data items.

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document also gives advice to designers of CBOR protocols on

choosing one of these mechanisms for identifying their contents.

This advice is informative.

Examples of CBOR Protocols currently under development include

CoSWID [I-D.ietf-sacm-coswid] and EAT [I-D.ietf-rats-eat]. COSE

itself [RFC8152] is considered infrastructure, however the encoding

of public keys in CBOR as described in [I-D.ietf-cose-cbor-encoded-

cert] would be an identified CBOR Protocol as well.

A major inspiration for this document is observing the mess in

certain ASN.1 based systems where most files are PEM encoded; these

are then all identified by the extension "pem", confusing public

keys, private keys, certificate requests, and S/MIME content.

While the envelopes defined in this specification add information to

how data conforming to CBOR Protocols are stored in files, there is

no requirement that either type of envelope be transferred on the

wire.

In addition to the on-disk identification aspects, there are some

protocols which may benefit from having such a magic number on the

wire if they are presently using a different (legacy) encoding

scheme. The presence of the identifiable magic sequence signals that

CBOR is being used as opposed to a legacy scheme.

In addition, for convenience, Appendix C defines a simple way to

retroactively add a magic number to content-formats as defined by

[RFC7252], even if not in CBOR form.

1.1. Terminology

Byte is a synonym for octet. The term "byte string" refers to the

data item defined in [STD94].

The term "diagnostic notation" refers to the human-readable notation

for CBOR data items defined in Section 8 of [RFC8949] and Appendix G

of [RFC8610].

The term CDDL (Concise Data Definition Language) refers to the

language defined in [RFC8610].

1.2. Requirements for a Magic Number

A magic number is ideally a fingerprint that is unique to a CBOR

protocol, present in the first few (small multiple of 4) bytes of

the file, which does not change when the contents change, and does

not depend upon the length of the file.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

Less ideal solutions have a pattern that needs to be matched, but in

which some bytes need to be ignored. While the Unix file(1) command

can be told to ignore certain bytes, this can lead to ambiguities.

2. Protocol

This Section presents two enveloping methods. Which one is to be

used is up to the CBOR Protocol author to determine. Both use CBOR

Tags in a way that results in a deterministic first 8 to 12 bytes.

2.1. The CBOR Protocol Specific Tag

In both enveloping methods, CBOR Protocol designers need to obtain a

CBOR tag for each kind of object that they might store on disk. As

there are more than 4 billion available 4-byte tags, there should be

little issue in allocating a few to each available CBOR Protocol.

The IANA policy for 4-byte CBOR Tags is First Come First Served, so

all that is required is an email to IANA, having filled in the small

template provided in Section 9.2 of [RFC8949].

This tag needs to be allocated by the author of the CBOR Protocol.

In order to be in the four-byte range, and so that there are no

leading zeros, the value needs to be in the range 0x01000000

(decimal 16777216) to 0xFFFFFFFF (decimal 4294967295). It is further

suggested to avoid values that have an embedded zero byte in the

four bytes of their binary representation (such as 0x12003456).

The use of a sequence of four US-ASCII codes which are mnemonic to

the protocol is encouraged, but not required.

For CBOR data items that form a representation that is described by

a CoAP Content-Format Number (Section 12.3 of [RFC7252], Registry

CoAP Content-Formats of [IANA.core-parameters]), a tag number has

already been allocated in Section 5.3 (see Appendix A for details

and examples).

2.2. Enveloping Method: CBOR Tag Wrapped

The CBOR Tag Wrapped method is appropriate for use with CBOR

protocols that encode a single CBOR data item. This data item is

enveloped into two nested tags:

The outer tag is a Self-described CBOR tag, 55799, as described in

Section 3.4.6 of [RFC8949].

The tag content of that tag is a second CBOR Tag that has been

allocated to describe the specific Protocol involved, as described

above.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-9.2
https://rfc-editor.org/rfc/rfc7252#section-12.3
https://www.iana.org/assignments/core-parameters#content-formats
https://rfc-editor.org/rfc/rfc8949#section-3.4.6

This method wraps the CBOR value as tags usually do. Applications

that need to send the CBOR value across a constrained link may wish

to remove the two tags if the use is implicitly understood.

Whether these two tags should be removed for specific further

processing is a decision made by the CBOR Protocol specification.

2.2.1. Example

To construct an example without registering a new tag, we use the

technique described in Appendix A to translate the Content-Format

number registered for application/senml+cbor, the number 112, into

the tag 1668546560+112 = 1668546672.

With this tag, the SenML-CBOR pack [{0: "current", 6: 3, 2: 1.5}]

would be enveloped as (in diagnostic notation):

55799(1668546672([{0: "current", 6: 3, 2: 1.5}]))

Or in hex:

d9 d9f7 # tag(55799)

 da 63740070 # tag(1668546672)

 81 # array(1)

 a3 # map(3)

 00 # unsigned(0)

 67 # text(7)

 63757272656e74 # "current"

 06 # unsigned(6)

 03 # unsigned(3)

 02 # unsigned(2)

 f9 3e00 # primitive(15872)

At the representation level, the unique fingerprint for application/

senml+cbor is composed of the 8 bytes d9d9f7da63740070 hex, after

which the unadorned CBOR data (81... for the SenML data) is

appended.

2.3. Enveloping Method: Labeled CBOR Sequence

The Labeled CBOR Sequence method is appropriate for use with CBOR

Sequences as described in [RFC8742].

This method prepends a newly constructed, separate data item to the

CBOR Sequence, the label.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The label is a nesting of two tags, similar to but distinct from the

CBOR Tag Wrapped methods, with an inner tag content of a constant

byte string. The total length of the label is 12 bytes.

The outer tag is the self-described CBOR Sequence tag, 55800.

The inner tag is a CBOR tag, from the First Come First Served

space, that uniquely identifies the CBOR Protocol. As with CBOR

Tag Wrapped, the use of a four-byte tag is encouraged that

encodes without zero bytes.

The tag content is a three byte CBOR byte string containing

0x42_4F_52 ('BOR' in diagnostic notation).

The outer tag in the label identifies the file as being a CBOR

Sequence, and does so with all the desirable properties explained in

Section 3.4.6 of [RFC8949]. Specifically, it does not appear to

conflict with any known file types, and it is not valid Unicode in

any Unicode encoding.

The inner tag in the label identifies which CBOR Protocol is used,

as described above.

The inner tag content is a constant byte string which is represented

as 0x43_42_4f_52, the ASCII characters "CBOR", which is the CBOR

encoded data item for the three-byte string 0x42_4f_52 ('BOR' in

diagnostic notation).

The actual CBOR Protocol data then follow as the next data item(s)

in the CBOR Sequence, without a need for any further specific tag.

The use of a CBOR Sequence allows the application to trivially

remove the first item with the two tags.

Should this file be reviewed by a human (directly in an editor, or

in a hexdump display), it will include the ASCII characters "CBOR"

prominently. This value is also included simply because the inner

nested tag needs to tag something.

3. Advice to Protocol Developers

This document introduces a choice between wrapping a single CBOR

data item into a (pair of) identifying CBOR tags, or prepending an

identifying encoded CBOR data item (which in turn contains a pair of

identifying CBOR tags) to a CBOR Sequence (which might be single

data item).

Which should a protocol designer use?

¶

1. ¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6

In this discussion, one assumes that there is an object stored in a

file, perhaps specified by a system operator in a configuration

file.

For example: a private key used in COSE operations, a public key/

certificate in C509 or CBOR format, a recorded sensor reading stored

for later transmission, or a COVID vaccination certificate that

needs to be displayed in QR code form.

Both the Labeled CBOR Sequence and the wrapped tag can be trivially

removed by an application before sending the CBOR content out on the

wire.

The Labeled CBOR Sequence can be slightly easier to remove as in

most cases, CBOR parsers will return it as a unit, and then return

the actual CBOR item, which could be anything at all, and could

include CBOR tags that do need to be sent on wire.

On the other hand, having the Labeled CBOR Sequence in the file

requires that all programs that expect to examine that file are able

to skip what appears to be a CBOR item with two tags nested around a

three-byte byte string. Programs which might not expect the Labeled

CBOR Sequence, but which would operate without a problem would

include any program that expects to process CBOR Sequences from the

file.

As an example of where there was a problem with previous security

systems, "PEM" format certificate files grew to be able to contain

multiple certificates by simple concatenation. The PKCS1 format

could also contain a private key object followed by a one or more

certificate objects: but only when in PEM format. Annoyingly, when

in binary DER format (which like CBOR is self-delimiting),

concatenation of certificates was not compatible with most programs

as they did not expect to read more than one item in the file.

The use of CBOR Tag Wrapped format is easier to retrofit to an

existing format with existing and unchangeable on-disk format for a

single CBOR data item. This new sequence of tags is expected to be

trivially ignored by many existing programs when reading CBOR from

disk, even if the program only supports decoding a single data item

(and not a CBOR sequence). But, a naive program might also then

transmit the additional tags across the network. Removing the CBOR

Tag Wrapped format requires knowledge of the two tags involved.

Other tags present might be needed.

For a representation matching a specific media-type that is carried

in a CBOR byte string, the byte string head will already have to be

removed for use as such a representation, so it should be easy to

remove the enclosing tag heads as well. This is of particular

¶

¶

¶

¶

¶

¶

¶

interest with the pre-defined tags provided by Appendix A for media-

types with CoAP Content-Format numbers.

Here are some considerations in the form of survey questions:

3.1. Is the on-wire format new?

If the on-wire format is new, then it could be specified with the

CBOR Tag Wrapped format if the extra eight bytes are not a problem.

The disk format is then identical to the on-wire format.

If the eight bytes are a problem on the wire (and they often are if

CBOR is being considered), then the Labeled CBOR Sequence format

should be adopted for on-disk storage.

3.2. Can many items be trivially concatenated?

If the programs that read the contents of the file already expect to

process all of the CBOR data items in the file (not just the first),

then the Labeled CBOR Sequence format may be easily retrofitted.

The program involved may throw errors or warnings on the Labeled

CBOR Sequence if they have not yet been updated, but this may not be

a problem.

There are situations where multiple objects may be concatenated into

a single file. If each object is preceded by a Labeled CBOR Sequence

label then there may be multiple such labels in the file.

A protocol based on CBOR Sequences may specify that Labeled CBOR

Sequence labels can occur within a CBOR Sequence, possibly even to

switch to data items following in the sequence that are of a

different type.

If the CBOR Sequence based protocol does not define the semantics

for or at least tolerate embedded labels, care must be taken when

concatenating Labeled CBOR Sequences to remove the label from all

but the first part.

As an example from legacy PEM encoded PKIX certificates, many

programs accept a series of PKIX certificates in a single file in

order to set up a certificate chain. The file would contain not just

the End-Entity (EE) certificate, but also any subordinate

certification authorities (CA) needed to validate the EE. This

mechanism actually only works for PEM encoded certificates, and not

DER encoded certificates. One of the reasons for this specification

is to make sure that CBOR encoded certificates do not suffer from

this problem.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

As an example of mixing of types, some TLS server programs also can

accept both their PEM encoded private key, and their PEM encoded

certificate in the same file.

If only one item is ever expected in the file, the use of Labeled

CBOR Sequence may present an implementation hurdle to programs that

previously just read a single data item and used it.

3.3. Are there tags at the start?

If the Protocol expects to use other tags values at the top-level,

then it may be easier to explain if the Labeled CBOR Sequence format

is used.

4. Security Considerations

This document provides a way to identify CBOR Protocol objects.

Clearly identifying CBOR contents on disk may have a variety of

impacts.

The most obvious is that it may allow malware to identify

interesting objects on disk, and then exfiltrate or corrupt them.

5. IANA Considerations

Section 5.1 documents the allocation that was done for a CBOR tag to

be used in a CBOR sequence to identify the sequence (an example for

using this tag is found in Appendix B). Section 5.3 allocates a CBOR

tag for each actual or potential CoAP Content-Format number

(examples are in Appendix A).

5.1. Labeled CBOR Sequence Tag

IANA has allocated tag 55800 as the tag for the Labeled CBOR

Sequence Enveloping Method.

This tag is from the First Come/First Served area.

The value has been picked to have properties similar to the 55799

tag (Section 3.4.6 of [RFC8949]).

The hexadecimal representation of the encoded tag head is:

0xd9_d9_f8.

This is not valid UTF-8: the first 0xd9 introduces a three-byte

sequence in UTF-8, but the 0xd9 as the second value is not a valid

second byte for UTF-8.

This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian

order) puts this value into the UTF-16 high-half zone, which would

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6

Data Item:

Semantics:

Data Item:

Semantics:

signal that this a 32-bit Unicode value. However, the following 16-

bit big-endian value 0xf8.. is not a valid second sequence according

to [RFC2781]. On a little-endian system, it would be necessary to

examine the fourth byte to determine if it is valid. That next byte

is determined by the subsequent encoding, and Section 3.4.6 of

[RFC8949] has already determined that no valid CBOR encodings result

in valid UTF-16.

tagged byte string

indicates that the file contains CBOR Sequences

5.2. CBOR-Labeled Non-CBOR Data Tag

IANA is requested to allocate tag 55801 as the tag for the CBOR-

Labeled Non-CBOR Data Enveloping Method (Appendix C).

This tag is from the First Come/First Served area.

The value has been picked to have properties similar to the 55799

tag (Section 3.4.6 of [RFC8949]).

The hexadecimal representation of the encoded tag head is:

0xd9_d9_f9.

This is not valid UTF-8: the first 0xd9 introduces a three-byte

sequence in UTF-8, but the 0xd9 as the second value is not a valid

second byte for UTF-8.

This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian

order) puts this value into the UTF-16 high-half zone, which would

signal that this a 32-bit Unicode value. However, the following 16-

bit big-endian value 0xf9.. is not a valid second sequence according

to [RFC2781]. On a little-endian system, it would be necessary to

examine the fourth byte to determine if it is valid. That next byte

is determined by the subsequent encoding, and Section 3.4.6 of

[RFC8949] has already determined that no valid CBOR encodings result

in valid UTF-16.

tagged byte string

indicates that the file starts with a CBOR-Labeled Non-CBOR Data

label.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6
https://rfc-editor.org/rfc/rfc8949#section-3.4.6
https://rfc-editor.org/rfc/rfc8949#section-3.4.6

Data Item:

Semantics:

Reference:

[RFC8742]

[STD94]

[file]

[I-D.ietf-core-new-block]

[I-D.ietf-cose-cbor-encoded-cert]

[I-D.ietf-rats-eat]

5.3. CBOR Tags for CoAP Content-Format Numbers

IANA is requested to allocate the tag numbers 1668546560

(0x63740000) to 1668612095 (0x6374FFFF) as follows:

byte string

for each tag number NNNNNNNN, the representation of content-

format (RFC7252) NNNNNNNN-1668546560

RFCthis

6. References

6.1. Normative References

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, December 2020.

<https://www.rfc-editor.org/info/std94>

6.2. Informative References

Wikipedia, "file (command)", 20 January 2021, <https://

en.wikipedia.org/wiki/File_%28command%29>.

Boucadair, M. and J. Shallow, "Constrained

Application Protocol (CoAP) Block-Wise Transfer Options

Supporting Robust Transmission", Work in Progress,

Internet-Draft, draft-ietf-core-new-block-14, 26 May

2021, <https://www.ietf.org/archive/id/draft-ietf-core-

new-block-14.txt>.

Mattsson, J. P., Selander, G., Raza, S., Höglund, J.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-03, 10 January 2022,

<https://www.ietf.org/archive/id/draft-ietf-cose-cbor-

encoded-cert-03.txt>.

Lundblade, L., Mandyam, G., and J. O'Donoghue,

"The Entity Attestation Token (EAT)", Work in Progress,

Internet-Draft, draft-ietf-rats-eat-12, 24 February 2022,

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/std94
https://en.wikipedia.org/wiki/File_%28command%29
https://en.wikipedia.org/wiki/File_%28command%29
https://www.ietf.org/archive/id/draft-ietf-core-new-block-14.txt
https://www.ietf.org/archive/id/draft-ietf-core-new-block-14.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-03.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-03.txt

[I-D.ietf-sacm-coswid]

[IANA.core-parameters]

[RFC2781]

[RFC7252]

[RFC8152]

[RFC8610]

<https://www.ietf.org/archive/id/draft-ietf-rats-

eat-12.txt>.

Birkholz, H., Fitzgerald-McKay, J., Schmidt,

C., and D. Waltermire, "Concise Software Identification

Tags", Work in Progress, Internet-Draft, draft-ietf-sacm-

coswid-21, 7 March 2022, <https://www.ietf.org/archive/

id/draft-ietf-sacm-coswid-21.txt>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <https://www.iana.org/assignments/

core-parameters>.

Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO

10646", RFC 2781, DOI 10.17487/RFC2781, February 2000,

<https://www.rfc-editor.org/info/rfc2781>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Appendix A. CBOR Tags for CoAP Content Formats

Section 5.10.3 of [RFC7252] defines the concept of a Content-Format,

which is a short 16-bit unsigned integer that identifies a specific

content type (media type plus optionally parameters), optionally

together with a content encoding.

Outside of a transfer protocol that indicates the Content-Format for

a representation, it may be necessary to identify the Content-Format

of the representation when it is on disk, in firmware, or when

debugging.

This specification allocates CBOR tag numbers 1668546560

(0x63740000) to 1668612095 (0x6374FFFF) for the tagging of

representations of specific content formats. The tag content tagged

with tag number NNNNNNNN (in above range) is a byte string that is

to be interpreted as a representation of the content format

NNNNNNNN-1668546560.

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-rats-eat-12.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-12.txt
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-21.txt
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-21.txt
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
https://www.rfc-editor.org/info/rfc2781
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8610
https://rfc-editor.org/rfc/rfc7252#section-5.10.3

Tag 55799 (Section 2.2):

Tags 55800 (Section 2.3) or 55801 (Appendix C):

Exceptionally, when used immediately as tag content of one of the

tags 55799, 55800, or 55801, the tag content is as follows:

One of:

The CBOR data item within the representation (without

byte string wrapping). This only works for Content

Formats that are represented by a single CBOR data item

in identity content-coding.

The data items in the CBOR sequence within the

representation, without byte string wrapping, but wrapped

in a CBOR array. This works for Content Formats that are

represented by a CBOR sequence in identity content-

coding.

the byte string

'BOR', signifying that the representation of the given content-

format follows in the file, in the way defined for these tags.

A.1. Content-Format Tag Examples

Registry Content-Formats of [IANA.core-parameters] defines content

formats that can be used as examples:

As discussed in Section 2.2.1, Content-Format 112 stands for

media type application/senml+cbor (no parameters). The

corresponding tag number is 1668546672 (i.e., 1668546560+112).

So the following CDDL snippet can be used to identify

application/senml+cbor representations:

senml-cbor = #6.1668546672(bstr)

Note that a byte string is used as the type of the tag content,

because a media type representation in general can be any byte

string.

Content-Format 272 stands for media type application/missing-

blocks+cbor-seq, a CBOR sequence [I-D.ietf-core-new-block].

The corresponding tag number is 1668546832 (i.e.,

1668546560+272).

So the following CDDL snippet can be used to identify

application/missing-blocks+cbor-seq representations as embedded

in a CBOR byte string:

¶

¶

1.

¶

2.

¶

¶

¶

*

¶

¶

¶

¶

*

¶

¶

¶

https://www.iana.org/assignments/core-parameters#content-formats

missing-blocks = #6.1668546832(bstr)

Appendix B. Example from Openswan

The Openswan IPsec project has a daemon ("pluto"), and two control

programs ("addconn", and "whack"). They communicate via a Unix-

domain socket, over which a C-structure containing pointers to

strings is serialized using a bespoke mechanism. This is normally

not a problem as the structure is compiled by the same compiler; but

when there are upgrades it is possible for the daemon and the

control programs to get out of sync by the bespoke serialization. As

a result, there are extra compensations to deal with shutting the

daemon down. During testing it is sometimes the case that upgrades

are backed out.

In addition, when doing unit testing, the easiest way to load policy

is to use the normal policy reading process, but that is not

normally loaded in the daemon. Instead the IPC that is normally sent

across the wire is compiled/serialized and placed in a file. The

above magic number is included in the file, and also on the IPC in

order to distinguish the "shutdown" command CBOR operation.

In order to reduce the problems due to serialization, the

serialization is being changed to CBOR. Additionally, this change

allows the IPC to be described by CDDL, and for any language that

encode to CBOR can be used.

IANA has allocated the tag 1330664270, or 0x4f_50_53_4e for this

purpose. As a result, each file and each IPC is prefixed with a CBOR

TAG Sequence.

In diagnostic notation:

55800(1330664270(h'424F52'))

Or in hex:

D9 D9F8 # tag(55800)

 DA 4F50534E # tag(1330664270)

 43 # bytes(3)

 424F52 # "BOR"

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix C. Using CBOR Labels for non-CBOR data

The CBOR-Labeled non-CBOR data method is appropriate for adding a

magic number to a non-CBOR data format, particularly one that can be

described by a Content-Format tag (Appendix A).

This method prepends a CBOR data item to the non-CBOR data; this

data item is called the "header" and, similarly to the Labeled CBOR-

Sequence label, consists of two nested tags around a constant byte

string for a total of 12 bytes.

The outer tag is the CBOR-Labeled Non-CBOR Data tag, 55801.

The inner tag is a CBOR tag, from the First Come First Served

space, that uniquely identifies the CBOR Protocol. As with CBOR

Tag Wrapped, the use of a four-byte tag is encouraged that

encodes without zero bytes.

The tag content is a three byte CBOR byte string containing

0x42_4F_52 ('BOR' in diagnostic notation).

The outer tag in the label identifies the file as being file as

being prefixed by a non-CBOR data label, and does so with all the

desirable properties explained in Section 3.4.6 of [RFC8949].

Specifically, it does not appear to conflict with any known file

types, and it is not valid Unicode in any Unicode encoding.

The inner tag in the label identifies which non-CBOR Protocol is

used.

The inner tag content is a constant byte string which is represented

as 0x43_42_4f_52, the ASCII characters "CBOR", which is the CBOR

encoded data item for the three-byte string 0x42_4f_52 ('BOR' in

diagnostic notation).

The actual non-CBOR Protocol data then follow directly appended to

the CBOR representation of the header. This allows the application

to trivially remove the header item with the two nested tags and the

byte string.

Should this file be reviewed by a human (directly in an editor, or

in a hexdump display), it will include the ASCII characters "CBOR"

prominently to indicate the nature of the header. This value is also

included simply because the two tags need to tag something.

¶

¶

1. ¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.6

C.1. Content-Format Tag Examples

Registry Content-Formats of [IANA.core-parameters] defines content

formats that can be used as examples:

Content-Format 432 stands for media type application/td+json (no

parameters). The corresponding tag number is 1668546992 (i.e.,

1668546560+432).

So the following CDDL snippet can be used to identify a CBOR-

Labeled non-CBOR data for application/td+json representations:

td-json-header = #6.55801(#6.1668546992('BOR'))

Content-Format 11050 stands for media type application/json in

deflate content-coding.

The corresponding tag number is 1668557610 (i.e.,

1668546560+11050).

So the following CDDL snippet can be used to identify a CBOR-

Labeled non-CBOR data for application/json representations

compressed in deflate content-coding:

json-deflate-header = #6.55801(#6.1668557610('BOR'))

Appendix D. Changelog

Acknowledgements

The CBOR WG brainstormed this protocol on January 20, 2021 via a

number of productive email exchanges on the mailing list.

Contributors

Josef 'Jeff' Sipek

Email: jeffpc@josefsipek.net

Authors' Addresses

Michael Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

Carsten Bormann

¶

*

¶

¶

¶

*

¶

¶

¶

¶

¶

https://www.iana.org/assignments/core-parameters#content-formats
mailto:jeffpc@josefsipek.net
mailto:mcr+ietf@sandelman.ca

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

tel:+49-421-218-63921
mailto:cabo@tzi.org

	On storing CBOR encoded items on stable storage
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements for a Magic Number

	2. Protocol
	2.1. The CBOR Protocol Specific Tag
	2.2. Enveloping Method: CBOR Tag Wrapped
	2.2.1. Example

	2.3. Enveloping Method: Labeled CBOR Sequence

	3. Advice to Protocol Developers
	3.1. Is the on-wire format new?
	3.2. Can many items be trivially concatenated?
	3.3. Are there tags at the start?

	4. Security Considerations
	5. IANA Considerations
	5.1. Labeled CBOR Sequence Tag
	5.2. CBOR-Labeled Non-CBOR Data Tag
	5.3. CBOR Tags for CoAP Content-Format Numbers

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. CBOR Tags for CoAP Content Formats
	A.1. Content-Format Tag Examples

	Appendix B. Example from Openswan
	Appendix C. Using CBOR Labels for non-CBOR data
	C.1. Content-Format Tag Examples

	Appendix D. Changelog
	Acknowledgements
	Contributors
	Authors' Addresses

