
Workgroup: Network Working Group

Internet-Draft: draft-ietf-cbor-packed-03

Published: 13 August 2021

Intended Status: Informational

Expires: 14 February 2022

Authors: C. Bormann

Universität Bremen TZI

Packed CBOR

Abstract

The Concise Binary Object Representation (CBOR, RFC 8949) is a data

format whose design goals include the possibility of extremely small

code size, fairly small message size, and extensibility without the

need for version negotiation.

CBOR does not provide any forms of data compression. CBOR data

items, in particular when generated from legacy data models often

allow considerable gains in compactness when applying data

compression. While traditional data compression techniques such as

DEFLATE (RFC 1951) can work well for CBOR encoded data items, their

disadvantage is that the receiver needs to unpack the compressed

form to make use of data.

This specification describes Packed CBOR, a simple transformation of

a CBOR data item into another CBOR data item that is almost as easy

to consume as the original CBOR data item. A separate decompression

step is therefore often not required at the receiver.

Note to Readers

This is a working-group draft of the CBOR working group of the IETF,

https://datatracker.ietf.org/wg/cbor/about/. Discussion takes places

on the github repository https://github.com/cbor-wg/cbor-packed and

on the CBOR WG mailing list, https://www.ietf.org/mailman/listinfo/

cbor.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/wg/cbor/about/
https://github.com/cbor-wg/cbor-packed
https://www.ietf.org/mailman/listinfo/cbor
https://www.ietf.org/mailman/listinfo/cbor
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Packed CBOR

2.1. Packing Tables

2.2. Referencing Shared Items

2.3. Referencing Affix Items

2.4. Discussion

3. Table Setup

3.1. Basic Packed CBOR

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Examples

Acknowledgements

Author's Address

1. Introduction

(TO DO, expand on text from abstract here; move references here and

neuter them in the abstract as per Section 4.3 of [RFC7322].)

The specification defines a transformation from a Packed CBOR data

item to the original CBOR data item; it does not define an algorithm

for an actual packer. Different packers can differ in the amount of

effort they invest in arriving at a minimal packed form.

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Packed reference:

Shared item reference:

Affix reference:

Affix:

Packing tables:

Expansion:

Packed CBOR can employ two kinds of optimization:

item sharing: substructures (data items) that occur repeatedly in

the original CBOR data item can be collapsed to a simple

reference to a common representation of that data item. The

processing required during consumption is limited to following

that reference.

affix sharing: data items (strings, containers) that share a

prefix or suffix (affix) can be replaced by a reference to a

common affix plus the rest of the data item. For strings, the

processing required during consumption is similar to following

the affix reference plus that for an indefinite-length string.

A specific application protocol that employs Packed CBOR might allow

both kinds of optimization or limit the representation to item

sharing only.

Packed CBOR is defined in two parts: Referencing packing tables

(Section 2) and setting up packing tables (Section 3).

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

A shared item reference or an affix reference

A reference to a shared item as defined in

Section 2.2

A reference that combines an affix item as defined

in Section 2.3.

Prefix or suffix.

The triple of a shared item table, a prefix table,

and a suffix table.

The result of applying a packed reference in the context

of given Packing tables.

The definitions of [RFC8949] apply. The term "byte" is used in its

now customary sense as a synonym for "octet". Where bit arithmetic

is explained, this document uses the notation familiar from the

programming language C (including C++14's 0bnnn binary literals),

except that, in the plain text form of this document, the operator

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

"^" stands for exponentiation, and, in the HTML and PDF versions,

subtraction and negation are rendered as a hyphen ("-", as are

various dashes).

2. Packed CBOR

This section describes the packing tables, their structure, and how

they are referenced.

2.1. Packing Tables

At any point within a data item making use of Packed CBOR, there is

a Current Set of packing tables that applies.

There are three packing tables in a Current Set:

Shared item table

Prefix table

Suffix table

Without any table setup, all these tables are empty arrays. Table

setup can cause these arrays to be non-empty, where the elements are

(potentially themselves packed) data items. Each of the tables is

indexed by an unsigned integer (starting from 0), which may be

computed from information in tags and their content as well as from

CBOR simple values.

2.2. Referencing Shared Items

Shared items are stored in the shared item table of the Current Set.

The shared data items are referenced by using the reference data

items in Table 1. When reconstructing the original data item, such a

reference is replaced by the referenced data item, which is then

recursively unpacked.

reference table index

Simple value 0-15 0-15

Tag 6(unsigned integer N) 16 + 2*N

Tag 6(negative integer N) 16 - 2*N - 1

Table 1: Referencing Shared Values

As examples in CBOR diagnostic notation (Section 8 of [RFC8949]),

the first 22 elements of the shared item table are referenced by

simple(0), simple(1), ... simple(15), 6(0), 6(-1), 6(1), 6(-2),

6(2), 6(-3). (The alternation between unsigned and negative integers

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-8

for even/odd table index values makes systematic use of shorter

integer encodings first.)

Taking into account the encoding of these referring data items,

there are 16 one-byte references, 48 two-byte references, 512 three-

byte references, 131072 four-byte references, etc. As integers can

grow to very large (or negative) values, there is no practical limit

to how many shared items might be used in a Packed CBOR item.

Note that the semantics of Tag 6 depend on its content: An integer

turns the tag into a shared item reference, a string or container

(map or array) into a prefix reference (see Table 2).

2.3. Referencing Affix Items

Prefix items are stored in the prefix table of the Current Set;

suffix items are stored in the suffix table of the Current Set. We

collectively call these items affix items; when referencing, which

of the tables is actually used depends on whether a prefix or a

suffix reference was used.

prefix reference table index

Tag 6(suffix) 0

Tag 225-255(suffix) 1-31

Tag 28704-32767(suffix) 32-4095

Tag 1879052288-2147483647(suffix) 4096-268435455

Table 2: Referencing Prefix Values

suffix reference table index

Tag 216-223(prefix) 0-7

Tag 27647-28671(prefix) 8-1023

Tag 1811940352-1879048191(prefix) 1024-67108863

Table 3: Referencing Suffix Values

Affix data items are referenced by using the data items in Table 2

and Table 3. Each of these implies the table used (prefix or

suffix), a table index (an unsigned integer) and contains a "rump

item". When reconstructing the original data item, such a reference

is replaced by a data item constructed from the referenced affix

data item (affix, which might need to be recursively unpacked first)

"concatenated" with the tag content (rump, again possibly

recursively unpacked).

For a rump of type array and map, the affix also needs to be an

array or a map. For an array, the elements from the prefix are

prepended, and the elements from a suffix are appended to the

rump array. For a map, the entries in the affix are added to

those of the rump; prefix and suffix references differ in how

¶

¶

¶

¶

¶

*

entries with identical keys are combined: for prefix references,

an entry in the rump with the same key as an entry in the affix

overrides the one in the affix, while for suffix references, an

entry in the affix overrides an entry in the rump that has the

same key.

ISSUE: Not sure that we want to use the efficiencies of overriding,

but having default values supplied out of a dictionary to be

overridden by a rump sounds rather handy. Note that there is no way

to remove a map entry from the table.

For a rump of one of the string types, the affix also needs to be

one of the string types; the bytes of the strings are

concatenated as specified (prefix + rump, rump + suffix). The

result of the concatenation gets the type of the rump; this way a

single affix can be used to build both byte and text strings,

depending on what type of rump is being used.

As a contrived (but short) example, if the prefix table is

["foobar", "foob", "fo"], the following prefix references will all

unpack to "foobart": 6("t"), 224("art"), 225("obart") (the last

example is not an optimization).

Taking into account the encoding, there is one single-byte prefix

reference, 31 (2 -2) two-byte references, 4064 (2 -2) three-byte

references, and 26843160 (2 -2) five-byte references for prefixes.

268435455 (2) is an artificial limit, but should be high enough

that there, again, is no practical limit to how many prefix items

might be used in a Packed CBOR item. The numbers for suffix

references are one quarter of those, except that there is no single-

byte reference and 8 two-byte references.

Rationale: Experience suggests that prefix packing might be more

likely than suffix packing. Also for this reason, there is no intent

to spend a 1+0 tag value for suffix matching.

2.4. Discussion

This specification uses up a large number of Simple Values and Tags,

in particular one of the rare one-byte tags and half of the one-byte

simple values. Since the objective is compression, this is warranted

if and only if there is consensus that this specific format could be

useful for a wide area of applications, while maintaining reasonable

simplicity in particular at the side of the consumer.

A maliciously crafted Packed CBOR data item might contain a

reference loop. A consumer/decompressor MUST protect against that.

¶

¶

*

¶

¶

5 0 12 5

28 12

28

¶

¶

¶

¶

Different strategies for decoding/consuming Packed CBOR are

available.

For example:

the decoder can decode and unpack the packed item, presenting

an unpacked data item to the application. In this case, the

onus of dealing with loops is on the decoder. (This strategy

generally has the highest memory consumption, but also the

simplest interface to the application.) Besides avoiding

getting stuck in a reference loop, the decoder will need to

control its resource allocation, as data items can "blow up"

during unpacking.

the decoder can be oblivious of Packed CBOR. In this case, the

onus of dealing with loops is on the application, as is the

entire onus of dealing with Packed CBOR.

hybrid models are possible, for instance: The decoder builds a

data item tree directly from the Packed CBOR as if it were

oblivious, but also provides accessors that hide (resolve) the

packing. In this specific case, the onus of dealing with loops

is on the accessors.

In general, loop detection can be handled in a similar way in which

loops of symbolic links are handled in a file system: A system wide

limit (often 31 or 40 indirections for symbolic links) is applied to

any reference chase.

ISSUE: The present specification does nothing to help with the

packing of CBOR sequences [RFC8742]; maybe it should.

3. Table Setup

The packing references described in Section 2 assume that packing

tables have been set up.

By default, all three tables are empty (zero-length arrays).

Table setup can happen in one of two ways:

By the application environment, e.g., a media type. These can

define tables that amount to a static dictionary that can be used

in a CBOR data item for this application environment. Note that,

without this information, a data item that uses such a static

dictionary can be decoded at the CBOR level, but not fully

unpacked. The table setup mechanisms provided by this document

are defined in such a way that an unpacker can at least recognize

if this is the case.

By one or more tags enclosing the packed content. These can be

defined to add to the packing tables that already apply to the

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

*

tag. Usually, the semantics of the tag will be to prepend items

to one of the tables. Note that it may be useful to leave a

particular efficiency tier alone and only prepend to a higher

tier; e.g., a tag could insert shared items at table index 16 and

shift anything that was already there further down in the array

while leaving index 0 to 15 alone. Explicit additions by tag can

combine with application-environment supplied tables that apply

to the entire CBOR data item.

For table setup, the present specification only defines a single

tag, which operates by prepending to the (by default empty) tables.

We could also define a tag for dictionary referencing (or include

that in the basic packed CBOR), but the desirable details are likely

to vary considerably between applications. A URI-based reference

would be easy to add, but might be too inefficient when used in the

likely combination with an ni: URI [RFC6920].

3.1. Basic Packed CBOR

A predefined tag for packing table setup is defined in CDDL

[RFC8610] as in Figure 1:

Basic-Packed-CBOR = #6.51([[*shared-item], [*prefix-item],

 [*suffix-item], rump])

rump = any

prefix-item = any

suffix-item = any

shared-item = any

Figure 1: Packed CBOR in CDDL

(This assumes the allocation of tag number 51 for this tag.)

The arrays given as the first, second, and third element of the

content of the tag 51 are prepended to the tables for shared items,

prefixes, and suffixes that apply to the entire tag (by default

empty tables).

The original CBOR data item can be reconstructed by recursively

replacing shared, prefix, and suffix references encountered in the

rump by their expansions.

Packed item references in the newly constructed (low-numbered) parts

of the table need to be interpreted in the number space of that

table (which includes the, now higher-numbered inherited parts),

while references in any existing, inherited (higher-numbered) part

continue to use the (more limited) number space of the inherited

table.

¶

¶

¶

¶

¶

¶

¶

¶

4. IANA Considerations

In the registry "CBOR Tags" [IANA.cbor-tags], IANA is requested to

allocate the tags defined in Table 4.

Tag Data Item Semantics Reference

6

integer (for

shared); text

string, byte

string, array, map

(for prefix)

Packed

CBOR:

shared/

prefix

draft-ietf-

cbor-packed

225-255
text string, byte

string, array, map

Packed

CBOR:

prefix

draft-ietf-

cbor-packed

28704-32767
text string, byte

string, array, map

Packed

CBOR:

prefix

draft-ietf-

cbor-packed

1879052288-2147483647
text string, byte

string, array, map

Packed

CBOR:

prefix

draft-ietf-

cbor-packed

216-223
text string, byte

string, array, map

Packed

CBOR:

suffix

draft-ietf-

cbor-packed

27647-28671
text string, byte

string, array, map

Packed

CBOR:

suffix

draft-ietf-

cbor-packed

1811940352-1879048191
text string, byte

string, array, map

Packed

CBOR:

suffix

draft-ietf-

cbor-packed

Table 4: Values for Tag Numbers

In the registry "CBOR Simple Values" [IANA.cbor-simple-values], IANA

is requested to allocate the simple values defined in Table 5.

Value Semantics Reference

0-15 Packed CBOR: shared draft-ietf-cbor-packed

Table 5: Simple Values

5. Security Considerations

The security considerations of [RFC8949] apply.

Loops in the Packed CBOR can be used as a denial of service attack,

see Section 2.4.

¶

¶

¶

¶

http://www.iana.org/assignments/cbor-tags#cbor-tags
http://www.iana.org/assignments/cbor-simple-values#simple

[IANA.cbor-simple-values]

[IANA.cbor-tags]

[RFC2119]

[RFC8174]

[RFC8610]

[RFC8949]

[RFC6920]

[RFC7049]

[RFC7322]

As the unpacking is deterministic, packed forms can be used as

signing inputs. (Note that if external dictionaries are added to

cbor-packed, this requires additional consideration.)

6. References

6.1. Normative References

IANA, "Concise Binary Object

Representation (CBOR) Simple Values", <http://

www.iana.org/assignments/cbor-simple-values>.

IANA, "Concise Binary Object Representation (CBOR)

Tags", <http://www.iana.org/assignments/cbor-tags>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

6.2. Informative References

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,

Keranen, A., and P. Hallam-Baker, "Naming Things with

Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,

<https://www.rfc-editor.org/info/rfc6920>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Flanagan, H. and S. Ginoza, "RFC Style Guide", RFC 7322,

DOI 10.17487/RFC7322, September 2014, <https://www.rfc-

editor.org/info/rfc7322>.

¶

http://www.iana.org/assignments/cbor-simple-values
http://www.iana.org/assignments/cbor-simple-values
http://www.iana.org/assignments/cbor-tags
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7322
https://www.rfc-editor.org/info/rfc7322

[RFC8742]
Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Appendix A. Examples

The (JSON-compatible) CBOR data structure depicted in Figure 2, 400

bytes of binary CBOR, could lead to a packed CBOR data item depicted

in Figure 3, ~309 bytes. Note that this particular example does not

lend itself to prefix compression.

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 19.95

 }

 }

}

Figure 2: Example original CBOR data item

¶

https://www.rfc-editor.org/info/rfc8742

51(["price", "category", "author", "title", "fiction", 8.95, "isbn"],

 / 0 1 2 3 4 5 6 /

 [], [],

 [{"store": {

 "book": [

 {simple(1): "reference", simple(2): "Nigel Rees",

 simple(3): "Sayings of the Century", simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "Evelyn Waugh",

 simple(3): "Sword of Honour", simple(0): 12.99},

 {simple(1): simple(4), simple(2): "Herman Melville",

 simple(3): "Moby Dick", simple(6): "0-553-21311-3",

 simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "J. R. R. Tolkien",

 simple(3): "The Lord of the Rings",

 simple(6): "0-395-19395-8", simple(0): 22.99}],

 "bicycle": {"color": "red", simple(0): 19.95}}}])

Figure 3: Example packed CBOR data item

The (JSON-compatible) CBOR data structure below has been packed with

shared item and (partial) prefix compression only.¶

{

 "name": "MyLED",

 "interactions": [

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueRed",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueRed",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueGreen",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueGreen",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueBlue",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueBlue",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueWhite",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueWhite",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/ledOnOff",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "boolean"

 }

 },

 "name": "ledOnOff",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

"http://192.168.1.103:8445/wot/thing/MyLED/colorTemperatureChanged",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "colorTemperatureChanged",

 "@type": [

 "Event"

]

 }

],

 "@type": "Lamp",

 "id": "0",

 "base": "http://192.168.1.103:8445/wot/thing",

 "@context":

 "http://192.168.1.102:8444/wot/w3c-wot-td-context.jsonld"

}

Figure 4: Example original CBOR data item

51([/shared/["name", "@type", "links", "href", "mediaType",

 / 0 1 2 3 4 /

 "application/json", "outputData", {"valueType": {"type":

 / 5 6 7 /

 "number"}}, ["Property"], "writable", "valueType", "type"],

 / 8 9 10 11 /

 /prefix/ ["http://192.168.1.10", 6("3:8445/wot/thing"),

 / 6 225 /

 225("/MyLED/"), 226("rgbValue"), "rgbValue",

 / 226 227 228 /

 {simple(6): simple(7), simple(9): true, simple(1): simple(8)}],

 / 229 /

 /suffix/ [],

 /rump/ {simple(0): "MyLED",

 "interactions": [

 229({simple(2): [{simple(3): 227("Red"), simple(4): simple(5)}],

 simple(0): 228("Red")}),

 229({simple(2): [{simple(3): 227("Green"), simple(4): simple(5)}],

 simple(0): 228("Green")}),

 229({simple(2): [{simple(3): 227("Blue"), simple(4): simple(5)}],

 simple(0): 228("Blue")}),

 229({simple(2): [{simple(3): 227("White"), simple(4): simple(5)}],

 simple(0): "rgbValueWhite"}),

 {simple(2): [{simple(3): 226("ledOnOff"), simple(4): simple(5)}],

 simple(6): {simple(10): {simple(11): "boolean"}}, simple(0):

 "ledOnOff", simple(9): true, simple(1): simple(8)},

 {simple(2): [{simple(3): 226("colorTemperatureChanged"),

 simple(4): simple(5)}], simple(6): simple(7), simple(0):

 "colorTemperatureChanged", simple(1): ["Event"]}],

 simple(1): "Lamp", "id": "0", "base": 225(""),

 "@context": 6("2:8444/wot/w3c-wot-td-context.jsonld")}])

Figure 5: Example packed CBOR data item

Acknowledgements

CBOR packing was originally invented with the rest of CBOR, but did

not make it into [RFC7049], the predecessor of [RFC8949]. Various

attempts to come up with a specification over the years didn't

proceed. In 2017, Sebastian Käbisch proposed investigating compact

representations of W3C Thing Descriptions, which prompted the author

to come up with essentially the present design.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

¶

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

tel:+49-421-218-63921
mailto:cabo@tzi.org

	Packed CBOR
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Packed CBOR
	2.1. Packing Tables
	2.2. Referencing Shared Items
	2.3. Referencing Affix Items
	2.4. Discussion

	3. Table Setup
	3.1. Basic Packed CBOR

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Examples
	Acknowledgements
	Author's Address

