
Workgroup: Network Working Group

Internet-Draft: draft-ietf-cbor-packed-07

Published: 24 July 2022

Intended Status: Standards Track

Expires: 25 January 2023

Authors: C. Bormann

Universität Bremen TZI

Packed CBOR

Abstract

The Concise Binary Object Representation (CBOR, RFC 8949 == STD 94)

is a data format whose design goals include the possibility of

extremely small code size, fairly small message size, and

extensibility without the need for version negotiation.

CBOR does not provide any forms of data compression. CBOR data

items, in particular when generated from legacy data models, often

allow considerable gains in compactness when applying data

compression. While traditional data compression techniques such as

DEFLATE (RFC 1951) can work well for CBOR encoded data items, their

disadvantage is that the receiver needs to decompress the compressed

form to make use of the data.

This specification describes Packed CBOR, a simple transformation of

a CBOR data item into another CBOR data item that is almost as easy

to consume as the original CBOR data item. A separate decompression

step is therefore often not required at the receiver.

The present version (-07) adds the concept of Tag Equivalence as

initially discussed at the CBOR Interim meeting 12 in 2022 and

further in PR #6, for discussion before and at IETF 114.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-cbor-packed/.

Discussion of this document takes place on the CBOR Working Group

mailing list (mailto:cbor@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cbor/. Subscribe at https://

www.ietf.org/mailman/listinfo/cbor/.

Source for this draft and an issue tracker can be found at https://

github.com/cbor-wg/cbor-packed.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-cbor-packed/
https://datatracker.ietf.org/doc/draft-ietf-cbor-packed/
mailto:cbor@ietf.org
https://mailarchive.ietf.org/arch/browse/cbor/
https://mailarchive.ietf.org/arch/browse/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://github.com/cbor-wg/cbor-packed
https://github.com/cbor-wg/cbor-packed

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Packed CBOR

2.1. Packing Tables

2.2. Referencing Shared Items

2.3. Referencing Argument Items

2.4. Concatenation

2.5. Discussion

3. Table Setup

3.1. Basic Packed CBOR

4. Function Tags

4.1. Join Function Tags

5. Tag Validity: Tag Equivalence Principle

5.1. Tag Equivalence

5.2. Tag Equivalence of Packed CBOR Tags

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

6. IANA Considerations

6.1. CBOR Tags Registry

6.2. CBOR Simple Values Registry

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Examples

Acknowledgements

Author's Address

1. Introduction

The Concise Binary Object Representation (CBOR, [STD94]) is a data

format whose design goals include the possibility of extremely small

code size, fairly small message size, and extensibility without the

need for version negotiation.

CBOR does not provide any forms of data compression. CBOR data

items, in particular when generated from legacy data models, often

allow considerable gains in compactness when applying data

compression. While traditional data compression techniques such as

DEFLATE [RFC1951] can work well for CBOR encoded data items, their

disadvantage is that the receiver needs to decompress the compressed

form to make use of the data.

This specification describes Packed CBOR, a simple transformation of

a CBOR data item into another CBOR data item that is almost as easy

to consume as the original CBOR data item. A separate decompression

step is therefore often not required at the receiver.

This document defines the Packed CBOR format by specifying the

transformation from a Packed CBOR data item to the original CBOR

data item; it does not define an algorithm for a packer. Different

packers can differ in the amount of effort they invest in arriving

at a minimal packed form; often, they simply employ the sharing that

is natural for a specific application.

Packed CBOR can make use of two kinds of optimization:

item sharing: substructures (data items) that occur repeatedly in

the original CBOR data item can be collapsed to a simple

reference to a common representation of that data item. The

processing required during consumption is limited to following

that reference.

argument sharing: application of a function with two arguments,

one of which is shared. Data items (strings, containers) that

share a prefix or suffix (affix), or more generally data items

that can be constructed from a function taking a shared argument

¶

¶

¶

¶

¶

*

¶

*

Packed reference:

Shared item reference:

Argument reference:

Affix:

Function reference:

Packing tables:

Current set:

Expansion:

and a rump data item, can be replaced by a reference to the

shared argument plus a rump data item. For strings and the

default "concatenation" function, the processing required during

consumption is similar to following the argument reference plus

that for an indefinite-length string.

A specific application protocol that employs Packed CBOR might allow

both kinds of optimization or limit the representation to item

sharing only.

Packed CBOR is defined in two parts: Referencing packing tables

(Section 2) and setting up packing tables (Section 3).

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

A shared item reference or an argument reference.

A reference to a shared item as defined in

Section 2.2.

A reference that combines a shared argument

with a rump item as defined in Section 2.3.

Prefix or suffix, used as an argument in an argument

reference employing the default function "concatenation".

An argument reference that uses a tag for

argument, rump, or both, causing the application of a function to

reconstruct the data item.

The pair of a shared item table and an argument

table.

The packing tables in effect at the data item under

consideration.

The result of applying a packed reference in the context

of given Packing tables.

The definitions of [STD94] apply. Specifically: The term "byte" is

used in its now customary sense as a synonym for "octet"; "byte

strings" are CBOR data items carrying a sequence of zero or more

(binary) bytes, while "text strings" are CBOR data items carrying a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

sequence of zero or more Unicode code points (more precisely:

Unicode scalar values), encoded in UTF-8 [STD63].

Where bit arithmetic is explained, this document uses the notation

familiar from the programming language C (including C++14's 0bnnn

binary literals), except that, in the plain text form of this

document, the operator "^" stands for exponentiation, and, in the

HTML and PDF versions, subtraction and negation are rendered as a

hyphen ("-", as are various dashes).

2. Packed CBOR

This section describes the packing tables, their structure, and how

they are referenced.

2.1. Packing Tables

At any point within a data item making use of Packed CBOR, there is

a Current Set of packing tables that applies.

There are two packing tables in a Current Set:

Shared item table

Argument table

Without any table setup, these two tables are empty arrays. Table

setup can cause these arrays to be non-empty, where the elements are

(potentially themselves packed) data items. Each of the tables is

indexed by an unsigned integer (starting from 0). Such an index may

be derived from information in tags and their content as well as

from CBOR simple values.

2.2. Referencing Shared Items

Shared items are stored in the shared item table of the Current Set.

The shared data items are referenced by using the reference data

items in Table 1. When reconstructing the original data item, such a

reference is replaced by the referenced data item, which is then

recursively unpacked.

reference table index

Simple value 0-15 0-15

Tag 6(unsigned integer N) 16 + 2*N

Tag 6(negative integer N) 16 - 2*N - 1

Table 1: Referencing Shared Values

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

As examples in CBOR diagnostic notation (Section 8 of [STD94]), the

first 22 elements of the shared item table are referenced by

simple(0), simple(1), ... simple(15), 6(0), 6(-1), 6(1), 6(-2),

6(2), 6(-3). (The alternation between unsigned and negative integers

for even/odd table index values -- "zigzag encoding" -- makes

systematic use of shorter integer encodings first.)

Taking into account the encoding of these referring data items,

there are 16 one-byte references, 48 two-byte references, 512 three-

byte references, 131072 four-byte references, etc. As CBOR integers

can grow to very large (or very negative) values, there is no

practical limit to how many shared items might be used in a Packed

CBOR item.

Note that the semantics of Tag 6 depend on its tag content: An

integer turns the tag into a shared item reference, whereas a string

or container (map or array) turns it into a straight (prefix)

reference (see Table 2). Note also that the tag content of Tag 6 may

itself be packed, so it may need to be unpacked to make this

determination.

2.3. Referencing Argument Items

The argument table serves as a common table that can be used for

argument references, i.e., for concatenation as well as references

involving a function tag.

When referencing an argument, a distinction is made between straight

and inverted references; if no function tag is involved, a straight

reference combines a prefix out of the argument table with the rump

data item, and an inverted reference combines a rump data item with

a suffix out of the argument table.

straight reference table index

Tag 6(straight rump) 0

Tag 224-255(straight rump) 0-31

Tag 28704-32767(straight rump) 32-4095

Tag 1879052288-2147483647(straight rump) 4096-268435455

Table 2: Straight Referencing (e.g., Prefix) Arguments

inverted reference table index

Tag 216-223(inverted rump) 0-7

Tag 27647-28671(inverted rump) 8-1023

Tag 1811940352-1879048191(inverted rump) 1024-67108863

Table 3: Inverted Referencing (e.g., Suffix) Arguments

Argument data items are referenced by using the reference data items

in Table 2 and Table 3.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-8

The tag number of the reference indicates a table index (an unsigned

integer) leading to the "argument"; the tag content of the reference

is the "rump item".

When reconstructing the original data item, such a reference is

replaced by a data item constructed from the argument data item

found in the table (argument, which might need to be recursively

unpacked first) and the rump data item (rump, again possibly

recursively unpacked).

Separate from the tag used as a reference, a tag ("function tag")

may be involved to supply a function to be used in resolving the

reference. It is crucial not to confuse reference tag and, if

present, function tag.

A straight reference uses the argument as the provisional left hand

side and the rump data item as the right hand side. An inverted

reference uses the rump data item as the provisional left hand side

and the argument as the right hand side.

In both cases, the provisional left hand side is examined. If it is

a tag ("function tag"), it is "unwrapped": The function tag's tag

number is established as the function to be applied, and the tag

content is kept as the unwrapped left hand side. If the provisional

left hand side is not a tag, it is kept as the unwrapped left hand

side, and the function to be applied is concatenation, as defined

below. The right hand side is taken as is as the unwrapped right

hand side.

If a function tag was given, the reference is replaced by the result

of applying the unpacking function to be computed to the left and

right hand sides. The unpacking function is defined by the

definition of the tag number supplied. If that definition does not

define an unpacking function, the result of the unpacking is not

valid.

If no function tag was given, the reference is replaced by the left

hand side "concatenated" with the right hand side, where

concatenation is defined as in Section 2.4.

As a contrived (but short) example, if the argument table is

["foobar", h'666f6f62', "fo"], each of the following straight

(prefix) references will unpack to "foobart": 6("t"), 225("art"),

226("obart") (the byte string h'666f6f62' == 'foob' is concatenated

into a text string, and the last example is not an optimization).

Note that table index 0 of the argument table can be referenced both

with tag 6 and tag 224, however tag 6 with an integer content is

used for shared item references (see Table 1), so to combine index 0

with an integer rump, tag 224 needs to be used.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Taking into account the encoding and ignoring the less optimal tag

224, there is one single-byte straight (prefix) reference, 31 (2 -2)

two-byte references, 4064 (2 -2) three-byte references, and

26843160 (2 -2) five-byte references for straight references.

268435455 (2) is an artificial limit, but should be high enough

that there, again, is no practical limit to how many prefix items

might be used in a Packed CBOR item. The numbers for inverted

(suffix) references are one quarter of those, except that there is

no single-byte reference and 8 two-byte references.

Rationale: Experience suggests that straight (prefix) packing might

be more likely than inverted (suffix) packing. Also for this reason,

there is no intent to spend a 1+0 tag value for inverted packing.

2.4. Concatenation

The concatenation function is defined as follows:

If both left hand side and right hand side are arrays, the result

of the concatenation is an array with all elements of the left-

hand-side array followed by the elements of the right-hand side

array.

If both left hand side and right hand side are maps, the result

of the concatenation is a map that is initialized with a copy of

the left-hand-side map, and then filled in with the members of

the right-hand side map, replacing any existing members that have

the same key.

NOTE: One application of the rule for straight references is to

supply default values out of a dictionary, which can then be

overridden by the entries in the map supplied as the rump data item.

Note that this pattern provides no way to remove a map entry from

the prefix table entry.

If both left hand side and right hand side are one of the string

types (not necessarily the same), the bytes of the left hand side

are concatenated with the bytes of the right hand side. Byte

strings concatenated with text strings need to contain valid

UTF-8 data. The result of the concatenation gets the type of the

unwrapped rump data item; this way a single argument table entry

can be used to build both byte and text strings, depending on

what type of rump is being used.

If one side is one of the string types, and the other side is an

array, the result of the concatenation is equivalent to the

application of the "join" function (Section 4.1) to the string as

the left hand side and the array as the right hand side. The

original right hand side of the concatenation determines the

string type of the result.

5 0

12 5

28 12

28

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

Other type combinations of left hand side and right hand side are

not valid.

2.5. Discussion

This specification uses up a large number of Simple Values and Tags,

in particular one of the rare one-byte tags and two thirds of the

one-byte simple values. Since the objective is compression, this is

warranted only based on a consensus that this specific format could

be useful for a wide area of applications, while maintaining

reasonable simplicity in particular at the side of the consumer.

A maliciously crafted Packed CBOR data item might contain a

reference loop. A consumer/decompressor MUST protect against that.

Different strategies for decoding/consuming Packed CBOR are

available.

For example:

the decoder can decode and unpack the packed item, presenting

an unpacked data item to the application. In this case, the

onus of dealing with loops is on the decoder. (This strategy

generally has the highest memory consumption, but also the

simplest interface to the application.) Besides avoiding

getting stuck in a reference loop, the decoder will need to

control its resource allocation, as data items can "blow up"

during unpacking.

the decoder can be oblivious of Packed CBOR. In this case, the

onus of dealing with loops is on the application, as is the

entire onus of dealing with Packed CBOR.

hybrid models are possible, for instance: The decoder builds a

data item tree directly from the Packed CBOR as if it were

oblivious, but also provides accessors that hide (resolve) the

packing. In this specific case, the onus of dealing with loops

is on the accessors.

In general, loop detection can be handled in a similar way in which

loops of symbolic links are handled in a file system: A system-wide

limit (often 31 or 40 indirections for symbolic links) is applied to

any reference chase.

NOTE: The present specification does nothing to help with the

packing of CBOR sequences [RFC8742]; maybe such a specification

should be added.

3. Table Setup

The packing references described in Section 2 assume that packing

tables have been set up.

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

By default, both tables are empty (zero-length arrays).

Table setup can happen in one of two ways:

By the application environment, e.g., a media type. These can

define tables that amount to a static dictionary that can be used

in a CBOR data item for this application environment. Note that,

without this information, a data item that uses such a static

dictionary can be decoded at the CBOR level, but not fully

unpacked. The table setup mechanisms provided by this document

are defined in such a way that an unpacker can at least recognize

if this is the case.

By one or more tags enclosing the packed content. Each tag is

usually defined to build an augmented table by adding to the

packing tables that already apply to the tag, and to apply the

resulting augmented table when unpacking the tag content.

Usually, the semantics of the tag will be to prepend items to one

or more of the tables. (The specific behavior of any such tag, in

the presence of a table applying to it, needs to be carefully

specified.)

Note that it may be useful to leave a particular efficiency tier

alone and only prepend to a higher tier; e.g., a tag could insert

shared items at table index 16 and shift anything that was

already there further down in the array while leaving index 0 to

15 alone. Explicit additions by tag can combine with application-

environment supplied tables that apply to the entire CBOR data

item.

Packed item references in the newly constructed (low-numbered)

parts of the table are usually interpreted in the number space of

that table (which includes the, now higher-numbered, inherited

parts), while references in any existing, inherited (higher-

numbered) part continue to use the (more limited) number space of

the inherited table.

For table setup, the present specification only defines a single

tag, which operates by prepending to the (by default empty) tables.

We could also define a tag for dictionary referencing (or include

that in the basic Packed CBOR), but the desirable details are likely

to vary considerably between applications. A URI-based reference

would be easy to add, but might be too inefficient when used in the

likely combination with an ni: URI [RFC6920].

3.1. Basic Packed CBOR

A predefined tag for packing table setup is defined in CDDL

[RFC8610] as in Figure 1:

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Basic-Packed-CBOR = #6.113([[*shared-item], [*argument-item], rump])

rump = any

argument-item = any

shared-item = any

Figure 1: Packed CBOR in CDDL

(This assumes the allocation of tag number 113 ('q') for this tag.)

The arrays given as the first and second element of the content of

the tag 113 are prepended to the tables for shared items and

arguments that apply to the entire tag (by default empty tables). As

discussed in the introduction to this section, references in the

supplied new arrays use the new number space (where inherited items

are shifted by the new items given), while the inherited items

themselves use the inherited number space (so their semantics do not

change by the mere action of inheritance).

The original CBOR data item can be reconstructed by recursively

replacing shared and argument references encountered in the rump by

their expansions.

4. Function Tags

Function tags that occur in an argument or a rump supply the

semantics for reconstructing a data item from their tag content and

the non-dominating rump or argument, respectively. The present

specification defines a pair of function tags.

4.1. Join Function Tags

Tag 106 ('j') defines the "join" unpacking function, based on the

concatenation function (Section 2.4).

The join function expects an item that can be concatenated as its

left hand side, and an array of such items as its right hand side.

Joining works by sequentially applying the concatenation function to

the elements of the right-hand-side array, interspersing the left

hand side as the "joiner".

An example in functional notation: join(", ", ["a", "b", "c"])

returns "a, b, c".

For a right hand side of one or more elements, the first element

determines the type of the result when text strings and byte strings

are mixed in the argument. For a right hand side of one element, the

joiner is not used, and that element returned. For a right hand side

of zero elements, a neutral element is generated based on the type

¶

¶

¶

¶

¶

¶

¶

of the joiner (empty text/byte string for a text/byte string, empty

array for an array, empty map for a map).

For an example, we assume this unpacked data item:

["https://packed.example/foo.html",

 "coap:://packed.example/bar.cbor",

 "mailto:support@packed.example"]

A packed form of this using straight references could be:

Tag 105 ('i') defines the "ijoin" unpacking function, which is

exactly like that of tag 106, except that the left hand side and

right hand side are interchanged ('i').

A packed form of the first example using inverted references and the

ijoin tag could be:

A packed form of an array with many URIs that reference SenML items

from the same place could be:

5. Tag Validity: Tag Equivalence Principle

In Section 5.3.2 of [STD94], the validity of tags is defined in

terms of type and value of their tag content. The CBOR Tag registry

[IANA.cbor-tags] Section 9.2 of [STD94] allows recording the "data

¶

¶

¶

¶

113([[],

 [106("packed.example")],

 [6(["https://", "/foo.html"]),

 6(["coap://", "/bar.cbor"]),

 6(["mailto:support@", ""])]

])

¶

¶

¶

113([[],

 ["packed.example"],

 [216(105(["https://", "/foo.html"]),

 216(105(["coap://", "/bar.cbor"]),

 216("mailto:support@")]

])

¶

¶

113([[],

 [105(["coaps://[2001::db8::1]/s/", ".senml"])],

 [6("temp-freezer"),

 6("temp-fridge"),

 6("temp-ambient")]

])

¶

https://rfc-editor.org/rfc/rfc8949#section-5.3.2
https://rfc-editor.org/rfc/rfc8949#section-9.2

item" for a registered tag, which is usually an abbreviated

description of the top-level data type allowed for the tag content.

In other words, in the registry, the validity of a tag of a given

tag number is described in terms of the top-level structure of the

data carried in the tag content. The description of a tag might add

further constraints for the data item. But in any case, a tag

definition can only specify validity based on the structure of its

tag content.

In Packed CBOR, a reference tag might be "standing in" for the

actual tag content of an outer tag, or for a structural component of

that. In this case, the formal structure of the outer tag's content

before unpacking usually no longer fulfills the validity conditions

of the outer tag.

The underlying problem is not unique to Packed CBOR. For instance,

[RFC8746] describes tags 64..87 that "stand in" for CBOR arrays (the

native form of which has major type 4). For the other tags defined

in this specification, which require some array structure of the tag

content, a footnote was added:

[...] The second element of the outer array in the data item is a

native CBOR array (major type 4) or Typed Array (one of tag 64..87)

The top-down approach to handle the "rendezvous" between the outer

and inner tags does not support extensibility: any further Typed

Array tags being defined do not inherit the exception granted to tag

number 64..87; they would need to formally update all existing tag

definitions that can accept typed arrays or be of limited use with

these existing tags.

Instead, the tag validity mechanism needs to be extended by a

bottom-up component: A tag definition needs to be able to declare

that the tag can "stand in" for, (is, in terms of tag validity,

equivalent to) some structure.

E.g., tag 64..87 could have declared their equivalence to the CBOR

major type 4 arrays they stand in for.

Note that not all domain extensions to tags can be addressed using

the equivalence principle: E.g., on a data model level, numbers with

arbitrary exponents ([ARB-EXP], tags 264 and 265) are strictly a

superset of CBOR's predefined fractional types, tags 4 and 5. They

could not simply declare that they are equivalent to tags 4 and 5 as

a tag requiring a fractional value may have no way to handle the

extended range of tag 264 and 265.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.1. Tag Equivalence

A tag definition MAY declare Tag Equivalence to some existing

structure for the tag, under some conditions defined by the new tag

definition. This, in effect, extends all existing tag definitions

that accept the named structure to accept the newly defined tag

under the conditions given for the Tag Equivalence.

A number of limitations apply to Tag Equivalence, which therefore

should be applied deliberately and sparingly:

Tag Equivalence is a new concept, which may not be implemented by

an existing generic decoder. A generic decoder not implementing

tag equivalence might raise tag validity errors where Tag

Equivalence says there should be none.

A CBOR protocol MAY specify the use of Tag Equivalence,

effectively limiting its full use to those generic encoders that

implement it. Existing CBOR protocols that do not address Tag

Equivalence implicitly have a new variant that allows Tag

Equivalence (e.g., to support Packed CBOR with an existing

protocol). A CBOR protocol that does address Tag Equivalence MAY

be explicit about what kinds of Tag Equivalence it supports

(e.g., only the reference tags employed by Packed CBOR and

certain table setup tags).

There is currently no way to express Tag Equivalence in CDDL. For

Packed CBOR, CDDL would typically be used to describe the

unpacked CBOR represented by it; further restricting the Packed

CBOR is likely to lead to interoperability problems. (Note that,

by definition, there is no need to describe Tag Equivalence on

the receptacle side; only for the tag that declares Tag

Equivalence.)

The registry "CBOR Tags" [IANA.cbor-tags] currently does not have

a way to record any equivalence claimed for a tag. A convention

would be to alert to Tag Equivalence in the "Semantics (short

form)" field of the registry.Needs to be done for the tag

registrations here.

5.2. Tag Equivalence of Packed CBOR Tags

The reference tags in this specification declare their equivalence

to the unpacked shared items or function results they represent.

The table setup tag 113 declares its equivalence to the unpacked

CBOR data item represented by it.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

https://www.iana.org/assignments/cbor-tags#cbor-tags

6. IANA Considerations

6.1. CBOR Tags Registry

In the registry "CBOR Tags" [IANA.cbor-tags], IANA is requested to

allocate the tags defined in Table 4.

Tag Data Item Semantics Reference

6

integer (for

shared); text

string, byte

string, array, map,

tag (for straight)

Packed

CBOR:

shared/

straight

draft-

ietf-cbor-

packed

105

text string, byte

string, array, map,

tag

Packed

CBOR: ijoin

function

draft-

ietf-cbor-

packed

106

text string, byte

string, array, map,

tag

Packed

CBOR: join

function

draft-

ietf-cbor-

packed

113

array (shared-

items, argument-

items, rump)

Packed

CBOR: table

setup

draft-

ietf-cbor-

packed

224-255

text string, byte

string, array, map,

tag

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

28704-32767

text string, byte

string, array, map,

tag

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

1879052288-2147483647

text string, byte

string, array, map,

tag

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

216-223

text string, byte

string, array, map,

tag

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

27647-28671

text string, byte

string, array, map,

tag

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

1811940352-1879048191

text string, byte

string, array, map,

tag

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

Table 4: Values for Tag Numbers

6.2. CBOR Simple Values Registry

In the registry "CBOR Simple Values" [IANA.cbor-simple-values], IANA

is requested to allocate the simple values defined in Table 5.

¶

¶

https://www.iana.org/assignments/cbor-tags#cbor-tags
https://www.iana.org/assignments/cbor-simple-values#simple

[IANA.cbor-simple-values]

[IANA.cbor-tags]

[RFC2119]

[RFC8174]

[RFC8610]

[STD94]

[ARB-EXP]

Value Semantics Reference

0-15 Packed CBOR: shared draft-ietf-cbor-packed

Table 5: Simple Values

7. Security Considerations

The security considerations of [STD94] apply.

Loops in the Packed CBOR can be used as a denial of service attack,

see Section 2.5.

As the unpacking is deterministic, packed forms can be used as

signing inputs. (Note that if external dictionaries are added to

cbor-packed, this requires additional consideration.)

8. References

8.1. Normative References

IANA, "Concise Binary Object

Representation (CBOR) Simple Values", 19 September 2013,

<https://www.iana.org/assignments/cbor-simple-values>.

IANA, "Concise Binary Object Representation (CBOR)

Tags", 19 September 2013, <https://www.iana.org/

assignments/cbor-tags>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

8.2. Informative References

¶

¶

¶

https://www.iana.org/assignments/cbor-simple-values
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/cbor-tags
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[RFC1951]

[RFC6920]

[RFC7049]

[RFC8742]

[RFC8746]

[STD63]

Occil, P., "Arbitrary-Exponent Numbers", Specification

for Registration of CBOR Tags 264 and 265, <http://

peteroupc.github.io/CBOR/bigfrac.html>.

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, DOI 10.17487/

RFC1951, May 1996, <https://www.rfc-editor.org/info/

rfc1951>.

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,

Keranen, A., and P. Hallam-Baker, "Naming Things with

Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,

<https://www.rfc-editor.org/info/rfc6920>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Bormann, C., Ed., "Concise Binary Object Representation

(CBOR) Tags for Typed Arrays", RFC 8746, DOI 10.17487/

RFC8746, February 2020, <https://www.rfc-editor.org/info/

rfc8746>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Appendix A. Examples

The (JSON-compatible) CBOR data structure depicted in Figure 2, 400

bytes of binary CBOR, could lead to a packed CBOR data item depicted

in Figure 3, ~309 bytes. Note that this particular example does not

lend itself to prefix compression.¶

http://peteroupc.github.io/CBOR/bigfrac.html
http://peteroupc.github.io/CBOR/bigfrac.html
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/rfc8746
https://www.rfc-editor.org/info/rfc8746
https://www.rfc-editor.org/info/rfc3629

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 19.95

 }

 }

}

Figure 2: Example original CBOR data item

113([["price", "category", "author", "title", "fiction", 8.95,

 "isbn"],

 / 0 1 2 3 4 5 6 /

 [],

 [{"store": {

 "book": [

 {simple(1): "reference", simple(2): "Nigel Rees",

 simple(3): "Sayings of the Century", simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "Evelyn Waugh",

 simple(3): "Sword of Honour", simple(0): 12.99},

 {simple(1): simple(4), simple(2): "Herman Melville",

 simple(3): "Moby Dick", simple(6): "0-553-21311-3",

 simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "J. R. R. Tolkien",

 simple(3): "The Lord of the Rings",

 simple(6): "0-395-19395-8", simple(0): 22.99}],

 "bicycle": {"color": "red", simple(0): 19.95}}}]])

Figure 3: Example packed CBOR data item

The (JSON-compatible) CBOR data structure below has been packed with

shared item and (partial) prefix compression only.¶

{

 "name": "MyLED",

 "interactions": [

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueRed",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueRed",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueGreen",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueGreen",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueBlue",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueBlue",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueWhite",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueWhite",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/ledOnOff",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "boolean"

 }

 },

 "name": "ledOnOff",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

"http://192.168.1.103:8445/wot/thing/MyLED/colorTemperatureChanged",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "colorTemperatureChanged",

 "@type": [

 "Event"

]

 }

],

 "@type": "Lamp",

 "id": "0",

 "base": "http://192.168.1.103:8445/wot/thing",

 "@context":

 "http://192.168.1.102:8444/wot/w3c-wot-td-context.jsonld"

}

Figure 4: Example original CBOR data item

113([/shared/["name", "@type", "links", "href", "mediaType",

 / 0 1 2 3 4 /

 "application/json", "outputData", {"valueType": {"type":

 / 5 6 7 /

 "number"}}, ["Property"], "writable", "valueType", "type"],

 / 8 9 10 11 /

 /argument/ ["http://192.168.1.10", 6("3:8445/wot/thing"),

 / 6 225 /

 225("/MyLED/"), 226("rgbValue"), "rgbValue",

 / 226 227 228 /

 {simple(6): simple(7), simple(9): true, simple(1): simple(8)}],

 / 229 /

 /rump/ {simple(0): "MyLED",

 "interactions": [

 229({simple(2): [{simple(3): 227("Red"), simple(4): simple(5)}],

 simple(0): 228("Red")}),

 229({simple(2): [{simple(3): 227("Green"), simple(4): simple(5)}],

 simple(0): 228("Green")}),

 229({simple(2): [{simple(3): 227("Blue"), simple(4): simple(5)}],

 simple(0): 228("Blue")}),

 229({simple(2): [{simple(3): 227("White"), simple(4): simple(5)}],

 simple(0): "rgbValueWhite"}),

 {simple(2): [{simple(3): 226("ledOnOff"), simple(4): simple(5)}],

 simple(6): {simple(10): {simple(11): "boolean"}}, simple(0):

 "ledOnOff", simple(9): true, simple(1): simple(8)},

 {simple(2): [{simple(3): 226("colorTemperatureChanged"),

 simple(4): simple(5)}], simple(6): simple(7), simple(0):

 "colorTemperatureChanged", simple(1): ["Event"]}],

 simple(1): "Lamp", "id": "0", "base": 225(""),

 "@context": 6("2:8444/wot/w3c-wot-td-context.jsonld")}])

Figure 5: Example packed CBOR data item

Acknowledgements

CBOR packing was originally invented with the rest of CBOR, but did

not make it into [RFC7049], the predecessor of [STD94]. Various

attempts to come up with a specification over the years didn't

proceed. In 2017, Sebastian Käbisch proposed investigating compact

representations of W3C Thing Descriptions, which prompted the author

to come up with what turned into the present design.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

¶

Phone: +49-421-218-63921

Email: cabo@tzi.org

tel:+49-421-218-63921
mailto:cabo@tzi.org

	Packed CBOR
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Packed CBOR
	2.1. Packing Tables
	2.2. Referencing Shared Items
	2.3. Referencing Argument Items
	2.4. Concatenation
	2.5. Discussion

	3. Table Setup
	3.1. Basic Packed CBOR

	4. Function Tags
	4.1. Join Function Tags

	5. Tag Validity: Tag Equivalence Principle
	5.1. Tag Equivalence
	5.2. Tag Equivalence of Packed CBOR Tags

	6. IANA Considerations
	6.1. CBOR Tags Registry
	6.2. CBOR Simple Values Registry

	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Examples
	Acknowledgements
	Author's Address

