
Workgroup: Network Working Group

Internet-Draft: draft-ietf-cbor-packed-12

Published: 2 March 2024

Intended Status: Standards Track

Expires: 3 September 2024

Authors: C. Bormann

Universität Bremen TZI

M. Gütschow

TU Dresden

Packed CBOR

Abstract

The Concise Binary Object Representation (CBOR, RFC 8949 == STD 94)

is a data format whose design goals include the possibility of

extremely small code size, fairly small message size, and

extensibility without the need for version negotiation.

CBOR does not provide any forms of data compression. CBOR data

items, in particular when generated from legacy data models, often

allow considerable gains in compactness when applying data

compression. While traditional data compression techniques such as

DEFLATE (RFC 1951) can work well for CBOR encoded data items, their

disadvantage is that the receiver needs to decompress the compressed

form to make use of the data.

This specification describes Packed CBOR, a simple transformation of

a CBOR data item into another CBOR data item that is almost as easy

to consume as the original CBOR data item. A separate decompression

step is therefore often not required at the receiver.

The present version (-12) updates the IANA "Values for Tag Numbers"

table, sorting it and cleaning up the "Data Item" column.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-cbor-packed/.

Discussion of this document takes place on the CBOR Working Group

mailing list (mailto:cbor@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cbor/. Subscribe at https://

www.ietf.org/mailman/listinfo/cbor/.

Source for this draft and an issue tracker can be found at https://

github.com/cbor-wg/cbor-packed.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-cbor-packed/
https://datatracker.ietf.org/doc/draft-ietf-cbor-packed/
mailto:cbor@ietf.org
https://mailarchive.ietf.org/arch/browse/cbor/
https://mailarchive.ietf.org/arch/browse/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://github.com/cbor-wg/cbor-packed
https://github.com/cbor-wg/cbor-packed

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology and Conventions

2. Packed CBOR

2.1. Packing Tables

2.2. Referencing Shared Items

2.3. Referencing Argument Items

2.4. Concatenation

2.5. Discussion

3. Table Setup

3.1. Basic Packed CBOR

4. Function Tags

4.1. Join Function Tags

4.2. Record Function Tag

5. Tag Validity: Tag Equivalence Principle

5.1. Tag Equivalence

5.2. Tag Equivalence of Packed CBOR Tags

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

6. IANA Considerations

6.1. CBOR Tags Registry

6.2. CBOR Simple Values Registry

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Examples

Acknowledgements

Authors' Addresses

1. Introduction

The Concise Binary Object Representation (CBOR, [STD94]) is a data

format whose design goals include the possibility of extremely small

code size, fairly small message size, and extensibility without the

need for version negotiation.

CBOR does not provide any forms of data compression. CBOR data

items, in particular when generated from legacy data models, often

allow considerable gains in compactness when applying data

compression. While traditional data compression techniques such as

DEFLATE [RFC1951] can work well for CBOR encoded data items, their

disadvantage is that the receiver needs to decompress the compressed

form to make use of the data.

This specification describes Packed CBOR, a simple transformation of

a CBOR data item into another CBOR data item that is almost as easy

to consume as the original CBOR data item. A separate decompression

step is therefore often not required at the receiver.

This document defines the Packed CBOR format by specifying the

transformation from a Packed CBOR data item to the original CBOR

data item; it does not define an algorithm for a packer. Different

packers can differ in the amount of effort they invest in arriving

at a minimal packed form; often, they simply employ the sharing that

is natural for a specific application.

Packed CBOR can make use of two kinds of optimization:

item sharing: substructures (data items) that occur repeatedly in

the original CBOR data item can be collapsed to a simple

reference to a common representation of that data item. The

processing required during consumption is limited to following

that reference.

argument sharing: application of a function with two arguments,

one of which is shared. Data items (strings, containers) that

share a prefix or suffix, or more generally data items that can

be constructed from a function taking a shared argument and a

¶

¶

¶

¶

¶

*

¶

*

Original data item:

Packed data item:

Packed reference:

Shared item reference:

Argument reference:

Rump:

Straight reference:

Inverted reference:

Function tag:

rump data item, can be replaced by a reference to the shared

argument plus a rump data item. For strings and the default

"concatenation" function, the processing required during

consumption is similar to following the argument reference plus

that for an indefinite-length string.

A specific application protocol that employs Packed CBOR might allow

both kinds of optimization or limit the representation to item

sharing only.

Packed CBOR is defined in two parts: Referencing packing tables

(Section 2) and setting up packing tables (Section 3).

1.1. Terminology and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

A CBOR data item that is intended to be

expressed by a packed data item; the result of all

reconstructions.

A CBOR data item that involves packed references

(packed CBOR).

A shared item reference or an argument reference.

A reference to a shared item as defined in

Section 2.2.

A reference that combines a shared argument

with a rump item as defined in Section 2.3.

The data item contained in an argument reference that is

combined with the argument to yield the reconstruction.

An argument reference that uses the argument as

the left-hand side and the rump as the right-hand side.

An argument reference that uses the rump as the

left-hand side and the argument as the right-hand side.

A tag used in an argument reference for the argument

(straight references) or the rump (inverted references), causing

the application of a function indicated by the function tag in

order to reconstruct the data item.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Packing tables:

Active set (of packing tables):

Reconstruction:

The pair of a shared item table and an argument

table.

The packing tables in effect at the

data item under consideration.

The result of applying a packed reference in the

context of given packing tables; we speak of the reconstruction

of a packed reference as that result.

The definitions of [STD94] apply. Specifically: The term "byte" is

used in its now customary sense as a synonym for "octet"; "byte

strings" are CBOR data items carrying a sequence of zero or more

(binary) bytes, while "text strings" are CBOR data items carrying a

sequence of zero or more Unicode code points (more precisely:

Unicode scalar values), encoded in UTF-8 [STD63].

Where arithmetic is explained, this document uses the notation

familiar from the programming language C, except that ".." denotes a

range that includes both ends given, in the HTML and PDF versions,

subtraction and negation are rendered as a hyphen ("-", as are

various dashes), and superscript notation denotes exponentiation.

For example, 2 to the power of 64 is notated: 2 . In the plain-text

version of this specification, superscript notation is not available

and therefore is rendered by a surrogate notation. That notation is

not optimized for this RFC; it is unfortunately ambiguous with C's

exclusive-or and requires circumspection from the reader of the

plain-text version.

Examples of CBOR data items are shown in CBOR Extended Diagnostic

Notation (Section 8 of RFC 8949 [STD94] in conjunction with

Appendix G of [RFC8610]).

2. Packed CBOR

This section describes the packing tables, their structure, and how

they are referenced.

2.1. Packing Tables

At any point within a data item making use of Packed CBOR, there is

an active set of packing tables that applies.

There are two packing tables in an active set:

Shared item table

Argument table

¶

¶

¶

¶

64

¶

¶

¶

¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

Without any table setup, these two tables are empty arrays. Table

setup can cause these arrays to be non-empty, where the elements are

(potentially themselves packed) data items. Each of the tables is

indexed by an unsigned integer (starting from 0). Such an index may

be derived from information in tags and their content as well as

from CBOR simple values.

Table setup mechanisms (see Section 3) may include all information

needed for table setup within the packed CBOR data item, or they may

refer to external information. This information may be immutable, or

it may be intended to potentially grow over time. This raises the

question of how a reference to a new item should be handled when the

unpacker uses an older version of the external information.

If, during unpacking, an index is used that references an item that

is unpopulated in (e.g., outside the size of) the table in use, this

MAY be treated as an error by the unpacker and abort the unpacking.

Alternatively, the unpacker MAY provide the special value

1112(undefined) (the simple value >undefined< as per Section 5.7 of

RFC 8949 [STD94], enclosed in the tag 1112) to the application and

leave the error handling to the application. An unpacker SHOULD

document which of these two alternatives has been chosen. CBOR based

protocols that include the use of packed CBOR MAY require that

unpacking errors are tolerated in some positions.

2.2. Referencing Shared Items

Shared items are stored in the shared item table of the active set.

The shared data items are referenced by using the reference data

items in Table 1. When reconstructing the original data item, such a

reference is replaced by the referenced data item, which is then

recursively unpacked.

reference table index

Simple value 0..15 0..15

Tag 6(unsigned integer N) 16 + 2*N

Tag 6(negative integer N) 16 - 2*N - 1

Table 1: Referencing Shared Values

As examples, the first 22 elements of the shared item table are

referenced by simple(0), simple(1), ... simple(15), 6(0), 6(-1),

6(1), 6(-2), 6(2), 6(-3). (The alternation between unsigned and

negative integers for even/odd table index values — "zigzag

encoding" — makes systematic use of shorter integer encodings

first.)

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-5.7

Taking into account the encoding of these referring data items,

there are 16 one-byte references, 48 two-byte references, 512 three-

byte references, 131072 four-byte references, etc. As CBOR integers

can grow to very large (or very negative) values, there is no

practical limit to how many shared items might be used in a Packed

CBOR item.

Note that the semantics of Tag 6 depend on its tag content: An

integer turns the tag into a shared item reference, whereas a string

or container (map or array) turns it into a straight (prefix)

reference (see Table 2). Note also that the tag content of Tag 6 may

itself be packed, so it may need to be unpacked to make this

determination.

2.3. Referencing Argument Items

The argument table serves as a common table that can be used for

argument references, i.e., for concatenation as well as references

involving a function tag.

When referencing an argument, a distinction is made between straight

and inverted references; if no function tag is involved, a straight

reference combines a prefix out of the argument table with the rump

data item, and an inverted reference combines a rump data item with

a suffix out of the argument table.

straight reference table index

Tag 6(rump) 0

Tag 224..255(rump) 0..31

Tag 28704..32767(rump) 32..4095

Tag 1879052288..2147483647(rump) 4096..268435455

Table 2: Straight Referencing (e.g., Prefix)

Arguments

inverted reference table index

Tag 216..223(rump) 0..7

Tag 27647..28671(rump) 8..1023

Tag 1811940352..1879048191(rump) 1024..67108863

Table 3: Inverted Referencing (e.g., Suffix)

Arguments

Argument data items are referenced by using the reference data items

in Table 2 and Table 3.

The tag number of the reference is used to derive a table index (an

unsigned integer) leading to the "argument"; the tag content of the

reference is the "rump item".

¶

¶

¶

¶

¶

¶

When reconstructing the original data item, such a reference is

replaced by a data item constructed from the argument data item

found in the table (argument, which might need to be recursively

unpacked first) and the rump data item (rump, again possibly needing

to be recursively unpacked).

Separate from the tag used as a reference, a tag ("function tag")

may be involved to supply a function to be used in resolving the

reference. It is crucial not to confuse reference tag and, if

present, function tag.

A straight reference uses the argument as the provisional left-hand

side and the rump data item as the right-hand side. An inverted

reference uses the rump data item as the provisional left-hand side

and the argument as the right-hand side.

In both cases, the provisional left-hand side is examined. If it is

a tag ("function tag"), it is "unwrapped": The function tag's tag

number is used to indicate the function to be applied, and the tag

content is kept as the unwrapped left-hand side. If the provisional

left-hand side is not a tag, it is kept as the unwrapped left-hand

side, and the function to be applied is concatenation, as defined

below. The right-hand side is taken as is as the unwrapped right-

hand side.

If a function tag was given, the reference is replaced by the result

of applying the indicated unpacking function with the left-hand side

as its first argument and the right-hand side as its second. The

unpacking function is defined by the definition of the tag number

supplied. If that definition does not define an unpacking function,

the result of the unpacking is not valid.

If no function tag was given, the reference is replaced by the left-

hand side "concatenated" with the right-hand side, where

concatenation is defined as in Section 2.4.

As a contrived (but short) example, if the argument table is

["foobar", h'666f6f62', "fo"], each of the following straight

(prefix) references will unpack to "foobart": 6("t"), 225("art"),

226("obart") (the byte string h'666f6f62' == 'foob' is concatenated

into a text string, and the last example is not an optimization).

Note that table index 0 of the argument table can be referenced both

with tag 6 and tag 224, however tag 6 with an integer content is

used for shared item references (see Table 1), so to combine index 0

with an integer rump, tag 224 needs to be used. The preferred

encoding uses tag 6 if that is not necessary.

Taking into account the encoding and ignoring the less optimal tag

224, there is one single-byte straight (prefix) reference, 31 (2 -2)

¶

¶

¶

¶

¶

¶

¶

¶

5 0

two-byte references, 4064 (2 -2) three-byte references, and

26843160 (2 -2) five-byte references for straight references.

268435455 (2) is an artificial limit, but should be high enough

that there, again, is no practical limit to how many prefix items

might be used in a Packed CBOR item. The numbers for inverted

(suffix) references are one quarter of those, except that there is

no single-byte reference and 8 two-byte references.

Rationale: Experience suggests that straight (prefix) packing might

be more likely than inverted (suffix) packing. Also for this reason,

there is no intent to spend a 1+0 tag value for inverted packing.

2.4. Concatenation

The concatenation function is defined as follows:

If both left-hand side and right-hand side are arrays, the result

of the concatenation is an array with all elements of the left-

hand-side array followed by the elements of the right-hand side

array.

If both left-hand side and right-hand side are maps, the result

of the concatenation is a map that is initialized with a copy of

the left-hand-side map, and then filled in with the members of

the right-hand side map, replacing any existing members that have

the same key. In order to be able to remove a map entry from the

left-hand-side map, as a special case, any members to be replaced

with a value of undefined (0xf7) from the right-hand-side map are

instead removed, and right-hand-side members with the value

undefined are never filled in into the concatenated map.

NOTES:

One application of the rule for straight references is to

supply default values out of a dictionary, which can then be

overridden by the entries in the map supplied as the rump data

item.

Special casing the member value undefined makes it impossible

to use this construct for updating maps by insertion of or

replacement with actual undefined member values; undefined as

a member value on the left-hand-side map stays untouched

though. This exception is similar to the one JSON Merge Patch

[RFC7396] makes for null values, which are however much more

commonly used and therefore more problematic.

If both left-hand side and right-hand side are one of the string

types (not necessarily the same), the bytes of the left-hand side

are concatenated with the bytes of the right-hand side. Byte

strings concatenated with text strings need to contain valid

12 5

28 12

28

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

UTF-8 data. The result of the concatenation gets the type of the

unwrapped rump data item; this way a single argument table entry

can be used to build both byte and text strings, depending on

what type of rump is being used.

If one side is one of the string types, and the other side is an

array, the result of the concatenation is equivalent to the

application of the "join" function (Section 4.1) to the string as

the left-hand side and the array as the right-hand side. The

original right-hand side of the concatenation determines the

string type of the result.

Other type combinations of left-hand side and right-hand side are

not valid.

2.5. Discussion

This specification uses up a large number of Simple Values and Tags,

in particular one of the rare one-byte tags and two thirds of the

one-byte simple values. Since the objective is compression, this is

warranted only based on a consensus that this specific format could

be useful for a wide area of applications, while maintaining

reasonable simplicity in particular at the side of the consumer.

A maliciously crafted Packed CBOR data item might contain a

reference loop. A consumer/decompressor MUST protect against that.

Different strategies for decoding/consuming Packed CBOR are

available.

For example:

the decoder can decode and unpack the packed item, presenting

an unpacked data item to the application. In this case, the

onus of dealing with loops is on the decoder. (This strategy

generally has the highest memory consumption, but also the

simplest interface to the application.) Besides avoiding

getting stuck in a reference loop, the decoder will need to

control its resource allocation, as data items can "blow up"

during unpacking.

the decoder can be oblivious of Packed CBOR. In this case, the

onus of dealing with loops is on the application, as is the

entire onus of dealing with Packed CBOR.

hybrid models are possible, for instance: The decoder builds a

data item tree directly from the Packed CBOR as if it were

oblivious, but also provides accessors that hide (resolve) the

packing. In this specific case, the onus of dealing with loops

is on the accessors.

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

In general, loop detection can be handled in a similar way in which

loops of symbolic links are handled in a file system: A system-wide

limit (often set to a value permitting some 20 to 40 indirections

for symbolic links) is applied to any reference chase.

NOTE: The present specification does nothing to help with the

packing of CBOR sequences [RFC8742]; maybe such a specification

should be added.

3. Table Setup

The packing references described in Section 2 assume that packing

tables have been set up.

By default, both tables are empty (zero-length arrays).

Table setup can happen in one of two ways:

By the application environment, e.g., a media type. These can

define tables that amount to a static dictionary that can be used

in a CBOR data item for this application environment. Note that,

without this information, a data item that uses such a static

dictionary can be decoded at the CBOR level, but not fully

unpacked. The table setup mechanisms provided by this document

are defined in such a way that an unpacker can at least recognize

if this is the case.

By one or more table-building tags enclosing the packed content.

Each tag is usually defined to build an augmented table by adding

to the packing tables that already apply to the tag, and to apply

the resulting augmented table when unpacking the tag content.

Usually, the semantics of the tag will be to prepend items to one

or more of the tables. (The specific behavior of any such tag, in

the presence of a table applying to it, needs to be carefully

specified.)

Note that it may be useful to leave a particular efficiency tier

alone and only prepend to a higher tier; e.g., a tag could insert

shared items at table index 16 and shift anything that was

already there further along in the array while leaving index 0 to

15 alone. Explicit additions by tag can combine with application-

environment supplied tables that apply to the entire CBOR data

item.

Packed item references in the newly constructed (low-numbered)

parts of the table are usually interpreted in the number space of

that table (which includes the, now higher-numbered, inherited

parts), while references in any existing, inherited (higher-

numbered) part continue to use the (more limited) number space of

the inherited table.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

Where external information is used in a table setup mechanism that

is not immutable, care needs to be taken so that, over time,

references to existing table entries stay valid (i.e., the

information is only extended), and that a maximum size of this

information is given. This allows an unpacker to recognize

references to items that are not yet defined in the version of the

external reference that it uses, providing backward and possibly

limited (degraded) forward compatibility.

For table setup, the present specification only defines two simple

table-building tags, which operate by prepending to the (by default

empty) tables.

Additional tags can be defined for dictionary referencing (possible

combining that with Basic Packed CBOR mechanisms). The desirable

details are likely to vary considerably between applications. A URI-

based reference would be easy to define, but might be too

inefficient when used in the likely combination with an ni: URI

[RFC6920].

3.1. Basic Packed CBOR

Two tags are predefined by this specification for packing table

setup. They are defined in CDDL [RFC8610] as in Figure 1:

Figure 1: Packed CBOR in CDDL

(This assumes the allocation of tag numbers 113 ('q') and 1113 for

these tags.)

The array given as the first element of the content of tag 113

("Basic-Packed-CBOR") is prepended to both the tables for shared

items and arguments that apply to the entire tag (by default empty

tables). The arrays given as the first and second element of the

content of the tag 1113 ("Split-Basic-Packed-CBOR") are prepended to

the tables for shared items and arguments, respectively, that apply

to the entire tag (by default empty tables). As discussed in the

introduction to this section, references in the supplied new arrays

use the new number space (where inherited items are shifted by the

new items given), while the inherited items themselves use the

¶

¶

¶

¶

Basic-Packed-CBOR = #6.113([[*shared-and-argument-item], rump])

Split-Basic-Packed-CBOR =

 #6.1113([[*shared-item], [*argument-item], rump])

rump = any

shared-and-argument-item = any

argument-item = any

shared-item = any

¶

inherited number space (so their semantics do not change by the mere

action of inheritance).

The original CBOR data item can be reconstructed by recursively

replacing shared and argument references encountered in the rump by

their reconstructions.

4. Function Tags

Function tags that occur in an argument or a rump supply the

semantics for reconstructing a data item from their tag content and

the non-dominating rump or argument, respectively. The present

specification defines three function tags.

4.1. Join Function Tags

Tag 106 ('j') defines the "join" unpacking function, based on the

concatenation function (Section 2.4).

The join function expects an item that can be concatenated as its

left-hand side, and an array of such items as its right-hand side.

Joining works by sequentially applying the concatenation function to

the elements of the right-hand-side array, interspersing the left-

hand side as the "joiner".

An example in functional notation: join(", ", ["a", "b", "c"])

returns "a, b, c".

For a right-hand side of one or more elements, the first element

determines the type of the result when text strings and byte strings

are mixed in the argument. For a right-hand side of one element, the

joiner is not used, and that element returned. For a right-hand side

of zero elements, a neutral element is generated based on the type

of the joiner (empty text/byte string for a text/byte string, empty

array for an array, empty map for a map).

For an example, we assume this unpacked data item:

A packed form of this using straight references could be:

¶

¶

¶

¶

¶

¶

¶

¶

["https://packed.example/foo.html",

 "coap:://packed.example/bar.cbor",

 "mailto:support@packed.example"]

¶

¶

113([[106("packed.example")],

 [6(["https://", "/foo.html"]),

 6(["coap://", "/bar.cbor"]),

 6(["mailto:support@", ""])]

])

¶

Tag 105 ('i') defines the "ijoin" unpacking function, which is

exactly like that of tag 106, except that the left-hand side and

right-hand side are interchanged ('i').

A packed form of the first example using inverted references and the

ijoin tag could be:

A packed form of an array with many URIs that reference SenML items

from the same place could be:

Note that for these examples, the implicit join semantics for mixed

string-array concatenation as defined in Section 2.4, Paragraph 5

actually obviate the need for an explicit join/ijoin tag; the

examples do serve to demonstrate the explicit usage of the tag.

4.2. Record Function Tag

Tag 114 ('r') defines the "record" function, which combines an array

of keys with an array of values into a map.

The record function expects an array as its left-hand side, whose

items are treated as key items for the resulting map, and an array

of equal or shorter length as its right-hand side, whose items are

treated as value items for the resulting map.

The map is constructed by grouping key and value items with equal

position in the provided arrays into pairs that constitute the

resulting map.

The value item array MUST NOT be longer than the key item array.

The value item array MAY be shorter than the key item array, in

which case the one or more unmatched value items towards the end are

treated as absent. Additionally, value items that are the CBOR

simple value undefined (simple(23), encoding 0xf7) are also treated

as absent. Key items whose matching value items are absent are not

included in the resulting map.

¶

¶

113([["packed.example"],

 [216(105(["https://", "/foo.html"])),

 216(105(["coap://", "/bar.cbor"])),

 216("mailto:support@")]

])

¶

¶

113([[105(["coaps://[2001::db8::1]/s/", ".senml"])],

 [6("temp-freezer"),

 6("temp-fridge"),

 6("temp-ambient")]

])

¶

¶

¶

¶

¶

¶

¶

For an example, we assume this unpacked data item:

A straightforward packed form of this using the record function tag

could be:

A slightly more concise packed form can be achieved by manipulating

the key item order (recall that the order of key/value pairs in maps

carries no semantics):

5. Tag Validity: Tag Equivalence Principle

In Section 5.3.2 of RFC 8949 [STD94], the validity of tags is

defined in terms of type and value of their tag content. The CBOR

Tag registry ([IANA.cbor-tags] as defined in Section 9.2 of RFC 8949

[STD94]) allows recording the "data item" for a registered tag,

which is usually an abbreviated description of the top-level data

type allowed for the tag content.

In other words, in the registry, the validity of a tag of a given

tag number is described in terms of the top-level structure of the

data carried in the tag content. The description of a tag might add

further constraints for the data item. But in any case, a tag

definition can only specify validity based on the structure of its

tag content.

In Packed CBOR, a reference tag might be "standing in" for the

actual tag content of an outer tag, or for a structural component of

that. In this case, the formal structure of the outer tag's content

before unpacking usually no longer fulfills the validity conditions

of the outer tag.

The underlying problem is not unique to Packed CBOR. For instance,

[RFC8746] describes tags 64..87 that "stand in" for CBOR arrays (the

native form of which has major type 4). For the other tags defined

¶

[{"key0": false, "key1": "value 1", "key2": 2},

 {"key0": true, "key1": "value -1", "key2": -2},

 {"key1": "", "key2": 0}]

¶

¶

113([[114(["key0", "key1", "key2"])],

 [6([false, "value 1", 2]),

 6([true, "value -1", -2]),

 6([undefined, "", 0])]

])

¶

¶

113([[114(["key1", "key2", "key0"])],

 [6(["value 1", 2, false]),

 6(["value -1", -2, true]),

 6(["", 0])]

])

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-5.3.2
https://rfc-editor.org/rfc/rfc8949#section-9.2

in this specification, which require some array structure of the tag

content, a footnote was added:

[...] The second element of the outer array in the data item is a

native CBOR array (major type 4) or Typed Array (one of tag 64..87)

The top-down approach to handle the "rendezvous" between the outer

and inner tags does not support extensibility: any further Typed

Array tags being defined do not inherit the exception granted to tag

number 64..87; they would need to formally update all existing tag

definitions that can accept typed arrays or be of limited use with

these existing tags.

Instead, the tag validity mechanism needs to be extended by a

bottom-up component: A tag definition needs to be able to declare

that the tag can "stand in" for, (is, in terms of tag validity,

equivalent to) some structure.

E.g., tag 64..87 could have declared their equivalence to the CBOR

major type 4 arrays they stand in for.

Note that not all domain extensions to tags can be addressed using

the equivalence principle: E.g., on a data model level, numbers with

arbitrary exponents ([ARB-EXP], tags 264 and 265) are strictly a

superset of CBOR's predefined fractional types, tags 4 and 5. They

could not simply declare that they are equivalent to tags 4 and 5 as

a tag requiring a fractional value may have no way to handle the

extended range of tag 264 and 265.

5.1. Tag Equivalence

A tag definition MAY declare Tag Equivalence to some existing

structure for the tag, under some conditions defined by the new tag

definition. This, in effect, extends all existing tag definitions

that accept the named structure to accept the newly defined tag

under the conditions given for the Tag Equivalence.

A number of limitations apply to Tag Equivalence, which therefore

should be applied deliberately and sparingly:

Tag Equivalence is a new concept, which may not be implemented by

an existing generic decoder. A generic decoder not implementing

tag equivalence might raise tag validity errors where Tag

Equivalence says there should be none.

A CBOR protocol MAY specify the use of Tag Equivalence,

effectively limiting its full use to those generic encoders that

implement it. Existing CBOR protocols that do not address Tag

Equivalence implicitly have a new variant that allows Tag

Equivalence (e.g., to support Packed CBOR with an existing

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

protocol). A CBOR protocol that does address Tag Equivalence MAY

be explicit about what kinds of Tag Equivalence it supports

(e.g., only the reference tags employed by Packed CBOR and

certain table setup tags).

There is currently no way to express Tag Equivalence in CDDL. For

Packed CBOR, CDDL would typically be used to describe the

unpacked CBOR represented by it; further restricting the Packed

CBOR is likely to lead to interoperability problems. (Note that,

by definition, there is no need to describe Tag Equivalence on

the receptacle side; only for the tag that declares Tag

Equivalence.)

The registry "CBOR Tags" [IANA.cbor-tags] currently does not have

a way to record any equivalence claimed for a tag. A convention

would be to alert to Tag Equivalence in the "Semantics (short

form)" field of the registry.Needs to be done for the tag

registrations here.

5.2. Tag Equivalence of Packed CBOR Tags

The reference tags in this specification declare their equivalence

to the unpacked shared items or function results they represent.

The table setup tags 113 and 1113 declare its equivalence to the

unpacked CBOR data item represented by it.

6. IANA Considerations

6.1. CBOR Tags Registry

In the registry "CBOR Tags" [IANA.cbor-tags], IANA is requested to

allocate the tags defined in Table 4.

Tag Data Item Semantics Reference

6

integer (for

shared); any except

integer (for

straight)

Packed

CBOR:

shared/

straight

draft-

ietf-cbor-

packed

105

concatenation item

(text string, byte

string, array, or

map)

Packed

CBOR: ijoin

function

draft-

ietf-cbor-

packed

106

array of

concatenation item

(text string, byte

string, array, or

map)

Packed

CBOR: join

function

draft-

ietf-cbor-

packed

¶

*

¶

*

¶

¶

¶

¶

https://www.iana.org/assignments/cbor-tags#cbor-tags
https://www.iana.org/assignments/cbor-tags#cbor-tags

Tag Data Item Semantics Reference

113

array (shared-and-

argument-items,

rump)

Packed

CBOR: table

setup

draft-

ietf-cbor-

packed

114 array

Packed

CBOR:

record

function

draft-

ietf-cbor-

packed

216..223

function tag or

concatenation item

(text string, byte

string, array, or

map)

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

224..255 any

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

1112 undefined (0xf7)

Packed

CBOR:

reference

error

draft-

ietf-cbor-

packed

1113

array (shared-

items, argument-

items, rump)

Packed

CBOR: table

setup

draft-

ietf-cbor-

packed

27647..28671

function tag or

concatenation item

(text string, byte

string, array, or

map)

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

28704..32767 any

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

1811940352..1879048191

function tag or

concatenation item

(text string, byte

string, array, or

map)

Packed

CBOR:

inverted

draft-

ietf-cbor-

packed

1879052288..2147483647 any

Packed

CBOR:

straight

draft-

ietf-cbor-

packed

Table 4: Values for Tag Numbers

6.2. CBOR Simple Values Registry

In the registry "CBOR Simple Values" [IANA.cbor-simple-values], IANA

is requested to allocate the simple values defined in Table 5.¶

https://www.iana.org/assignments/cbor-simple-values#simple

[IANA.cbor-simple-values]

[IANA.cbor-tags]

[RFC2119]

[RFC8174]

[RFC8610]

[STD94]

Value Semantics Reference

0..15 Packed CBOR: shared draft-ietf-cbor-packed

Table 5: Simple Values

7. Security Considerations

The security considerations of [STD94] apply.

Loops in the Packed CBOR can be used as a denial of service attack,

see Section 2.5.

As the unpacking is deterministic, packed forms can be used as

signing inputs. (Note that if external dictionaries are added to

cbor-packed, this requires additional consideration.)

8. References

8.1. Normative References

IANA, "Concise Binary Object

Representation (CBOR) Simple Values", <https://

www.iana.org/assignments/cbor-simple-values>.

IANA, "Concise Binary Object Representation (CBOR)

Tags", <https://www.iana.org/assignments/cbor-tags>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Internet Standard 94, <https://www.rfc-editor.org/info/

std94>.

At the time of writing, this STD comprises the following:

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

8.2. Informative References

¶

¶

¶

https://www.iana.org/assignments/cbor-simple-values
https://www.iana.org/assignments/cbor-simple-values
https://www.iana.org/assignments/cbor-tags
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[ARB-EXP]

[RFC1951]

[RFC6920]

[RFC7049]

[RFC7396]

[RFC8742]

[RFC8746]

[STD63]

Occil, P., "Arbitrary-Exponent Numbers", Specification

for Registration of CBOR Tags 264 and 265, <http://

peteroupc.github.io/CBOR/bigfrac.html>.

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, DOI 10.17487/

RFC1951, May 1996, <https://www.rfc-editor.org/rfc/

rfc1951>.

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,

Keranen, A., and P. Hallam-Baker, "Naming Things with

Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,

<https://www.rfc-editor.org/rfc/rfc6920>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/rfc/rfc7049>.

Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,

DOI 10.17487/RFC7396, October 2014, <https://www.rfc-

editor.org/rfc/rfc7396>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/rfc/rfc8742>.

Bormann, C., Ed., "Concise Binary Object Representation

(CBOR) Tags for Typed Arrays", RFC 8746, DOI 10.17487/

RFC8746, February 2020, <https://www.rfc-editor.org/rfc/

rfc8746>.

Internet Standard 63, <https://www.rfc-editor.org/info/

std63>.

At the time of writing, this STD comprises the following:

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Appendix A. Examples

The (JSON-compatible) CBOR data structure depicted in Figure 2, 400

bytes of binary CBOR, could be packed into the CBOR data item

depicted in Figure 3, 308 bytes, only employing item sharing. With

support for argument sharing and the record function tag 114, the

data item can be packed into 298 bytes as depicted in Figure 4. Note

that this particular example does not lend itself to prefix

compression, so it uses the simple common-table setup form (tag

113).¶

http://peteroupc.github.io/CBOR/bigfrac.html
http://peteroupc.github.io/CBOR/bigfrac.html
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc1951
https://www.rfc-editor.org/rfc/rfc6920
https://www.rfc-editor.org/rfc/rfc7049
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc8742
https://www.rfc-editor.org/rfc/rfc8746
https://www.rfc-editor.org/rfc/rfc8746
https://www.rfc-editor.org/info/std63
https://www.rfc-editor.org/info/std63
https://www.rfc-editor.org/info/rfc3629

Figure 2: Example original CBOR data item, 400 bytes

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 19.95

 }

 }

}

Figure 3: Example packed CBOR data item with item sharing only, 308

bytes

Figure 4: Example packed CBOR data item using item sharing and the

record function tag, 298 bytes

The (JSON-compatible) CBOR data structure below has been packed with

shared item and (partial) prefix compression only and employs the

split-table setup form (tag 1113).

113([["price", "category", "author", "title", "fiction", 8.95,

 "isbn"],

 / 0 1 2 3 4 5 6 /

 {"store": {

 "book": [

 {simple(1): "reference", simple(2): "Nigel Rees",

 simple(3): "Sayings of the Century", simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "Evelyn Waugh",

 simple(3): "Sword of Honour", simple(0): 12.99},

 {simple(1): simple(4), simple(2): "Herman Melville",

 simple(3): "Moby Dick", simple(6): "0-553-21311-3",

 simple(0): simple(5)},

 {simple(1): simple(4), simple(2): "J. R. R. Tolkien",

 simple(3): "The Lord of the Rings",

 simple(6): "0-395-19395-8", simple(0): 22.99}],

 "bicycle": {"color": "red", simple(0): 19.95}}}])

113([[114(["category", "author",

 "title", simple(1), "isbn"]),

 / 0 /

 "price", "fiction", 8.95],

 / 1 2 3 /

 {"store": {

 "book": [

 6(["reference", "Nigel Rees",

 "Sayings of the Century", simple(3)]),

 6([simple(2), "Evelyn Waugh",

 "Sword of Honour", 12.99]),

 6([simple(2), "Herman Melville",

 "Moby Dick", simple(3), "0-553-21311-3"]),

 6([simple(2), "J. R. R. Tolkien",

 "The Lord of the Rings", 22.99, "0-395-19395-8"])],

 "bicycle": {"color": "red", simple(1): 19.95}}}])

¶

{

 "name": "MyLED",

 "interactions": [

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueRed",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueRed",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueGreen",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueGreen",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueBlue",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueBlue",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/rgbValueWhite",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "rgbValueWhite",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

 "http://192.168.1.103:8445/wot/thing/MyLED/ledOnOff",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "boolean"

 }

 },

 "name": "ledOnOff",

 "writable": true,

 "@type": [

 "Property"

]

 },

 {

 "links": [

 {

 "href":

"http://192.168.1.103:8445/wot/thing/MyLED/colorTemperatureChanged",

 "mediaType": "application/json"

 }

],

 "outputData": {

 "valueType": {

 "type": "number"

 }

 },

 "name": "colorTemperatureChanged",

 "@type": [

 "Event"

]

 }

],

 "@type": "Lamp",

 "id": "0",

 "base": "http://192.168.1.103:8445/wot/thing",

 "@context":

 "http://192.168.1.102:8444/wot/w3c-wot-td-context.jsonld"

}

Figure 5: Example original CBOR data item, 1210 bytes

Figure 6: Example packed CBOR data item, 505 bytes

Acknowledgements

CBOR packing was part of the original proposal that turned into

CBOR, but did not make it into [RFC7049], the predecessor of RFC

8949 [STD94]. Various attempts to come up with a specification over

the years did not proceed. In 2017, Sebastian Käbisch proposed

investigating compact representations of W3C Thing Descriptions,

which prompted the author to come up with what turned into the

present design.

This work was supported in part by the German Federal Ministry of

Education and Research (BMBF) within the project Concrete Contracts.

1113([/shared/["name", "@type", "links", "href", "mediaType",

 / 0 1 2 3 4 /

 "application/json", "outputData", {"valueType": {"type":

 / 5 6 7 /

 "number"}}, ["Property"], "writable", "valueType", "type"],

 / 8 9 10 11 /

 /argument/ ["http://192.168.1.10", 6("3:8445/wot/thing"),

 / 6 225 /

 225("/MyLED/"), 226("rgbValue"), "rgbValue",

 / 226 227 228 /

 {simple(6): simple(7), simple(9): true, simple(1): simple(8)}],

 / 229 /

 /rump/ {simple(0): "MyLED",

 "interactions": [

 229({simple(2): [{simple(3): 227("Red"), simple(4): simple(5)}],

 simple(0): 228("Red")}),

 229({simple(2): [{simple(3): 227("Green"), simple(4): simple(5)}],

 simple(0): 228("Green")}),

 229({simple(2): [{simple(3): 227("Blue"), simple(4): simple(5)}],

 simple(0): 228("Blue")}),

 229({simple(2): [{simple(3): 227("White"), simple(4): simple(5)}],

 simple(0): "rgbValueWhite"}),

 {simple(2): [{simple(3): 226("ledOnOff"), simple(4): simple(5)}],

 simple(6): {simple(10): {simple(11): "boolean"}}, simple(0):

 "ledOnOff", simple(9): true, simple(1): simple(8)},

 {simple(2): [{simple(3): 226("colorTemperatureChanged"),

 simple(4): simple(5)}], simple(6): simple(7), simple(0):

 "colorTemperatureChanged", simple(1): ["Event"]}],

 simple(1): "Lamp", "id": "0", "base": 225(""),

 "@context": 6("2:8444/wot/w3c-wot-td-context.jsonld")}])

¶

¶

Authors' Addresses

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Mikolai Gütschow

TUD Dresden University of Technology

Helmholtzstr. 10

D-01069 Dresden

Germany

Email: mikolai.guetschow@tu-dresden.de

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:mikolai.guetschow@tu-dresden.de

	Packed CBOR
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Conventions

	2. Packed CBOR
	2.1. Packing Tables
	2.2. Referencing Shared Items
	2.3. Referencing Argument Items
	2.4. Concatenation
	2.5. Discussion

	3. Table Setup
	3.1. Basic Packed CBOR

	4. Function Tags
	4.1. Join Function Tags
	4.2. Record Function Tag

	5. Tag Validity: Tag Equivalence Principle
	5.1. Tag Equivalence
	5.2. Tag Equivalence of Packed CBOR Tags

	6. IANA Considerations
	6.1. CBOR Tags Registry
	6.2. CBOR Simple Values Registry

	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Examples
	Acknowledgements
	Authors' Addresses

