
Network Working Group J. Lang, Editor
Internet Draft (Rincon Networks)
Category: Standards Track
Expires: April 2004 October 2003

Link Management Protocol (LMP)

draft-ietf-ccamp-lmp-10.txt

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 For scalability purposes, multiple data links can be combined to
 form a single traffic engineering (TE) link. Furthermore, the
 management of TE links is not restricted to in-band messaging, but
 instead can be done using out-of-band techniques. This document
 specifies a link management protocol (LMP) that runs between a pair
 of nodes and is used to manage TE links. Specifically, LMP will be
 used to maintain control channel connectivity, verify the physical
 connectivity of the data links, correlate the link property
 information, suppress downstream alarms, and localize link failures
 for protection/restoration purposes in multiple kinds of networks.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

J. Lang, Editor Standards Track [Page 1]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

Table of Contents

1 Introduction .. 5
1.1 Terminology ... 5

2 LMP Overview .. 8
3 Control Channel Management 10

3.1 Parameter Negotiation 11
3.2 Hello Protocol .. 12

3.2.1 Hello Parameter Negotiation 12
3.2.2 Fast Keep-alive 13
3.2.3 Control Channel Down 14
3.2.4 Degraded State 14

4 Link Property Correlation 15
5 Verifying Link Connectivity 16

5.1 Example of Link Connectivity Verification 19
6 Fault Management .. 20

6.1 Fault Detection ... 20
6.2 Fault Localization Procedure 21
6.3 Examples of Fault Localization 21
6.4 Channel Activation Indication 22
6.5 Channel Deactivation Indication 23

7 Message_Id Usage .. 23
8 Graceful Restart .. 24
9 Addressing .. 25
10 Exponential Back-off Procedures 26

10.1 Operation... 26
10.2 Retransmission Algorithm 27

11 LMP Finite State Machines 27
11.1 Control Channel FSM 27

11.1.1 Control Channel States 27
11.1.2 Control Channel Events 28
11.1.3 Control Channel FSM Description 30

11.2 TE Link FSM .. 31
11.2.1 TE Link States 31
11.2.2 TE Link Events 31
11.2.3 TE Link FSM Description 32

11.3 Data Link FSM .. 33
11.3.1 Data Link States 33
11.3.2 Data Link Events 33
11.3.3 Active Data Link FSM Description 35
11.3.4 Passive Data Link FSM Description 35

12 LMP Message Formats ... 36
12.1 Common Header .. 36
12.2 LMP Object Format 38
12.3 Parameter Negotiation Messages 39
12.4 Hello Message .. 40
12.5 Link Verification Messages 41
12.6 Link Summary Messages 44
12.7 Fault Management Messages 46

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

13 LMP Object Definitions 47
14 Intellectual Property Considerations 64
15 References .. 65

J. Lang, Editor Standards Track [Page 2]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

16 Security Considerations 66
16.1 Security Requirements 66
16.2 Security Mechanisms 67

17 IANA Considerations ... 69
18 Acknowledgements .. 75
19 Contributors .. 75
20 Contact Address ... 75
21 Full Copyright Statement 77

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 3]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 [Editor's note: "Changes from previous version" notes can be removed
 prior to publication as an RFC.]

 Changes from previous version:

 o Editorial changes resulting from IESG review.

 o The following changes were made to the Security Considerations
 section:

 - Removed stale text about channel identifier.

 - Made changes to ensure manual keying is a SHOULD and dynamic
 keying is a MUST. For dynamic key exchange protocols IKE MUST
 be the key exchange protocol.

 - Text was added to indicate a more specific selector can be used
 by specifying the ports explicitly.

 - Added text about the caveats of using manual keying.

 - Made ESP Tunnel mode a MUST.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 4]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

1. Introduction

 Networks are being developed with routers, switches, crossconnects,
 dense wavelength division multiplexed (DWDM) systems, and add-drop
 multiplexors (ADMs) that use a common control plane [e.g.,
 Generalized MPLS (GMPLS)] to dynamically allocate resources and to
 provide network survivability using protection and restoration
 techniques. A pair of nodes may have thousands of interconnects,
 where each interconnect may consist of multiple data links when
 multiplexing (e.g., Frame Relay DLCIs at Layer 2, time division
 multiplexed (TDM) slots or wavelength division multiplexed (WDM)
 wavelengths at Layer 1) is used. For scalability purposes, multiple
 data links may be combined into a single traffic-engineering (TE)
 link.

 To enable communication between nodes for routing, signaling, and
 link management, there must be a pair of IP interfaces that are
 mutually reachable. We call such a pair of interfaces a control
 channel. Note that "mutually reachable" does not imply that these
 two interfaces are (directly) connected by an IP link; there may be
 an IP network between the two. Furthermore, the interface over which
 the control messages are sent/received may not be the same interface
 over which the data flows. This document specifies a link management
 protocol (LMP) that runs between a pair of nodes and is used to
 manage TE links and verify reachability of the control channel. For
 the purposes of this document, such nodes are considered "LMP
 neighbors" or simply "neighboring nodes".

 In GMPLS, the control channels between two adjacent nodes are no
 longer required to use the same physical medium as the data links
 between those nodes. For example, a control channel could use a
 separate virtual circuit, wavelength, fiber, Ethernet link, an IP
 tunnel routed over a separate management network, or a multi-hop IP
 network. A consequence of allowing the control channel(s) between
 two nodes to be logically or physically diverse from the associated
 data links is that the health of a control channel does not
 necessarily correlate to the health of the data links, and vice-
 versa. Therefore, a clean separation between the fate of the control
 channel and data links must be made. New mechanisms must be
 developed to manage the data links, both in terms of link
 provisioning and fault management.

 Among the tasks that LMP accomplishes is checking that the grouping
 of links into TE links as well as the properties of those links are
 the same at both end points of the links -- this is called "link
 property correlation". Also, LMP can communicate these link
 properties to the IGP module, which can then announce them to other
 nodes in the network. LMP can also tell the signaling module the
 mapping between TE links and control channels. Thus, LMP performs a

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 valuable "glue" function in the control plane.

J. Lang, Editor Standards Track [Page 5]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Note that while the existence of the control network (single or
 multi-hop) is necessary for enabling communication, it is by no
 means sufficient. For example, if the two interfaces are separated
 by an IP network, faults in the IP network may result in the lack of
 an IP path from one interface to another, and therefore in an
 interruption of communication between the two interfaces. On the
 other hand, not every failure in the control network affects a given
 control channel, hence the need for establishing and managing
 control channels.

 For the purposes of this document, a data link may be considered by
 each node that it terminates on as either a 'port' or a 'component
 link' depending on the multiplexing capability of the endpoint on
 that link; component links are multiplex capable, whereas ports are
 not multiplex capable. This distinction is important since the
 management of such links (including, for example, resource
 allocation, label assignment, and their physical verification) is
 different based on their multiplexing capability. For example, a
 Frame Relay switch is able to demultiplex an interface into virtual
 circuits based on DLCIs; similarly, a SONET crossconnect with OC-192
 interfaces may be able to demultiplex the OC-192 stream into four
 OC-48 streams. If multiple interfaces are grouped together into a
 single TE link using link bundling [BUNDLE], then the link resources
 must be identified using three levels: Link_Id, component interface
 Id, and label identifying virtual circuit, timeslot, etc. Resource
 allocation happens at the lowest level (labels), but physical
 connectivity happens at the component link level. As another
 example, consider the case where an optical switch (e.g., PXC)
 transparently switches OC-192 lightpaths. If multiple interfaces are
 once again grouped together into a single TE link, then link
 bundling [BUNDLE] is not required and only two levels of
 identification are required: Link_Id and Port_Id. In this case, both
 resource allocation and physical connectivity happen at the lowest
 level (i.e. port level).

 To ensure interworking between data links with different
 multiplexing capabilities, LMP capable devices SHOULD allow sub-
 channels of a component link to be locally configured as (logical)
 data links. For example, if a Router with 4 OC-48 interfaces is
 connected through a 4:1 MUX to a cross-connect with OC-192
 interfaces, the cross-connect should be able to configure each sub-
 channel (e.g., STS-48c SPE if the 4:1 MUX is a SONET MUX) as a data
 link.

 LMP is designed to support aggregation of one or more data links
 into a TE link (either ports into TE links, or component links into
 TE links). The purpose of forming a TE link is to group/map the
 information about certain physical resources (and their properties)
 into the information that is used by Constrained SPF for the purpose

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 of path computation, and by GMPLS signaling.

J. Lang, Editor Standards Track [Page 6]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terminology in
 [RFC3471], [GMPLS-RTG], and [BUNDLE].

 Bundled Link:

 As defined in [BUNDLE], a bundled link is a TE link such that for
 the purpose of GMPLS signaling a combination of <link identifier,
 label> is not sufficient to unambiguously identify the
 appropriate resources used by an LSP. A bundled link is composed
 of two or more component links.

 Control Channel:

 A control channel is a pair of mutually reachable interfaces that
 are used to enable communication between nodes for routing,
 signaling, and link management.

 Component Link:

 As defined in [BUNDLE], a component link is a subset of resources
 of a TE Link such that (a) the partition is minimal, and (b)
 within each subset a label is sufficient to unambiguously
 identify the appropriate resources used by an LSP.

 Data Link:

 A data link is a pair of interfaces that are used to transfer
 user data. Note that in GMPLS, the control channel(s) between two
 adjacent nodes are no longer required to use the same physical
 medium as the data links between those nodes.

 Link Property Correlation:

 This is a procedure to correlate the local and remote properties
 of a TE link.

 Multiplex Capability:

 The ability to multiplex/demultiplex a data stream into sub-rate
 streams for switching purposes.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3471

 Node_Id:

J. Lang, Editor Standards Track [Page 7]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 For a node running OSPF, the LMP Node_Id is the same as the
 address contained in the OSPF Router Address TLV. For a node
 running IS-IS and advertising the TE Router ID TLV, the Node_Id
 is the same as the advertised Router ID.

 Port:

 An interface that terminates a data link.

 TE Link:

 As defined in [GMPLS-RTG], a TE link is a logical construct that
 represents a way to group/map the information about certain
 physical resources (and their properties) that interconnect LSRs
 into the information that is used by Constrained SPF for the
 purpose of path computation, and by GMPLS signaling.

 Transparent:

 A device is called X-transparent if it forwards incoming signals
 from input to output without examining or modifying the X aspect
 of the signal. For example, a Frame Relay switch is network-layer
 transparent; an all-optical switch is electrically transparent.

2. LMP Overview

 The two core procedures of LMP are control channel management and
 link property correlation. Control channel management is used to
 establish and maintain control channels between adjacent nodes.
 This is done using a Config message exchange and a fast keep-alive
 mechanism between the nodes. The latter is required if lower-level
 mechanisms are not available to detect control channel failures.
 Link property correlation is used to synchronize the TE link
 properties and verify the TE link configuration.

 LMP requires that a pair of nodes have at least one active bi-
 directional control channel between them. Each direction of the
 control channel is identified by a Control Channel Id (CC_Id), and
 the two directions are coupled together using the LMP Config message
 exchange. Except for Test messages, which may be limited by the
 transport mechanism for in-band messaging, all LMP packets are run
 over UDP with an LMP port number. The link level encoding of the
 control channel is outside the scope of this document.

 An "LMP adjacency" is formed between two nodes when at least one bi-
 directional control channel is established between them. Multiple
 control channels may be active simultaneously for each adjacency;
 control channel parameters, however, MUST be individually negotiated
 for each control channel. If the LMP fast keep-alive is used over a
 control channel, LMP Hello messages MUST be exchanged over the

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 control channel. Other LMP messages MAY be transmitted over any of
 the active control channels between a pair of adjacent nodes. One or

J. Lang, Editor Standards Track [Page 8]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 more active control channels may be grouped into a logical control
 channel for signaling, routing, and link property correlation
 purposes.

 The link property correlation function of LMP is designed to
 aggregate multiple data links (ports or component links) into a TE
 link and to synchronize the properties of the TE link. As part of
 the link property correlation function, a LinkSummary message
 exchange is defined. The LinkSummary message includes the local and
 remote Link_Ids, a list of all data links that comprise the TE link,
 and various link properties. A LinkSummaryAck or LinkSummaryNack
 message MUST be sent in response to the receipt of a LinkSummary
 message indicating agreement or disagreement on the link properties.

 LMP messages are transmitted reliably using Message_Ids and
 retransmissions. Message_Ids are carried in MESSAGE_ID objects. No
 more than one MESSAGE_ID object may be included in an LMP message.
 For control channel specific messages, the Message_Id is within the
 scope of the control channel over which the message is sent. For TE
 link specific messages, the Message_Id is within the scope of the
 LMP adjacency. The value of the Message_Id is monotonically
 increasing and wraps when the maximum value is reached.

 In this document, two additional LMP procedures are defined: link
 connectivity verification and fault management. These procedures are
 particularly useful when the control channels are physically diverse
 from the data links. Link connectivity verification is used for data
 plane discovery, Interface_Id exchange (Interface_Ids are used in
 GMPLS signaling, either as port labels or component link
 identifiers, depending on the configuration), and physical
 connectivity verification. This is done by sending Test messages
 over the data links and TestStatus messages back over the control
 channel. Note that the Test message is the only LMP message that
 must be transmitted over the data link. The ChannelStatus message
 exchange is used between adjacent nodes for both the suppression of
 downstream alarms and the localization of faults for protection and
 restoration.

 For LMP link connectivity verification, the Test message is
 transmitted over the data links. For X-transparent devices, this
 requires examining and modifying the X aspect of the signal. The LMP
 link connectivity verification procedure is coordinated using a
 BeginVerify message exchange over a control channel. To support
 various aspects of transparency, a Verify Transport Mechanism is
 included in the BeginVerify and BeginVerifyAck messages. Note that
 there is no requirement that all data links must lose their
 transparency simultaneously, but at a minimum, it must be possible
 to terminate them one at a time. There is also no requirement that
 the control channel and TE link use the same physical medium;

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 however, the control channel MUST be terminated by the same two
 control elements that control the TE link. Since the BeginVerify
 message exchange coordinates the Test procedure, it also naturally

J. Lang, Editor Standards Track [Page 9]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 coordinates the transition of the data links in and out of the
 transparent mode.

 The LMP fault management procedure is based on a ChannelStatus
 message exchange using the following messages: ChannelStatus,
 ChannelStatusAck, ChannelStatusRequest, and ChannelStatusResponse.
 The ChannelStatus message is sent unsolicited and is used to notify
 an LMP neighbor about the status of one or more data channels of a
 TE link. The ChannelStatusAck message is used to acknowledge receipt
 of the ChannelStatus message. The ChannelStatusRequest message is
 used to query an LMP neighbor for the status of one or more data
 channels of a TE Link. The ChannelStatusResponse message is used to
 acknowledge receipt of the ChannelStatusRequest message and indicate
 the states of the queried data links.

3. Control Channel Management

 To initiate an LMP adjacency between two nodes, one or more bi-
 directional control channels MUST be activated. The control channels
 can be used to exchange control-plane information such as link
 provisioning and fault management information (implemented using a
 messaging protocol such as LMP, proposed in this document), path
 management and label distribution information (implemented using a
 signaling protocol such as RSVP-TE [RFC3209]), and network topology
 and state distribution information (implemented using traffic
 engineering extensions of protocols such as OSPF [OSPF-TE] and IS-IS
 [ISIS-TE]).

 For the purposes of LMP, the exact implementation of the control
 channel is not specified; it could be, for example, a separate
 wavelength or fiber, an Ethernet link, an IP tunnel through a
 separate management network, or the overhead bytes of a data link.
 Rather, each node assigns a node-wide unique 32-bit non-zero integer
 control channel identifier (CC_Id). This identifier comes from the
 same space as the unnumbered interface Id. Furthermore, LMP packets
 are run over UDP with an LMP port number. Thus, the link level
 encoding of the control channel is not part of the LMP
 specification.

 To establish a control channel, the destination IP address on the
 far end of the control channel must be known. This knowledge may be
 manually configured or automatically discovered. Note that for in-
 band signaling, a control channel could be explicitly configured on
 a particular data link. In this case, the Config message exchange
 can be used to dynamically learn the IP address on the far end of
 the control channel. This is done by sending the Config message with
 the unicast IP source address and the multicast IP destination
 address (224.0.0.1 or ff02::1). The ConfigAck and ConfigNack
 messages MUST be sent to the source IP address found in the IP

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc3209

 header of the received Config message.

J. Lang, Editor Standards Track [Page 10]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Control channels exist independently of TE links and multiple
 control channels may be active simultaneously between a pair of
 nodes. Individual control channels can be realized in different
 ways; one might be implemented in-fiber while another one may be
 implemented out-of-fiber. As such, control channel parameters MUST
 be negotiated over each individual control channel, and LMP Hello
 packets MUST be exchanged over each control channel to maintain LMP
 connectivity if other mechanisms are not available. Since control
 channels are electrically terminated at each node, it may be
 possible to detect control channel failures using lower layers
 (e.g., SONET/SDH).

 There are four LMP messages that are used to manage individual
 control channels. They are the Config, ConfigAck, ConfigNack, and
 Hello messages. These messages MUST be transmitted on the channel to
 which they refer. All other LMP messages may be transmitted over any
 of the active control channels between a pair of LMP adjacent nodes.

 In order to maintain an LMP adjacency, it is necessary to have at
 least one active control channel between a pair of adjacent nodes
 (recall that multiple control channels can be active simultaneously
 between a pair of nodes). In the event of a control channel failure,
 alternate active control channels can be used and it may be possible
 to activate additional control channels as described below.

3.1. Parameter Negotiation

 Control channel activation begins with a parameter negotiation
 exchange using Config, ConfigAck, and ConfigNack messages. The
 contents of these messages are built using LMP objects, which can be
 either negotiable or non-negotiable (identified by the N bit in the
 object header). Negotiable objects can be used to let LMP peers
 agree on certain values. Non-negotiable objects are used for the
 announcement of specific values that do not need, or do not allow,
 negotiation.

 To activate a control channel, a Config message MUST be transmitted
 to the remote node, and in response, a ConfigAck message MUST be
 received at the local node. The Config message contains the Local
 Control Channel Id (CC_Id), the sender's Node_Id, a Message_Id for
 reliable messaging, and a CONFIG object. It is possible that both
 the local and remote nodes initiate the configuration procedure at
 the same time. To avoid ambiguities, the node with the higher
 Node_Id wins the contention; the node with the lower Node_Id MUST
 stop transmitting the Config message and respond to the Config
 message it received. If the Node_Ids are equal, then one (or both)
 nodes have been misconfigured. The nodes MAY continue to retransmit
 Config messages in hopes that the misconfiguration is corrected.
 Note that the problem may be solved by an operator changing the

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 Node_Ids on one or both nodes.

J. Lang, Editor Standards Track [Page 11]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The ConfigAck message is used to acknowledge receipt of the Config
 message and express agreement on ALL of the configured parameters
 (both negotiable and non-negotiable).

 The ConfigNack message is used to acknowledge receipt of the Config
 message, indicate which (if any) non-negotiable CONFIG objects are
 unacceptable, and propose alternate values for the negotiable
 parameters.

 If a node receives a ConfigNack message with acceptable alternate
 values for negotiable parameters, the node SHOULD transmit a Config
 message using these values for those parameters.

 If a node receives a ConfigNack message with unacceptable alternate
 values, the node MAY continue to retransmit Config messages in hopes
 that the misconfiguration is corrected. Note that the problem may be
 solved by an operator changing parameters on one or both nodes.

 In the case where multiple control channels use the same physical
 interface, the parameter negotiation exchange is performed for each
 control channel. The various LMP parameter negotiation messages are
 associated with their corresponding control channels by their node-
 wide unique identifiers (CC_Ids).

3.2. Hello Protocol

 Once a control channel is activated between two adjacent nodes, the
 LMP Hello protocol can be used to maintain control channel
 connectivity between the nodes and to detect control channel
 failures. The LMP Hello protocol is intended to be a lightweight
 keep-alive mechanism that will react to control channel failures
 rapidly so that IGP Hellos are not lost and the associated link-
 state adjacencies are not removed unnecessarily.

3.2.1. Hello Parameter Negotiation

 Before sending Hello messages, the HelloInterval and
 HelloDeadInterval parameters MUST be agreed upon by the local and
 remote nodes. These parameters are exchanged in the Config message.
 The HelloInterval indicates how frequently LMP Hello messages will
 be sent, and is measured in milliseconds (ms). For example, if the
 value were 150, then the transmitting node would send the Hello
 message at least every 150ms. The HelloDeadInterval indicates how
 long a device should wait to receive a Hello message before
 declaring a control channel dead, and is measured in milliseconds
 (ms).

 The HelloDeadInterval MUST be greater than the HelloInterval, and
 SHOULD be at least 3 times the value of HelloInterval. If the fast
 keep-alive mechanism of LMP is not used, the HelloInterval and

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 HelloDeadInterval parameters MUST be set to zero.

J. Lang, Editor Standards Track [Page 12]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The values for the HelloInterval and HelloDeadInterval should be
 selected carefully to provide rapid response time to control channel
 failures without causing congestion. As such, different values will
 likely be configured for different control channel implementations.
 When the control channel is implemented over a directly connected
 link, the suggested default values for the HelloInterval is 150 ms
 and for the HelloDeadInterval is 500 ms.

 When a node has either sent or received a ConfigAck message, it may
 begin sending Hello messages. Once it has sent a Hello message and
 received a valid Hello message (i.e., with expected sequence
 numbers; see Section 3.2.2), the control channel moves to the up
 state. (It is also possible to move to the up state without sending
 Hellos if other methods are used to indicate bi-directional control-
 channel connectivity. For example, indication of bi-directional
 connectivity may be learned from the transport layer.) If, however,
 a node receives a ConfigNack message instead of a ConfigAck message,
 the node MUST not send Hello messages and the control channel SHOULD
 NOT move to the up state. See Section 11.1 for the complete control
 channel FSM.

3.2.2. Fast Keep-alive

 Each Hello message contains two sequence numbers: the first sequence
 number (TxSeqNum) is the sequence number for the Hello message being
 sent and the second sequence number (RcvSeqNum) is the sequence
 number of the last Hello message received from the adjacent node
 over this control channel.

 There are two special sequence numbers. TxSeqNum MUST NOT ever be 0.
 TxSeqNum = 1 is used to indicate that the sender has just started or
 has restarted and has no recollection of the last TxSeqNum that was
 sent. Thus, the first Hello sent has a TxSeqNum of 1 and an RxSeqNum
 of 0. When TxSeqNum reaches (2^32)-1, the next sequence number used
 is 2, not 0 or 1, as these have special meanings.

 Under normal operation, the difference between the RcvSeqNum in a
 Hello message that is received and the local TxSeqNum that is
 generated will be at most 1. This difference can be more than one
 only when a control channel restarts or when the values wrap.

 Since the 32-bit sequence numbers may wrap, the following expression
 may be used to test if a newly received TxSeqNum value is less than
 a previously received value:

 If ((int) old_id - (int) new_id > 0) {
 New value is less than old value;
 }

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 Having sequence numbers in the Hello messages allows each node to
 verify that its peer is receiving its Hello messages. By including

J. Lang, Editor Standards Track [Page 13]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 the RcvSeqNum in Hello packets, the local node will know which Hello
 packets the remote node has received.

 The following example illustrates how the sequence numbers operate.
 Note that only the operation at one node is shown, and alternative
 scenarios are possible:

 1) After completing the configuration stage, Node A sends Hello
 messages to Node B with {TxSeqNum=1;RcvSeqNum=0}.

 2) Node A receives a Hello from Node B with
 {TxSeqNum=1;RcvSeqNum=1}. When the HelloInterval expires on
 Node A, it sends Hellos to Node B with {TxSeqNum=2;RcvSeqNum=1}.

 3) Node A receives a Hello from Node B with
 {TxSeqNum=2;RcvSeqNum=2}. When the HelloInterval expires on Node
 A, it sends Hellos to Node B with {TxSeqNum=3;RcvSeqNum=2}.

3.2.3. Control Channel Down

 To allow bringing a control channel down gracefully for
 administration purposes, a ControlChannelDown flag is available in
 the Common Header of LMP packets. When data links are still in use
 between a pair of nodes, a control channel SHOULD only be taken down
 administratively when there are other active control channels that
 can be used to manage the data links.

 When bringing a control channel down administratively, a node MUST
 set the ControlChannelDown flag in all LMP messages sent over the
 control channel. The node that initiated the control channel down
 procedure may stop sending Hello messages after HelloDeadInterval
 seconds have passed, or if it receives an LMP message over the same
 control channel with the ControlChannelDown flag set.

 When a node receives an LMP packet with the ControlChannelDown flag
 set, it SHOULD send a Hello message with the ControlChannelDown flag
 set and move the control channel to the down state.

3.2.4. Degraded State

 A consequence of allowing the control channels to be physically
 diverse from the associated data links is that there may not be any
 active control channels available while the data links are still in
 use. For many applications, it is unacceptable to tear down a link
 that is carrying user traffic simply because the control channel is
 no longer available; however, the traffic that is using the data
 links may no longer be guaranteed the same level of service. Hence,
 the TE link is in a Degraded state.

 When a TE link is in the Degraded state, routing and signaling

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 SHOULD be notified so that new connections are not accepted and the
 TE link is advertised with no unreserved resources.

J. Lang, Editor Standards Track [Page 14]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

4. Link Property Correlation

 As part of LMP, a link property correlation exchange is defined for
 TE links using the LinkSummary, LinkSummaryAck, and LinkSummaryNack
 messages. The contents of these messages are built using LMP
 objects, which can be either negotiable or non-negotiable
 (identified by the N flag in the object header). Negotiable objects
 can be used to let both sides agree on certain link parameters.
 Non-negotiable objects are used for announcement of specific values
 that do not need, or do not allow, negotiation.

 Each TE link has an identifier (Link_Id) that is assigned at each
 end of the link. These identifiers MUST be the same type (i.e, IPv4,
 IPv6, unnumbered) at both ends. If a LinkSummary message is received
 with different local and remote TE link types, then a
 LinkSummaryNack message MUST be sent with Error Code "Bad TE Link
 Object". Similarly, each data link is assigned an identifier
 (Interface_Id) at each end. These identifiers MUST also be the same
 type at both ends. If a LinkSummary message is received with
 different local and remote Interface_Id types then a LinkSummaryNack
 message MUST be sent with Error Code "Bad Data Link Object".

 Link property correlation SHOULD be done before the link is brought
 up and MAY be done at any time a link is up and not in the
 Verification process.

 The LinkSummary message is used to verify for consistency the TE and
 data link information on both sides. Link Summary messages are also
 used to aggregate multiple data links (either ports or component
 links) into a TE link; exchange, correlate (to determine
 inconsistencies), or change TE link parameters; and exchange,
 correlate (to determine inconsistencies), or change Interface_Ids
 (used either Port_Ids or component link identifiers).

 The LinkSummary message includes a TE_LINK object followed by one or
 more DATA_LINK objects. The TE_LINK object identifies the TE link's
 local and remote Link_Id and indicates support for fault management
 and link verification procedures for that TE link. The DATA_LINK
 objects are used to characterize the data links that comprise the TE
 link. These objects include the local and remote Interface_Ids, and
 may include one or more sub-objects further describing the
 properties of the data links.

 If the LinkSummary message is received from a remote node and the
 Interface_Id mappings match those that are stored locally, then the
 two nodes have agreement on the Verification procedure (see Section

5) and data link identification configuration. If the verification
 procedure is not used, the LinkSummary message can be used to verify

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 agreement on manual configuration.

J. Lang, Editor Standards Track [Page 15]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The LinkSummaryAck message is used to signal agreement on the
 Interface_Id mappings and link property definitions. Otherwise, a
 LinkSummaryNack message MUST be transmitted, indicating which
 Interface mappings are not correct and/or which link properties are
 not accepted. If a LinkSummaryNack message indicates that the
 Interface_Id mappings are not correct and the link verification
 procedure is enabled, the link verification process SHOULD be
 repeated for all mismatched free data links; if an allocated data
 link has a mapping mismatch, it SHOULD be flagged and verified when
 it becomes free. If a LinkSummaryNack message includes negotiable
 parameters, then acceptable values for those parameters MUST be
 included. If a LinkSummaryNack message is received and includes
 negotiable parameters, then the initiator of the LinkSummary message
 SHOULD send a new LinkSummary message. The new LinkSummary message
 SHOULD include new values for the negotiable parameters. These
 values SHOULD take into account the acceptable values received in
 the LinkSummaryNack message.

 It is possible that the LinkSummary message could grow quite large
 due to the number of DATA LINK objects. An LMP implementation SHOULD
 be able to fragment when transmitting LMP messages, and MUST be able
 to re-assemble IP fragments when receiving LMP messages.

5. Verifying Link Connectivity

 In this section, an optional procedure is described that may be used
 to verify the physical connectivity of the data links and
 dynamically learn (i.e., discover) the TE link and Interface_Id
 associations. The procedure SHOULD be done when establishing a TE
 link, and subsequently, on a periodic basis for all unallocated
 (free) data links of the TE link.

 Support for this procedure is indicated by setting the "Link
 Verification Supported" flag in the TE_LINK object of the
 LinkSummary message.

 If a BeginVerify message is received and link verification is not
 supported for the TE link, then a BeginVerifyNack message MUST be
 transmitted with Error Code indicating, "Link Verification Procedure
 not supported for this TE Link."

 A unique characteristic of transparent devices is that the data is
 not modified or examined in normal operation. This characteristic
 poses a challenge for validating the connectivity of the data links
 and establish the label mappings. Therefore, to ensure proper
 verification of data link connectivity, it is required that until
 the data links are allocated for user traffic, they must be opaque
 (i.e., lose their transparency). To support various degrees of
 opaqueness (e.g., examining overhead bytes, terminating the IP

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 payload, etc.), and hence different mechanisms to transport the Test
 messages, a Verify Transport Mechanism field is included in the
 BeginVerify and BeginVerifyAck messages.

J. Lang, Editor Standards Track [Page 16]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 There is no requirement that all data links be terminated
 simultaneously, but at a minimum, the data links MUST be able to be
 terminated one at a time. Furthermore, for the link verification
 procedure it is assumed that the nodal architecture is designed so
 that messages can be sent and received over any data link. Note that
 this requirement is trivial for opaque devices since each data link
 is electrically terminated and processed before being forwarded to
 the next opaque device, but that in transparent devices this is an
 additional requirement.

 To interconnect two nodes, a TE link is defined between them, and at
 a minimum, there MUST be at least one active control channel between
 the nodes. For link verification, a TE link MUST include at least
 one data link.

 Once a control channel has been established between the two nodes,
 data link connectivity can be verified by exchanging Test messages
 over each of the data links specified in the TE link. It should be
 noted that all LMP messages except the Test message are exchanged
 over the control channels and that Hello messages continue to be
 exchanged over each control channel during the data link
 verification process. The Test message is sent over the data link
 that is being verified. Data links are tested in the transmit
 direction as they are unidirectional, and therefore, it may be
 possible for both nodes to (independently) exchange the Test
 messages simultaneously.

 To initiate the link verification procedure, the local node MUST
 send a BeginVerify message over a control channel. To limit the
 scope of Link Verification to a particular TE Link, the local
 Link_Id MUST be non-zero. If this field is zero, the data links can
 span multiple TE links and/or they may comprise a TE link that is
 yet to be configured. For the case where the local Link_Id field is
 zero, the "Verify all Links" flag of the BEGIN_VERIFY object is used
 to distinguish between data links that span multiple TE links and
 those that have not yet been assigned to a TE link. Specifically,
 verification of data links that span multiple TE links is indicated
 by setting the local Link_Id field to zero and setting the "Verify
 all Links" flag. Verification of data links that have not yet been
 assigned to a TE link is indicated by setting the local Link_Id
 field to zero and clearing the "Verify all Links" flag.

 The BeginVerify message also contains the number of data links that
 are to be verified; the interval (called VerifyInterval) at which
 the Test messages will be sent; the encoding scheme and transport
 mechanisms that are supported; the data rate for Test messages; and,
 when the data links correspond to fibers, the wavelength identifier
 over which the Test messages will be transmitted.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 If the remote node receives a BeginVerify message and it is ready to
 process Test messages, it MUST send a BeginVerifyAck message back to

J. Lang, Editor Standards Track [Page 17]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 the local node specifying the desired transport mechanism for the
 TEST messages. The remote node includes a 32-bit node unique
 Verify_Id in the BeginVerifyAck message. The Verify_Id MAY be
 randomly selected, however, it MUST NOT overlap any other Verify_Id
 currently being used by the node selecting it. The Verify_Id is
 then used in all corresponding verification messages to
 differentiate them from different LMP peers and/or parallel Test
 procedures. When the local node receives a BeginVerifyAck message
 from the remote node, it may begin testing the data links by
 transmitting periodic Test messages over each data link. The Test
 message includes the Verify_Id and the local Interface_Id for the
 associated data link. The remote node MUST send either a
 TestStatusSuccess or a TestStatusFailure message in response for
 each data link. A TestStatusAck message MUST be sent to confirm
 receipt of the TestStatusSuccess and TestStatusFailure messages.
 Unacknowledged TestStatusSuccess and TestStatusFailure messages
 SHOULD be retransmitted until the message is acknowledged or until a
 retry limit is reached (see also Section 10).

 It is also permissible for the sender to terminate the Test
 procedure anytime after sending the BeginVerify message. An
 EndVerify message SHOULD be sent for this purpose.

 Message correlation is done using message identifiers and the
 Verify_Id; this enables verification of data links, belonging to
 different link bundles or LMP sessions, in parallel.

 When the Test message is received, the received Interface_Id (used
 in GMPLS as either a Port label or component link identifier
 depending on the configuration) is recorded and mapped to the local
 Interface_Id for that data link, and a TestStatusSuccess message
 MUST be sent. The TestStatusSuccess message includes the local
 Interface_Id along with the Interface_Id and Verify_Id received in
 the Test message. The receipt of a TestStatusSuccess message
 indicates that the Test message was detected at the remote node and
 the physical connectivity of the data link has been verified. When
 the TestStatusSuccess message is received, the local node SHOULD
 mark the data link as up and send a TestStatusAck message to the
 remote node. If, however, the Test message is not detected at the
 remote node within an observation period (specified by the
 VerifyDeadInterval), the remote node MUST send a TestStatusFailure
 message over the control channel indicating that the verification of
 the physical connectivity of the data link has failed. When the
 local node receives a TestStatusFailure message, it SHOULD mark the
 data link as FAILED and send a TestStatusAck message to the remote
 node. When all the data links on the list have been tested, the
 local node SHOULD send an EndVerify message to indicate that testing
 is complete on this link.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 If the local/remote data link mappings are known, then the link
 verification procedure can be optimized by testing the data links in

J. Lang, Editor Standards Track [Page 18]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 a defined order known to both nodes. The suggested criterion for
 this ordering is in increasing value of the remote Interface_Id.

 Both the local and remote nodes SHOULD maintain the complete list of
 Interface_Id mappings for correlation purposes.

5.1. Example of Link Connectivity Verification

 Figure 1 shows an example of the link verification scenario that is
 executed when a link between Node A and Node B is added. In this
 example, the TE link consists of three free ports (each transmitted
 along a separate fiber) and is associated with a bi-directional
 control channel (indicated by a "c"). The verification process is as
 follows:
 o A sends a BeginVerify message over the control channel to B
 indicating it will begin verifying the ports that form the TE
 link. The LOCAL_LINK_ID object carried in the BeginVerify
 message carries the identifier (IP address or interface index)
 that A assigns to the link.
 o Upon receipt of the BeginVerify message, B creates a Verify_Id
 and binds it to the TE Link from A. This binding is used later
 when B receives the Test messages from A, and these messages
 carry the Verify_Id. B discovers the identifier (IP address or
 interface index) that A assigns to the TE link by examining the
 LOCAL_LINK_ID object carried in the received BeginVerify
 message. (If the data ports are not yet assigned to the TE
 Link, the binding is limited to the Node_Id of A.) In response
 to the BeginVerify message, B sends to A the BeginVerifyAck
 message. The LOCAL_LINK_ID object carried in the BeginVerifyAck
 message is used to carry the identifier (IP address or
 interface index) that B assigns to the TE link. The
 REMOTE_LINK_ID object carried in the BeginVerifyAck message is
 used to bind the Link_Ids assigned by both A and B. The
 Verify_Id is returned to A in the BeginVerifyAck message over
 the control channel.
 o When A receives the BeginVerifyAck message, it begins
 transmitting periodic Test messages over the first port
 (Interface Id=1). The Test message includes the Interface_Id
 for the port and the Verify_Id that was assigned by B.
 o When B receives the Test messages, it maps the received
 Interface_Id to its own local Interface_Id = 10 and transmits a
 TestStatusSuccess message over the control channel back to Node
 A. The TestStatusSuccess message includes both the local and
 received Interface_Ids for the port as well as the Verify_Id.
 The Verify_Id is used to determine the local/remote TE link
 identifiers (IP addresses or interface indices) for which the
 data links belong.
 o A will send a TestStatusAck message over the control channel
 back to B indicating it received the TestStatusSuccess message.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 o The process is repeated until all of the ports are verified.
 o At this point, A will send an EndVerify message over the
 control channel to B to indicate that testing is complete.

J. Lang, Editor Standards Track [Page 19]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 o B will respond by sending an EndVerifyAck message over the
 control channel back to A.

 Note that this procedure can be used to "discover" the
 connectivity of the data ports.

 +---------------------+ +---------------------+
 + + + +
 + Node A +<-------- c --------->+ Node B +
 + + + +
 + + + +
 + 1 +--------------------->+ 10 +
 + + + +
 + + + +
 + 2 + /---->+ 11 +
 + + /----/ + +
 + + /---/ + +
 + 3 +----/ + 12 +
 + + + +
 + + + +
 + 4 +--------------------->+ 14 +
 + + + +
 +---------------------+ +---------------------+

 Figure 1: Example of link connectivity between Node A and Node B.

6. Fault Management

 In this section, an optional LMP procedure is described that is used
 to manage failures by rapid notification of the status of one or
 more data channels of a TE Link. The scope of this procedure is
 within a TE link, and as such, the use of this procedure is
 negotiated as part of the LinkSummary exchange. The procedure can be
 used to rapidly isolate data link and TE link failures, and is
 designed to work for both unidirectional and bi-directional LSPs.

 An important implication of using transparent devices is that
 traditional methods that are used to monitor the health of allocated
 data links in may no longer be appropriate. Instead, fault detection
 is delegated to the physical layer (i.e., loss of light or optical
 monitoring of the data) instead of layer 2 or layer 3.

 Recall that a TE link connecting two nodes may consist of a number
 of data links. If one or more data links fail between two nodes, a
 mechanism must be used for rapid failure notification so that
 appropriate protection/restoration mechanisms can be initiated. If
 the failure is subsequently cleared, then a mechanism must be used
 to notify that the failure is clear and the channel status is OK.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

6.1. Fault Detection

J. Lang, Editor Standards Track [Page 20]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Fault detection should be handled at the layer closest to the
 failure; for optical networks, this is the physical (optical) layer.
 One measure of fault detection at the physical layer is detecting
 loss of light (LOL). Other techniques for monitoring optical signals
 are still being developed and will not be further considered in this
 document. However, it should be clear that the mechanism used for
 fault notification in LMP is independent of the mechanism used to
 detect the failure, but simply relies on the fact that a failure is
 detected.

6.2. Fault Localization Procedure

 In some situations, a data link failure between two nodes is
 propagated downstream such that all the downstream nodes detect the
 failure without localizing the failure. To avoid multiple alarms
 stemming from the same failure, LMP provides failure notification
 through the ChannelStatus message. This message may be used to
 indicate that a single data channel has failed, multiple data
 channels have failed, or an entire TE link has failed. Failure
 correlation is done locally at each node upon receipt of the failure
 notification.

 To localize a fault to a particular link between adjacent nodes, a
 downstream node (downstream in terms of data flow) that detects data
 link failures will send a ChannelStatus message to its upstream
 neighbor indicating that a failure has been detected (bundling
 together the notification of all of the failed data links). An
 upstream node that receives the ChannelStatus message MUST send a
 ChannelStatusAck message to the downstream node indicating it has
 received the ChannelStatus message. The upstream node should
 correlate the failure to see if the failure is also detected locally
 for the corresponding LSP(s). If, for example, the failure is clear
 on the input of the upstream node or internally, then the upstream
 node will have localized the failure. Once the failure is
 correlated, the upstream node SHOULD send a ChannelStatus message to
 the downstream node indicating that the channel is failed or is ok.
 If a ChannelStatus message is not received by the downstream node,
 it SHOULD send a ChannelStatusRequest message for the channel in
 question. Once the failure has been localized, the signaling
 protocols may be used to initiate span or path protection and
 restoration procedures.

 If all of the data links of a TE link have failed, then the upstream
 node MAY be notified of the TE link failure without specifying each
 data link of the failed TE link. This is done by sending failure
 notification in a ChannelStatus message identifying the TE Link
 without including the Interface_Ids in the CHANNEL_STATUS object.

6.3. Examples of Fault Localization

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 In Figure 2, a sample network is shown where four nodes are
 connected in a linear array configuration. The control channels are

J. Lang, Editor Standards Track [Page 21]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 bi-directional and are labeled with a "c". All LSPs are also bi-
 directional.

 In the first example [see Fig. 2(a)], there is a failure on one
 direction of the bi-directional LSP. Node 4 will detect the failure
 and will send a ChannelStatus message to Node 3 indicating the
 failure (e.g., LOL) to the corresponding upstream node. When Node 3
 receives the ChannelStatus message from Node 4, it returns a
 ChannelStatusAck message back to Node 4 and correlates the failure
 locally. When Node 3 correlates the failure and verifies that the
 failure is clear, it has localized the failure to the data link
 between Node 3 and Node 4. At that time, Node 3 should send a
 ChannelStatus message to Node 4 indicating that the failure has been
 localized.

 In the second example [see Fig. 2(b)], a single failure (e.g., fiber
 cut) affects both directions of the bi-directional LSP. Node 2 (Node
 3) will detect the failure of the upstream (downstream) direction
 and send a ChannelStatus message to the upstream (in terms of data
 flow) node indicating the failure (e.g., LOL). Simultaneously
 (ignoring propagation delays), Node 1 (Node 4) will detect the
 failure on the upstream (downstream) direction, and will send a
 ChannelStatus message to the corresponding upstream (in terms of
 data flow) node indicating the failure. Node 2 and Node 3 will have
 localized the two directions of the failure.

 +-------+ +-------+ +-------+ +-------+
 + Node1 + + Node2 + + Node3 + + Node4 +
 + +-- c ---+ +-- c ---+ +-- c ---+ +
 ----+---\ + + + + + + +
 <---+---\\--+--------+-------+---\ + + + /--+--->
 + \--+--------+-------+---\\---+-------+---##---+---//--+----
 + + + + \---+-------+--------+---/ +
 + + + + + + (a) + +
 ----+-------+--------+---\ + + + + +
 <---+-------+--------+---\\--+---##---+--\ + + +
 + + + \--+---##---+--\\ + + +
 + + + + (b) + \\--+--------+-------+--->
 + + + + + \--+--------+-------+----
 + + + + + + + +
 +-------+ +-------+ +-------+ +-------+

 Figure 2: Two types of data link failures are shown
 (indicated by ## in the figure): (A) a data link
 corresponding to the downstream direction of a bi-directional
 LSP fails, (B) two data links corresponding to both
 directions of a bi-directional LSP fail. The control channel
 connecting two nodes is indicated with a "c".

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

6.4. Channel Activation Indication

J. Lang, Editor Standards Track [Page 22]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The ChannelStatus message may also be used to notify an LMP neighbor
 that the data link should be actively monitored. This is called
 Channel Activation Indication. This is particularly useful in
 networks with transparent nodes where the status of data links may
 need to be triggered using control channel messages. For example, if
 a data link is pre-provisioned and the physical link fails after
 verification and before inserting user traffic, a mechanism is
 needed to indicate the data link should be active or the failure may
 not be able to be detected.

 The ChannelStatus message is used to indicate that a channel or
 group of channels are now active. The ChannelStatusAck message MUST
 be transmitted upon receipt of a ChannelStatus message. When a
 ChannelStatus message is received, the corresponding data link(s)
 MUST be put into the Active state. If upon putting them into the
 Active state, a failure is detected, the ChannelStatus message
 SHOULD be transmitted as described in Section 6.2.

6.5. Channel Deactivation Indication

 The ChannelStatus message may also be used to notify an LMP neighbor
 that the data link no longer needs to be actively monitored. This
 is the counterpart to the Channel Active Indication.

 When a ChannelStatus message is received with Channel Deactive
 Indication, the corresponding data link(s) MUST be taken out of the
 Active state.

7. Message_Id Usage

 The MESSAGE_ID and MESSAGE_ID_ACK objects are included in LMP
 messages to support reliable message delivery. This section
 describes the usage of these objects. The MESSAGE_ID and
 MESSAGE_ID_ACK objects contain a Message_Id field.

 Only one MESSAGE_ID/MESSAGE_ID_ACK object may be included in any LMP
 message.

 For control channel specific messages, the Message_Id field is
 within the scope of the CC_Id. For TE link specific messages, the
 Message_Id field is within the scope of the LMP adjacency.

 The Message_Id field of the MESSAGE_ID object contains a generator-
 selected value. This value MUST be monotonically increasing. A value
 is considered to be previously used when it has been sent in an LMP
 message with the same CC_Id (for control channel specific messages)
 or LMP adjacency (for TE Link specific messages). The Message_Id
 field of the MESSAGE_ID_ACK object contains the Message_Id field of
 the message being acknowledged.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 23]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Unacknowledged messages sent with the MESSAGE_ID object SHOULD be
 retransmitted until the message is acknowledged or until a retry
 limit is reached (see also Section 10).

 Note that the 32-bit Message_Id value may wrap. The following
 expression may be used to test if a newly received Message_Id value
 is less than a previously received value:

 If ((int) old_id - (int) new_id > 0) {
 New value is less than old value;
 }

 Nodes processing incoming messages SHOULD check to see if a newly
 received message is out of order and can be ignored. Out-of-order
 messages can be identified by examining the value in the Message_Id
 field. If a message is determined to be out-of-order, that message
 should be silently dropped.

 If the message is a Config message, and the Message_Id value is less
 than the largest Message_Id value previously received from the
 sender for the CC_Id, then the message SHOULD be treated as being
 out-of-order.

 If the message is a LinkSummary message and the Message_Id value is
 less than the largest Message_Id value previously received from the
 sender for the TE Link, then the message SHOULD be treated as being
 out-of-order.

 If the message is a ChannelStatus message and the Message_Id value
 is less than the largest Message_Id value previously received from
 the sender for the specified TE link, then the receiver SHOULD check
 the Message_Id value previously received for the state of each data
 channel included in the ChannelStatus message. If the Message_Id
 value is greater than the most recently received Message_Id value
 associated with at least one of the data channels included in the
 message, the message MUST NOT be treated as out of order; otherwise
 the message SHOULD be treated as being out of order. However, the
 state of any data channel MUST NOT be updated if the Message_Id
 value is less than the most recently received Message_Id value
 associated with the data channel.

 All other messages MUST NOT be treated as out-of-order.

8. Graceful Restart

 This section describes the mechanism to resynchronize the LMP state
 after a control plane restart. A control plane restart may occur
 when bringing up the first control channel after a control
 communications failure. A control communications failure may be the
 result of an LMP adjacency failure or a nodal failure wherein the

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 LMP control state is lost, but the data plane is unaffected. The
 latter is detected by setting the "LMP Restart" bit in the Common

J. Lang, Editor Standards Track [Page 24]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Header of the LMP messages. When the control plane fails due to the
 loss of the control channel, the LMP link information should be
 retained. It is possible that a node may be capable of retaining the
 LMP link information across a nodal failure. However, in both cases
 the status of the data channels MUST be synchronized.

 It is assumed the Node_Id and Local Interface_Ids remain stable
 across a control plane restart.

 After the control plane of a node restarts, the control channel(s)
 must be re-established using the procedures of Section 3.1. When re-
 establishing control channels, the Config message SHOULD be sent
 using the unicast IP source and destination addresses.

 If the control plane failure was the result of a nodal failure where
 the LMP control state is lost, then the "LMP Restart" flag MUST be
 set in LMP messages until a Hello message is received with the
 RcvSeqNum equal to the local TxSeqNum. This indicates that the
 control channel is up and the LMP neighbor has detected the restart.

 The following assumes that the LMP component restart only occurred
 on one end of the TE Link. If the LMP component restart occurred on
 both ends of the TE Link, the normal procedures for LinkSummary
 should be used, as described in Section 4.

 Once a control channel is up, the LMP neighbor MUST send a
 LinkSummary message for each TE Link across the adjacency. All the
 objects of the LinkSummary message MUST have the N-bit set to 0
 indicating that the parameters are non-negotiable. This provides the
 local/remote Link_Id and Interface_Id mappings, the associated data
 link parameters, and indication of which data links are currently
 allocated to user traffic. When a node receives the LinkSummary
 message, it checks its local configuration. If the node is capable
 of retaining the LMP link information across a restart, it must
 process the LinkSummary message as described in Section 4 with the
 exception that the allocated/de-allocated flag of the DATA_LINK
 object received in the LinkSummary message MUST take precedence over
 any local value. If, however, the node was not capable of retaining
 the LMP link information across a restart, the node MUST accept the
 data link parameters of the received LinkSummary message and respond
 with a LinkSummaryAck message.

 Upon completion of the LinkSummary exchange, the node that has
 restarted the control plane SHOULD send a ChannelStatusRequest
 message for that TE link. The node SHOULD also verify the
 connectivity of all unallocated data channels.

9. Addressing

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 All LMP messages are run over UDP with an LMP port number (except,
 in some cases, the Test messages which may be limited by the

J. Lang, Editor Standards Track [Page 25]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 transport mechanism for in-band messaging). The destination address
 of the IP packet MAY be either the address learned in the
 Configuration procedure (i.e., the Source IP address found in the IP
 header of the received Config message), an IP address configured on
 the remote node, or the Node_Id. The Config message is an exception
 as described below.

 The manner in which a Config message is addressed may depend on the
 signaling transport mechanism. When the transport mechanism is a
 point-to-point link, Config messages SHOULD be sent to the Multicast
 address (224.0.0.1 or ff02::1). Otherwise, Config messages MUST be
 sent to an IP address on the neighboring node. This may be
 configured at both ends of the control channel or may be
 automatically discovered.

10. Exponential Back-off Procedures

 This section is based on [RFC2961] and provides exponential back-off
 procedures for message retransmission. Implementations MUST use the
 described procedures or their equivalent.

10.1. Operation

 The following operation is one possible mechanism for exponential
 back-off retransmission of unacknowledged LMP messages. The sending
 node retransmits the message until an acknowledgement message is
 received or until a retry limit is reached. When the sending node
 receives the acknowledgement, retransmission of the message is
 stopped. The interval between message retransmission is governed by
 a rapid retransmission timer. The rapid retransmission timer starts
 at a small interval and increases exponentially until it reaches a
 threshold.

 The following time parameters are useful to characterize the
 procedures:

 Rapid retransmission interval Ri:

 Ri is the initial retransmission interval for unacknowledged
 messages. After sending the message for the first time, the
 sending node will schedule a retransmission after Ri
 milliseconds.

 Rapid retry limit Rl:

 Rl is the maximum number of times a message will be transmitted
 without being acknowledged.

 Increment value Delta:

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2961

J. Lang, Editor Standards Track [Page 26]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Delta governs the speed with which the sender increases the
 retransmission interval. The ratio of two successive
 retransmission intervals is (1 + Delta).

 Suggested default values for an initial retransmission interval (Ri)
 of 500ms, a power of 2 exponential back-off (Delta = 1) and a retry
 limit of 3.

10.2. Retransmission Algorithm

 After a node transmits a message requiring acknowledgement, it
 should immediately schedule a retransmission after Ri seconds. If a
 corresponding acknowledgement message is received before Ri seconds,
 then message retransmission SHOULD be canceled. Otherwise, it will
 retransmit the message after (1+Delta)*Ri seconds. The
 retransmission will continue until either an appropriate
 acknowledgement message is received or the rapid retry limit, Rl,
 has been reached.

 A sending node can use the following algorithm when transmitting a
 message that requires acknowledgement:

 Prior to initial transmission, initialize Rk = Ri and Rn = 0.

 while (Rn++ < Rl) {
 transmit the message;
 wake up after Rk milliseconds;
 Rk = Rk * (1 + Delta);
 }
 /* acknowledged message or no reply from receiver and Rl
 reached*/
 do any needed clean up;
 exit;

 Asynchronously, when a sending node receives a corresponding
 acknowledgment message, it will change the retry count, Rn, to Rl.

 Note that the transmitting node does not advertise or negotiate the
 use of the described exponential back-off procedures in the Config
 or LinkSummary messages.

11. LMP Finite State Machines

11.1. Control Channel FSM

 The control channel FSM defines the states and logics of operation
 of an LMP control channel.

11.1.1.
 Control Channel States

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 A control channel can be in one of the states described below.
 Every state corresponds to a certain condition of the control

J. Lang, Editor Standards Track [Page 27]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 channel and is usually associated with a specific type of LMP
 message that is periodically transmitted to the far end.

 Down: This is the initial control channel state. In this
 state, no attempt is being made to bring the control
 channel up and no LMP messages are sent. The control
 channel parameters should be set to the initial values.

 ConfSnd: The control channel is in the parameter negotiation
 state. In this state the node periodically sends a
 Config message, and is expecting the other side to
 reply with either a ConfigAck or ConfigNack message.
 The FSM does not transition into the Active state until
 the remote side positively acknowledges the parameters.

 ConfRcv: The control channel is in the parameter negotiation
 state. In this state, the node is waiting for
 acceptable configuration parameters from the remote
 side. Once such parameters are received and
 acknowledged, the FSM can transition to the Active
 state.

 Active: In this state the node periodically sends a Hello
 message and is waiting to receive a valid Hello
 message. Once a valid Hello message is received, it can
 transition to the up state.

 Up: The CC is in an operational state. The node receives
 valid Hello messages and sends Hello messages.

 GoingDown: A CC may go into this state because of administrative
 action. While a CC is in this state, the node sets the
 ControlChannelDown bit in all the messages it sends.

11.1.2.
 Control Channel Events

 Operation of the LMP control channel is described in terms of FSM
 states and events. Control channel events are generated by the
 underlying protocols and software modules, as well as by the packet
 processing routines and FSMs of associated TE links. Every event has
 its number and a symbolic name. Description of possible control
 channel events is given below.

 1 : evBringUp: This is an externally triggered event indicating
 that the control channel negotiation should begin.
 This event, for example, may be triggered by an
 operator command, by the successful completion of
 a control channel bootstrap procedure, or by
 configuration. Depending on the configuration,

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 this will trigger either
 1a) the sending of a Config message,

J. Lang, Editor Standards Track [Page 28]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 1b) a period of waiting to receive a Config
 message from the remote node.

 2 : evCCDn: This event is generated when there is indication
 that the control channel is no longer available.

 3 : evConfDone: This event indicates a ConfigAck message has been
 received, acknowledging the Config parameters.

 4 : evConfErr: This event indicates a ConfigNack message has been
 received, rejecting the Config parameters.

 5 : evNewConfOK: New Config message was received from neighbor and
 positively acknowledged.

 6 : evNewConfErr: New Config message was received from neighbor and
 rejected with a ConfigNack message.

 7 : evContenWin: New Config message was received from neighbor at
 the same time a Config message was sent to the
 neighbor. The local node wins the contention. As
 a result, the received Config message is ignored.

 8 : evContenLost: New Config message was received from neighbor at
 the same time a Config message was sent to the
 neighbor. The local node loses the contention.
 8a) The Config message is positively
 acknowledged.
 8b) The Config message is negatively
 acknowledged.

 9 : evAdminDown: The administrator has requested that the control
 channel is brought down administratively.

 10: evNbrGoesDn: A packet with ControlChannelDown flag is received
 from the neighbor.

 11: evHelloRcvd: A Hello packet with expected SeqNum has been
 received.

 12: evHoldTimer: The HelloDeadInterval timer has expired indicating
 that no Hello packet has been received. This moves
 the control channel back into the Negotiation
 state, and depending on the local configuration,
 this will trigger either
 12a) the sending of periodic Config messages,
 12b) a period of waiting to receive Config
 messages from the remote node.

 13: evSeqNumErr: A Hello with unexpected SeqNum received and

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 discarded.

J. Lang, Editor Standards Track [Page 29]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 14: evReconfig: Control channel parameters have been reconfigured
 and require renegotiation.

 15: evConfRet: A retransmission timer has expired and a Config
 message is resent.

 16: evHelloRet: The HelloInterval timer has expired and a Hello
 packet is sent.

 17: evDownTimer: A timer has expired and no messages have been
 received with the ControlChannelDown flag set.

11.1.3.
 Control Channel FSM Description

 Figure 3 illustrates operation of the control channel FSM in a form
 of FSM state transition diagram.

 +--------+
 +----------------->| |<--------------+
 | +--------->| Down |<----------+ | | | | | | |
 | |+---------| |<-------+ | |
 | || +--------+ | | |
 | || | ^ 2,9| 2| 2|
 | ||1b 1a| | | | |
 | || v |2,9 | | |
 | || +--------+ | | |
 | || +->| |<------+| | |
 | || 4,7,| |ConfSnd | || | |
 | || 14,15+--| |<----+ || | |
 | || +--------+ | || | |
 | || 3,8a| | | || | |
 | || +---------+ |8b 14,12a| || | |
 | || | v | || | |
 | |+-|------>+--------+ | || | |
 | | | +->| |-----|-|+ | |
 | | |6,14| |ConfRcv | | | | |
 | | | +--| |<--+ | | | |
 | | | +--------+ | | | | |
 | | | 5| ^ | | | | |
 | | +---------+ | | | | | | |
 | | | | | | | | | |
 | | v v |6,12b | | | | |
 | |10 +--------+ | | | | |
 | +----------| | | | | | |
 | | +--| Active |---|-+ | | |
 10,17| | 5,16| | |-------|---+ |
 +-------+ 9 | 13 +->| | | | |
 | Going |<--|----------+--------+ | | |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 | Down | | 11| ^ | | |
 +-------+ | | |5 | | |
 ^ | v | 6,12b| | |
 |9 |10 +--------+ | |12a,14 |

J. Lang, Editor Standards Track [Page 30]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 | +----------| |---+ | |
 | | Up |-------+ |
 +------------------| |---------------+
 +--------+
 | ^
 | |
 +---+
 11,13,16

 Figure 3: Control Channel FSM

 Event evCCDn always forces the FSM to the down state. Events
 evHoldTimer evReconfig always force the FSM to the Negotiation state
 (either ConfSnd or ConfRcv).

11.2. TE Link FSM

 The TE Link FSM defines the states and logics of operation of the
 LMP TE Link.

11.2.1.
 TE Link States

 An LMP TE link can be in one of the states described below. Every
 state corresponds to a certain condition of the TE link and is
 usually associated with a specific type of LMP message that is
 periodically transmitted to the far end via the associated control
 channel or in-band via the data links.

 Down: There are no data links allocated to the TE link.

 Init: Data links have been allocated to the TE link, but the
 configuration has not yet been synchronized with the LMP
 neighbor. The LinkSummary message is periodically
 transmitted to the LMP neighbor.

 Up: This is the normal operational state of the TE link. At
 least one LMP control channel is required to be
 operational between the nodes sharing the TE link. As
 part of normal operation, the LinkSummary message may be
 periodically transmitted to the LMP neighbor or
 generated by an external request.

 Degraded: In this state, all LMP control channels are down, but
 the TE link still includes some data links that are
 allocated to user traffic.

11.2.2.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 TE Link Events

 Operation of the LMP TE link is described in terms of FSM states and
 events. TE Link events are generated by the packet processing

J. Lang, Editor Standards Track [Page 31]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 routines and by the FSMs of the associated control channel(s) and
 the data links. Every event has its number and a symbolic name.
 Description of possible events is given below.

 1 : evDCUp: One or more data channels have been enabled and
 assigned to the TE Link.

 2 : evSumAck: LinkSummary message received and positively
 acknowledged.

 3 : evSumNack: LinkSummary message received and negatively
 acknowledged.

 4 : evRcvAck: LinkSummaryAck message received acknowledging
 the TE Link Configuration.

 5 : evRcvNack: LinkSummaryNack message received.

 6 : evSumRet: Retransmission timer has expired and LinkSummary
 message is resent.

 7 : evCCUp: First active control channel goes up.

 8 : evCCDown: Last active control channel goes down.

 9 : evDCDown: Last data channel of TE Link has been removed.

11.2.3.
 TE Link FSM Description

 Figure 4 illustrates operation of the LMP TE Link FSM in a form of
 FSM state transition diagram.

 3,7,8
 +--+
 | |
 | v
 +--------+
 | |
 +------------>| Down |<---------+
 | | | |
 | +--------+ |
 | | ^ | |
 | 1| |9 |
 | v | |
 | +--------+ |
 | | |<-+ |
 | | Init | |3,5,6 |9
 | | |--+ 7,8 |
 9| +--------+ |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 | | |
 | 2,4| |
 | v |

J. Lang, Editor Standards Track [Page 32]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 +--------+ 7 +--------+ |
 | |------>| |----------+
 | Deg | | Up |
 | |<------| |
 +--------+ 8 +--------+
 | ^
 | |
 +--+
 2,3,4,5,6

 Figure 4: LMP TE Link FSM

 In the above FSM, the sub-states that may be implemented when the
 link verification procedure is used have been omitted.

11.3. Data Link FSM

 The data link FSM defines the states and logics of operation of a
 data link within an LMP TE link. Operation of a data link is
 described in terms of FSM states and events. Data links can either
 be in the active (transmitting) mode, where Test messages are
 transmitted from them, or the passive (receiving) mode, where Test
 messages are received through them. For clarity, separate FSMs are
 defined for the active/passive data links; however, a single set of
 data link states and events are defined.

11.3.1.
 Data Link States

 Any data link can be in one of the states described below. Every
 state corresponds to a certain condition of the data link.

 Down: The data link has not been put in the resource pool
 (i.e., the link is not 'in service')

 Test: The data link is being tested. An LMP Test message is
 periodically sent through the link.

 PasvTest: The data link is being checked for incoming test
 messages.

 Up/Free: The link has been successfully tested and is now put
 in the pool of resources (in-service). The link has
 not yet been allocated to data traffic.

 Up/Alloc: The link is up and has been allocated for data
 traffic.

11.3.2.
 Data Link Events

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 Data link events are generated by the packet processing routines and
 by the FSMs of the associated control channel and the TE link.

J. Lang, Editor Standards Track [Page 33]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Every event has its number and a symbolic name. Description of
 possible data link events is given below:

 1 :evCCUp: First active control channel goes up.

 2 :evCCDown: LMP neighbor connectivity is lost. This indicates
 the last LMP control channel has failed between
 neighboring nodes.

 3 :evStartTst: This is an external event that triggers the sending
 of Test messages over the data link.

 4 :evStartPsv: This is an external event that triggers the
 listening for Test messages over the data link.

 5 :evTestOK: Link verification was successful and the link can
 be used for path establishment.
 (a) This event indicates the Link Verification
 procedure (see Section 5) was successful
 for this data link and a TestStatusSuccess
 message was received over the control
 channel.
 (b) This event indicates the link is ready for
 path establishment, but the Link
 Verification procedure was not used. For
 in-band signaling of the control channel,
 the control channel establishment may be
 sufficient to verify the link.

 6 :evTestRcv: Test message was received over the data port and a
 TestStatusSuccess message is transmitted over the
 control channel.

 7 :evTestFail: Link verification returned negative results. This
 could be because (a) a TestStatusFailure message
 was received, or (b) the Verification procedure has
 ended without receiving a TestStatusSuccess or
 TestStatusFailure message for the data link.

 8 :evPsvTestFail:Link verification returned negative results. This
 indicates that a Test message was not detected and
 either (a) the VerifyDeadInterval has expired or
 (b) the Verification procedure has ended and the
 VerifyDeadInterval has not yet expired.

 9 :evLnkAlloc: The data link has been allocated.

 10:evLnkDealloc: The data link has been de-allocated.

 11:evTestRet: A retransmission timer has expired and the Test

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 message is resent.

J. Lang, Editor Standards Track [Page 34]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 12:evSummaryFail: The LinkSummary did not match for this data port.

 13:evLocalizeFail: A Failure has been localized to this data link.

 14:evdcDown: The data channel is no longer available.

11.3.3.
 Active Data Link FSM Description

 Figure 5 illustrates operation of the LMP active data link FSM in a
 form of FSM state transition diagram.

 +------+
 | |<-------+
 +--------->| Down | |
 | +----| |<-----+ | | | |
 | | +------+ | |
 | |5b 3| ^ | |
 | | | |7 | |
 | | v | | |
 | | +------+ | |
 | | | |<-+ | |
 | | | Test | |11 | |
 | | | |--+ | |
 | | +------+ | |
 | | 5a| 3^ | |
 | | | | | |
 | | v | | |
 |12 | +---------+ | |
 | +-->| |14 | |
 | | Up/Free |----+ |
 +---------| | |
 +---------+ |
 9| ^ |
 | | |
 v |10 |
 +---------+ |
 | |13 |
 |Up/Alloc |------+
 | |
 +---------+

 Figure 5: Active LMP Data Link FSM

11.3.4.
 Passive Data Link FSM Description

 Figure 6 illustrates operation of the LMP passive data link FSM in a
 form of FSM state transition diagram.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 35]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 +------+
 | |<------+
 +---------->| Down | |
 | +-----| |<----+ | | |
 | | +------+ | |
 | |5b 4| ^ | |
 | | | |8 | |
 | | v | | |
 | | +----------+ | |
 | | | PasvTest | | |
 | | +----------+ | |
 | | 6| 4^ | |
 | | | | | |
 | | v | | |
 |12 | +---------+ | |
 | +--->| Up/Free |14 | |
 | | |---+ |
 +----------| | |
 +---------+ |
 9| ^ |
 | | |
 v |10 |
 +---------+ |
 | |13 |
 |Up/Alloc |-----+
 | |
 +---------+

 Figure 6: Passive LMP Data Link FSM

12. LMP Message Formats

 All LMP messages (except, in some cases, the Test messages which,
 are limited by the transport mechanism for in-band messaging) are
 run over UDP with an LMP port number to be assigned by IANA.

12.1. Common Header

 In addition to the UDP header and standard IP header, all LMP
 messages (except, in some cases, the Test messages which may be
 limited by the transport mechanism for in-band messaging) have the
 following common header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | (Reserved) | Flags | Msg Type |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 +-+
 | LMP Length | (Reserved) |
 +-+

J. Lang, Editor Standards Track [Page 36]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The Reserved field should be sent as zero and ignored on receipt.

 All values are defined in network byte order (i.e., big-endian byte
 order).

 Vers: 4 bits

 Protocol version number. This is version 1.

 Flags: 8 bits

 The following bit-values are defined. All other bits are
 reserved and should be sent as zero and ignored on receipt.

 0x01: ControlChannelDown

 0x02: LMP Restart

 This bit is set to indicate that a nodal failure has
 occured and the LMP control state has been lost. This
 flag may be reset to 0 when a Hello message is received
 with RcvSeqNum equal to the local TxSeqNum.

 Msg Type: 8 bits

 The following values are defined. All other values are reserved

 1 = Config

 2 = ConfigAck

 3 = ConfigNack

 4 = Hello

 5 = BeginVerify

 6 = BeginVerifyAck

 7 = BeginVerifyNack

 8 = EndVerify

 9 = EndVerifyAck

 10 = Test

 11 = TestStatusSuccess

 12 = TestStatusFailure

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 37]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 13 = TestStatusAck

 14 = LinkSummary

 15 = LinkSummaryAck

 16 = LinkSummaryNack

 17 = ChannelStatus

 18 = ChannelStatusAck

 19 = ChannelStatusRequest

 20 = ChannelStatusResponse

 All of the messages are sent over the control channel EXCEPT
 the Test message, which is sent over the data link that is
 being tested.

 LMP Length: 16 bits

 The total length of this LMP message in bytes, including the
 common header and any variable-length objects that follow.

12.2. LMP Object Format

 LMP messages are built using objects. Each object is identified by
 its Object Class and Class-type. Each object has a name, which is
 always capitalized in this document. LMP objects can be either
 negotiable or non-negotiable (identified by the N bit in the object
 header). Negotiable objects can be used to let the devices agree on
 certain values. Non-negotiable objects are used for announcement of
 specific values that do not need or do not allow negotiation.

 All values are defined in network byte order (i.e., big-endian byte
 order).

 The format of the LMP object is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |N| C-Type | Class | Length |
 +-+
 | |
 // (object contents) //
 | |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 N: 1 bit

J. Lang, Editor Standards Track [Page 38]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The N flag indicates if the object is negotiable (N=1) or non-
 negotiable (N=0).

 C-Type: 7 bits

 Class-type, unique within an Object Class. Values are defined
 in Section 13.

 Class: 8 bits

 The Class indicates the object type. Each object has a name,
 which is always capitalized in this document.

 Length: 16 bits

 The Length field indicates the length of the object in bytes,
 including the N, C-Type, Class, and Length fields.

12.3. Parameter Negotiation Messages

12.3.1.
 Config Message (Msg Type = 1)

 The Config message is used in the control channel negotiation phase
 of LMP. The contents of the Config message are built using LMP
 objects. The format of the Config message is as follows:

 <Config Message> ::= <Common Header> <LOCAL_CCID> <MESSAGE_ID>
 <LOCAL_NODE_ID> <CONFIG>

 The above transmission order SHOULD be followed.

 The MESSAGE_ID object is within the scope of the LOCAL_CCID object.

 The Config message MUST be periodically transmitted until (1) it
 receives a ConfigAck or ConfigNack message, (2) a retry limit has
 been reached and no ConfigAck or ConfigNack message has been
 received, or (3) it receives a Config message from the remote node
 and has lost the contention (e.g., the Node_Id of the remote node is
 higher than the Node_Id of the local node). Both the retransmission
 interval and the retry limit are local configuration parameters.

12.3.2.
 ConfigAck Message (Msg Type = 2)

 The ConfigAck message is used to acknowledge receipt of the Config
 message and indicate agreement on all parameters.

 <ConfigAck Message> ::= <Common Header> <LOCAL_CCID> <LOCAL_NODE_ID>
 <REMOTE_CCID> <MESSAGE_ID_ACK>

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 <REMOTE_NODE_ID>

 The above transmission order SHOULD be followed.

J. Lang, Editor Standards Track [Page 39]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The contents of the REMOTE_CCID, MESSAGE_ID_ACK, and REMOTE_NODE_ID
 objects MUST be obtained from the Config message being acknowledged.

12.3.3.
 ConfigNack Message (Msg Type = 3)

 The ConfigNack message is used to acknowledge receipt of the Config
 message and indicate disagreement on non-negotiable parameters or
 propose other values for negotiable parameters. Parameters where
 agreement was reached MUST NOT be included in the ConfigNack
 Message. The format of the ConfigNack message is as follows:

 <ConfigNack Message> ::= <Common Header> <LOCAL_CCID>
 <LOCAL_NODE_ID> <REMOTE_CCID>
 <MESSAGE_ID_ACK> <REMOTE_NODE_ID> <CONFIG>

 The above transmission order SHOULD be followed.

 The contents of the REMOTE_CCID, MESSAGE_ID_ACK, and REMOTE_NODE_ID
 objects MUST be obtained from the Config message being negatively
 acknowledged.

 It is possible that multiple parameters may be invalid in the Config
 message.

 If a negotiable CONFIG object is included in the ConfigNack message,
 it MUST include acceptable values for the parameters.

 If the ConfigNack message includes CONFIG objects for non-negotiable
 parameters, they MUST be copied from the CONFIG objects received in
 the Config message.

 If the ConfigNack message is received and only includes CONFIG
 objects that are negotiable, then a new Config message SHOULD be
 sent. The values in the CONFIG object of the new Config message
 SHOULD take into account the acceptable values included in the
 ConfigNack message.

 If a node receives a Config message and recognizes the CONFIG object
 but does not recognize the C-Type, a ConfigNack message including
 the unknown CONFIG object MUST be sent.

12.4. Hello Message (Msg Type = 4)

 The format of the Hello message is as follows:

 <Hello Message> ::= <Common Header> <LOCAL_CCID> <HELLO>

 The above transmission order SHOULD be followed.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 The Hello message MUST be periodically transmitted at least once
 every HelloInterval msec. If no Hello message is received within the
 HelloDeadInterval, the control channel is assumed to have failed.

J. Lang, Editor Standards Track [Page 40]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

12.5. Link Verification Messages

12.5.1.
 BeginVerify Message (Msg Type = 5)

 The BeginVerify message is sent over the control channel and is used
 to initiate the link verification process. The format is as follows:

 <BeginVerify Message> ::= <Common Header> <LOCAL_LINK_ID>
 <MESSAGE_ID> [<REMOTE_LINK_ID>]
 <BEGIN_VERIFY>

 The above transmission order SHOULD be followed.

 To limit the scope of Link Verification to a particular TE Link, the
 Link_Id field of the LOCAL_LINK_ID object MUST be non-zero. If this
 field is zero, the data links can span multiple TE links and/or they
 may comprise a TE link that is yet to be configured. In the special
 case where the local Link_Id field is zero, the "Verify all Links"
 flag of the BEGIN_VERIFY object is used to distinguish between data
 links that span multiple TE links and those that have not yet been
 assigned to a TE link (see Section 5).

 The REMOTE_LINK_ID object may be included if the local/remote
 Link_Id mapping is known.

 The Link_Id field of the REMOTE_LINK_ID object MUST be non-zero if
 included.

 The BeginVerify message MUST be periodically transmitted until (1)
 the node receives either a BeginVerifyAck or BeginVerifyNack message
 to accept or reject the verify process or (2) a retry limit has been
 reached and no BeginVerifyAck or BeginVerifyNack message has been
 received. Both the retransmission interval and the retry limit are
 local configuration parameters.

12.5.2.
 BeginVerifyAck Message (Msg Type = 6)

 When a BeginVerify message is received and Test messages are ready
 to be processed, a BeginVerifyAck message MUST be transmitted.

 <BeginVerifyAck Message> ::= <Common Header> [<LOCAL_LINK_ID>]
 <MESSAGE_ID_ACK> <BEGIN_VERIFY_ACK>
 <VERIFY_ID>

 The above transmission order SHOULD be followed.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 The LOCAL_LINK_ID object may be included if the local/remote Link_Id
 mapping is known or learned through the BeginVerify message.

 The Link_Id field of the LOCAL_LINK_ID MUST be non-zero if included.

J. Lang, Editor Standards Track [Page 41]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The contents of the MESSAGE_ID_ACK object MUST be obtained from the
 BeginVerify message being acknowledged.

 The VERIFY_ID object contains a node-unique value that is assigned
 by the generator of the BeginVerifyAck message. This value is used
 to uniquely identify the Verification process from multiple LMP
 neighbors and/or parallel Test procedures between the same LMP
 neighbors.

12.5.3.
 BeginVerifyNack Message (Msg Type = 7)

 If a BeginVerify message is received and a node is unwilling or
 unable to begin the Verification procedure, a BeginVerifyNack
 message MUST be transmitted.

 <BeginVerifyNack Message> ::= <Common Header> [<LOCAL_LINK_ID>]
 <MESSAGE_ID_ACK> <ERROR_CODE>

 The above transmission order SHOULD be followed.

 The contents of the MESSAGE_ID_ACK object MUST be obtained from the
 BeginVerify message being negatively acknowledged.

 If the Verification process is not supported, the ERROR_CODE MUST
 indicate "Link Verification Procedure not supported".

 If Verification is supported, but the node is unable to begin the
 procedure, the ERROR_CODE MUST indicate "Unwilling to verify". If a
 BeginVerifyNack message is received with such an ERROR_CODE, the
 node that originated the BeginVerify SHOULD schedule a BeginVerify
 retransmission after Rf seconds, where Rf is a locally defined
 parameter.

 If the Verification Transport mechanism is not supported, the
 ERROR_CODE MUST indicate, "Unsupported verification transport
 mechanism".

 If remote configuration of the Link_Id is not supported and the
 content of the REMOTE_LINK_ID object (included in the BeginVerify
 message) does not match any configured values, the ERROR_CODE MUST
 indicate "Link_Id configuration error".

 If a node receives a BeginVerify message and recognizes the
 BEGIN_VERIFY object but does not recognize the C-Type, the
 ERROR_CODE MUST indicate, "Unknown object C-Type".

12.5.4.
 EndVerify Message (Msg Type = 8)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 The EndVerify message is sent over the control channel and is used
 to terminate the link verification process. The EndVerify message

J. Lang, Editor Standards Track [Page 42]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 may be sent at any time the initiating node desires to end the
 Verify procedure. The format is as follows:

 <EndVerify Message> ::=<Common Header> <MESSAGE_ID> <VERIFY_ID>

 The above transmission order SHOULD be followed.

 The EndVerify message will be periodically transmitted until (1) an
 EndVerifyAck message has been received or (2) a retry limit has been
 reached and no EndVerifyAck message has been received. Both the
 retransmission interval and the retry limit are local configuration
 parameters.

12.5.5.
 EndVerifyAck Message (Msg Type =9)

 The EndVerifyAck message is sent over the control channel and is
 used to acknowledge the termination of the link verification
 process. The format is as follows:

 <EndVerifyAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
 <VERIFY_ID>

 The above transmission order SHOULD be followed.

 The contents of the MESSAGE_ID_ACK object MUST be obtained from the
 EndVerify message being acknowledged.

12.5.6.
 Test Message (Msg Type = 10)

 The Test message is transmitted over the data link and is used to
 verify its physical connectivity. Unless explicitly stated, these
 messages MUST be transmitted over UDP like all other LMP messages.
 The format of the Test messages is as follows:

 <Test Message> ::= <Common Header> <LOCAL_INTERFACE_ID> <VERIFY_ID>

 The above transmission order SHOULD be followed.

 Note that this message is sent over a data link and NOT over the
 control channel. The transport mechanism for the Test message is
 negotiated using Verify Transport Mechanism field of the
 BEGIN_VERIFY object and the Verify Transport Response field of the
 BEGIN_VERIFY_ACK object (see Sections 13.8 and 13.9).

 The local (transmitting) node sends a given Test message
 periodically (at least once every VerifyInterval ms) on the
 corresponding data link until (1) it receives a correlating
 TestStatusSuccess or TestStatusFailure message on the control

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 channel from the remote (receiving) node or (2) all active control
 channels between the two nodes have failed. The remote node will
 send a given TestStatus message periodically over the control

J. Lang, Editor Standards Track [Page 43]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 channel until it receives either a correlating TestStatusAck message
 or an EndVerify message is received over the control channel.

12.5.7.
 TestStatusSuccess Message (Msg Type = 11)

 The TestStatusSuccess message is transmitted over the control
 channel and is used to transmit the mapping between the local
 Interface_Id and the Interface_Id that was received in the Test
 message.

 <TestStatusSuccess Message> ::= <Common Header> <LOCAL_LINK_ID>
 <MESSAGE_ID> <LOCAL_INTERFACE_ID>
 <REMOTE_INTERFACE_ID> <VERIFY_ID>

 The above transmission order SHOULD be followed.

 The contents of the REMOTE_INTERFACE_ID object MUST be obtained from
 the corresponding Test message being positively acknowledged.

12.5.8.
 TestStatusFailure Message (Msg Type = 12)

 The TestStatusFailure message is transmitted over the control
 channel and is used to indicate that the Test message was not
 received.

 <TestStatusFailure Message> ::= <Common Header> <MESSAGE_ID>
 <VERIFY_ID>

 The above transmission order SHOULD be followed.

12.5.9.
 TestStatusAck Message (Msg Type = 13)

 The TestStatusAck message is used to acknowledge receipt of the
 TestStatusSuccess or TestStatusFailure messages.

 <TestStatusAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
 <VERIFY_ID>

 The above transmission order SHOULD be followed.

 The contents of the MESSAGE_ID_ACK object MUST be obtained from the
 TestStatusSuccess or TestStatusFailure message being acknowledged.

12.6. Link Summary Messages

12.6.1.
 LinkSummary Message (Msg Type = 14)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 The LinkSummary message is used to synchronize the Interface_Ids and
 correlate the properties of the TE link. The format of the
 LinkSummary message is as follows:

J. Lang, Editor Standards Track [Page 44]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 <LinkSummary Message> ::= <Common Header> <MESSAGE_ID> <TE_LINK>
 <DATA_LINK> [<DATA_LINK>...]

 The above transmission order SHOULD be followed.

 The LinkSummary message can be exchanged at any time a link is not
 in the Verification process. The LinkSummary message MUST be
 periodically transmitted until (1) the node receives a
 LinkSummaryAck or LinkSummaryNack message or (2) a retry limit has
 been reached and no LinkSummaryAck or LinkSummaryNack message has
 been received. Both the retransmission interval and the retry limit
 are local configuration parameters.

12.6.2.
 LinkSummaryAck Message (Msg Type = 15)

 The LinkSummaryAck message is used to indicate agreement on the
 Interface_Id synchronization and acceptance/agreement on all the
 link parameters. It is on the reception of this message that the
 local node makes the Link_Id associations.

 <LinkSummaryAck Message> ::= <Common Header> <MESSAGE_ID_ACK>

 The above transmission order SHOULD be followed.

12.6.3.
 LinkSummaryNack Message (Msg Type = 16)

 The LinkSummaryNack message is used to indicate disagreement on non-
 negotiated parameters or propose other values for negotiable
 parameters. Parameters where agreement was reached MUST NOT be
 included in the LinkSummaryNack message.

 <LinkSummaryNack Message> ::= <Common Header> <MESSAGE_ID_ACK>
 <ERROR_CODE> [<DATA_LINK>...]

 The above transmission order SHOULD be followed.

 The DATA_LINK objects MUST include acceptable values for all
 negotiable parameters. If the LinkSummaryNack includes DATA_LINK
 objects for non-negotiable parameters, they MUST be copied from the
 DATA_LINK objects received in the LinkSummary message.

 If the LinkSummaryNack message is received and only includes
 negotiable parameters, then a new LinkSummary message SHOULD be
 sent. The values received in the new LinkSummary message SHOULD take
 into account the acceptable parameters included in the
 LinkSummaryNack message.

 If the LinkSummary message is received with unacceptable non-

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 negotiable parameters, the ERROR_CODE MUST indicate "Unacceptable
 non-netotiable LINK_SUMMARY parameters."

J. Lang, Editor Standards Track [Page 45]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 If the LinkSummary message is received with unacceptable negotiable
 parameters, the ERROR_CODE MUST indicate "Renegotiate LINK_SUMMARY
 parameters."

 If the LinkSummary message is received with an invalid TE_LINK
 object, the ERROR_CODE MUST indicate "Invalid TE_LINK object."

 If the LinkSummary message is received with an invalid DATA_LINK
 object, the ERROR_CODE MUST indicate "Invalid DATA_LINK object."

 If the LinkSummary message is received with a TE_LINK object but the
 C-Type is unknown, the ERROR_CODE MUST indicate, "Unknown TE_LINK
 object C-Type."

 If the LinkSummary message is received with a DATA_LINK object but
 the C-Type is unknown, the ERROR_CODE MUST indicate, "Unknown
 DATA_LINK object C-Type."

12.7. Fault Management Messages

12.7.1.
 ChannelStatus Message (Msg Type = 17)

 The ChannelStatus message is sent over the control channel and is
 used to notify an LMP neighbor of the status of a data link. A node
 that receives a ChannelStatus message MUST respond with a
 ChannelStatusAck message. The format is as follows:

 <ChannelStatus Message> ::= <Common Header> <LOCAL_LINK_ID>
 <MESSAGE_ID> <CHANNEL_STATUS>

 The above transmission order SHOULD be followed.

 If the CHANNEL_STATUS object does not include any Interface_Ids,
 then this indicates the entire TE Link has failed.

12.7.2.
 ChannelStatusAck Message (Msg Type = 18)

 The ChannelStatusAck message is used to acknowledge receipt of the
 ChannelStatus Message. The format is as follows:

 <ChannelStatusAck Message> ::= <Common Header> <MESSAGE_ID_ACK>

 The above transmission order SHOULD be followed.

 The contents of the MESSAGE_ID_ACK object MUST be obtained from the
 ChannelStatus message being acknowledged.

12.7.3.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 ChannelStatusRequest Message (Msg Type = 19)

 The ChannelStatusRequest message is sent over the control channel
 and is used to request the status of one or more data link(s). A

J. Lang, Editor Standards Track [Page 46]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 node that receives a ChannelStatusRequest message MUST respond with
 a ChannelStatusResponse message. The format is as follows:

 <ChannelStatusRequest Message> ::= <Common Header> <LOCAL_LINK_ID>
 <MESSAGE_ID>
 [<CHANNEL_STATUS_REQUEST>]

 The above transmission order SHOULD be followed.

 If the CHANNEL_STATUS_REQUEST object is not included, then the
 ChannelStatusRequest is being used to request the status of ALL of
 the data link(s) of the TE Link.

12.7.4.
 ChannelStatusResponse Message (Msg Type = 20)

 The ChannelStatusResponse message is used to acknowledge receipt of
 the ChannelStatusRequest Message and notify the LMP neighbor of the
 status of the data channel(s). The format is as follows:

 <ChannelStatusResponse Message> ::= <Common Header> <MESSAGE_ID_ACK>
 <CHANNEL_STATUS>

 The above transmission order SHOULD be followed.

 The contents of the MESSAGE_ID_ACK objects MUST be obtained from the
 ChannelStatusRequest message being acknowledged.

13. LMP Object Definitions

13.1. CCID (Control Channel ID) Class

 Class = 1

 o C-Type = 1, LOCAL_CCID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CC_Id |
 +-+

 CC_Id: 32 bits

 This MUST be node-wide unique and non-zero. The CC_Id
 identifies the control channel of the sender associated with
 the message.

 This object is non-negotiable.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 o C-Type = 2, REMOTE_CCID

 0 1 2 3

J. Lang, Editor Standards Track [Page 47]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CC_Id |
 +-+

 CC_Id: 32 bits

 This identifies the remote node's CC_Id and MUST be non-zero.

 This object is non-negotiable.

13.2. NODE_ID Class

 Class = 2

 o C-Type = 1, LOCAL_NODE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node_Id (4 bytes) |
 +-+

 Node_Id:

 This identities the node that originated the LMP packet.

 This object is non-negotiable.

 o C-Type = 2, REMOTE_NODE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node_Id (4 bytes) |
 +-+

 Node_Id:

 This identities the remote node.

 This object is non-negotiable.

13.3. LINK_ID Class

 Class = 3

 o C-Type = 1, IPv4 LOCAL_LINK_ID

 o C-Type = 2, IPv4 REMOTE_LINK_ID

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 0 1 2 3

J. Lang, Editor Standards Track [Page 48]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Link_Id (4 bytes) |
 +-+

 o C-Type = 3, IPv6 LOCAL_LINK_ID

 o C-Type = 4, IPv6 REMOTE_LINK_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Link_Id (16 bytes) +
 | |
 + +
 | |
 +-+

 o C-Type = 5, Unnumbered LOCAL_LINK_ID

 o C-Type = 6, Unnumbered REMOTE_LINK_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Link_Id (4 bytes) |
 +-+

 Link_Id:

 For LOCAL_LINK_ID, this identifies the sender's Link associated
 with the message. This value MUST be non-zero.

 For REMOTE_LINK_ID, this identifies the remote node's Link_Id
 and MUST be non-zero.

 This object is non-negotiable.

13.4. INTERFACE_ID Class

 Class = 4

 o C-Type = 1, IPv4 LOCAL_INTERFACE_ID

 o C-Type = 2, IPv4 REMOTE_INTERFACE_ID

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

J. Lang, Editor Standards Track [Page 49]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 +-+
 | Interface_Id (4 bytes) |
 +-+

 o C-Type = 3, IPv6 LOCAL_INTERFACE_ID

 o C-Type = 4, IPv6 REMOTE_INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Interface_Id (16 bytes) +
 | |
 + +
 | |
 +-+

 o C-Type = 5, Unnumbered LOCAL_INTERFACE_ID

 o C-Type = 6, Unnumbered REMOTE_INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface_Id (4 bytes) |
 +-+

 Interface_Id:

 For the LOCAL_INTERFACE_ID, this identifies the data link.
 This value MUST be node-wide unique and non-zero.

 For the REMOTE_INTERFACE_ID, this identifies the remote node's
 data link. The Interface_Id MUST be non-zero.

 This object is non-negotiable.

13.5. MESSAGE_ID Class

 Class = 5

 o C-Type=1, MessageId

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Message_Id |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 +-+

J. Lang, Editor Standards Track [Page 50]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Message_Id:

 The Message_Id field is used to identify a message. This value
 is incremented and only decreases when the value wraps. This is
 used for message acknowledgment.

 This object is non-negotiable.

 o C-Type = 2, MessageIdAck

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Message_Id |
 +-+

 Message_Id:

 The Message_Id field is used to identify the message being
 acknowledged. This value is copied from the MESSAGE_ID object
 of the message being acknowledged.

 This object is non-negotiable.

13.6. CONFIG Class

 Class = 6.

 o C-Type = 1, HelloConfig

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HelloInterval | HelloDeadInterval |
 +-+

 HelloInterval: 16 bits.

 Indicates how frequently the Hello packets will be sent and is
 measured in milliseconds (ms).

 HelloDeadInterval: 16 bits.

 If no Hello packets are received within the HelloDeadInterval,
 the control channel is assumed to have failed. The
 HelloDeadInterval is measured in milliseconds (ms). The
 HelloDeadInterval MUST be greater than the HelloInterval, and
 SHOULD be at least 3 times the value of HelloInterval.

 If the fast keep-alive mechanism of LMP is not used, the

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 HelloInterval and HelloDeadInterval MUST be set to zero.

J. Lang, Editor Standards Track [Page 51]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

13.7. HELLO Class

 Class = 7

 o C-Type = 1, Hello

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TxSeqNum |
 +-+
 | RcvSeqNum |
 +-+

 TxSeqNum: 32 bits

 This is the current sequence number for this Hello message.
 This sequence number will be incremented when the sequence
 number is reflected in the RcvSeqNum of a Hello packet that is
 received over the control channel.

 TxSeqNum=0 is not allowed.
 TxSeqNum=1 is used to indicate that this is the first Hello
 message sent over the control channel.

 RcvSeqNum: 32 bits

 This is the sequence number of the last Hello message received
 over the control channel. RcvSeqNum=0 is used to indicate that
 a Hello message has not yet been received.

 This object is non-negotiable.

13.8. BEGIN_VERIFY Class

 Class = 8

 o C-Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | VerifyInterval |
 +-+
 | Number of Data Links |
 +-+
 | EncType | (Reserved) | Verify Transport Mechanism |
 +-+
 | TransmissionRate |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 | Wavelength |
 +-+

J. Lang, Editor Standards Track [Page 52]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The Reserved field should be sent as zero and ignored on receipt.

 Flags: 16 bits

 The following flags are defined:

 0x0001 Verify all Links

 If this bit is set, the verification process checks all
 unallocated links; else it only verifies new ports or
 component links that are to be added to this TE link.

 0x0002 Data Link Type

 If set, the data links to be verified are ports,
 otherwise they are component links

 VerifyInterval: 16 bits

 This is the interval between successive Test messages and is
 measured in milliseconds (ms).

 Number of Data Links: 32 bits

 This is the number of data links that will be verified.

 EncType: 8 bits

 This is the encoding type of the data link. The defined EncType
 values are consistent with the LSP Encoding Type values of
 [RFC3471].

 Verify Transport Mechanism: 16 bits

 This defines the transport mechanism for the Test Messages.
 The scope of this bit mask is restricted to each encoding type.
 The local node will set the bits corresponding to the various
 mechanisms it can support for transmitting LMP test messages.
 The receiver chooses the appropriate mechanism in the
 BeginVerifyAck message.

 The following flag is defined across all Encoding Types. All
 other flags are dependent on the Encoding Type.

 0x8000 Payload:Test Message transmitted in the payload

 Capable of transmitting Test messages in the payload.
 The Test message is sent as an IP packet as defined
 above.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc3471

 TransmissionRate: 32 bits

J. Lang, Editor Standards Track [Page 53]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 This is the transmission rate of the data link over which the
 Test messages will be transmitted. This is expressed in bytes
 per second and represented in IEEE floating-point format.

 Wavelength: 32 bits

 When a data link is assigned to a port or component link that
 is capable of transmitting multiple wavelengths (e.g., a fiber
 or waveband-capable port), it is essential to know which
 wavelength the test messages will be transmitted over. This
 value corresponds to the wavelength at which the Test messages
 will be transmitted over and has local significance. If there
 is no ambiguity as to the wavelength over which the message
 will be sent, then this value SHOULD be set to 0.

13.9. BEGIN_VERIFY_ACK Class

 Class = 9

 o C-Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | VerifyDeadInterval | Verify_Transport_Response |
 +-+

 VerifyDeadInterval: 16 bits

 If a Test message is not detected within the
 VerifyDeadInterval, then a node will send the TestStatusFailure
 message for that data link.

 Verify_Transport_Response: 16 bits

 The recipient of the BeginVerify message (and the future
 recipient of the TEST messages) chooses the transport mechanism
 from the various types that are offered by the transmitter of
 the Test messages. One and only one bit MUST be set in the
 verification transport response.

 This object is non-negotiable.

13.10. VERIFY_ID Class

 Class = 10

 o C-Type = 1

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

J. Lang, Editor Standards Track [Page 54]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 +-+
 | Verify_Id |
 +-+

 Verify_Id: 32 bits

 This is used to differentiate Test messages from different TE
 links and/or LMP peers. This is a node-unique value that is
 assigned by the recipient of the BeginVerify message.

 This object is non-negotiable.

13.11. TE_LINK Class

 Class = 11

 o C-Type = 1, IPv4 TE_LINK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | Local_Link_Id (4 bytes) |
 +-+
 | Remote_Link_Id (4 bytes) |
 +-+

 o C-Type = 2, IPv6 TE_LINK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | |
 + +
 | |
 + Local_Link_Id (16 bytes) +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Remote_Link_Id (16 bytes) +
 | |
 + +
 | |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 +-+

J. Lang, Editor Standards Track [Page 55]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 o C-Type = 3, Unnumbered TE_LINK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | Local_Link_Id (4 bytes) |
 +-+
 | Remote_Link_Id (4 bytes) |
 +-+

 The Reserved field should be sent as zero and ignored on receipt.

 Flags: 8 bits

 The following flags are defined. All other bit-values are
 reserved and should be sent as zero and ignored on receipt.

 0x01 Fault Management Supported.

 0x02 Link Verification Supported.

 Local_Link_Id:

 This identifies the node's local Link_Id and MUST be non-zero.

 Remote_Link_Id:

 This identifies the remote node's Link_Id and MUST be non-zero.

13.12. DATA_LINK Class

 Class = 12

 o C-Type = 1, IPv4 DATA_LINK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | Local_Interface_Id (4 bytes) |
 +-+
 | Remote_Interface_Id (4 bytes) |
 +-+
 | |
 // (Subobjects) //
 | |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 o C-Type = 2, IPv6 DATA_LINK

J. Lang, Editor Standards Track [Page 56]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | |
 + +
 | |
 + Local_Interface_Id (16 bytes) +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Remote_Interface_Id (16 bytes) +
 | |
 + +
 | |
 +-+
 | |
 // (Subobjects) //
 | |
 +-+

 o C-Type = 3, Unnumbered DATA_LINK

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | (Reserved) |
 +-+
 | Local_Interface_Id (4 bytes) |
 +-+
 | Remote_Interface_Id (4 bytes) |
 +-+
 | |
 // (Subobjects) //
 | |
 +-+

 The Reserved field should be sent as zero and ignored on receipt.

 Flags: 8 bits

 The following flags are defined. All other bit-values are
 reserved and should be sent as zero and ignored on receipt.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 0x01 Interface Type: If set, the data link is a port,
 otherwise it is a component link.

J. Lang, Editor Standards Track [Page 57]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 0x02 Allocated Link: If set, the data link is currently
 allocated for user traffic. If a single
 Interface_Id is used for both the
 transmit and receive data links, then
 this bit only applies to the transmit
 interface.

 0x04 Failed Link: If set, the data link is failed and not
 suitable for user traffic.

 Local_Interface_Id:

 This is the local identifier of the data link. This MUST be
 node-wide unique and non-zero.

 Remote_Interface_Id:

 This is the remote identifier of the data link. This MUST be
 non-zero.

 Subobjects

 The contents of the DATA_LINK object consist of a series of
 variable-length data items called subobjects. The subobjects
 are defined in Section 13.12.1 below.

 A DATA_LINK object may contain more than one subobject. More than
 one subobject of the same Type may appear if multiple capabilities
 are supported over the data link.

13.12.1. Data Link Subobjects

 The contents of the DATA_LINK object include a series of variable-
 length data items called subobjects. Each subobject has the form:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------//--------------+
 | Type | Length | (Subobject contents) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--------------//---------------+

 Type: 8 bits

 The Type indicates the type of contents of the subobject.
 Currently defined values are:

 Type = 1, Interface Switching Type

 Type = 2, Wavelength

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 Length: 8 bits

J. Lang, Editor Standards Track [Page 58]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The Length contains the total length of the subobject in bytes,
 including the Type and Length fields. The Length MUST be at
 least 4, and MUST be a multiple of 4.

13.12.1.1. Subobject Type 1: Interface Switching Type

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Switching Type| EncType |
 +-+
 | Minimum Reservable Bandwidth |
 +-+
 | Maximum Reservable Bandwidth |
 +-+

 Switching Type: 8 bits

 This is used to identify the local Interface Switching Type of
 the TE link as defined in [RFC3471].

 EncType: 8 bits

 This is the encoding type of the data link. The defined EncType
 values are consistent with the LSP Encoding Type values of
 [RFC3471].

 Minimum Reservable Bandwidth: 32 bits

 This is measured in bytes per second and represented in IEEE
 floating point format.

 Maximum Reservable Bandwidth: 32 bits

 This is measured in bytes per second and represented in IEEE
 floating point format.

 If the interface only supports a fixed rate, the minimum and maximum
 bandwidth fields are set to the same value.

13.12.1.2. Subobject Type 2: Wavelength

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | (Reserved) |
 +-+
 | Wavelength |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc3471
https://datatracker.ietf.org/doc/html/rfc3471

 The Reserved field should be sent as zero and ignored on receipt.

J. Lang, Editor Standards Track [Page 59]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Wavelength: 32 bits

 This value indicates the wavelength carried over the port.
 Values used in this field only have significance between two
 neighbors.

13.13. CHANNEL_STATUS Class

 Class = 13

 o C-Type = 1, IPv4 INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface_Id (4 bytes) |
 +-+
 |A|D| Channel Status |
 +-+
 | : |
 // : //
 | : |
 +-+
 | Interface_Id (4 bytes) |
 +-+
 |A|D| Channel Status |
 +-+

 o C-Type = 2, IPv6 INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Interface_Id (16 bytes) +
 | |
 + +
 | |
 +-+
 |A|D| Channel Status |
 +-+
 | : |
 // : //
 | : |
 +-+
 | |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 + +
 | |
 + Interface_Id (16 bytes) +

J. Lang, Editor Standards Track [Page 60]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 | |
 + +
 | |
 +-+
 |A|D| Channel Status |
 +-+

 o C-Type = 3, Unnumbered INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface_Id (4 bytes) |
 +-+
 |A|D| Channel Status |
 +-+
 | : |
 // : //
 | : |
 +-+
 | Interface_Id (4 bytes) |
 +-+
 |A|D| Channel_Status |
 +-+

 Active bit: 1 bit

 This indicates that the Channel is allocated to user traffic
 and the data link should be actively monitored.

 Direction bit: 1 bit

 This indicates the direction (transmit/receive) of the data
 channel referred to in the CHANNEL_STATUS object. If set, this
 indicates the data channel is in the transmit direction.

 Channel_Status: 30 bits

 This indicates the status condition of a data channel. The
 following values are defined. All other values are reserved.

 1 Signal Okay (OK): Channel is operational
 2 Signal Degrade (SD): A soft failure caused by a BER
 exceeding a preselected threshold. The specific BER
 used to define the threshold is configured.
 3 Signal Fail (SF): A hard signal failure including (but not
 limited to) loss of signal (LOS), loss of frame
 (LOF), or Line AIS.

 This object contains one or more Interface_Ids followed by a

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 Channel_Status field.

J. Lang, Editor Standards Track [Page 61]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 To indicate the status of the entire TE Link, there MUST only be one
 Interface_Id and it MUST be zero.

 This object is non-negotiable.

13.14. CHANNEL_STATUS_REQUEST Class

 Class = 14

 o C-Type = 1, IPv4 INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface_Id (4 bytes) |
 +-+
 | : |
 // : //
 | : |
 +-+
 | Interface_Id (4 bytes) |
 +-+

 This object contains one or more Interface_Ids.

 The Length of this object is 4 + 4N in bytes, where N is the number
 of Interface_Ids.

 o C-Type = 2, IPv6 INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Interface_Id (16 bytes) +
 | |
 + +
 | |
 +-+
 | : |
 // : //
 | : |
 +-+
 | |
 + +
 | |
 + Interface_Id (16 bytes) +
 | |

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 + +
 | |

J. Lang, Editor Standards Track [Page 62]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 +-+

 This object contains one or more Interface_Ids.

 The Length of this object is 4 + 16N in bytes, where N is the number
 of Interface_Ids.

 o C-Type = 3, Unnumbered INTERFACE_ID

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface_Id (4 bytes) |
 +-+
 | : |
 // : //
 | : |
 +-+
 | Interface_Id (4 bytes) |
 +-+

 This object contains one or more Interface_Ids.

 The Length of this object is 4 + 4N in bytes, where N is the number
 of Interface_Ids.

 This object is non-negotiable.

13.15. ERROR_CODE Class

 Class = 20

 o C-Type = 1, BEGIN_VERIFY_ERROR

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ERROR CODE |
 +-+

 The following bit-values are defined in network byte order
 (i.e., big-endian byte order):

 0x01 = Link Verification Procedure not supported.
 0x02 = Unwilling to verify.
 0x04 = Unsupported verification transport mechanism.
 0x08 = Link_Id configuration error.
 0x10 = Unknown object C-Type.

 All other bit-values are reserved and should be sent as zero

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 and ignored on receipt.

J. Lang, Editor Standards Track [Page 63]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Multiple bits may be set to indicate multiple errors.

 This object is non-negotiable.

 If a BeginVerifyNack message is received with Error Code 2, the node
 that originated the BeginVerify SHOULD schedule a BeginVerify
 retransmission after Rf seconds, where Rf is a locally defined
 parameter.

 o C-Type = 2, LINK_SUMMARY_ERROR

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ERROR CODE |
 +-+

 The following bit-values are defined in network byte order
 (i.e., big-endian byte order):

 0x01 =Unacceptable non-negotiable LINK_SUMMARY parameters.
 0x02 =Renegotiate LINK_SUMMARY parameters.
 0x04 =Invalid TE_LINK Object.
 0x08 =Invalid DATA_LINK Object.
 0x10 =Unknown TE_LINK object C-Type.
 0x20 =Unknown DATA_LINK object C-Type.

 All other bit-values are reserved and should be sent as zero
 and ignored on receipt.

 Multiple bits may be set to indicate multiple errors.

 This object is non-negotiable.

14. Intellectual Property Considerations

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances
 of licenses to be made available, or the result of an attempt made
 to obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification
 can be obtained from the IETF Secretariat.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/bcp11

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary

J. Lang, Editor Standards Track [Page 64]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [BUNDLE] Kompella, K., Rekhter, Y., Berger, L., "Link Bundling in
 MPLS Traffic Engineering," (work in progress).

 [GMPLS-RTG] Kompella, K., Rekhter, Y. et al, "Routing Extensions in
 Support of Generalized MPLS," (work in progress).

 [RFC2961] Berger, L., Gan, D., et al, "RSVP Refresh Overhead
 Reduction Extensions," RFC 2961, April 2001.

 [RFC2402] Kent, S., Atkinson, R., "IP Authentication Header," RFC
2402, November 1998.

 [RFC2406] Kent, S., Atkinson, R., "IP Encapsulating Security
 Payload (ESP)," RFC 2406, November 1998.

 [RFC2407] Piper, D., "The Internet IP Security Domain of
 Interpretation for ISAKMP," RFC 2407, November 1998

 [RFC2409] Harkins, D., Carrel, D., "The Internet Key Exchange
 (IKE)," RFC 2409, November 1998.

 [RFC3471] Ashwood-Smith, P., Banerjee, A., et al, "Generalized
 MPLS - Signaling Functional Description," RFC 3473,
 January 2003.

15.2. Informative References

 [OSPF-TE] Katz, D., Yeung, D., Kompella, K., "Traffic Engineering
 Extensions to OSPF," (work in progress).

 [ISIS-TE] Li, T., Smit, H., "IS-IS extensions for Traffic
 Engineering," (work in progress).

 [RFC2401] Kent, S., Atkinson, R., "Security Architecture for the
 Internet Protocol," RFC 2401, November 1998

 [RFC2434] Narten, T. and Alvestrand, H., "Guidelines for Writing
 an IANA Considerations Section in RFCs," RFC 2434,
 October 1998.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc3473
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2434

J. Lang, Editor Standards Track [Page 65]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 [RFC3209] Awduche, D. O., Berger, L, et al, "Extensions to RSVP
 for LSP Tunnels," Internet Draft, RFC 3209, December
 2001.

16. Security Considerations

 There are number of attacks that an LMP protocol session can
 potentially experience. Some examples include:

 o an adversary may spoof control packets;

 o an adversary may modify the control packets in transit;

 o an adversary may replay control packets;

 o an adversary may study a number of control packets and try to
 break the key using cryptographic tools. If the
 hash/encryption algorithm used has known weaknesses than it
 becomes easy for the adversary to discover the key using
 simple tools.

 This section specifies an IPsec-based security mechanism for LMP.

16.1. Security Requirements

 The following requirements are applied to the mechanism described in
 this section.

 o LMP security MUST be able to provide authentication,
 integrity, and replay protection.

 o For LMP traffic, confidentiality is not needed. Only
 authentication is needed to ensure the control packets
 (packets sent along the LMP Control Channel) are originating
 from the right place and have not been modified in transit.
 LMP Test packets exchanged through the data links do not need
 to be protected.

 o For LMP traffic, protecting the identity of LMP end-points is
 not commonly required.

 o Security mechanism should provide for well defined key
 management schemes. The key management schemes should be well
 analyzed to be cryptographically secure. The key management
 schemes should be scalable. In addition, the key management
 system should be automatic.

 o The algorithms used for authentication MUST be
 cryptographically sound. Also the security protocol MUST
 allow for negotiating and using different authentication

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc3209

 algorithms.

J. Lang, Editor Standards Track [Page 66]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

16.2. Security Mechanisms

 IPsec is a protocol suite that is used to secure communication at
 the network layer between two peers. This protocol is comprised of
 IP Security architecture document [RFC2401], IKE [RFC2409], IPsec AH
 [RFC2402], and IPsec ESP [RFC2406]. IKE is the key management
 protocol for IP networks while AH and ESP are used to protect IP
 traffic. IKE is defined specific to IP domain of interpretation.

 Considering the requirements described in Section 16.1, it is
 recommended that where security is needed for LMP, implementations
 use IPsec as described below:

 1. Implementations of LMP over IPsec protocol SHOULD support manual
 keying mode.

 Manual keying mode provides an easy way to set up and diagnose
 IPsec functionality.

 However, note that manual keying mode can not effectively support
 features such as replay protection and automatic re-keying. An
 implementer using manual keys must be aware of these limits.

 It is recommended that an implementer use manual keying only for
 diagnostic purpose and use dynamic keying protocol to make use of
 features such as replay protection and automatic re-keying.

 2. IPsec ESP with trailer authentication in tunnel mode MUST be
 supported.

 3. Implementations MUST support authenticated key exchange
 protocols. IKE [RFC2409] MUST be used as the key exchange
 protocol if keys are dynamically negotiated between peers.

 4. Implementation MUST use the IPsec DOI [RFC2407].

 5. For IKE protocol, the identities of the SAs negotiated in Quick
 Mode represent the traffic that the peers agree to protect and
 are comprised of address space, protocol, and port information.

 For LMP over IPsec, it is recommended that the identity payload
 for Quick mode contain the following information:

 The identities MUST be of type IP addresses and the value of the
 identities SHOULD be the IP addresses of the communicating peers.

 The protocol field MUST be UDP. The port field SHOULD be set to
 zero to indicate port fields should be ignored. This implies all
 UDP traffic between the peers must be sent through the IPsec
 tunnel. If an implementation supports port based selectors it can

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2407

 opt for a finer grained selector by specifying the port field to
 LMP port. If, however, the peer does not use port based

J. Lang, Editor Standards Track [Page 67]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 selectors, the implementation MUST fall back to using port
 selector value of 0.

 6. Aggressive mode of IKE negotiation MUST be supported.

 When IPsec is configured to be used with a peer, all LMP messages
 are expected to be sent over the IPsec tunnel (crypto channel).
 Similarly a LMP receiver configured to use Ipsec with a peer, should
 reject any LMP traffic not coming through the crypto channel.

 The crypto channel can be pre-setup with the LMP neighbor or the
 first LMP message message sent to the peer could trigger the
 creation of the IPsec tunnel.

 A set of control channels can share the same crypto channel. When
 LMP Hellos are used to monitor the status of the control channel, it
 is important to keep in mind that the keep-alive failure in a
 control channel may also be due to a failure in the crypto channel.
 The following method is recommended to ensure an LMP communication
 path between two peers is working properly.

 o If LMP Hellos detect a failure on a control channel, switch to
 an alternate control channel and/or try to establish a new
 control channel.

 o Ensure the health of the control channels using LMP Hellos. If
 all control channels indicate a failure and it is not possible
 to bring up a new control channel, tear down all existing
 control channels. Also tear down the crypto channel (both the
 IKE SA and IPsec SAs).

 o Reestablish the crypto channel. Failure to establish a crypto
 channel indicates a fatal failure for LMP communication.

 o Bring up the control channel. Failure to bring up the control
 channel indicates a fatal failure for LMP communication.

 When LMP peers are dynamically discovered (particularly the
 initiator), the following points should be noted:

 When using pre-shared key authentication in identity protection
 mode (main mode), the pre-shared key is required to compute the
 value of SKEYID (used for deriving keys to encrypt messages
 during key exchange). In main mode of IKE, the pre-shared key to
 be used has to be identified before receiving the peerÆs identity
 payload. The pre-shared key is required for calculating SKEYID.
 The only information available about the peer at this point is
 its IP address from which the negotiation came from. Keying off
 the IP address of a peer to get the pre-shared key is not
 possible since the addresses are dynamic and not known

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

 beforehand.

J. Lang, Editor Standards Track [Page 68]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Aggressive mode key exchange can be used since identification
 payloads are sent in the first message.

 Note, however, that aggressive mode is prone to passive denial of
 service attacks. Using a shared secret (group shared secret)
 among a number of peers is strongly discourages as this opens up
 the solution to man-in-the-middle attacks.

 Digital signature based authentication is not prone to such
 problems. It is RECOMMENDED to use digital signature based
 authentication mechanism where possible.

 If pre-shared key based authentication is required, then
 aggressive mode SHOULD be used. IKE pre-shared authentication key
 values SHOULD be protected in a manner similar to the user's
 account password.

17. IANA Considerations

 LMP requires that a UDP port number be assigned.

 In the following, guidelines are given for IANA assignment for each
 LMP name space. Ranges are specified ôfor Private Useö, ôto be
 assigned by Expert Reviewö, and ôto be assigned by Standards Actionö
 (as defined in [RFC2434].

 Assignments made from LMP number spaces set aside for Private Use
 (i.e., for proprietary extensions) need not be documented.
 Independent RSVP implementations using the same Private Ues code
 points will in general not interoperate, so care should be exercised
 in using these code points in a multi-vendor network.

 Assignments made from LMP number spaces to be assigned by Expert
 Review are to be reviewed by an Expert designated by the IESG. The
 intent in this document is that code points from these ranges are
 used for Experimental extensions; as such,assignments MUST be
 accompanied by Experimental RFCs. If deployment suggests that these
 extensions are useful, then they should be described in Standards
 Track RFCs, and new code points from the Standards Action ranges
 MUST be assigned.

 Assignments from LMP number spaces to be assigned by Standards
 Action MUST be documented by a Standards Track RFC, typically
 submitted to an IETF Working Group, but in any case following the
 usual IETF procedures for Proposed Standards.

 The Reserved bits of the LMP Common Header should be allocated by
 Standards Action, pursuant to the policies outlined in [RFC2434].

 LMP defines the following name spaces that require management:

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

 - LMP Message Type.

J. Lang, Editor Standards Track [Page 69]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 - LMP Object Class.
 - LMP Object Class type (C-Type). These are unique within the
 Object Class.
 - LMP Sub-object Class type (Type). These are unique within the
 Object Class.

 The LMP Message Type name space should be allocated as follows:
 pursuant to the policies outlined in [RFC2434], the numbers in the
 range 0-127 are allocated by Standards Action, 128-240 are allocated
 through an Expert Review, and 241-255 are reserved for Private Use.

 The LMP Object Class name space should be allocated as follows:
 pursuant to the policies outlined in [RFC2434], the numbers in the
 range of 0-127 are allocated by Standards Action, 128-247 are
 allocated through an Expert Review, and 248-255 are reserved for
 Private Use.

 The policy for allocating values out of the LMP Object Class name
 space is part of the definition of the specific Class instance.
 When a Class is defined, its definition must also include a
 description of the policy under which the Object Class names are
 allocated.

 The policy for allocating values out of the LMP Sub-object Class
 name space is part of the definition of the specific Class instance.
 When a Class is defined, its definition must also include a
 description of the policy under which sub-objects are allocated.

 The following name spaces need to be assigned initially:

 [Note to RFC Editor: Please drop all text enclosed in parentheses in
 this section once the IANA assignments are made. The values are
 included for reference only and should be considered unassigned.]

 --
 LMP Message Type name space

 o Config message (suggested Message type = 1)

 o ConfigAck message (suggested Message type = 2)

 o ConfigNack message (suggested Message type = 3)

 o Hello message (suggested Message type = 4)

 o BeginVerify message (suggested Message type = 5)

 o BeginVerifyAck message (suggested Message type = 6)

 o BeginVerifyNack message (suggested Message type = 7)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

 o EndVerify message (suggested Message type = 8)

J. Lang, Editor Standards Track [Page 70]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 o EndVerifyAck message (suggested Message type = 9)

 o Test message (suggested Message type = 10)

 o TestStatusSuccess message (suggested Message type = 11)

 o TestStatusFailure message (suggested Message type = 12)

 o TestStatusAck message (suggested Message type = 13)

 o LinkSummary message (suggested Message type = 14)

 o LinkSummaryAck message (suggested Message type = 15)

 o LinkSummaryNack message (suggested Message type = 16)

 o ChannelStatus message (suggested Message type = 17)

 o ChannelStatusAck message (suggested Message type = 18)

 o ChannelStatusRequest message (suggested Message type = 19)

 o ChannelStatusResponse message (suggested Message type = 20)

 --
 LMP Object Class name space and Class type (C-Type)

 o CCID Class name (suggested = 1)

 The CCID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - LOCAL_CCID (suggested C-Type = 1)
 - REMOTE_CCID (suggested C-Type = 2)

 o NODE_ID Class name (suggested = 2)

 The NODE ID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - LOCAL_NODE_ID (suggested C-Type = 1)
 - REMOTE_NODE_ID (suggested C-Type = 2)

 o LINK_ID Class name (suggested = 3)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

J. Lang, Editor Standards Track [Page 71]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The LINK_ID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - IPv4 LOCAL_LINK_ID (suggested C-Type = 1)
 - IPv4 REMOTE_LINK_ID (suggested C-Type = 2)
 - IPv6 LOCAL_LINK_ID (suggested C-Type = 3)
 - IPv6 REMOTE_LINK_ID (suggested C-Type = 4)
 - Unnumbered LOCAL_LINK_ID (suggested C-Type = 5)
 - Unnumbered REMOTE_LINK_ID (suggested C-Type = 6)

 o INTERFACE_ID Class name (suggested = 4)

 The INTERFACE_ID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - IPv4 LOCAL_INTERFACE_ID (suggested C-Type = 1)
 - IPv4 REMOTE_INTERFACE_ID (suggested C-Type = 2)
 - IPv6 LOCAL_INTERFACE_ID (suggested C-Type = 3)
 - IPv6 REMOTE_INTERFACE_ID (suggested C-Type = 4)
 - Unnumbered LOCAL_INTERFACE_ID (suggested C-Type = 5)
 - Unnumbered REMOTE_INTERFACE_ID (suggested C-Type = 6)

 o MESSAGE_ID Class name (suggested = 5)

 The MESSAGE_ID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - MESSAGE_ID (suggested C-Type = 1)
 - MESSAGE_ID_ACK (suggested C-Type = 2)

 o CONFIG Class name (suggested = 6)

 The CONFIG Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - HELLO_CONFIG (suggested C-Type = 1)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

 o HELLO Class name (suggested = 7)

J. Lang, Editor Standards Track [Page 72]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The HELLO Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - HELLO (suggested C-Type = 1)

 o BEGIN_VERIFY Class name (suggested = 8)

 The BEGIN_VERIFY Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - Type 1 (suggested C-Type = 1)

 o BEGIN_VERIFY_ACK Class name (suggested = 9)

 The BEGIN_VERIFY_ACK Object Class type name space should be
 allocated as follows: pursuant to the policies outlined in
 [RFC2434], the numbers in the range 0-111 are allocated by Standards
 Action, 112-119 are allocated through an Expert Review, and 120-127
 are reserved for Private Use.

 - Type 1 (suggested C-Type = 1)

 o VERIFY_ID Class name (suggested = 10)

 The VERIFY_ID Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - Type 1 (suggested C-Type = 1)

 o TE_LINK Class name (suggested = 11)

 The TE_LINK Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - IPv4 TE_LINK (suggested C-Type = 1)
 - IPv6 TE_LINK (suggested C-Type = 2)
 - Unnumbered TE_LINK (suggested C-Type = 3)

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

 o DATA_LINK Class name (suggested = 12)

J. Lang, Editor Standards Track [Page 73]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 The DATA_LINK Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

 - IPv4 DATA_LINK (suggested C-Type = 1)
 - IPv6 DATA_LINK (suggested C-Type = 2)
 - Unnumbered DATA_LINK (suggested C-Type = 3)

 The DATA_LINK Sub-object Class name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range of 0-127 are allocated by Standards Action, 128-247 are
 allocated through an Expert Review, and 248-255 are reserved for
 Private Use.

 - Interface Switching Type (suggested sub-object Type = 1)
 - Wavelength (suggested sub-object Type = 2)

 o CHANNEL_STATUS Class name (suggested = 13)

 The CHANNEL_STATUS Object Class type name space should be allocated
 as follows: pursuant to the policies outlined in [RFC2434], the
 numbers in the range 0-111 are allocated by Standards Action, 112-
 119 are allocated through an Expert Review, and 120-127 are reserved
 for Private Use.

 - IPv4 INTERFACE_ID (suggested C-Type = 1)
 - IPv6 INTERFACE_ID (suggested C-Type = 2)
 - Unnumbered INTERFACE_ID (suggested C-Type = 3)

 o CHANNEL_STATUS_REQUESTClass name (suggested = 14)

 The CHANNEL_STATUS_REQUEST Object Class type name space should be
 allocated as follows: pursuant to the policies outlined in
 [RFC2434], the numbers in the range 0-111 are allocated by Standards
 Action, 112-119 are allocated through an Expert Review, and 120-127
 are reserved for Private Use.

 - IPv4 INTERFACE_ID (suggested C-Type = 1)
 - IPv6 INTERFACE_ID (suggested C-Type = 2)
 - Unnumbered INTERFACE_ID (suggested C-Type = 3)

 o ERROR_CODE Class name (suggested = 20)

 The ERROR_CODE Object Class type name space should be allocated as
 follows: pursuant to the policies outlined in [RFC2434], the numbers
 in the range 0-111 are allocated by Standards Action, 112-119 are
 allocated through an Expert Review, and 120-127 are reserved for
 Private Use.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

 - BEGIN_VERIFY_ERROR (suggested C-Type = 1)

J. Lang, Editor Standards Track [Page 74]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 - LINK_SUMMARY_ERROR (suggested C-Type = 2)

18. Acknowledgements

 The authors would like to thank Andre Fredette for his many
 contributions to this document. We would also like to thank Ayan
 Banerjee, George Swallow, Andre Fredette, Adrian Farrel, Dimitri
 Papadimitriou, Vinay Ravuri, and David Drysdale for their insightful
 comments and suggestions. We would also like to thank John Yu,
 Suresh Katukam, and Greg Bernstein for their helpful suggestions for
 the in-band control channel applicability.

19. Contributors

 Jonathan P. Lang Krishna Mitra
 Rincon Networks Independent Consultant
 829 De La Vina, Suite 220 email: kmitra@earthlink.net
 Santa Barbara, CA 93101
 Email: jplang@ieee.org

 John Drake Kireeti Kompella
 Calient Networks Juniper Networks, Inc.
 5853 Rue Ferrari 1194 North Mathilda Avenue
 San Jose, CA 95138 Sunnyvale, CA 94089
 email: jdrake@calient.net email: kireeti@juniper.net

 Yakov Rekhter Lou Berger
 Juniper Networks, Inc. Movaz Networks
 1194 North Mathilda Avenue email: lberger@movaz.com
 Sunnyvale, CA 94089
 email: yakov@juniper.net

 Debanjan Saha Debashis Basak
 IBM Watson Research Center Accelight Networks
 email: dsaha@us.ibm.com 70 Abele Road, Suite 1201
 Bridgeville, PA 15017-3470
 email: dbasak@accelight.com

 Hal Sandick Alex Zinin
 Shepard M.S. Alcatel
 2401 Dakota Street email: alex.zinin@alcatel.com
 Durham, NC 27705
 email: sandick@nc.rr.com

 Bala Rajagopalan Sankar Ramamoorthi
 Tellium Optical Systems Juniper Networks, Inc.
 2 Crescent Place 1194 North Mathilda Avenue
 Oceanport, NJ 07757-0901 Sunnyvale, CA 94089
 email: braja@tellium.com email: sankarr@juniper.net

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

20. Contact Address

J. Lang, Editor Standards Track [Page 75]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

 Jonathan P. Lang
 Rincon Networks
 829 De La Vina, Suite 220
 Goleta, CA 93101
 Email: jplang@ieee.org

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 76]

Internet Draft draft-ietf-ccamp-lmp-10.txt October 2003

21. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-lmp-10.txt

J. Lang, Editor Standards Track [Page 77]

