Abstract

This document defines a collection of common data types and groupings in the YANG data modeling language. These derived common types and groupings are intended to be imported by modules that model Layer 0 optical Traffic Engineering (TE) configuration and state capabilities such as Wavelength Switched Optical Networks (WSONs) and flexi-grid Dense Wavelength Division Multiplexing (DWDM) networks.

This document obsoletes RFC 9093.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

YANG [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols such as the Network Configuration Protocol (NETCONF) [RFC6241]. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types.

This document introduces a collection of common data types derived
from the built-in YANG data types. The derived types and groupings are designed to be the common types applicable for modeling Traffic Engineering (TE) features as well as non-TE features (e.g., physical network configuration aspects) for Layer 0 optical networks in model(s) defined outside of this document. The applicability of

Layer 0 types specified in this document includes Wavelength Switched Optical Networks (WSONs) [RFC6163] [ITU-T_G.698.2] and flexi-grid Dense Wavelength Division Multiplexing (DWDM) networks [RFC7698] [ITU-T_G.694.1].

[Editors’ Note]: This is the introduction from draft-ietf-ccamp-layer0-types-ext-01, to be reconciled with the introduction from RFC9093 above

YANG [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols such as NETCONF [RFC6241]. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types.

This document introduces a collection of common data types derived from the built-in YANG data types. The derived types and groupings are designed to be the common types applicable for modeling Traffic Engineering (TE) features as well as non-TE features (e.g., physical network configuration aspect) for Layer 0 optical networks in model(s) defined outside of this document.

This document adds new type definitions to the YANG modules and obsoletes [RFC9093]. For further details, see the revision statements of the YANG module in Section 3 or the summary in Appendix A.

1.1. Terminology and Notations

Refer to [RFC7446] and [RFC7581] for the key terms used in this document, and the terminology for describing YANG data models can be found in [RFC7950].

The YANG data model in this document conforms to the Network Management Datastore Architecture defined in [RFC8342].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.2. Prefix in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>l0-types</td>
<td>ietf-layer0-types</td>
<td>RFC XXXX</td>
</tr>
</tbody>
</table>

Table 1: Prefixes and corresponding YANG modules

RFC Editor Note: Please replace XXXX with the RFC number assigned to this document.

The YANG module "ietf-layer0-types" (defined in Section 3) references [RFC4203], [RFC6163], [RFC6205], [RFC7698], [RFC7699], [RFC8363], [ITU-T G.694.1], and [ITU-T G.694.2].

2. Layer 0 Types Module Contents

This document defines a YANG module for common Layer 0 types, ietf-layer0-types. This module is used for WSON and flexi-grid DWDM networks. The "ietf-layer0-types" module contains the following YANG reusable types and groupings:

l0-grid-type:

A base YANG identity for the grid type as defined in [RFC6163] and [RFC7698].

dwdm-ch-spcc-type:
A base YANG identity for the DWDM channel-spacing type as defined in [RFC6205].

cwdm-ch-spc-type:

A base YANG identity for the Coarse Wavelength Division Multiplexing (CWDM) channel-spacing type as defined in [RFC6205].

wson-label-start-end:

The WSON label range was defined in [RFC6205], and the generic topology model defines the label-start/label-end in [RFC8795]. This grouping shows the WSON-specific label-start and label-end information.

wson-label-hop:

The WSON label range was defined in [RFC6205], and the generic topology model defines the label-hop in [RFC8795]. This grouping shows the WSON-specific label-hop information.

l0-label-range-info:

A YANG grouping that defines the Layer 0 label range information applicable for WSON as defined in [RFC6205]. This grouping is used in the flexi-grid DWDM by adding more flexi-grid-specific parameters.

wson-label-step:

A YANG grouping that defines label steps for WSON as defined in [RFC8776].

flexi-grid-label-start-end:

The flexi-grid label range was defined in [RFC7698], and the generic topology model defines the label-start/label-end in [RFC8795]. This grouping shows the flexi-grid-specific label-start and label-end information.
flexi-grid-label-hop:

The flexi-grid label range was defined in [RFC7698], and the generic topology model defines the label-hop in [RFC8795]. This grouping shows the WSON-specific label-hop information.

flexi-grid-label-range-info:

A YANG grouping that defines flexi-grid label range information as defined in [RFC7698] and [RFC8363].

flexi-grid-label-step:

A YANG grouping that defines flexi-grid label steps as defined in [RFC8776].

transceiver-capabilities:

a YANG grouping to define the transceiver capabilities (also called "modes") needed to determine optical signal compatibility.

standard-mode:

a YANG grouping for ITU-T G.698.2 standard mode that guarantees interoperability.

organizational-mode:

a YANG grouping to define transponder operational mode supported by organizations or vendors.

common-explicit-mode:

a YANG grouping to define the list of attributes related to optical impairments limits in case of transceiver explicit mode. This grouping should be the same used in [I-D.ietf-ccamp-dwdm-if-param-yang].

common-organizational-explicit-mode:

a YANG grouping to define the common capabilities attributes limit
range in case of operational mode and explicit mode. Also this
grouping should be used in [I-D.ietf-ccamp-dwdm-if-param-yang].

cd-pmd-penalty:

a YANG grouping to define the triplet used as entries in the list
optional penalty associated with a given accumulated CD and PMD.
This list of triplet cd, pmd, penalty can be used to sample the
function penalty = f(CD, PMD).

3. YANG Module for Layer 0 Types

<CODE BEGINS> file "ietf-layer0-types@2022-07-11.yang"
module ietf-layer0-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-layer0-types";
 prefix l0-types;

 organization
 "IETF CCAMP Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>
 Editor: Haomian Zheng
 <mailto:zhenghaomian@huawei.com>
 Editor: Young Lee
 <mailto:younglee.tx@gmail.com>
 Editor: Aihua Guo
 <mailto:aihuaguo.ietf@gmail.com>
 Editor: Victor Lopez
 <mailto:victor.lopez@nokia.com>
 Editor: Daniel King
 <mailto:d.king@lancaster.ac.uk>";

description
 "This module defines Optical Layer 0 types. This module
provides groupings that can be applicable to Layer 0 Fixed Optical Networks (e.g., CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing)) and flexi-grid optical networks.

Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here.

// RFC Ed.: replace XXXX with actual RFC number and remove
// this note

// replace the revision date with the module publication date
// the format is (year-month-day)
revision 2022-07-11 {
 description
 "To be updated";
 reference
 "RFC XXXX: A YANG Data Model for Layer 0 Types";
}
revision 2021-08-13 {
 description
 "Initial version";
 reference
 "RFC 9093: A YANG Data Model for Layer 0 Types";
}
identity l0-grid-type {
 description "Layer 0 grid type";
 reference "RFC 6163": Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs),
 ITU-T G.694.1 (10/2020): Spectral grids for WDM applications:
 DWDM frequency grid,
 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications:
 CWDM wavelength grid";
}

identity flexi-grid-dwdm {
 base l0-grid-type;
 description "Flexi-grid";
 reference "RFC 7698": Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks,
 ITU-T G.694.1 (10/2020): Spectral grids for WDM applications:
 DWDM frequency grid";
}

identity wson-grid-dwdm {
 base l0-grid-type;
 description "DWDM grid";
 reference "RFC 6163": Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs),
 ITU-T G.694.1 (10/2020): Spectral grids for WDM applications:
 DWDM frequency grid";
}

identity wson-grid-cwdm {
 base l0-grid-type;
 description "CWDM grid";
 reference "RFC 6205": Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers,

}

identity dwdm-ch-spc-type {
 description
 "DWDM channel-spacing type";
 reference
 "RFC 6205": Generalized Labels for Lambda-Switch-Capable (LSC)
 Label Switching Routers,
 ITU-T G.694.1 (10/2020): Spectral grids for WDM applications:
 DWDM frequency grid";
}

identity dwdm-100ghz {
 base dwdm-ch-spc-type;
 description
 "100 GHz channel spacing";
}

identity dwdm-50ghz {
 base dwdm-ch-spc-type;
 description
 "50 GHz channel spacing";
}

identity dwdm-25ghz {
 base dwdm-ch-spc-type;
 description
 "25 GHz channel spacing";
}

identity dwdm-12p5ghz {
 base dwdm-ch-spc-type;
 description
 "12.5 GHz channel spacing";
}

identity flexi-ch-spc-type {
 description
 "Flexi-grid channel-spacing type";
 reference
 "RFC 7698": Framework and Requirements for GMPLS-Based Control
 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM)
 Networks,
 ITU-T G.694.1 (10/2020): Spectral grids for WDM applications:
DWDM frequency grid;
}

identity flexi-ch-spc-6p25ghz {
 base flexi-ch-spc-type;
 description
 "6.25 GHz channel spacing";
}

identity flexi-slot-width-granularity {
 description
 "Flexi-grid slot width granularity";
}

identity flexi-swg-12p5ghz {
 base flexi-slot-width-granularity;
 description
 "12.5 GHz slot width granularity";
}

identity cwdm-ch-spc-type {
 description
 "CWDM channel-spacing type";
 reference
 "RFC 6205": Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers,
 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications:
 CWDM wavelength grid";
}

identity cwdm-20nm {
 base cwdm-ch-spc-type;
 description
 "20nm channel spacing";
}

identity modulation {
 description "base identity for modulation type";
}

identity DPSK {
 base modulation;
description
"DPSK (Differential Phase Shift Keying) modulation";
}

identity QPSK {
 base modulation;
 description
 "QPSK (Quadrature Phase Shift Keying) modulation";
}

identity DP-QPSK {
 base modulation;
 description
 "DP-QPSK (Dual Polarization Quadrature Phase Shift Keying) modulation";
}

identity QAM8 {
 base modulation;
 description
 "8QAM (8 symbols Quadrature Amplitude Modulation)"
}

identity DP-QAM8 {
 base modulation;
 description
 "DP-QAM8 (8 symbols Dual Polarization Quadrature Amplitude Modulation)"
}

identity DC-DP-QAM8 {
 base modulation;
 description
 "DC DP-QAM8 (8 symbols Dual Carrier Dual Polarization Quadrature Amplitude Modulation)"
}

identity QAM16 {
 base modulation;
 description
 "QAM16 (16 symbols Quadrature Amplitude Modulation)"
}
identity DP-QAM16 {
 base modulation;
 description
 "DP-QAM16 (16 symbols Dual Polarization Quadrature Amplitude Modulation)";
}

identity DC-DP-QAM16 {
 base modulation;
 description
 "DC DP-QAM16 (16 symbols Dual Carrier Dual Polarization Quadrature Amplitude Modulation)";
}

identity QAM32 {

 base modulation;
 description
 "QAM32 (32 symbols Quadrature Amplitude Modulation)";
}

identity DP-QAM32 {
 base modulation;
 description
 "DP-QAM32 (32 symbols Dual Polarization Quadrature Amplitude Modulation)";
}

identity QAM64 {
 base modulation;
 description
 "QAM64 (64 symbols Quadrature Amplitude Modulation)";
}

identity DP-QAM64 {
 base modulation;
 description
 "DP-QAM64 (64 symbols Dual Polarization Quadrature Amplitude Modulation)";
}
identity fec-type {
 description
 "Base identity from which specific FEC
 (Forward Error Correction) type identities are derived."
}

identity g-fec {
 base fec-type;
 description
 "G-FEC (Generic-FEC)"
}

identity e-fec {
 base fec-type;
 description
 "E-FEC (Enhanced-FEC)"
}

identity no-fec {
 base fec-type;
 description
 "No FEC"
}

identity reed-solomon {
 base fec-type;
 description
 "Reed-Solomon error correction"
}

identity hamming-code {
 base fec-type;
 description
 "Hamming Code error correction"
}

identity golay {
 base fec-type;
 description "Golay error correction"
}

identity line-coding {
 description
"base line-coding class";
reference
 "ITU-T G.698.2-201811 section 7";
}

identity line-coding-NRZ-2p5G {
 base line-coding;
 description
 "ITU-T G.698.2-201811 section 7 table 8-1";
}

identity line-coding-NRZ-OTU1 {
 base line-coding;
 description
 "ITU-T G.698.2-201811 section 7 table 8-2";
}

identity line-coding-NRZ-10G {
 base line-coding;
 description
 "ITU-T G.698.2-201811 section 7 table 8-3/8-5";
}

identity line-coding-NRZ-OTU2 {
 base line-coding;
 description
 "ITU-T G.698.2-201811 section 7 table 8-4/8-6";
}

identity wavelength-assignment {

 description
 "Wavelength selection base";
 reference
 "RFC6163: Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)";
}

identity first-fit-wavelength-assignment {
 base wavelength-assignment;
 description
 "All the available wavelengths are numbered,
and this WA (Wavelength Assignment) method chooses the available wavelength with the lowest index;

identity random-wavelength-assignment {
 base wavelength-assignment;
 description
 "This WA method chooses an available wavelength randomly";
}

identity least-loaded-wavelength-assignment {
 base wavelength-assignment;
 description
 "This WA method selects the wavelength that has the largest residual capacity on the most loaded link along the route (in multi-fiber networks)";
}

identity term-type {
 description
 "Termination type";
 reference
 "ITU-T G.709: Interfaces for the Optical Transport Network";
}

identity term-phys {
 base term-type;
 description
 "Physical layer termination";
}

identity term-odu {
 base term-type;
 description
 "ODU (Optical Data Unit) termination";
}
identity term-opu {
 base term-type;
 description
 "OPU (Optical Payload Unit) termination";
}

identity otu-type {
 description
 "Base identity from which specific OTU identities are derived";
 reference
 "ITU-T G.709: Interfaces for the Optical Transport Network";
}

identity OTU1 {
 base otu-type;
 description
 "OTU1 (2.66 Gb/s)";
}

identity OTU1e {
 base otu-type;
 description
 "OTU1e (11.04 Gb/s)";
}

identity OTU1f {
 base otu-type;
 description
 "OTU1f (11.27 Gb/s)";
}

identity OTU2 {
 base otu-type;
 description
 "OTU2 (10.70 Gb/s)";
}

identity OTU2e {
 base otu-type;
 description
 "OTU2e (11.09 Gb/s)";
}
identity OTU2f {
 base otu-type;
 description
 "OTU2f (11.31G)";
}

identity OTU3 {
 base otu-type;
 description
 "OTU3 (43.01 Gb/s)";
}

identity OTU3e1 {
 base otu-type;
 description
 "OTU3e1 (44.57 Gb/s)";
}

identity OTU3e2 {
 base otu-type;
 description
 "OTU3e2 (44.58 Gb/s)";
}

identity OTU4 {
 base otu-type;
 description
 "OTU4 (111.80 Gb/s)";
}

identity OTUCn {
 base otu-type;
 description
 "OTUCn (n x 105.25 Gb/s)";
}

identity type-power-mode {
 description
 "power equalization mode used within the
 OMS and its elements";
}

identity power-spectral-density {
 base type-power-mode;
 description
 "all elements must use power spectral density (W/Hz)";
}
identity carrier-power {
 base type-power-mode;
 description
 "all elements must use power (dBm)"
}

/*
 * Typedefs
 */
typedef dwdm-n {
 type int16;
 description
 "The given value 'N' is used to determine the nominal central frequency."

 The nominal central frequency, 'f', is defined by:
 \[f = 193100.000 \text{ GHz} + N \times \text{channel spacing} \text{ (measured in GHz)} \],

 where 193100.000 GHz (193.100000 THz) is the ITU-T 'anchor frequency' for transmission over the DWDM grid, and where 'channel spacing' is defined by the dwdm-ch-spc-type.
}

reference
}

typedef cwdm-n {
 type int16;
 description
 "The given value 'N' is used to determine the nominal central wavelength."

 The nominal central wavelength is defined by:
 \[\text{Wavelength} = 1471 \text{ nm} + N \times \text{channel spacing} \text{ (measured in nm)} \],

 where 1471 nm is the conventional 'anchor wavelength' for transmission over the CWDM grid, and where 'channel spacing'
is defined by the cwdm-ch-spc-type.

reference
"RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers,

typedef flexi-n {
 type int16;
 description
 "The given value 'N' is used to determine the nominal central frequency."
 The nominal central frequency, 'f', is defined by:
 \[f = 193100.000 \text{ GHz} + N \times \text{channel spacing (measured in GHz)}, \]
 where 193100.000 GHz (193.100000 THz) is the ITU-T 'anchor frequency' for transmission over the DWDM grid, and where 'channel spacing' is defined by the flexi-ch-spc-type.
 Note that the term 'channel spacing' can be substituted by the term 'nominal central frequency granularity' defined in clause 8 of ITU-T G.694.1.";

reference
"RFC 7698: Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks,

}
typedef operational-mode {
 type string;
 description
 "Organization/vendor specific mode that guarantees
 interoperability.";
 // RFC Ed.: replace YYYY with actual RFC number and remove
 // this note after draft-ietf-ccamp-optical-impairment-topology-yang
}

typedef standard-mode {
 type string;
 description
 "ITU-T G.698.2 standard mode that guarantees
 interoperability.
 It must be an string with the following format:
 B-DScW-ytz(v) where all these attributes
 are conformant
 to the ITU-T recomendation";
 reference "ITU-T G.698.2 (11/2018)";
}

typedef organization-identifier {
 type string;
 description
 "vendor/organization identifier that uses a private mode
 out of already defined in G.698.2 ITU-T application-code";
 reference
 "RFC7581: Routing and Wavelength Assignment Information
 Encoding for Wavelength Switched Optical Networks";
typedef frequency-thz {
 type decimal64 {
 fraction-digits 6;
 }
 units THz;
 description
 "The DWDM frequency in THz, e.g., 193.112500";
}

typedef frequency-ghz {
 type decimal64 {
 fraction-digits 3;
 }
 units GHz;
 description
 "The DWDM frequency in GHz, e.g., 193112.500";
}

typedef dbm-t {
 type int32;
 units ".01dbm";
 description
 "Amplifiers and Transceivers Power in dBm.";
}

typedef snr {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB@0.1nm";
 description
 "(Optical) Signal to Noise Ratio measured over 0.1 nm resolution bandwidth";
}

typedef snr-or-null {
 type union {
 type snr;
 type empty;
 }
}
typedef fiber-type {
 type enumeration {
 enum G.652 {
 description "G.652 Standard Singlemode Fiber"
 }
 enum G.654 {
 description "G.654 Cutoff Shifted Fiber"
 }
 enum G.653 {
 description "G.653 Dispersion Shifted Fiber"
 }
 enum G.655 {
 description "G.655 Non-Zero Dispersion Shifted Fiber"
 }
 enum G.656 {
 description "G.656 Non-Zero Dispersion for Wideband Optical Transport"
 }
 enum G.657 {
 description "G.657 Bend-Insensitive Fiber"
 }
 }
 description
}

typedef decimal-2-digits {
 type decimal64 {
 fraction-digits 2;
 }
 description
 "A decimal64 value with two digits."
}

typedef decimal-2-digits-or-null {
type union {
 type decimal-2-digits;
 type empty;
}
description
 "A decimal64 value with two digits, when the value is know or an empty value when the value is not known.";
}

typedef power-in-db {
 type decimal-2-digits;
 units dB;
 description
 "The power in dB.";
}

typedef power-in-db-or-null {
 type union {
 type power-in-db;
 type empty;
 }
 description
 "The power in dB, when it is known or an empty value when the power is not known.";
}

typedef power-in-dbm {
 type decimal-2-digits;
 units dBm;
 description
 "The power in dBm.";
}

typedef power-in-dbm-or-null {
 type union {
 type power-in-dbm;
 type empty;
 }
 description
 "The power in dBm, when it is known or an empty value when the power is not known.";
/*
 * Groupings
 */

grouping wson-label-start-end {
 description
 "The WSON label-start or label-end used to specify WSON label range.";
 choice grid-type {
 description
 "Label for DWDM or CWDM grid";
 case dwdm {
 leaf dwdm-n {
 when "derived-from-or-self(../../../grid-type,
 "wson-grid-dwdm")" {
 description
 "Valid only when grid type is DWDM.";
 }
 type l0-types:dwdm-n;
 description
 "The central frequency of DWDM.";
 reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers";
 }
 case cwdm {
 leaf cwdm-n {
 when "derived-from-or-self(../../../grid-type,
 "wson-grid-cwdm")" {
 description
 "Valid only when grid type is CWDM.";
 }
 type l0-types:cwdm-n;
 description
 "Channel wavelength computing input.";
 reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers";
 }
 }
}
grouping wson-label-hop {
 description "Generic label-hop information for WSON"
 choice grid-type {
 description "Label for DWDM or CWDM grid"
 case dwdm {
 choice single-or-super-channel {
 description "single or super channel"
 case single {
 leaf dwdm-n {
 type l0-types:dwdm-n;
 description "The given value 'N' is used to determine the nominal central frequency."
 }
 }
 case super {
 leaf-list subcarrier-dwdm-n {
 type l0-types:dwdm-n;
 description "The given values 'N' are used to determine the nominal central frequency for each subcarrier channel."
 reference "ITU-T Recommendation G.694.1: Spectral grids for WDM applications: DWDM frequency grid"
 }
 }
 }
 }
 case cwdm {
 leaf cwdm-n {
 type l0-types:cwdm-n;
 description "The given value 'N' is used to determine the nominal central wavelength."
 reference "RFC 6205: Generalized Labels for Lambda-Switch- Capable (LSC) Label Switching Routers"
 }
 }
 }
}

reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC)
 Label Switching Routers";
grouping l0-label-range-info {
 description "Information about Layer 0 label range.";
 leaf grid-type {
 type identityref {
 base l0-grid-type;
 }
 description "Grid type";
 }
 leaf priority {
 type uint8;
 description "Priority in Interface Switching Capability Descriptor (ISCD).";
 reference
 "RFC 4203: OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)";
 }
 reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers";
}

grouping wson-label-step {
 description "Label step information for WSON";
 choice l0-grid-type {
 description "Grid type: DWDM, CWDM, etc.";
 case dwdm {
 leaf wson-dwdm-channel-spacing {
 when "derived-from-or-self(../..//grid-type, \"wson-grid-dwdm\")" {
 description
 }
 }
 }
 }
}
"Valid only when grid type is DWDM."
}
type identityref {
 base dwdm-ch-spc-type;
}
description

"Label-step is the channel spacing (GHz), e.g., 100.000, 50.000, 25.000, or 12.500 GHz for DWDM."
reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers";
}
}
}
}

"Label-step is the channel spacing (nm), i.e., 20 nm for CWDM, which is the only value defined for CWDM."
reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers";
}
}
}
}
reference
 "RFC 6205: Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers,
}

grouping flexi-grid-label-start-end {
 description
"The flexi-grid label-start or label-end used to specify flexi-grid label range."

leaf flexi-n {
 type l0-types:flexi-n;
 description
 "The given value 'N' is used to determine the nominal central frequency."
}

reference
"RFC 7698: Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks";

Internet-Draft Yang for Layer 0 Types July 2022

grouping flexi-grid-frequency-slot {
 description
 "Flexi-grid frequency slot grouping."
 uses flexi-grid-label-start-end;
 leaf flexi-m {
 type l0-types:flexi-m;
 description
 "The given value 'M' is used to determine the slot width."
 }
 reference
 "RFC 7698: Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks";
}

grouping flexi-grid-label-hop {
 description
 "Generic label-hop information for flexi-grid"
 choice single-or-super-channel {
 description
 "single or super channel"
 case single {
 uses flexi-grid-frequency-slot;
 }
 case super {
 list subcarrier-flexi-n {
 key "flexi-n";
 uses flexi-grid-frequency-slot;
 }
 }
 }
}
description
List of subcarrier channels for flexi-grid super channel.
}
}

reference
"RFC 7698: Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks";
}

grouping flexi-grid-label-range-info {
 description
 "Flexi-grid-specific label range related information";
 uses l0-label-range-info;
 container flexi-grid {
 description
 "flexi-grid definition";
 leaf slot-width-granularity {
 type identityref {
 base flexi-slot-width-granularity;
 }
 default "flexi-swg-12p5ghz";
 description
 "Minimum space between slot widths. Default is 12.500 GHz.";
 reference
 "RFC 7698: Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks";
 }
 leaf min-slot-width-factor {
 type uint16 {
 range "1..max";
 }
 default "1";
 description
 "A multiplier of the slot width granularity, indicating the minimum slot width supported by an optical port.";
 }
 }
 leaf max-slot-width-factor {
 type uint16 {
 range "1..max";
 }
 default "1";
 description
 "A multiplier of the slot width granularity, indicating the maximum slot width supported by an optical port.";
 }
}

Minimum slot width is calculated by:
Minimum slot width (GHz) =
min-slot-width-factor * slot-width-granularity.

RFC 8363: GMPLS OSPF-TE Extensions in Support of Flexi-
Grid Dense Wavelength Division Multiplexing (DWDM) Networks

leaf max-slot-width-factor {
 type uint16 {
 range "1..max";
 }
 must '. >= ../min-slot-width-factor' {
 error-message
 "Maximum slot width must be greater than or equal to
 minimum slot width.";
 }
 description
 "A multiplier of the slot width granularity, indicating
 the maximum slot width supported by an optical port.

 Maximum slot width is calculated by:
 Maximum slot width (GHz) =
 max-slot-width-factor * slot-width-granularity

 If specified, maximum slot width must be greater than or

equal to minimum slot width. If not specified, maximum
slot width is equal to minimum slot width.";
}

grouping flexi-grid-label-step {
 description
 "Label step information for flexi-grid";
 leaf flexi-grid-channel-spacing {

type identityref {
 base flexi-ch-spc-type;
}
default "flexi-ch-spc-6p25ghz";
description
 "Label-step is the nominal central frequency granularity (GHz), e.g., 6.25 GHz."
reference
 "RFC 7699: Generalized Labels for the Flexi-Grid in Lambda Switch Capable (LSC) Label Switching Routers";
}
leaf flexi-n-step {
 type uint8;
description
 "This attribute defines the multiplier for the supported values of 'N'.

 For example, given a grid with a nominal central frequency granularity of 6.25 GHz, the granularity of the supported values of the nominal central frequency could be 12.5 GHz. In this case, the values of flexi-n should be even and this constraint is reported by setting the flexi-n-step to 2.

 This attribute is also known as central frequency granularity in RFC 8363."
reference
 "RFC 8363: GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks";
}

/* supported inverse multiplexing capabilities such as max. OTSiG:OTSi cardinality
 It is a transponder attribute not transceiver */

Zheng, et al. Expires 12 January 2023
Internet-Draft Yang for Layer 0 Types July 2022

*/

/* leaf multiplexing-cap {
 type uint32;
 config false;
 description "supported inverse multiplexing capabilities such as max. OTSiG:OTSi cardinality";
grouping transceiver-mode {

description
 "This grouping is intended to be used for reporting the
 information of a transceiver's mode."

choice mode {
 mandatory true;

description
 "Indicates whether the transceiver's mode is a standard
 mode, an organizational mode or an explicit mode."

 case G.698.2 {
 uses standard-mode;
 }

 case organizational-mode {
 container organizational-mode {
 description
 "The set of attributes for an organizational mode";

 uses organizational-mode;
 uses common-organizational-explicit-mode;
 } // container organizational-mode
 }

 case explicit-mode {
 container explicit-mode {
 description
 "The set of attributes for an explicit mode";

 container supported-modes {
 description
 "Container for all the standard and organizational
 modes supported by the transceiver's explicit
 mode."

 }

 leaf-list supported-application-codes {
 type leafref {
 path "../../../mode-id";
 }

 must "../.../" + "supported-mode[mode-id=current()]/"
 + "standard-mode" {
 description
 "The pointer is only for application codes
supported by transceiver.

Leaf-list supported-organizational-modes {
 type leafref {
 path "../../../mode-id";
 }
 must "../../..//" + "supported-mode[mode-id=current()]/" + "organizational-mode" {
 description
 "The pointer is only for organizational modes supported by transceiver.";
 }
}

Grouping transceiver-capabilities {
 description
 "This grouping is intended to be used for reporting the capabilities of a transceiver.";
}

Container supported-modes {
 description
 "Transceiver's supported modes.";
 List supported-mode {
 Key "mode-id";
 Config false;
 Description "list of supported transceiver's modes.";
 Leaf mode-id {
 Type string {
 Length "1..255";
 }
 Description "ID for the supported transceiver's mode.";
 }
 Uses transceiver-mode;
 } // List supported-modes
{ } // container supported-modes
} // grouping transceiver-capabilities

grouping standard-mode {
 description
 "ITU-T G.698.2 standard mode that guarantees interoperability. It must be an string with the following format: B-DScW-ytz(v) where all these attributes are conformant to the ITU-T recomendation";

 leaf standard-mode {
 type standard-mode;
 config false;
 description
 "G.698.2 standard mode";
 }
}

} // container supported-modes
} // grouping transceiver-capabilities

grouping organizational-mode {
 description
 "Transponder operational mode supported by organizations or vendor";

 leaf operational-mode {
 type operational-mode;
 config false;
 description
 "configured organization- or vendor-specific application identifiers (AI) supported by the transponder";
 }

 leaf organization-identifier {
 type organization-identifier;
 config false;
 description
 "organization identifier that uses organizational mode";
 }
}

grouping penalty-value {
 description
 "A common definition of the penalty value used for describing multiple penalty types (.e.g, CD, PMD, PDL)";
leaf penalty-value {
 type union {
 type decimal64 {
 fraction-digits 2;

 range "0..max";
 }
 type empty;
 }
 units "dB";
 config false;
 mandatory true;
 description
 "OSNR penalty associated with the related optical impairment at the receiver.";
}

grouping common-explicit-mode {
 description "Attributes capabilities related to explicit mode of an optical transceiver";

 leaf line-coding-bitrate {
 type identityref {
 base line-coding;
 }
 config false;
 description
 "Bit rate/line coding of the optical tributary signal.";
 reference
 "ITU-T G.698.2 section 7.1.2";
 }
 leaf bitrate {
type uint16;
units "Gbit/sec";
config false;
description
"The gross bitrate (e.g., 100, 200) of the optical tributary signal.";
}
leaf max-polarization-mode-dispersion {
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
}

leaf max-chromatic-dispersion {
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
 units "ps/nm";
 config false;
description
"Maximum acceptable accumulated chromatic dispersion on the receiver";
}

list chromatic-dispersion-penalty {
 config false;
description
"Optional penalty associated with a given accumulated chromatic dispersion (CD) value. This list of pair cd and penalty can be used to sample the function penalty = f(CD).";
leaf chromatic-dispersion {
 type union {
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
 }
}
type empty;

} units "ps/nm";
config false;
mandatory true;
description "Chromatic dispersion";
}

uses penalty-value;

} list polarization-dispersion-penalty {
config false;
description
"Optional penalty associated with a given accumulated polarization mode dispersion(PMD) value. This list of pair pmd and penalty can be used to sample the function penalty = f(PMD).";
leaf polarization-mode-dispersion {
type union {

type decimal64 {
 fraction-digits 2;
 range "0..max";
}
type empty;
}
units "ps";
config false;
mandatory true;
description "Polarization mode dispersion";
}

uses penalty-value;

} leaf max-diff-group-delay {
type int32;
config false;
description "Maximum Differential group delay of this mode for this lane";
}

list max-polarization-dependent-loss-penalty {
config false;
description
"Optional penalty associated with the maximum acceptable accumulated polarization dependent loss. This list of pair pdl and penalty can be used to sample the function pdl = f(penalty)."

leaf max-polarization-dependent-loss {
 type power-in-db-or-null;
 config false;
 mandatory true;
 description
 "Maximum acceptable accumulated polarization dependent loss.";
}
uses penalty-value;
}
leaf available-modulation-type {
 type identityref {
 base modulation;
 }
 config false;
 description
 "Modulation type the specific transceiver in the list can support";
}
leaf min-OSNR {
 type snr;
 config false;
 description
 "min OSNR measured over 0.1 nm resolution bandwidth:
 if received OSNR at minimum Rx-power is lower than MIN-OSNR, an increased level of bit-errors post-FEC needs to be expected.";
 // change resolution BW from 12.5 GHz to 0.1 nm
}
leaf min-Q-factor {
 type int32;
 units "dB";
 config false;
 description "min Qfactor at FEC threshold";
}
leaf available-baud-rate {
 type uint32;
units Bd;
config false;
description
"Baud-rate the specific transceiver in
the list can support.
Baud-rate is the unit for
symbol rate or modulation rate
in symbols per second or
pulses per second.
It is the number of distinct symbol
changes (signal events) made to the
transmission medium
per second in a digitally
modulated signal or a line code";
}
leaf roll-off {
 type decimal64 {
 fraction-digits 4;
 range "0..1";
 }
 config false;
description
"the roll-off factor (beta with values from 0 to 1)
identifies how the real signal shape exceed
the baud rate. If=0 it is exactly matching
the baud rate. If=1 the signal exceeds the
50% of the baud rate at each side.";
}
leaf min-carrier-spacing {
 type frequency-ghz;
 config false;
description
"This attribute specifies the minimum nominal difference
between the carrier frequencies of two homogeneous OTSis
(which have the same optical characteristics but the central
frequencies) such that if they are placed next to each other
the interference due to spectrum overlap between them can be
considered negligible.

In case of heterogeneous OTSi it is up to path computation
engine to determine the minimum distance between the carrier
frequency of the two adjacent OTSi.

leaf available-fec-type {
 type identityref {
 base fec-type;
 }
 config false;
 description "Available FEC";
}

leaf fec-code-rate {
 type decimal64 {
 fraction-digits 8;
 range "0..max";
 }
 config false;
 description "FEC-code-rate";
}

leaf fec-threshold {
 type decimal64 {
 fraction-digits 8;
 range "0..max";
 }
 config false;
 description "Threshold on the BER, for which FEC is able to correct errors";
}

} // grouping common-explicit-mode

grouping common-organizational-explicit-mode {
 description "Common capability attributes limit range in case of operational mode and explicit mode. These attributes are supported separately in case of application codes";

 /* transmitter tuning range (f_tx-min, f_tx-max) */

 leaf min-central-frequency {
 type frequency-thz;
 config false;
 description
 }

"This parameter indicates the minimum frequency for the transmitter tuning range."
}
leaf max-central-frequency {
 type frequency-thz;
 config false;
 description
 "This parameter indicates the maximum frequency for the transmitter tuning range."
}

leaf transceiver-tunability {
 type frequency-ghz;
 config false;
 description
 "This parameter indicates the transmitter frequency fine tuning steps e.g 3.125GHz or 0.001GHz."
}

/* supported transmitter power range [p_tx-min, p_tx_max] */
leaf tx-channel-power-min {
 type dbm-t;
 config false;
 description "The minimum output power of this interface"
}
leaf tx-channel-power-max {
 type dbm-t;
 config false;
 description "The maximum output power of this interface"
}

/* supported receiver power range [p_rx-min, p_rx_max] */
leaf rx-channel-power-min {
 type dbm-t;
 config false;
 description "The minimum input power of this interface"
}
leaf rx-channel-power-max {
 type dbm-t;
 config false;
 description "The maximum input power of this interface"
}
leaf rx-total-power-max {
 type dbm-t;

config false;
description "Maximum rx optical power for all the channels";
}
} // grouping common-organizational-explicit-mode
/* This grouping represent the list of configured parameters */
/* values independent of operational mode */
grouping common-transceiver-configured-param {
 description "Capability of an optical transceiver";

 leaf tx-channel-power {
 type union {
 type dbm-t;
 type empty;
 }
 description "The current channel transmit power";
 }

 leaf rx-channel-power {
 type union {
 type dbm-t;
 type empty;
 }
 config false;
 description "The current channel received power";
 }

 leaf rx-total-power {
 type union {
 type dbm-t;
 type empty;
 }
 config false;
 description "Current total received power";
 }
} // grouping for configured attributes out of mode

grouping l0-tunnel-attributes {
 description "Parameters for Layer0 (WSON or Flexi-Grid) Tunnels.";

 leaf bit-stuffing {
 type boolean;
 description "Bit stuffing enabled/disabled.";
 }

 leaf wavelength-assignment {
type identityref {
 base wavelength-assignment;

}
range 0..max;
}
default 0;
description
 "An additional margin to be added to the OSNR-min of the transceiver when checking the estimated received Generalized SNR (GSNR).";
}

4. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. The NETCONF protocol over Secure Shell (SSH) specification [RFC6242] describes a method for invoking and running NETCONF within a Secure Shell (SSH) session as an SSH subsystem.
The objects in this YANG module are common data types and groupings. No object in this module can be read or written to. These definitions can be imported and used by other Layer 0 specific modules. It is critical to consider how imported definitions will be utilized and accessible via RPC operations, as the resultant schema will have data nodes that can be writable, or readable, and will have a significant effect on the network operations if used incorrectly or maliciously. All of these considerations belong in the document that defines the modules that import from this YANG module. Therefore, it is important to manage access to resultant data nodes that are considered sensitive or vulnerable in some network environments.

The security considerations spelled out in the YANG 1.1 specification [RFC7950] apply for this document as well.

5. IANA Considerations

IANA has assigned new URIs from the "IETF XML Registry" [RFC3688] as follows:

 Registrant Contact: The IESG
 XML: N/A; the requested URI is an XML namespace.

This document registers the following YANG module in the "YANG Module Names" registry [RFC7950].

 Name: ietf-layer0-types
 Prefix: l0-types
 Reference: RFC 9093

[Editors' Note] Check the IANA considerations in other bis documents

6. References

6.1. Normative References

[ITU-T_G.698.2]
 ITU-T Recommendation G.698.2, "Amplified multichannel
dense wavelength division multiplexing applications with single channel optical interfaces", ITU-T G.698.2 , November 2018.

[RFC8776] Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
6.2. Informative References

6.2. Informative References

Appendix A. Changes from RFC 9093

To be added in a future revision of this draft.

Acknowledgments

The authors and the working group give their sincere thanks to Robert Wilton for the YANG doctor review and Tom Petch for his comments during the model and document development.

This document was prepared using kramdown.

Contributors

Dhruv Dhody
Huawei
Email: dhruv.ietf@gmail.com

Bin Yeong Yoon
ETRI
Email: byyun@etri.re.kr

Ricard Vilalta
CTTC
Email: ricard.vilalta@cttc.es

Gabriele Galimberti
Cisco
Email: ggalimbe@cisco.com

Enrico Griseri
Nokia
Email: Enrico.Griseri@nokia.com

Authors' Addresses

Haomian Zheng
Huawei
Email: zhenghaomian@huawei.com

Young Lee
Samsung
Email: younglee.tx@gmail.com

Aihua Guo
Futurewei Technologies
Email: aihuaguo.ietf@gmail.com

Victor Lopez
Nokia
Email: victor.lopez@nokia.com

Daniel King
University of Lancaster
Email: d.king@lancaster.ac.uk

Dieter Beller
Nokia
Email: dieter.beller@nokia.com

Sergio Belotti
Nokia
Email: sergio.belotti@nokia.com

Italo Busi
Huawei
Email: italo.busi@huawei.com

Internet-Draft Yang for Layer 0 Types July 2022

Esther Le Rouzic
Orange
Email: esther.lerouzic@orange.com