
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-cdni-ci-triggers-rfc8007bis-00

Obsoletes: 8007 (if approved)

Published: 11 November 2021

Intended Status: Standards Track

Expires: 15 May 2022

Authors: O. Finkelman

Qwilt

S. Mishra

Verizon

N.B. Sopher

Qwilt

Content Delivery Network Interconnection (CDNI) Control Interface /

Triggers 2nd Edition

Abstract

This document obsoletes RFC8007. This document describes the part of

the Content Delivery Network Interconnection (CDNI) Control

interface that allows a CDN to trigger activity in an interconnected

CDN that is configured to deliver content on its behalf. The

upstream CDN can use this mechanism to request that the downstream

CDN pre-position metadata or content or to request that it

invalidate or purge metadata or content. The upstream CDN can

monitor the status of activity that it has triggered in the

downstream CDN.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8007
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Model for CDNI Triggers

2.1. Timing of Triggered Activity

2.2. Scope of Triggered Activity

2.2.1. Multiple Interconnected CDNs

2.3. Trigger Results

3. Collections of Trigger Status Resources

4. CDNI Trigger Interface

4.1. Creating Triggers

4.2. Checking Status

4.2.1. Polling Trigger Status Resource Collections

4.2.2. Polling Trigger Status Resources

4.3. Canceling Triggers

4.4. Deleting Triggers

4.5. Expiry of Trigger Status Resources

4.6. Loop Detection and Prevention

4.7. Trigger Extensibility

4.8. Error Handling

4.8.1. Error propagation

4.9. Content URLs

5. CI/T Object Properties and Encoding

5.1. CI/T Objects

5.1.1. CI/T Commands

5.1.2. Trigger Status Resources

5.1.3. Trigger Collections

5.2. Properties of CI/T Objects

5.2.1. Trigger Specification

5.2.2. Trigger Type

5.2.3. Trigger Status

5.2.4. PatternMatch

5.2.5. RegexMatch

5.2.6. Playlist

5.2.7. MediaProtocol

5.2.8. CI/T Trigger Extensions

5.2.9. Absolute Time

5.2.10. Error Description

5.2.11. Error Code

6. Trigger Extension Objects

6.1. LocationPolicy extension

¶

6.2. TimePolicy Extension

6.2.1. UTCWindow

6.2.2. LocalTimeWindow

6.2.3. DateLocalTime

7. Footprint and Capabilities

7.1. CI/T Playlist Protocol Capability Object

7.1.1. CI/T Playlist Protocol Capability Object Serialization

7.2. CI/T Trigger Extension Capability Object

7.2.1. CI/T Trigger Extension Capability Object Serialization

8. Examples

8.1. Creating Triggers

8.1.1. Preposition

8.1.2. Invalidate

8.1.3. Invalidation with Regex

8.1.4. Preposition with Playlists

8.2. Examining Trigger Status

8.2.1. Collection of All Triggers

8.2.2. Filtered Collections of Trigger Status Resources

8.2.3. Individual Trigger Status Resources

8.2.4. Polling for Changes in Status

8.2.5. Deleting Trigger Status Resources

8.2.6. Extensions with Error Propagation

9. IANA Considerations

9.1. CDNI Payload Type Parameter Registrations

9.1.1. CDNI ci-trigger-command.v2 Payload Type

9.1.2. CDNI ci-trigger-status.v2 Payload Type

9.1.3. CDNI ci-trigger-collection.v2 Payload Type

9.1.4. CDNI CI/T LocationPolicy Trigger Extension Type

9.1.5. CDNI CI/T TimePolicy Trigger Extension Type

9.1.6. CDNI FCI CI/T Playlist Protocol Payload Type

9.1.7. CDNI FCI CI/T Extension Objects Payload Type

9.2. "CDNI CI/T Trigger Types" Registry

9.3. "CDNI CI/T Error Codes" Registry

9.4. CDNI Media protocol types

10. Security Considerations

10.1. Authentication, Authorization, Confidentiality, Integrity

Protection

10.2. Denial of Service

10.3. Privacy

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Formalization of the JSON Data

Acknowledgments

Authors' Addresses

1. Introduction

[RFC6707] introduces the problem scope for Content Delivery Network

Interconnection (CDNI) and lists the four categories of interfaces

that may be used to compose a CDNI solution (Control, Metadata,

Request Routing, and Logging).

[RFC7336] expands on the information provided in [RFC6707] and

describes each of the interfaces and the relationships between them

in more detail.

This document describes the "CI/T" interface -- "CDNI Control

interface / Triggers". It does not consider those parts of the

Control interface that relate to configuration, bootstrapping, or

authentication of CDN Interconnect interfaces. Section 4 of

[RFC7337] identifies the requirements specific to the CI/T

interface; requirements applicable to the CI/T interface are CI-1 to

CI-6.

Section 2 outlines the model for the CI/T interface at a high

level.

Section 3 describes collections of Trigger Status Resources.

Section 4 defines the web service provided by the downstream CDN.

Section 5 lists properties of CI/T Commands and Status Resources.

Section 8 contains example messages.

1.1. Terminology

This document reuses the terminology defined in [RFC6707] and uses

"uCDN" and "dCDN" as shorthand for "upstream CDN" and "downstream

CDN", respectively.

Additionally, the following terms are used throughout this document

and are defined as follows:

HLS - HTTP Live Streaming

DASH - Dynamic Adaptive Streaming Over HTTP

MSS - Microsoft Smooth Streaming

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

¶

2. Model for CDNI Triggers

A CI/T Command, sent from the uCDN to the dCDN, is a request for the

dCDN to do some work relating to data associated with content

requests originating from the uCDN.

There are two types of CI/T Commands: CI/T Trigger Commands and CI/T

Cancel Commands. The CI/T Cancel Command can be used to request

cancellation of an earlier CI/T Trigger Command. A CI/T Trigger

Command is of one of the following types:

preposition - used to instruct the dCDN to fetch metadata from

the uCDN, or content from any origin including the uCDN.

invalidate - used to instruct the dCDN to revalidate specific

metadata or content before reusing it.

purge - used to instruct the dCDN to delete specific metadata or

content.

The CI/T interface is a web service offered by the dCDN. It allows

CI/T Commands to be issued and allows triggered activity to be

tracked. The CI/T interface builds on top of HTTP/1.1 [RFC7230].

References to URL in this document relate to HTTP/HTTPS URIs, as

defined in Section 2.7 of [RFC7230].

When the dCDN accepts a CI/T Command, it creates a resource

describing the status of the triggered activity -- a Trigger Status

Resource. The uCDN can poll Trigger Status Resources to monitor

progress.

The dCDN maintains at least one collection of Trigger Status

Resources for each uCDN. Each uCDN only has access to its own

collections, the locations of which are shared when CDNI is

established.

To trigger activity in the dCDN, the uCDN POSTs a CI/T Command to

the collection of Trigger Status Resources. If the dCDN accepts the

CI/T Command, it creates a new Trigger Status Resource and returns

its location to the uCDN. To monitor progress, the uCDN can GET the

Trigger Status Resource. To request cancellation of a CI/T Trigger

Command, the uCDN can POST to the collection of Trigger Status

Resources or simply delete the Trigger Status Resource.

In addition to the collection of all Trigger Status Resources for

the uCDN, the dCDN can maintain filtered views of that collection.

These filtered views are defined in Section 3 and include

collections of Trigger Status Resources corresponding to active and

completed CI/T Trigger Commands. These collections provide a

mechanism for polling the status of multiple jobs.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Figure 1 is an example showing the basic message flow used by the

uCDN to trigger activity in the dCDN and for the uCDN to discover

the status of that activity. Only successful triggering is shown.

Examples of the messages are given in Section 8.

Figure 1: Basic CDNI Message Flow for Triggers

The steps in Figure 1 are as follows:

The uCDN triggers action in the dCDN by POSTing a CI/T Command

to a collection of Trigger Status Resources -- "https://

dcdn.example.com/triggers/uCDN". This URL was given to the uCDN

when the CI/T interface was established.

The dCDN authenticates the request, validates the CI/T Command,

and, if it accepts the request, creates a new Trigger Status

Resource.

The dCDN responds to the uCDN with an HTTP 201 response status

and the location of the Trigger Status Resource.

The uCDN can poll, possibly repeatedly, the Trigger Status

Resource in the dCDN.

The dCDN responds with the Trigger Status Resource, describing

the progress or results of the CI/T Trigger Command.

¶

 uCDN dCDN

 | (1) POST https://dcdn.example.com/triggers/uCDN |

 [] --> []--+

 | [] | (2)

 | (3) HTTP 201 Response []<-+

 [] <-- []

 | Loc: https://dcdn.example.com/triggers/uCDN/123 |

 | |

 . . .

 . . .

 . . .

 | |

 | (4) GET https://dcdn.example.com/triggers/uCDN/123 |

 [] --> []

 | []

 | (5) HTTP 200 Trigger Status Resource []

 [] <-- []

 | |

 | |

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

The remainder of this document describes the messages, Trigger

Status Resources, and collections of Trigger Status Resources in

more detail.

2.1. Timing of Triggered Activity

Timing of the execution of CI/T Commands is under the dCDN's

control, including its start time and pacing of the activity in the

network.

CI/T "invalidate" and "purge" commands MUST be applied to all data

acquired before the command was accepted by the dCDN. The dCDN

SHOULD NOT apply CI/T "invalidate" and "purge" commands to data

acquired after the CI/T Command was accepted, but this may not

always be achievable, so the uCDN cannot count on that.

If the uCDN wishes to invalidate or purge content and then

immediately pre-position replacement content at the same URLs, it

SHOULD ensure that the dCDN has completed the invalidate/purge

before initiating the pre-positioning. Otherwise, there is a risk

that the dCDN pre-positions the new content, then immediately

invalidates or purges it (as a result of the two uCDN requests

running in parallel).

Because the CI/T Command timing is under the dCDN's control, the

dCDN implementation can choose whether to apply CI/T "invalidate"

and "purge" commands to content acquisition that has already started

when the command is received.

2.2. Scope of Triggered Activity

Each CI/T Command can operate on multiple metadata and content URLs.

Multiple representations of an HTTP resource may share the same URL.

CI/T Trigger Commands that invalidate or purge metadata or content

apply to all resource representations with matching URLs.

2.2.1. Multiple Interconnected CDNs

In a network of interconnected CDNs, a single uCDN will originate a

given item of metadata and associated content. It may distribute

that metadata and content to more than one dCDN, which may in turn

distribute that metadata and content to CDNs located further

downstream.

An intermediate CDN is a dCDN that passes on CDNI Metadata and

content to dCDNs located further downstream.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A "diamond" configuration is one where a dCDN can acquire metadata

and content originated in one uCDN from that uCDN itself and an

intermediate CDN, or via more than one intermediate CDN.

CI/T Commands originating in the single source uCDN affect metadata

and content in all dCDNs; however, in a diamond configuration, it

may not be possible for the dCDN to determine which uCDN it acquired

content from. In this case, a dCDN MUST allow each uCDN from which

it may have acquired the content to act upon that content using CI/T

Commands.

In all other cases, a dCDN MUST reject CI/T Commands from a uCDN

that attempts to act on another uCDN's content by using, for

example, HTTP 403 ("Forbidden").

Security considerations are discussed further in Section 10.

The diamond configuration may lead to inefficient interactions, but

the interactions are otherwise harmless. For example:

When the uCDN issues an "invalidate" CI/T Command, a dCDN will

receive that command from multiple directly connected uCDNs. The

dCDN may schedule multiple such commands separately, and the last

scheduled command may affect content already revalidated

following execution of the "invalidate" command that was

scheduled first.

If one of a dCDN's directly connected uCDNs loses its rights to

distribute content, it may issue a CI/T "purge" command. That

purge may affect content the dCDN could retain because it's

distributed by another directly connected uCDN. But, that content

can be reacquired by the dCDN from the remaining uCDN.

When the uCDN originating an item of content issues a CI/T purge

followed by a pre-position, two directly connected uCDNs will

pass those commands to a dCDN. That dCDN implementation need not

merge those operations or notice the repetition, in which case

the purge issued by one uCDN will complete before the other. The

first uCDN to finish its purge may then forward the "preposition"

trigger, and content pre-positioned as a result might be affected

by the still-running purge issued by the other uCDN. However, the

dCDN will reacquire that content as needed, or when it's asked to

pre-position the content by the second uCDN. A dCDN

implementation could avoid this interaction by knowing which uCDN

it acquired the content from, or it could minimize the

consequences by recording the time at which the

"invalidate"/"purge" command was received and not applying it to

content acquired after that time.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

2.3. Trigger Results

Possible states for a Trigger Status Resource are defined in Section

5.2.3.

The CI/T Trigger Command MUST NOT be reported as "complete" until

all actions have been completed successfully. The reasons for

failure, and URLs or patterns affected, SHOULD be enumerated in the

Trigger Status Resource. For more details, see Section 4.8.

If a dCDN is also acting as a uCDN in a cascade, it MUST forward CI/

T Commands to any dCDNs that may be affected. The CI/T Trigger

Command MUST NOT be reported as "complete" in a CDN until it is

"complete" in all of its dCDNs. If a CI/T Trigger Command is

reported as "processed" in any dCDN, intermediate CDNs MUST NOT

report "complete"; instead, they MUST also report "processed". A CI/

T Command MAY be reported as "failed" as soon as it fails in a CDN

or in any of its dCDNs. A canceled CI/T Trigger Command MUST be

reported as "cancelling" until it has been reported as "cancelled",

"complete", or "failed" by all dCDNs in a cascade.

3. Collections of Trigger Status Resources

As described in Section 2, Trigger Status Resources exist in the

dCDN to report the status of activity triggered by each uCDN.

A collection of Trigger Status Resources is a resource that contains

a reference to each Trigger Status Resource in that collection.

The dCDN MUST make a collection of a uCDN's Trigger Status Resources

available to that uCDN. This collection includes all of the Trigger

Status Resources created for CI/T Commands from the uCDN that have

been accepted by the dCDN, and have not yet been deleted by the

uCDN, or expired and removed by the dCDN (as described in Section

4.4). Trigger Status Resources belonging to a uCDN MUST NOT be

visible to any other CDN. The dCDN could, for example, achieve this

by offering different collection URLs to each uCDN and by filtering

the response based on the uCDN with which the HTTP client is

associated.

To trigger activity in a dCDN or to cancel triggered activity, the

uCDN POSTs a CI/T Command to the dCDN's collection of the uCDN's

Trigger Status Resources.

In order to allow the uCDN to check the status of multiple jobs in a

single request, the dCDN MAY also maintain collections representing

filtered views of the collection of all Trigger Status Resources.

These filtered collections are "optional-to-implement", but if they

are implemented, the dCDN MUST include links to them in the

¶

¶

¶

¶

¶

¶

¶

collection of all Trigger Status Resources. The filtered collections

are:

Pending - Trigger Status Resources for CI/T Trigger Commands that

have been accepted but not yet acted upon.

Active - Trigger Status Resources for CI/T Trigger Commands that

are currently being processed in the dCDN.

Complete - Trigger Status Resources representing activity that

completed successfully, and "processed" CI/T Trigger Commands for

which no further status updates will be made by the dCDN.

Failed - Trigger Status Resources representing CI/T Commands that

failed or were canceled by the uCDN.

4. CDNI Trigger Interface

This section describes an interface to enable a uCDN to trigger

activity in a dCDN.

The CI/T interface builds on top of HTTP, so dCDNs may make use of

any HTTP feature when implementing the CI/T interface. For example,

a dCDN SHOULD make use of HTTP's caching mechanisms to indicate that

a requested response/representation has not been modified, reducing

the uCDN's processing needed to determine whether the status of

triggered activity has changed.

All dCDNs implementing CI/T MUST support the HTTP GET, HEAD, POST,

and DELETE methods as defined in [RFC7231].

The only representation specified in this document is JSON

[RFC8259]. It MUST be supported by the uCDN and by the dCDN.

The URL of the dCDN's collection of all Trigger Status Resources

needs to be either discovered by or configured in the uCDN. The

mechanism for discovery of that URL is outside the scope of this

document.

CI/T Commands are POSTed to the dCDN's collection of all Trigger

Status Resources. If a CI/T Trigger Command is accepted by the dCDN,

the dCDN creates a new Trigger Status Resource and returns its URI

to the uCDN in an HTTP 201 response. The triggered activity can then

be monitored by the uCDN using that resource and the collections

described in Section 3.

The URI of each Trigger Status Resource is returned to the uCDN when

it is created, and URIs of all Trigger Status Resources are listed

in the dCDN's collection of all Trigger Status Resources. This means

all Trigger Status Resources can be discovered by the uCDN, so dCDNs

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

are free to assign whatever structure they desire to the URIs for

CI/T resources. Therefore, uCDNs MUST NOT make any assumptions

regarding the structure of CI/T URIs or the mapping between CI/T

objects and their associated URIs. URIs present in the examples in

this document are purely illustrative and are not intended to impose

a definitive structure on CI/T interface implementations.

4.1. Creating Triggers

To issue a CI/T Command, the uCDN makes an HTTP POST to the dCDN's

collection of all of the uCDN's Trigger Status Resources. The

request body of that POST is a CI/T Command, as described in Section

5.1.1.

The dCDN validates the CI/T Command. If the command is malformed or

the uCDN does not have sufficient access rights, the dCDN MUST

either respond with an appropriate 4xx HTTP error code and not

create a Trigger Status Resource or create a "failed" Trigger Status

Resource containing an appropriate Error Description.

When a CI/T Trigger Command is accepted, the dCDN MUST create a new

Trigger Status Resource that will convey a specification of the CI/T

Command and its current status. The HTTP response to the uCDN MUST

have status code 201 and MUST convey the URI of the Trigger Status

Resource in the Location header field [RFC7231]. The HTTP response

SHOULD include the content of the newly created Trigger Status

Resource. This is particularly important in cases where the CI/T

Trigger Command has completed immediately.

Once a Trigger Status Resource has been created, the dCDN MUST NOT

reuse its URI, even after that Trigger Status Resource has been

removed.

The dCDN SHOULD track and report on the progress of CI/T Trigger

Commands using a Trigger Status Resource (Section 5.1.2). If the

dCDN is not able to do that, it MUST indicate that it has accepted

the request but will not be providing further status updates. To do

this, it sets the status of the Trigger Status Resource to

"processed". In this case, CI/T processing should continue as for a

"complete" request, so the Trigger Status Resource MUST be added to

the dCDN's collection of complete Trigger Status Resources. The dCDN

SHOULD also provide an estimated completion time for the request by

using the "etime" property of the Trigger Status Resource. This will

allow the uCDN to schedule pre-positioning after an earlier delete

of the same URLs is expected to have finished.

If the dCDN is able to track the execution of CI/T Commands and a

CI/T Command is queued by the dCDN for later action, the "status"

property of the Trigger Status Resource MUST be "pending". Once

¶

¶

¶

¶

¶

¶

processing has started, the status MUST be "active". Finally, once

the CI/T Command is complete, the status MUST be set to "complete"

or "failed".

A CI/T Trigger Command may result in no activity in the dCDN if, for

example, it is an "invalidate" or "purge" request for data the dCDN

has not yet acquired, or a "preposition" request for data that it

has already acquired and that is still valid. In this case, the

status of the Trigger Status Resource MUST be "processed" or

"complete", and the Trigger Status Resource MUST be added to the

dCDN's collection of complete Trigger Status Resources.

Once created, Trigger Status Resources can be canceled or deleted by

the uCDN, but not modified. The dCDN MUST reject PUT and POST

requests from the uCDN to Trigger Status Resources by responding

with an appropriate HTTP status code -- for example, 405 ("Method

Not Allowed").

4.2. Checking Status

The uCDN has two ways to check the progress of CI/T Commands it has

issued to the dCDN, as described in Sections 4.2.1 and 4.2.2.

To allow the uCDN to check for changes in the status of a Trigger

Status Resource or collection of Trigger Status Resources without

refetching the whole resource or collection, the dCDN SHOULD include

entity-tags (ETags) for the uCDN to use as cache validators, as

defined in [RFC7232].

The dCDN SHOULD use the cache control headers for responses to GETs

for Trigger Status Resources and Collections to indicate the

frequency at which it recommends that the uCDN should poll for

change.

4.2.1. Polling Trigger Status Resource Collections

The uCDN can fetch the collection of its Trigger Status Resources or

filtered views of that collection.

This makes it possible to poll the status of all CI/T Trigger

Commands in a single request. If the dCDN moves a Trigger Status

Resource from the active to the completed collection, the uCDN can

fetch the result of that activity.

When polling in this way, the uCDN SHOULD use HTTP ETags to monitor

for change, rather than repeatedly fetching the whole collection. An

example of this is given in Section 8.2.4.

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.2. Polling Trigger Status Resources

The uCDN has a URI provided by the dCDN for each Trigger Status

Resource it has created. It may fetch that Trigger Status Resource

at any time.

This can be used to retrieve progress information and to fetch the

result of the CI/T Command.

When polling in this way, the uCDN SHOULD use HTTP ETags to monitor

for change, rather than repeatedly fetching the Trigger Status

Resource.

4.3. Canceling Triggers

The uCDN can request cancellation of a CI/T Trigger Command by

POSTing a CI/T Cancel Command to the collection of all Trigger

Status Resources.

The dCDN is required to accept and respond to the CI/T Cancel

Command, but the actual cancellation of a CI/T Trigger Command is

optional-to-implement.

The dCDN MUST respond to the CI/T Cancel Command appropriately --

for example, with HTTP status code 200 ("OK") if the cancellation

has been processed and the CI/T Command is inactive, 202

("Accepted") if the command has been accepted but the CI/T Command

remains active, or 501 ("Not Implemented") if cancellation is not

supported by the dCDN.

If cancellation of a "pending" Trigger Status Resource is accepted

by the dCDN, the dCDN SHOULD NOT start the processing of that

activity. Issuing a CI/T Cancel Command for a "pending" Trigger

Status Resource does not, however, guarantee that the corresponding

activity will not be started, because the uCDN cannot control the

timing of that activity. Processing could, for example, start after

the POST is sent by the uCDN but before that request is processed by

the dCDN.

If cancellation of an "active" or "processed" Trigger Status

Resource is accepted by the dCDN, the dCDN SHOULD stop processing

the CI/T Command. However, as with cancellation of a "pending" CI/T

Command, the dCDN does not guarantee this.

If the CI/T Command cannot be stopped immediately, the status in the

corresponding Trigger Status Resource MUST be set to "cancelling",

and the Trigger Status Resource MUST remain in the collection of

Trigger Status Resources for active CI/T Commands. If processing is

stopped before normal completion, the status value in the Trigger

Status Resource MUST be set to "cancelled", and the Trigger Status

¶

¶

¶

¶

¶

¶

¶

¶

Resource MUST be included in the collection of failed CI/T Trigger

Commands.

Cancellation of a "complete" or "failed" Trigger Status Resource

requires no processing in the dCDN. Its status MUST NOT be changed

to "cancelled".

4.4. Deleting Triggers

The uCDN can delete Trigger Status Resources at any time, using the

HTTP DELETE method. The effect is similar to cancellation, but no

Trigger Status Resource remains afterwards.

Once deleted, the references to a Trigger Status Resource MUST be

removed from all Trigger Status Resource collections. Subsequent

requests to GET the deleted Trigger Status Resource SHOULD be

rejected by the dCDN with an HTTP error.

If a "pending" Trigger Status Resource is deleted, the dCDN SHOULD

NOT start the processing of that activity. Deleting a "pending"

Trigger Status Resource does not, however, guarantee that it has not

started, because the uCDN cannot control the timing of that

activity. Processing may, for example, start after the DELETE is

sent by the uCDN but before that request is processed by the dCDN.

If an "active" or "processed" Trigger Status Resource is deleted,

the dCDN SHOULD stop processing the CI/T Command. However, as with

deletion of a "pending" Trigger Status Resource, the dCDN does not

guarantee this.

Deletion of a "complete" or "failed" Trigger Status Resource

requires no processing in the dCDN other than deletion of the

Trigger Status Resource.

4.5. Expiry of Trigger Status Resources

The dCDN can choose to automatically delete Trigger Status Resources

some time after they become "complete", "processed", "failed", or

"cancelled". In this case, the dCDN will remove the Trigger Status

Resource and respond to subsequent requests for it with an HTTP

error.

If the dCDN does remove Trigger Status Resources automatically, it

MUST report the length of time after which it will do so, using a

property of the collection of all Trigger Status Resources. It is

RECOMMENDED that Trigger Status Resources are not automatically

deleted by the dCDN for at least 24 hours after they become

"complete", "processed", "failed", or "cancelled".

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

To ensure that it is able to get the status of its Trigger Status

Resources for completed and failed CI/T Commands, it is RECOMMENDED

that the uCDN polling interval is less than the time after which

records for completed activity will be deleted.

4.6. Loop Detection and Prevention

Given three CDNs, A, B, and C, if CDNs B and C delegate delivery of

CDN A's content to each other, CDN A's CI/T Commands could be passed

between CDNs B and C in a loop. More complex networks of CDNs could

contain similar loops involving more hops.

In order to prevent and detect such CI/T loops, each CDN uses a CDN

Provider ID (PID) to uniquely identify itself. In every CI/T Command

it originates or cascades, each CDN MUST append an array element

containing its CDN PID to a JSON array under an entry named "cdn-

path". When receiving CI/T Commands, a dCDN MUST check the cdn-path

and reject any CI/T Command that already contains its own CDN PID in

the cdn-path. Transit CDNs MUST check the cdn-path and not cascade

the CI/T Command to dCDNs that are already listed in the cdn-path.

The CDN PID consists of the two characters "AS" followed by the CDN

provider's Autonomous System number [RFC1930], then a colon (":")

and an additional qualifier that is used to guarantee uniqueness in

case a particular AS has multiple independent CDNs deployed -- for

example, "AS64496:0".

If the CDN provider has multiple ASes, the same AS number SHOULD be

used in all messages from that CDN provider, unless there are

multiple distinct CDNs.

If the CDNI Request Routing Redirection interface (RI) described in

[RFC7975] is implemented by the dCDN, the CI/T interface and the RI

SHOULD use the same CDN PID.

4.7. Trigger Extensibility

The CDNI Control Interface / Triggers [RFC8007] defines a set of

properties and objects used by the trigger commands. In this

document we define an extension mechanism to the triggers interface

that enables the application to add various functions that allow

finer control over the trigger execution. This document specifies a

generic trigger extension object wrapper for managing individual

CDNI trigger extensions in an opaque manner.

This document also registers CDNI Payload Types [RFC7736] under the

namespace CIT for the initial set of trigger extension types:

CIT.LocationPolicy (for controlling the locations in which the

trigger is executed)

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

CIT.TimePolicy (for scheduling a trigger to run in a specific

time window)

Example use cases

Pre-position with cache location policy

Purge content with cache location policy

Pre-position at a specific time

Purge by content acquisition time (e.g. purge all content

acquired in the past X hours)

4.8. Error Handling

A dCDN can signal rejection of a CI/T Command using HTTP status

codes -- for example, 400 ("Bad Request") if the request is

malformed, or 403 ("Forbidden") or 404 ("Not Found") if the uCDN

does not have permission to issue CI/T Commands or it is trying to

act on another CDN's data.

If any part of the CI/T Trigger Command fails, the trigger SHOULD be

reported as "failed" once its activity is complete or if no further

errors will be reported. The "errors" property in the Trigger Status

Resource will be used to enumerate which actions failed and the

reasons for failure, and can be present while the Trigger Status

Resource is still "pending" or "active", if the CI/T Trigger Command

is still running for some URLs or patterns in the Trigger

Specification.

Once a request has been accepted, processing errors are reported in

the Trigger Status Resource using a list of Error Descriptions. Each

Error Description is used to report errors against one or more of

the URLs or patterns in the Trigger Specification.

If a Surrogate affected by a CI/T Trigger Command is offline in the

dCDN or the dCDN is unable to pass a CI/T Command on to any of its

cascaded dCDNs:

If the CI/T Command is abandoned by the dCDN, the dCDN SHOULD

report an error.

A CI/T "invalidate" command may be reported as "complete" when

Surrogates that may have the data are offline. In this case,

Surrogates MUST NOT use the affected data without first

revalidating it when they are back online.

*

¶

¶

* ¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

CI/T "preposition" and "purge" commands can be reported as

"processed" if affected caches are offline and the activity will

complete when they return to service.

Otherwise, the dCDN SHOULD keep the Trigger Status Resource in

state "pending" or "active" until either the CI/T Command is

acted upon or the uCDN chooses to cancel it.

4.8.1. Error propagation

This subsection explains the mechanism for enabling the uCDN to

traceback an error to the dCDN in which it occurred. CDNI triggers

may be propagated over a chain of downstream CDNs. For example, an

upstream CDN A (uCDN-A) that is delegating to a downstream CDN B

(dCDN-B) and dCDN-B is delegating to a downstream CDN C (dCDN-C).

Triggers sent from uCDN-A to dCDN-B may be redistributed from dCDN-B

to dCDN-C and errors can occur anywhere along the path. Therefore,

it might be essential for uCDN-A that sets the trigger, to be able

to trace back an error to the downstream CDN where it occurred. This

document adds a mechanism to propagate the CDN Provider ID (PID) of

the dCDN where the fault occurred, back to the uCDN by adding the

PID to the error description. When dCDN-B propagates a trigger to

the further downstream dCDN-C, it MUST also propagate back the

errors received in the trigger status resource from dCDN-C by adding

them to the errors array in its own status resource to be sent back

to the originating uCDN-A. While propagating back the errors, and

depending on the implementation, dCDN-B MAY also specify the dCDN-C

PID, indicating to which CDN the error relates spefically. The

trigger originating upstream CDN will receive an array of errors

that occurred in all the CDNs along the execution path, where each

error MAY be carrying its own CDN identifier.

Figure 2 below is an example showing the message flow used by uCDN-A

to trigger activity in the dCDN-B, followed by dCDN-C, as well as

the discovery of the status of that activity, including the Error

Propagation.

*

¶

*

¶

¶

¶

uCDN-A dCDN-B dCDN-C

 | | |

 | (1) POST | |

 | https://dcdn-b.example.com | |

 | /triggers/uCDN-A | |

[]--------------------------->[]--+ |

 | [] | (2) |

 | []<-+ |

 | (3) HTTP 201 Response. [] |

 |<----------------------------[] |

 | Loc: [] |

 | https://dcdn-b.example.com [] (4) POST |

 | /triggers/uCDN-A/123 [] https://dcdn-c.example.com |

 | [] /triggers/uCDN-A | (5)

 | []--------------------------->[]--+

 | | [] |

 | | []<-+

 | | (6) HTTP 201 Response. []

 | []<---------------------------[]

 | | Loc: |

 | | https://dcdn-c.example.com |

 | | /triggers/dCDN-B/456 |

 | | |

 | []--+ |

 | [] | (7.1) |

 | []<-+ []--+

 | | (7.2) [] |

 | | []<-+

 | | |

 . . .

 . . .

 . . .

 | | (8) GET |

 | | https://dcdn-c.example.com |

 | | /triggers/dCDN-B/456 |

 | []--------------------------->[]

 | | []

 | | (9) HTTP 200 []

 | | Trigger Status Resource []

 | []<---------------------------[]

 | | |

 . . .

 . . .

 . . .

 | (10) GET | |

 | https://dcdn-b.example.com | |

 | /triggers/uCDN-A/123 | |

[]--------------------------->[] |

 | [] |

 | (11) HTTP 200 [] |

 | Trigger Status Resource [] |

[]<---------------------------[] |

Figure 2: CDNI Message Flow for Triggers, Including Error Propagation

The steps in Figure 2 are as follows:

The uCDN-A triggers action in the dCDN-B by POSTing a CI/T

Command to a collection of Trigger Status Resources "https://

dcdn-b.example.com/triggers/uCDN-A". This URL was given to the

uCDN-A when the CI/T interface was established.

The dCDN-B authenticates the request, validates the CI/T

Command, and, if it accepts the request, creates a new Trigger

Status Resource.

The dCDN-B responds to the uCDN-A with an HTTP 201 response

status and the location of the Trigger Status Resource.

The dCDN-B triggers the action in the dCDN-C by POSTing a CI/T

Command to a collection of Trigger Status Resources "https://

dcdn-c.example.com/triggers/dCDN-B". This URL was given to the

uCDN-A when the CI/T interface was established.

The dCDN-C authenticates the request, validates the CI/T

Command, and, if it accepts the request, creates a new Trigger

Status Resource.

The dCDN-C responds to the dCDN-B with an HTTP 201 response

status and the location of the Trigger Status Resource.

The dCDN-C acts upon the CI/T Command. However, the command

fails at dCDN-C as, for example, the Tigger Specification

contains a "type" that is not supported by dCDN-C.

The dCDN-B can poll, possibly repeatedly, the Trigger Status

Resource in dCDN-C.

The dCDN-C responds with the Trigger Status Resource,

describing the progress or results of the CI/T Trigger Command.

In the described flow, the returned Status is "failed", with an

Error Description Object holding an "eunsupported" Error Code

reflecting the status response.

The uCDN-A can poll, possibly repeatedly, the Trigger Status

Resource in dCDN-B.

The dCDN-B responds with the Trigger Status Resource,

describing the progress or results of the CI/T Trigger Command.

In the flow described above, the returned Status is "failed",

and the "eunsupported" error received in the trigger status

resource from dCDN-C is propagated along with dCDN-C PID by

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

Name: trigger.v2

adding it to the errors array in dCDN-B's own status resource

to be sent back to the originating uCDN-A.

4.9. Content URLs

If content URLs are transformed by an intermediate CDN in a cascade,

that intermediate CDN MUST similarly transform URLs in CI/T Commands

it passes to its dCDN.

When processing Trigger Specifications, CDNs MUST ignore the URL

scheme (HTTP or HTTPS) in comparing URLs. For example, for a CI/T

"invalidate" or "purge" command, content MUST be invalidated or

purged regardless of the protocol clients used to request it.

5. CI/T Object Properties and Encoding

The CI/T Commands, Trigger Status Resources, and Trigger

Collections, as well as their properties, are encoded using JSON, as

defined in Sections Section 5.1.1, Section 5.1.2, and Section 5.1.3.

They MUST use the MIME media type "application/cdni", with parameter

"ptype" values as defined below and in Section 9.1.

Names in JSON are case sensitive. The names and literal values

specified in the present document MUST always use lowercase.

JSON types, including "object", "array", "number", and "string", are

defined in [RFC8259].

Unrecognized name/value pairs in JSON objects SHOULD NOT be treated

as an error by either the uCDN or dCDN. They SHOULD be ignored

during processing and passed on by the dCDN to any further dCDNs in

a cascade.

5.1. CI/T Objects

The top-level objects defined by the CI/T interface are described in

this section.

The encoding of values used by these objects is described in Section

5.2.

5.1.1. CI/T Commands

CI/T Commands MUST use a MIME media type of "application/cdni;

ptype=ci-trigger-command".

A CI/T Command is encoded as a JSON object containing the following

name/value pairs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: cancel

Name: cdn-path

Name: trigger

Name: ctime

Description: A specification of the trigger type and a set of

data to act upon.

Value: A Trigger Specification, as defined in Section 5.2.1.

Mandatory: No, but exactly one of "trigger" or "cancel" MUST

be present in a CI/T Command.

Description: The URLs of Trigger Status Resources for CI/T

Trigger Commands that the uCDN wants to cancel.

Value: A non-empty JSON array of URLs represented as JSON

strings.

Mandatory: No, but exactly one of "trigger" or "cancel" MUST

be present in a CI/T Command.

Description: The CDN PIDs of CDNs that have already issued the

CI/T Command to their dCDNs.

Value: A non-empty JSON array of JSON strings, where each

string is a CDN PID as defined in Section 4.6.

Mandatory: Yes.

5.1.2. Trigger Status Resources

Trigger Status Resources MUST use a MIME media type of "application/

cdni; ptype=ci-trigger-status".

A Trigger Status Resource is encoded as a JSON object containing the

following name/value pairs.

Description: The Trigger Specification POSTed in the body of

the CI/T Command. Note that this need not be a byte-for-byte

copy. For example, in the JSON representation the dCDN may re-

serialize the information differently.

Value: A Trigger Specification, as defined in Section 5.2.1.

Mandatory: Yes.

Description: Time at which the CI/T Command was received by

the dCDN. Time is determined by the dCDN; there is no

requirement to synchronize clocks between interconnected CDNs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: mtime

Name: etime

Name: status

Name: errors

Name: triggers

Value: Absolute Time, as defined in Section 5.2.9.

Mandatory: Yes.

Description: Time at which the Trigger Status Resource was

last modified. Time is determined by the dCDN; there is no

requirement to synchronize clocks between interconnected CDNs.

Value: Absolute Time, as defined in Section 5.2.9.

Mandatory: Yes.

Description: Estimate of the time at which the dCDN expects to

complete the activity. Time is determined by the dCDN; there

is no requirement to synchronize clocks between interconnected

CDNs.

Value: Absolute Time, as defined in Section 5.2.9.

Mandatory: No.

Description: Current status of the triggered activity.

Value: Trigger Status, as defined in Section 5.2.3.

Mandatory: Yes.

Description: Descriptions of errors that have occurred while

processing a Trigger Command.

Value: An array of Error Descriptions, as defined in Section

5.2.10. An empty array is allowed and is equivalent to

omitting "errors" from the object.

Mandatory: No.

5.1.3. Trigger Collections

Trigger Collections MUST use a MIME media type of "application/cdni;

ptype=ci-trigger-collection".

A Trigger Collection is encoded as a JSON object containing the

following name/value pairs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: staleresourcetime

Name: cdn-id

Description: Links to Trigger Status Resources in the

collection.

Value: A JSON array of zero or more URLs, represented as JSON

strings.

Mandatory: Yes.

Description: The length of time for which the dCDN guarantees

to keep a completed Trigger Status Resource. After this time,

the dCDN SHOULD delete the Trigger Status Resource and all

references to it from collections.

Value: A JSON number, which must be a positive integer,

representing time in seconds.

Mandatory: Yes, in the collection of all Trigger Status

Resources if the dCDN deletes stale entries. If the property

is present in the filtered collections, it MUST have the same

value as in the collection of all Trigger Status Resources.

Names: coll-all, coll-pending, coll-active, coll-complete, coll-

failed

Description: Link to a Trigger Collection.

Value: A URL represented as a JSON string.

Mandatory: Links to all of the filtered collections are mandatory

in the collection of all Trigger Status Resources, if the dCDN

implements the filtered collections. Otherwise, optional.

Description: The CDN PID of the dCDN.

Value: A JSON string, the dCDN's CDN PID, as defined in

Section 4.6.

Mandatory: Only in the collection of all Trigger Status

Resources, if the dCDN implements the filtered collections.

Optional in the filtered collections (the uCDN can always find

the dCDN's cdn-id in the collection of all Trigger Status

Resources, but the dCDN can choose to repeat that information

in its implementation of filtered collections).

5.2. Properties of CI/T Objects

This section defines the values that can appear in the top-level

objects described in Section 5.1, and their encodings.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: type

Name: metadata.urls

Name: content.urls

Name: content.ccid

Name: metadata.patterns

5.2.1. Trigger Specification

A Trigger Collection is encoded as a JSON object containing the

following name/value pairs.

An unrecognized name/value pair in the Trigger Specification object

contained in a CI/T Command SHOULD be preserved in the Trigger

Specification of any Trigger Status Resource it creates.

Description: Defines the type of the CI/T Trigger Command.

Value: Trigger Type, as defined in Section 5.2.2.

Mandatory: Yes.

Description: The uCDN URLs of the metadata the CI/T Trigger

Command applies to.

Value: A JSON array of URLs represented as JSON strings.

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty.

Description: URLs of content the CI/T Trigger Command applies

to. See Section 4.9.

Value: A JSON array of URLs represented as JSON strings.

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty.

Description: The Content Collection IDentifier of content the

trigger applies to. The "ccid" is a grouping of content, as

defined by [RFC8006].

Value: A JSON array of strings, where each string is a Content

Collection IDentifier.

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty.

Description: The metadata the trigger applies to.

Value: A JSON array of PatternMatch objects, as defined in

Section 5.2.4.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: content.patterns

Name: content.regexs

Name: content.playlists

Name: extensions

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty, and metadata.patterns MUST NOT

be present if the Trigger Type is "preposition".

Description: The content data the trigger applies to.

Value: A JSON array of PatternMatch objects, as defined in

Section 5.2.4.

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty, and content.patterns MUST NOT

be present if the Trigger Type is "preposition".

Description: Regexs of content URLs to which the CI/T trigger

command applies.

Value: A JSON array of RegexMatch objects (see Section 5.2.5).

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty, and content.patterns MUST NOT

be present if the Trigger Type is "preposition".

Description: Playlists of content the CI/T trigger command

applies to.

Value: A JSON array of Playlist objects (see Section 5.2.6).

Mandatory: No, but at least one of "metadata.*" or "content.*"

MUST be present and non-empty, and content.patterns MUST NOT

be present if the Trigger Type is "preposition".

Description: Array of trigger extension data.

Value:Array of GenericTriggerExtension objects (see Section

5.2.8.2).

Mandatory: No. The default is no extensions.

5.2.2. Trigger Type

Trigger Type is used in a Trigger Specification to describe trigger

action.

All trigger types MUST be registered in the IANA "CDNI CI/T Trigger

Types" registry (see Section 9.2).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A dCDN receiving a request containing a trigger type it does not

recognize or does not support MUST reject the request by creating a

Trigger Status Resource with a status of "failed" and the "errors"

array containing an Error Description with error "eunsupported".

The following trigger types are defined by this document:

JSON String Description

preposition A request for the dCDN to acquire metadata or

content.

invalidate A request for the dCDN to invalidate metadata or

content. After servicing this request, the dCDN

will not use the specified data without first

revalidating it using, for example, an

"If-None-Match" HTTP request. The dCDN need not

erase the associated data.

purge A request for the dCDN to erase metadata or

content. After servicing the request, the

specified data MUST NOT be held on the dCDN (the

dCDN should reacquire the metadata or content from

the uCDN if it needs it).

Table 1

5.2.3. Trigger Status

Trigger Status describes the current status of the triggered

activity. It MUST be one of the JSON strings in the following table:

JSON String Description

pending The CI/T Trigger Command has not yet been acted upon.

active The CI/T Trigger Command is currently being acted

upon.

complete The CI/T Trigger Command completed successfully.

processed The CI/T Trigger Command has been accepted, and no

further status update will be made (can be used in

cases where completion cannot be confirmed).

failed The CI/T Trigger Command could not be completed.

cancelling Processing of the CI/T Trigger Command is still in

progress, but the CI/T Trigger Command has been

canceled by the uCDN.

cancelled The CI/T Trigger Command was canceled by the uCDN.

Table 2

5.2.4. PatternMatch

A PatternMatch consists of a string pattern to match against a URI,

and flags describing the type of match.

¶

¶

¶

¶

It is encoded as a JSON object with the following name/value pairs:

Name: case-sensitive

Name: match-query-string

Name: pattern

Description: A pattern for URI matching.

Value: A JSON string representing the pattern. The pattern can

contain the wildcards * and ?, where * matches any sequence of

[RFC3986] pchar or "/" characters (including the empty string)

and ? matches exactly one [RFC3986] pchar character. The three

literals $, * and ? MUST be escaped as $$, $* and $? (where $ is

the designated escape character). All other characters are

treated as literals.

Mandatory: Yes.

Description: Flag indicating whether or not case-sensitive

matching should be used.

Value: One of the JSON values "true" (the matching is case

sensitive) or "false" (the matching is case insensitive).

Mandatory: No; default is case-insensitive match.

Description: Flag indicating whether to include the query part

of the URI when comparing against the pattern.

Value: One of the JSON values "true" (the full URI, including

the query part, should be compared against the given pattern)

or "false" (the query part of the URI should be dropped before

comparison with the given pattern).

Mandatory: No; default is "false". The query part of the URI

should be dropped before comparison with the given pattern.

Example of case-sensitive prefix match against "https://

www.example.com/trailers/":

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "pattern": "https://www.example.com/trailers/*",

 "case-sensitive": true

}

¶

5.2.5. RegexMatch

A RegexMatch consists of a regular expression string a URI is

matched against, and flags describing the type of match. It is

encoded as a JSON object with following properties:

Property: regex

Description: A regular expression for URI matching.

Type: A regular expression to match against the URI, i.e

against the path-absolute and the query string parameters

[RFC3986]. The regular expression string MUST be compatible

with PCRE [PCRE841].

Note: Because '\' has a special meaning in JSON [RFC8259] as

the escape character within JSON strings, the regular

expression character '\' MUST be escaped as '\\'.

Mandatory: Yes.

Property: case-sensitive

Description: Flag indicating whether or not case-sensitive

matching should be used.

Type: JSON boolean. Either "true" (the matching is case

sensitive) or "false" (the matching is case insensitive).

Mandatory: No; default is case-insensitive match (i.e., a

value of "false").

Property: match-query-string

Description: Flag indicating whether to include the query part

of the URI when comparing against the regex.

Type: JSON boolean. Either "true" (the full URI, including the

query part, should be compared against the regex) or "false"

(the query part of the URI should be dropped before comparison

with the given regex).

Mandatory: No; default is "false". The query part of the URI

MUST be dropped before comparison with the given regex. This

makes the regular expression simpler and safer for cases in

which the query parameters are not relevant for the match.

Example of a case sensitive, no query parameters, regex match

against:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This regex matches URLs of domain video.example.com where the path

structure is /(single lower case letter)/(name-of-title)/(single

digit between 1 to 7)/(index.m3u8 or a 3 digit number with ts

extension). For example:

5.2.6. Playlist

A Playlist consists of a full URL and a media protocol identifier.

An implementation that supports a specific playlist media protocol

MUST be able to parse playlist files of that protocol type and

extract, possibly recursively, the URLs to all media objects and/or

sub playlist files, and apply the trigger to each one of them

separately.

Playlist is encoded as a JSON object with following properties:

Property: playlist

Description: A URL to the playlist file.

Type: A URL represented as a JSON string.

Mandatory: Yes.

Property: media-protocol

Description: Media protocol to be when parsing and

interpreting this playlist.

Type: MediaProtocol (see Section 5.2.7).

Mandatory: Yes.

Example of a JSON serialized HLS playlist object:

"^(https:\/\/video\.example\.com)\/([a-z])\/

 movie1\/([1-7])\/*(index.m3u8|\d{3}.ts)$"

¶

{

 "regex": "^(https:\\/\\/video\\.example\\.com)\\/([a-z])\\/movie1\

 \/([1-7])\\/*(index.m3u8|\\d{3}.ts)$",

 "case-sensitive": true,

 "match-query-string": false

}

¶

¶

https://video.example.com/d/movie1/5/index.m3u8

or

https://video.example.com/k/movie1/4/013.ts

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2.7. MediaProtocol

Media Protocol objects are used to specify registered type of media

protocol (see Section 9.4) used for protocol related operations like

pre-position according to playlist.

Type: JSON string

Example:

"dash"

5.2.8. CI/T Trigger Extensions

A "trigger.v2" object, as defined in Section 5.2.1 includes an

optional array of trigger extension objects. A trigger extension

contain properties that are used as directives for dCDN when

executing the trigger command -- for example, location policies,

time policies and so on. Each such CDNI Trigger extension is a

specialization of a CDNI GenericTriggerExtension object. The

GenericTriggerExtension object abstracts the basic information

required for trigger distribution from the specifics of any given

property (i.e., property semantics, enforcement options, etc.). All

trigger extensions are optional, and it is thus the responsibility

of the extension specification to define a consistent default

behavior for the case the extension is not present.

5.2.8.1. Enforcement Options

The trigger enforcement options concept is in accordance with the

metadata enforcement options as defined in Section 3.2 of [RFC8006].

The GenericTriggerExtension object defines the properties contained

within it as well as whether or not the properties are "mandatory-

to-enforce". If the dCDN does not understand or support a mandatory-

to-enforce property, the dCDN MUST NOT execute the trigger command.

If the extension is not mandatory-to-enforce, then that

GenericTriggerExtension object can be safely ignored and the trigger

command can be processed in accordance with the rest of the CDNI

Trigger spec.

Although, a CDN MUST NOT execute a trigger command if a mandatory-

to-enforce extension cannot be enforced, it could still be safe to

redistribute that trigger (the "safe-to-redistribute" property) to

{

 "playlist": "https://www.example.com/hls/title/index.m3u8",

 "media-protocol": "hls"

}

¶

¶

¶

¶

¶

¶

¶

¶

another CDN without modification. For example, in the cascaded CDN

case, a transit CDN (tCDN) could convey mandatory-to-enforce trigger

extension to a dCDN. For a trigger extension that does not require

customization or translation (i.e., trigger extension that is safe-

to-redistribute), the data representation received off the wire MAY

be stored and redistributed without being understood or supported by

the tCDN. However, for trigger extension that requires translation,

transparent redistribution of the uCDN trigger values might not be

appropriate. Certain triggers extensions can be safely, though

perhaps not optimally, redistributed unmodified. For example, pre-

position command might be executed in suboptimal times for some

geographies if transparently redistributed, but it might still work.

Redistribution safety MUST be specified for each

GenericTriggerExtension property. If a CDN does not understand or

support a given GenericTriggerExtension property that is not safe-

to-redistribute, the CDN MUST set the "incomprehensible" flag to

true for that GenericTriggerExtension object before redistributing

it. The "incomprehensible" flag signals to a dCDN that trigger

metadata was not properly transformed by the tCDN. A CDN MUST NOT

attempt to execute a trigger with an extension that has been marked

as "incomprehensible" by a uCDN.

tCDNs MUST NOT change the value of mandatory-to-enforce or safe-to-

redistribute when propagating a trigger to a dCDN. Although a tCDN

can set the value of "incomprehensible" to true, a tCDN MUST NOT

change the value of "incomprehensible" from true to false.

Table 3 describes the action to be taken by a tCDN for the different

combinations of mandatory-to-enforce ("MtE") and safe-to-

redistribute ("StR") properties when the tCDN either does or does

not understand the trigger extension object in question:

MtE StR

Extension

object

understood by

tCDN

Trigger action

False True True Can execute and redistribute.

False True False Can execute and redistribute.

False False False

Can execute. MUST set

"incomprehensible" to true when

redistributing.

False False True

Can execute. Can redistribute after

transforming the trigger extension (if

the CDN knows how to do so safely);

otherwise, MUST set "incomprehensible"

to true when redistributing.

True True True Can execute and redistribute.

¶

¶

¶

¶

MtE StR

Extension

object

understood by

tCDN

Trigger action

True True False MUST NOT execute but can redistribute.

True False True

Can execute. Can redistribute after

transforming the trigger extension (if

the CDN knows how to do so safely);

otherwise, MUST set "incomprehensible"

to true when redistributing.

True False False

MUST NOT serve. MUST set

"incomprehensible" to true when

redistributing.

Table 3: Action to be taken by a tCDN for the different combinations of

MtE and StR properties

Table 4 describes the action to be taken by a dCDN for the different

combinations of mandatory-to-enforce and "incomprehensible"

("Incomp") properties, when the dCDN either does or does not

understand the trigger extension object in question:

MtE Incomp

Extension

object

understood by

dCDN

Trigger action

False False True Can execute.

False True True

Can execute but MUST NOT interpret/

apply any trigger extension marked

as "incomprehensible".

False False False Can execute.

False True False

Can execute but MUST NOT interpret/

apply any trigger extension marked

as "incomprehensible".

True False True Can execute.

True True True MUST NOT execute.

True False False MUST NOT execute.

True True False MUST NOT execute.

Table 4: Action to be taken by a dCDN for the different combinations of

MtE and Incomp properties

¶

5.2.8.2. GenericExtensionObject

A GenericTriggerExtension object is a wrapper for managing

individual CDNI Trigger extensions in an opaque manner.

Property: generic-trigger-extension-type

Description: Case-insensitive CDNI Trigger extension object

type.

Type: String containing the CDNI Payload Type [RFC7736] of the

object contained in the generic-trigger-extension-value

property (see table in Section 9.1).

Mandatory: Yes.

Property: generic-trigger-extension-value

Description: CDNI Trigger extension object.

Type: Format/Type is defined by the value of the generic-

trigger-extension-type property above.

Mandatory: Yes.

Property: mandatory-to-enforce

Description: Flag identifying whether or not the enforcement

of this trigger extension is mandatory.

Type: Boolean

Mandatory: No. Default is to treat the trigger extension as

mandatory-to-enforce (i.e., a value of True).

Property: safe-to-redistribute

Description: Flag identifying whether or not this trigger

extension can be safely redistributed without modification,

even if the CDN fails to understand the extension.

Type: Boolean

Mandatory: No. Default is to allow transparent redistribution

(i.e., a value of True).

Property: incomprehensible

Description: Flag identifying whether or not any CDN in the

chain of delegation has failed to understand and/or failed to

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: error

properly transform this trigger extension object. Note: This

flag only applies to trigger extension objects whose safe-to-

redistribute property has a value of False.

Type: Boolean

Mandatory: No. Default is comprehensible (i.e., a value of

False).

Example of a JSON serialized GenericTriggerExtension object

containing a specific trigger extension object:

5.2.9. Absolute Time

A JSON number, seconds since the UNIX epoch (00:00:00 UTC on 1

January 1970).

5.2.10. Error Description

An Error Description is used to report the failure of a CI/T Command

or failure in the activity it triggered. It is encoded as a JSON

object with the following name/value pairs:

Value: Error Code, as defined in Section 5.2.11.

Mandatory: Yes.

Names: metadata.urls, content.urls, metadata.patterns,

content.patterns

Description: Metadata and content references copied from the

Trigger Specification. Only those URLs and patterns to which the

error applies are included in each property, but those URLs and

patterns MUST be exactly as they appear in the request; the dCDN

MUST NOT generalize the URLs. (For example, if the uCDN requests

¶

¶

¶

¶

{

 "generic-trigger-extension-type":

 <Type of this trigger extension object>,

 "generic-trigger-extension-value":

 {

 <properties of this trigger extension object>

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 "incomprehensible": false

}

¶

¶

¶

¶

¶

¶

Name: description

Name: content.regexs, content.playlists

Name: extensions

pre-positioning of URLs "https://content.example.com/a" and

"https://content.example.com/b", the dCDN must not generalize its

error report to the pattern "https://content.example.com/*".)

Value: A JSON array of JSON strings, where each string is copied

from a "content.*" or "metadata.*" value in the corresponding

Trigger Specification.

Mandatory: At least one of these name/value pairs is mandatory in

each Error Description object.

Description: A human-readable description of the error.

Value: A JSON string, the human-readable description.

Mandatory: No.

Description: Content Regex and Playlist references copied from

the Trigger Specification. Only those regexs and playlists to

which the error applies are included in each property, but

those references MUST be exactly as they appear in the

request; the dCDN MUST NOT change or generalize the URLs or

Regexs. Note that these properties are added on top of the

already existing properties: "metadata.urls", "content.urls",

"metadata.patterns" and "content.patterns".

Value: A JSON array of JSON strings, where each string is

copied from a "content.regexs" or "content.playlists" value in

the corresponding Trigger Specification.

Mandatory: At least one of "content.regexs",

"content.playlists", "metadata.urls", "content.urls",

"metadata.patterns" or "content.patterns" is mandatory in each

Error Description object.

Description: Array of trigger extension objects copied from

the corresponding "extensions" array from the Trigger

Specification. Only those extensions to which the error

applies are included, but those extensions MUST be exactly as

they appear in the request.

Value: Array of GenericTriggerExtension objects, where each

extension object is copied from the "extensions" array values

in the Trigger Specification.

Mandatory: No. The "extensions" array SHOULD be used only if

the error relates to extension objects.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name: cdn

Description: The CDN PID of the CDN where the error occurred.

The "cdn" property is used by the originating uCDN or by

propagating dCDN in order to distinguish in which CDN the

error occurred.

Value: A non-empty JSON string, where the string is a CDN PID

as defined in Section Section 4.6

Mandatory: Yes. In the case the dCDN does not like to expose

this information, it should provide its own CDN PID.

Example of a JSON serialized Error Description object reporting a

malformed Playlist:

Example of a JSON serialized Error Description object reporting an

unsupported extension object:

¶

¶

¶

¶

{

 "content.playlists": [

 {

 "playlist": "https://www.example.com/hls/title/index.m3u8",

 "media-protocol": "hls"

 }

],

 "description": "Failed to parse HLS playlist",

 "error": "econtent",

 "cdn": "AS64500:0"

},

¶

¶

5.2.11. Error Code

This type is used by the dCDN to report failures in trigger

processing. All Error Codes MUST be registered in the IANA "CDNI CI/

T Error Codes" registry (see Section 9.3). Unknown Error Codes MUST

be treated as fatal errors, and the request MUST NOT be

automatically retried without modification.

The following Error Codes are defined by this document and MUST be

supported by an implementation of the CI/T interface.

Error Code Description

emeta The dCDN was unable to acquire metadata required

to fulfill the request.

econtent The dCDN was unable to acquire content (CI/T

"preposition" commands only).

eperm The uCDN does not have permission to issue the

CI/T Command (for example, the data is owned by

another CDN).

ereject The dCDN is not willing to fulfill the CI/T

Command (for example, a "preposition" request for

content at a time when the dCDN would not accept

Request Routing requests from the uCDN).

ecdn An internal error in the dCDN or one of its dCDNs.

ecancelled The uCDN canceled the request.

eunsupported The Trigger Specification contained a "type" that

is not supported by the dCDN. No action was taken

by the dCDN other than to create a Trigger Status

{

 "errors.v2": [

 {

 "extensions": [

 {

 "generic-trigger-extension-type":

 <Type of this erroneous trigger extension object>,

 "generic-trigger-extension-value":

 {

 <properties of this erroneous trigger extension object>

 },

 }

],

 "description": "unrecognized extension <type>",

 "error": "eextension",

 "cdn": "AS64500:0"

 },

]

}

¶

¶

¶

Error Code Description

Resource in state "failed".

eextension An error occurred while parsing a generic trigger

extension, or that the specific extension is not

supported by the CDN. The Trigger Specification

contained a "type" that.

Table 5

6. Trigger Extension Objects

The objects defined below are intended to be used in the

GenericTriggerExtension object's generic-trigger-extension-value

field as defined in Section Section 5.2.8.2, and their generic-

trigger-extension-type property MUST be set to the appropriate CDNI

Payload Type as defined in Section 9.1 .

6.1. LocationPolicy extension

A content operation may be relevant for a specific geographical

region, or need to be excluded from a specific region. In this case,

the trigger should be applied only to parts of the network that are

either "included" or "not excluded" by the location policy. Note

that the restrictions here are on the cache location rather than the

client location.

The LocationPolicy object defines which CDN or cache locations for

which the trigger command is relevant.

Example use cases:

Pre-position: Certain contracts allow for pre-positioning or

availability of contract in all regions except for certain

excluded regions in the world, including caches. For example,

some content cannot ever knowingly touch servers in a specific

country, including cached content. Therefore, these regions MUST

be excluded from a pre-positioning operation.

Purge: In certain cases, content may have been located on servers

in regions where the content must not reside. In such cases, a

purge operation to remove content specifically from that region

is required.

Object specification

Property: locations

Description: An Access List that allows or denies (blocks) the

trigger execution per cache location.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

Type: Array of LocationRule objects (see Section 4.2.2.1 of

[RFC8006])

Mandatory: Yes.

If a location policy object is not listed within the trigger

command, the default behavior is to execute the trigger in all

available caches and locations of the dCDN.

The trigger command is allowed, or denied, for a specific cache

location according to the action of the first location whose

footprint matches against that cache's location. If two or more

footprints overlap, the first footprint that matches against the

cache's location determines the action a CDN MUST take. If the

"locations" property is an empty list or if none of the listed

footprints match the location of a specific cache location, then the

result is equivalent to a "deny" action.

The following is an example of a JSON serialized generic trigger

extension object containing a location policy object that allows the

trigger execution in the US but blocks its execution in Canada:

¶

¶

¶

¶

¶

6.2. TimePolicy Extension

A uCDN may wish to perform content management operations on the dCDN

in a specific schedule. The TimePolicy extensions allows the uCDN to

instruct the dCDN to execute the trigger command in a desired time

window. For example, a content provider that wishes to pre-populate

a new episode at off-peak time so that it would be ready on caches

at prime time when the episode is released for viewing. A scheduled

operation enables the uCDN to direct the dCDN in what time frame to

execute the trigger.

A uCDN may wish to to schedule a trigger such that the dCDN will

execute it in local time, as it is measured in each region. For

example, a uCDN may wish the dCDN to pull the content at off-peak

hours, between 2AM-4AM, however, as a CDN is distributed across

multiple time zones, the UTC definition of 2AM depends on the actual

location.

{

 "generic-trigger-extension-type": "CIT.LocationPolicy",

 "generic-trigger-extension-value":

 {

 "locations": [

 {

 "action": "allow",

 "footprints": [

 {

 "footprint-type": "countrycode",

 "footprint-value": ["us"]

 }

]

 },

 {

 "action": "deny",

 "footprints": [

 {

 "footprint-type": "countrycode",

 "footprint-value": ["ca"]

 }

]

 }

]

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 "incomprehensible": false

}

¶

¶

¶

We define two alternatives for localized scheduling:

Regional schedule: When used in conjunction with the Location

Policy defined in Section 6.1, the uCDN can trigger separate

commands for different geographical regions, for each region

using a different schedule. This allows the uCDN to control the

execution time per region.

Local Time schedule: We introduce a "local time" version for

Internet timestamps that follows the notation for local time as

defined in Section 4.2.2 of [ISO8601]. When local time is used,

that dCDN SHOULD execute the triggers at different absolute

times, according the local time of each execution location.

Object specification

Property: unix-time-window

Description: A UNIX epoch time window in which the trigger

SHOULD be executed.

Type: TimeWindow object using UNIX epoch timestamps (see

Section 4.2.3.2 of [RFC8006])

Mandatory: No, but exactly one of "unixEpochWindow",

"utcWindow" or "localTimeWindow" MUST be present.

Property: utc-window

Description: A UTC time window in which the trigger SHOULD be

executed.

Type: UTCWindow object as defined in Section 6.2.1.

Mandatory: No, but exactly one of "unixEpochWindow",

"utcWindow" or "localTimeWindow" MUST be present.

Property: local-time-window

Description: A local time window. The dCDN SHOULD execute the

trigger at the defined time frame, interpreted as the the

local time per location.

Type: LocalTimeWindow object as defined in Section 6.2.2.

Mandatory: No, but exactly one of "unixEpochWindow",

"utcWindow" or "localTimeWindow" MUST be present.

If a time policy object is not listed within the trigger command,

the default behavior is to execute the trigger in a time frame most

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

suitable to the dCDN taking under consideration other constrains and

/ or obligations.

Example of a JSON serialized generic trigger extension object

containing a time policy object that schedules the trigger execution

to a window between 09:00 01/01/2000 UTC and 17:00 01/01/2000 UTC,

using the "unix-time-window" property:

6.2.1. UTCWindow

A UTCWindow object describes a time range in UTC or UTC and a zone

offset that can be applied by a TimePolicy.

Property: start

Description: The start time of the window.

Type: Internet date and time as defined in [RFC3339].

Mandatory: No, but at least one of "start" or "end" MUST be

present and non-empty.

Property: end

Description: The end time of the window.

Type: Internet date and time as defined in [RFC3339].

Mandatory: No, but at least one of "start" or "end" MUST be

present and non-empty.

Example JSON serialized UTCWindow object that describes a time

window from 02:30 01/01/2000 UTC to 04:30 01/01/2000 UTC:

¶

¶

{

 "generic-trigger-extension-type": "CIT.TimePolicy",

 "generic-trigger-extension-value":

 {

 "unix-time-window": {

 "start": 946717200,

 "end": 946746000

 }

 }

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 "incomprehensible": false

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Example JSON serialized UTCWindow object that describes a time

window in New York time zone offset UTC-05:00 from 02:30 01/01/2000

to 04:30 01/01/2000:

6.2.2. LocalTimeWindow

A LocalTimeWindow object describes a time range in local time. The

reader of this object MUST interpret it as "the local time at the

location of execution". For example, if the time window states 2AM

to 4AM local time then a dCDN that has presence in both London (UTC)

and New York (UTC-05:00) will execute the trigger at 2AM-4AM UTC in

London and at 2AM-4AM UTC-05:00 in New York.

Property: start

Description: The start time of the window.

Type: JSON string formatted as DateLocalTime as defined in

Section 6.2.3.

Mandatory: No, but at least one of "start" or "end" MUST be

present and non-empty.

Property: end

Description: The end time of the window.

Type: JSON string formatted as DateLocalTime as defined in

Section 6.2.3.

Mandatory: No, but at least one of "start" or "end" MUST be

present and non-empty.

Example JSON serialized LocalTimeWindow object that describes a

local time window from 02:30 01/01/2000 to 04:30 01/01/2000.

{

 "start": 2000-01-01T02:30:00.00Z,

 "end": 2000-01-01T04:30:00.00Z,

}

¶

¶

{

 "start": 2000-01-01T02:30:00.00-05:00,

 "end": 2000-01-01T04:30:00.00-05:00,

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "start": 2000-01-01T02:30:00.00,

 "end": 2000-01-01T04:30:00.00,

}

¶

6.2.3. DateLocalTime

DateLocalTime is a timestamp that follows the date and local time

notation in Section 4.3.2 of [ISO8601] as a complete date and time

extended representation, where the time zone designator is omitted.

In addition, for simplicity and as exact accuracy is not an

objective in this case, this specification does not support the

decimal fractions of seconds, and does not take leap second into

consideration.

Type: JSON string using the format "date-local-time" as defined in

Section 6.2.3.1.

6.2.3.1. Date and Local Time Format

The Date and Local Time format is specified here using the syntax

description notation defined in [ABNF].

Example time representing 09:00AM on 01/01/2000 local time:

2000-01-01T09:00:00.00

NOTE: Per [ABNF] and [ISO8601], the "T" character in this syntax

may alternatively be lower case "t". For simplicity, Applications

that generate the "date-local-time" format defined here, SHOULD

only use the upper case letter "T".

6.2.3.2. Restrictions

The grammar element date-mday represents the day number within the

current month. The maximum value varies based on the month and year

as follows:

¶

¶

¶

date-fullyear = 4DIGIT

date-month = 2DIGIT ; 01-12

date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on

 ; month/year

time-hour = 2DIGIT ; 00-23

time-minute = 2DIGIT ; 00-59

time-second = 2DIGIT ; 00-59 leap seconds are not supported

local-time = time-hour ":" time-minute ":" time-second

full-date = date-fullyear "-" date-month "-" date-mday

date-local-time = full-date "T" local-time

¶

¶

¶

¶

¶

See Appendix C of [RFC3339] for a sample C code that determines if a

year is a leap year.

The grammar element time-second may have the values 0-59. The value

of 60 that is used in [ISO8601] to represent a leap second MUST NOT

be used.

Although [ISO8601] permits the hour to be "24", this profile of

[ISO8601] only allows values between "00" and "23" for the hour in

order to reduce confusion.

7. Footprint and Capabilities

This section covers the FCI objects required for advertisement of

the extensions and properties introduced in this document.

7.1. CI/T Playlist Protocol Capability Object

The CI/T Playlist Protocol capability object is used to indicate

support for one or more MediaProtocol types listed in Section 9.4 by

the playlists property of the "trigger.v2" object.

Property: media-protocols

Description: A list of media protocols.

Type: A list of MediaProtocol (from the CDNI Triggers media

protocol types Section 9.4)

Mandatory: No. The default, in case of a missing or an empty

list, is none supported.

Month Number Month/Year Maximum value of date-mday

------------ ---------- --------------------------

01 January 31

02 February, normal 28

02 February, leap year 29

03 March 31

04 April 30

05 May 31

06 June 30

07 July 31

08 August 31

09 September 30

10 October 31

11 November 30

12 December 31

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.1.1. CI/T Playlist Protocol Capability Object Serialization

The following shows an example of a JSON serialized CI/T Playlist

Protocol Capability object serialization for a dCDN that supports

"hls" and "dash".

7.2. CI/T Trigger Extension Capability Object

The CI/T Generic Extension capability object is used to indicate

support for one or more GenericExtensionObject types.

Property: trigger-extension

Description: A list of supported CDNI CI/T

GenericExtensionObject types.

Type: List of strings corresponding to entries from the "CDNI

Payload Types" registry [RFC7736] that are under the CIT

namespace, and that correspond to CDNI CI/T

GenericExtensionObject objects.

Mandatory: No. The default, in case of a missing or an empty

list, MUST be interpreted as "no GenericExtensionObject types

are supported". A non-empty list MUST be interpreted as

containing "the only GenericExtensionObject types that are

supported".

7.2.1. CI/T Trigger Extension Capability Object Serialization

The following shows an example of a JSON serialized CI/T Trigger

Extension Capability object serialization for a dCDN that supports

the "CIT.LocationPolicy" and the "CIT.TimePolicy" objects.

¶

{

 "capabilities": [

 {

 "capability-type": "FCI.TriggerPlaylistProtocol",

 "capability-value": {

 "media-protocols": ["hls", "dash"]

 },

 "footprints": [

 <Footprint objects>

]

 }

]

}

¶

¶

¶

¶

¶

¶

¶

8. Examples

The following subsections provide examples of different CI/T objects

encoded as JSON.

Discovery of the CI/T interface is out of scope for this document.

In an implementation, all CI/T URLs are under the control of the

dCDN. The uCDN MUST NOT attempt to ascribe any meaning to individual

elements of the path.

In examples in this section, the URL "https://dcdn.example.com/

triggers" is used as the location of the collection of all Trigger

Status Resources, and the CDN PID of the uCDN is "AS64496:1".

8.1. Creating Triggers

Examples of the uCDN triggering activity in the dCDN:

8.1.1. Preposition

Below is an example of a CI/T "preposition" command -- a POST to the

collection of all Trigger Status Resources.

Note that "metadata.patterns" and "content.patterns" are not allowed

in a pre-position Trigger Specification.

{

 "capabilities": [

 {

 "capability-type": "FCI.TriggerGenericExtension",

 "capability-value": {

 "trigger-extension": ["CIT.LocationPolicy", "CIT.TimePolicy"]

 },

 "footprints": [

 <Footprint objects>

]

 }

]

}

¶

¶

¶

¶

¶

¶

¶

REQUEST:

 POST /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

 Content-Type: application/cdni; ptype=ci-trigger-command

 Content-Length: 352

 {

 "trigger": {

 "type": "preposition",

 "metadata.urls": ["https://metadata.example.com/a/b/c"],

 "content.urls": [

 "https://www.example.com/a/b/c/1",

 "https://www.example.com/a/b/c/2",

 "https://www.example.com/a/b/c/3",

 "https://www.example.com/a/b/c/4"

]

 },

 "cdn-path": ["AS64496:1"]

 }

RESPONSE:

 HTTP/1.1 201 Created

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Length: 467

 Content-Type: application/cdni; ptype=ci-trigger-status

 Location: https://dcdn.example.com/triggers/0

 Server: example-server/0.1

 {

 "ctime": 1462351690,

 "etime": 1462351698,

 "mtime": 1462351690,

 "status": "pending",

 "trigger": {

 "content.urls": [

 "https://www.example.com/a/b/c/1",

 "https://www.example.com/a/b/c/2",

 "https://www.example.com/a/b/c/3",

 "https://www.example.com/a/b/c/4"

],

 "metadata.urls": [

 "https://metadata.example.com/a/b/c"

],

 "type": "preposition"

 }

 }

¶

8.1.2. Invalidate

Below is an example of a CI/T "invalidate" command -- another POST

to the collection of all Trigger Status Resources. This instructs

the dCDN to revalidate the content at "https://www.example.com/a/

index.html", as well as any metadata and content whose URLs are

prefixed by "https://metadata.example.com/a/b/" using case-

insensitive matching, and "https://www.example.com/a/b/" using case-

sensitive matching, respectively.¶

REQUEST:

 POST /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

 Content-Type: application/cdni; ptype=ci-trigger-command

 Content-Length: 387

 {

 "trigger": {

 "type": "invalidate",

 "metadata.patterns": [

 { "pattern": "https://metadata.example.com/a/b/*" }

],

 "content.urls": ["https://www.example.com/a/index.html"],

 "content.patterns": [

 { "pattern": "https://www.example.com/a/b/*",

 "case-sensitive": true

 }

]

 },

 "cdn-path": ["AS64496:1"]

 }

RESPONSE:

 HTTP/1.1 201 Created

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Length: 545

 Content-Type: application/cdni; ptype=ci-trigger-status

 Location: https://dcdn.example.com/triggers/1

 Server: example-server/0.1

 {

 "ctime": 1462351691,

 "etime": 1462351699,

 "mtime": 1462351691,

 "status": "pending",

 "trigger": {

 "content.patterns": [

 {

 "case-sensitive": true,

 "pattern": "https://www.example.com/a/b/*"

 }

],

 "content.urls": [

 "https://www.example.com/a/index.html"

],

 "metadata.patterns": [

 {

 "pattern": "https://metadata.example.com/a/b/*"

 }

],

 "type": "invalidate"

 }

 }

¶

8.1.3. Invalidation with Regex

In the following example a CI/T "invalidate" command uses the Regex

property to specify the range of content objects for invalidation,

the command is rejected by the dCDN due to regex complexity, and an

appropriate error is reflected in the status response.¶

REQUEST:

 POST /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: triggers.dcdn.example.com

 Accept: */*

 Content-Type: application/cdni; ptype=ci-trigger-command.v2

 {

 "trigger.v2": {

 "type": "invalidate",

 "content.regexs": [

 {

 "regex": "^(https:\\/\\/video\\.example\\.com)\\/

 ([a-z])\\/movie1\\/([1-7])\\/*(index.m3u8|\\d{3}.ts)$",

 "case-sensitive": true,

 "match-query-string": false

 },

 { <RegexMatch #2> },

 ...

 { <RegexMatch #N> },

],

 },

 "cdn-path": ["AS64496:0"]

 }

RESPONSE:

 HTTP/1.1 201 Created

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Length: 467

 Content-Type: application/cdni; ptype=ci-trigger-status.v2

 Location: https://triggers.dcdn.example.com/triggers/0

 Server: example-server/0.1

 {

 "errors.v2": [

 {

 "content.regexs": [

 {

 "regex": "^(https:\\/\\/video\\.example\\.com)\\/

 ([a-z])\\/movie1\\/([1-7])\\/*(index.m3u8|\\d{3}.ts)$",

 "case-sensitive": true,

 "match-query-string": false

 },

],

 "description": "The dCDN rejected a regex due to complexity",

 "error": "ereject",

 "cdn": "AS64500:0"

 },

],

 "ctime": 1462351690,

 "etime": 1462351698,

 "mtime": 1462351690,

 "status": "failed",

 "trigger.v2": { <content of trigger object from the command> }

 }

¶

8.1.4. Preposition with Playlists

In the following example a CI/T "preposition" command uses the

Playlist property to specify the full media library of a specific

content. The command fails due to playlist parse error and an

appropriate error is reflected in the status response.¶

REQUEST:

 POST /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: triggers.dcdn.example.com

 Accept: */*

 Content-Type: application/cdni; ptype=ci-trigger-command.v2

 {

 "trigger.v2": {

 "type": "preposition",

 "content.playlists": [

 {

 "playlist": "https://www.example.com/hls/title/index.m3u8",

 "media-protocol": "hls"

 },

 { <Playlist #2> },

 ...

 { <Playlist #N> },

],

 },

 "cdn-path": ["AS64496:0"]

 }

RESPONSE:

 HTTP/1.1 201 Created

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Length: 467

 Content-Type: application/cdni; ptype=ci-trigger-status.v2

 Location: https://triggers.dcdn.example.com/triggers/0

 Server: example-server/0.1

 {

 "errors.v2": [

 {

 "content.playlists": [

 {

 "playlist": "https://www.example.com/hls/title/index.m3u8",

 "media-protocol": "hls"

 },

],

 "description": "The dCDN was not able to parse the playlist",

 "error": "econtent",

 "cdn": "AS64500:0"

 },

],

 "ctime": 1462351690,

 "etime": 1462351698,

 "mtime": 1462351690,

 "status": "failed",

 "trigger.v2": { <content of trigger object from the command> }

 }

¶

8.2. Examining Trigger Status

Once Trigger Status Resources have been created, the uCDN can check

their status as shown in the following examples.

8.2.1. Collection of All Triggers

The uCDN can fetch the collection of all Trigger Status Resources it

has created that have not yet been deleted or removed as expired.

After creation of the "preposition" and "invalidate" triggers shown

above, this collection might look as follows:

8.2.2. Filtered Collections of Trigger Status Resources

The filtered collections are also available to the uCDN. Before the

dCDN starts processing the two CI/T Trigger Commands shown above,

both will appear in the collection of pending triggers. For example:

¶

¶

REQUEST:

 GET /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 341

 Expires: Wed, 04 May 2016 08:49:11 GMT

 Server: example-server/0.1

 ETag: "-936094426920308378"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "cdn-id": "AS64496:0",

 "coll-active": "/triggers/active",

 "coll-complete": "/triggers/complete",

 "coll-failed": "/triggers/failed",

 "coll-pending": "/triggers/pending",

 "staleresourcetime": 86400,

 "triggers": [

 "https://dcdn.example.com/triggers/0",

 "https://dcdn.example.com/triggers/1"

]

 }

¶

¶

At this point, if no other Trigger Status Resources had been

created, the other filtered views would be empty. For example:

REQUEST:

 GET /triggers/pending HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 152

 Expires: Wed, 04 May 2016 08:49:11 GMT

 Server: example-server/0.1

 ETag: "4331492443626270781"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "staleresourcetime": 86400,

 "triggers": [

 "https://dcdn.example.com/triggers/0",

 "https://dcdn.example.com/triggers/1"

]

 }

¶

¶

8.2.3. Individual Trigger Status Resources

The Trigger Status Resources can also be examined for details about

individual CI/T Trigger Commands. For example, for the CI/T

"preposition" and "invalidate" commands from previous examples:

REQUEST:

 GET /triggers/complete HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 54

 Expires: Wed, 04 May 2016 08:49:11 GMT

 Server: example-server/0.1

 ETag: "7958041393922269003"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "staleresourcetime": 86400,

 "triggers": []

 }

¶

¶

REQUEST:

 GET /triggers/0 HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 467

 Expires: Wed, 04 May 2016 08:49:10 GMT

 Server: example-server/0.1

 ETag: "6990548174277557683"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Type: application/cdni; ptype=ci-trigger-status

 {

 "ctime": 1462351690,

 "etime": 1462351698,

 "mtime": 1462351690,

 "status": "pending",

 "trigger": {

 "content.urls": [

 "https://www.example.com/a/b/c/1",

 "https://www.example.com/a/b/c/2",

 "https://www.example.com/a/b/c/3",

 "https://www.example.com/a/b/c/4"

],

 "metadata.urls": [

 "https://metadata.example.com/a/b/c"

],

 "type": "preposition"

 }

 }

REQUEST:

 GET /triggers/1 HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 545

 Expires: Wed, 04 May 2016 08:49:11 GMT

 Server: example-server/0.1

 ETag: "-554385204989405469"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Type: application/cdni; ptype=ci-trigger-status

 {

 "ctime": 1462351691,

 "etime": 1462351699,

 "mtime": 1462351691,

 "status": "pending",

 "trigger": {

 "content.patterns": [

 {

 "case-sensitive": true,

 "pattern": "https://www.example.com/a/b/*"

 }

],

 "content.urls": [

 "https://www.example.com/a/index.html"

],

 "metadata.patterns": [

 {

 "pattern": "https://metadata.example.com/a/b/*"

 }

],

 "type": "invalidate"

 }

 }

¶

8.2.4. Polling for Changes in Status

The uCDN SHOULD use the ETags of collections or Trigger Status

Resources when polling for changes in status, as shown in the

following examples:

When the CI/T Trigger Command is complete, the contents of the

filtered collections will be updated along with their ETags. For

example, when the two example CI/T Trigger Commands are complete,

the collections of pending and complete Trigger Status Resources

might look like:

¶

REQUEST:

 GET /triggers/pending HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

 If-None-Match: "4331492443626270781"

RESPONSE:

 HTTP/1.1 304 Not Modified

 Content-Length: 0

 Expires: Wed, 04 May 2016 08:49:11 GMT

 Server: example-server/0.1

 ETag: "4331492443626270781"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:11 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

REQUEST:

 GET /triggers/0 HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

 If-None-Match: "6990548174277557683"

RESPONSE:

 HTTP/1.1 304 Not Modified

 Content-Length: 0

 Expires: Wed, 04 May 2016 08:49:10 GMT

 Server: example-server/0.1

 ETag: "6990548174277557683"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Type: application/cdni; ptype=ci-trigger-status

¶

¶

REQUEST:

 GET /triggers/pending HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 54

 Expires: Wed, 04 May 2016 08:49:15 GMT

 Server: example-server/0.1

 ETag: "1337503181677633762"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:15 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "staleresourcetime": 86400,

 "triggers": []

 }

REQUEST:

 GET /triggers/complete HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 152

 Expires: Wed, 04 May 2016 08:49:22 GMT

 Server: example-server/0.1

 ETag: "4481489539378529796"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:22 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "staleresourcetime": 86400,

 "triggers": [

 "https://dcdn.example.com/triggers/0",

 "https://dcdn.example.com/triggers/1"

]

 }

¶

8.2.5. Deleting Trigger Status Resources

The uCDN can delete completed and failed Trigger Status Resources to

reduce the size of the collections, as described in Section 4.4. For

example, to delete the "preposition" request from earlier examples:

This would, for example, cause the collection of completed Trigger

Status Resources shown in the example above to be updated to:

¶

REQUEST:

 DELETE /triggers/0 HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 204 No Content

 Date: Wed, 04 May 2016 08:48:22 GMT

 Content-Length: 0

 Content-Type: text/html; charset=UTF-8

 Server: example-server/0.1

¶

¶

REQUEST:

 GET /triggers/complete HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: dcdn.example.com

 Accept: */*

RESPONSE:

 HTTP/1.1 200 OK

 Content-Length: 105

 Expires: Wed, 04 May 2016 08:49:22 GMT

 Server: example-server/0.1

 ETag: "-6938620031669085677"

 Cache-Control: max-age=60

 Date: Wed, 04 May 2016 08:48:22 GMT

 Content-Type: application/cdni; ptype=ci-trigger-collection

 {

 "staleresourcetime": 86400,

 "triggers": [

 "https://dcdn.example.com/triggers/1"

]

 }

¶

8.2.6. Extensions with Error Propagation

In the following example a CI/T "preposition" command is using two

extensions to control the way the trigger is executed. In this

example the receiving dCDN identified as "AS64500:0" does not

support the first extension in the extensions array. dCDN

"AS64500:0" further distributes this trigger to another downstream

CDN that is identified as "AS64501:0", which does not support the

second extension in the extensions array. The error is propagated

from "AS64501:0" to "AS64500:0" and the errors.v2 array reflects

both errors.¶

REQUEST:

 POST /triggers HTTP/1.1

 User-Agent: example-user-agent/0.1

 Host: triggers.dcdn.example.com

 Accept: */*

 Content-Type: application/cdni; ptype=ci-trigger-command.v2

 {

 "trigger.v2": {

 "type": "preposition",

 "content.playlists": [

 {

 "playlist": "https://www.example.com/hls/title/index.m3u8",

 "media-protocol": "hls"

 },

],

 "extensions": [

 {

 "generic-trigger-extension-type":

 <Type of trigger extension object #1>,

 "generic-trigger-extension-value":

 {

 <properties of trigger extension object #1>

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 },

 {

 "generic-trigger-extension-type":

 <Type of trigger extension object #2>,

 "generic-trigger-extension-value":

 {

 <properties of trigger extension object #2>

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 },

],

 },

 "cdn-path": ["AS64496:0"]

 }

RESPONSE:

 HTTP/1.1 201 Created

 Date: Wed, 04 May 2016 08:48:10 GMT

 Content-Length: 467

 Content-Type: application/cdni; ptype=ci-trigger-status.v2

 Location: https://triggers.dcdn.example.com/triggers/0

 Server: example-server/0.1

 {

 "errors.v2": [

 {

 "extensions": [

 {

 "generic-trigger-extension-type":

 <Type of trigger extension object #1>,

 "generic-trigger-extension-value":

 {

 <properties of trigger extension object #1>

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 },

],

 "description": "unrecognized extension <type>",

 "error": "eextension",

 "cdn": "AS64500:0"

 },

 {

 "extensions": [

 {

 "generic-trigger-extension-type":

 <Type of trigger extension object #2>,

 "generic-trigger-extension-value":

 {

 <properties of trigger extension object #2>

 },

 "mandatory-to-enforce": true,

 "safe-to-redistribute": true,

 },

],

 "description": "unrecognized extension <type>",

 "error": "eextension",

 "cdn": "AS64501:0"

 },

],

 "ctime": 1462351690,

 "etime": 1462351698,

 "mtime": 1462351690,

 "status": "failed",

 "trigger.v2": { <content of trigger object from the command> }

 }

¶

9. IANA Considerations

9.1. CDNI Payload Type Parameter Registrations

The IANA is requested to register the following new Payload Types in

the "CDNI Payload Types" registry defined by [RFC7736], for use with

the "application/cdni" MIME media type.

Payload Type Specification

ci-trigger-collection RFCthis

ci-trigger-command.v2 RFCthis

ci-trigger-status.v2 RFCthis

CIT.LocationPolicy RFCthis

CIT.TimePolicy RFCthis

FCI.TriggerVersion RFCthis

FCI.TriggerPlaylistProtocol RFCthis

FCI.TriggerGenericExtension RFCthis

Table 6

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

9.1.1. CDNI ci-trigger-command.v2 Payload Type

Purpose: TBD: The purpose of this payload type is to distinguish

version 2 of the CI/T command (and any associated capability

advertisement)

Interface: CI/T

Encoding: see Section 5.1.1

9.1.2. CDNI ci-trigger-status.v2 Payload Type

Purpose: TBD: The purpose of this payload type is to distinguish

version 2 of the CI/T status resource response (and any associated

capability advertisement)

Interface: CI/T

Encoding: see Section 5.1.2

9.1.3. CDNI ci-trigger-collection.v2 Payload Type

Purpose: TBD (came from 8007)

Interface: CI/T

Encoding: see Section 5.1.3

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.1.4. CDNI CI/T LocationPolicy Trigger Extension Type

Purpose: The purpose of this Trigger Extension type is to

distinguish LocationPolicy CIT Trigger Extension objects.

Interface: CI/T

Encoding: see Section 6.1

9.1.5. CDNI CI/T TimePolicy Trigger Extension Type

Purpose: The purpose of this Trigger Extension type is to

distinguish TimePolicy CI/T Trigger Extension objects.

Interface: CI/T

Encoding: see Section 6.2

9.1.6. CDNI FCI CI/T Playlist Protocol Payload Type

Purpose: The purpose of this payload type is to distinguish FCI

advertisement objects for CI/T Playlist Protocol objects

Interface: FCI

Encoding: see Section 7.1.1

9.1.7. CDNI FCI CI/T Extension Objects Payload Type

Purpose: The purpose of this payload type is to distinguish FCI

advertisement objects for CI/T Extension objects

Interface: FCI

Encoding: see Section 7.2.1

9.2. "CDNI CI/T Trigger Types" Registry

The IANA is requested to create a new "CDNI CI/T Trigger Types"

subregistry under the "Content Delivery Network Interconnection

(CDNI) Parameters" registry.

Additions to the "CDNI CI/T Trigger Types" registry will be made via

the RFC Required policy as defined in [RFC8126].

The initial contents of the "CDNI CI/T Trigger Types" registry

comprise the names and descriptions listed in Section 5.2.2 of this

document, with this document acting as the specification.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.3. "CDNI CI/T Error Codes" Registry

The IANA is requested to create a new "CDNI CI/T Error Codes"

subregistry under the "Content Delivery Network Interconnection

(CDNI) Parameters" registry.

Additions to the "CDNI CI/T Error Codes" registry will be made via

the Specification Required policy as defined in [RFC8126]. The

Designated Expert will verify that new Error Code registrations do

not duplicate existing Error Code definitions (in name or

functionality), prevent gratuitous additions to the namespace, and

prevent any additions to the namespace that would impair the

interoperability of CDNI implementations.

The initial contents of the "CDNI CI/T Error Codes" registry

comprise the names and descriptions of the Error Codes listed in

Section 5.2.7 of this document, with this document acting as the

specification.

9.4. CDNI Media protocol types

The IANA is requested to create a new "CDNI MediaProtocol Types"

subregistry in the "Content Delivery Networks Interconnection (CDNI)

Parameters" registry. The "CDNI MediaProtocol Types" namespace

defines the valid MediaProtocol object values in Section Section

5.2.7, used by the Playlist object. Additions to the MediaProtocol

namespace conform to the "Specification Required" policy as defined

in Section 4.6 of [RFC8126], where the specification defines the

MediaProtocol Type and the protocol to which it is associated. The

designated expert will verify that new protocol definitions do not

duplicate existing protocol definitions and prevent gratuitous

additions to the namespace.

The following table defines the initial MediaProtocol values

corresponding to the HLS, MSS, and DASH protocols:

MediaProtocol

Type
Description Specification

Protocol

Specification

hls HTTP Live Streaming RFCthis
RFC 8216

[RFC8216]

mss
Microsoft Smooth

Streaming
RFCthis MSS [MSS]

dash

Dynamic Adaptive

Streaming over HTTP

(MPEG-DASH)

RFCthis
MPEG-DASH

[MPEG-DASH]

Table 7

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

¶

¶

¶

¶

¶

¶

10. Security Considerations

The CI/T interface provides a mechanism to allow a uCDN to generate

requests into the dCDN and to inspect its own CI/T requests and

their current states. The CI/T interface does not allow access to,

or modification of, the uCDN or dCDN metadata relating to content

delivery or to the content itself. It can only control the presence

of that metadata in the dCDN, and the processing work and network

utilization involved in ensuring that presence.

By examining "preposition" requests to a dCDN, and correctly

interpreting content and metadata URLs, an attacker could learn the

uCDN's or content owner's predictions for future content popularity.

By examining "invalidate" or "purge" requests, an attacker could

learn about changes in the content owner's catalog.

By injecting CI/T Commands, an attacker or a misbehaving uCDN would

generate work in the dCDN and uCDN as they process those requests.

So would a man-in-the-middle attacker modifying valid CI/T Commands

generated by the uCDN. In both cases, that would decrease the dCDN's

caching efficiency by causing it to unnecessarily acquire or

reacquire content metadata and/or content.

A dCDN implementation of CI/T MUST restrict the actions of a uCDN to

the data corresponding to that uCDN. Failure to do so would allow

uCDNs to detrimentally affect each other's efficiency by generating

unnecessary acquisition or reacquisition load.

An origin that chooses to delegate its delivery to a CDN is trusting

that CDN to deliver content on its behalf; the interconnection of

CDNs is an extension of that trust to dCDNs. That trust relationship

is a commercial arrangement, outside the scope of the CDNI

protocols. So, while a malicious CDN could deliberately generate

load on a dCDN using the CI/T interface, the protocol does not

otherwise attempt to address malicious behavior between

interconnected CDNs.

10.1. Authentication, Authorization, Confidentiality, Integrity

Protection

A CI/T implementation MUST support Transport Layer Security (TLS)

transport for HTTP (HTTPS) as per [RFC2818] and [RFC7230].

TLS MUST be used by the server side (dCDN) and the client side

(uCDN) of the CI/T interface, including authentication of the remote

end, unless alternate methods are used for ensuring the security of

the information in the CI/T interface requests and responses (such

as setting up an IPsec tunnel between the two CDNs or using a

physically secured internal network between two CDNs that are owned

by the same corporate entity).

¶

¶

¶

¶

¶

¶

¶

The use of TLS for transport of the CI/T interface allows the dCDN

and the uCDN to authenticate each other using TLS client

authentication and TLS server authentication.

Once the dCDN and the uCDN have mutually authenticated each other,

TLS allows:

The dCDN and the uCDN to authorize each other (to ensure that

they are receiving CI/T Commands from, or reporting status to, an

authorized CDN).

CDNI commands and responses to be transmitted with

confidentiality.

Protection of the integrity of CDNI commands and responses.

When TLS is used, the general TLS usage guidance in [RFC7525] MUST

be followed.

The mechanisms for access control are dCDN-specific and are not

standardized as part of this CI/T specification.

HTTP requests that attempt to access or operate on CI/T data

belonging to another CDN MUST be rejected using, for example, HTTP

403 ("Forbidden") or 404 ("Not Found"). This is intended to prevent

unauthorized users from generating unnecessary load in dCDNs or

uCDNs due to revalidation, reacquisition, or unnecessary

acquisition.

When deploying a network of interconnected CDNs, the possible

inefficiencies related to the diamond configuration discussed in

Section 2.2.1 should be considered.

10.2. Denial of Service

This document does not define a specific mechanism to protect

against Denial-of-Service (DoS) attacks on the CI/T interface.

However, CI/T endpoints can be protected against DoS attacks through

the use of TLS transport and/or via mechanisms outside the scope of

the CI/T interface, such as firewalling or the use of Virtual

Private Networks (VPNs).

Depending on the implementation, triggered activity may consume

significant processing and bandwidth in the dCDN. A malicious or

faulty uCDN could use this to generate unnecessary load in the dCDN.

The dCDN should consider mechanisms to avoid overload -- for

example, by rate-limiting acceptance or processing of CI/T Commands,

or by performing batch processing.

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

[ABNF]

[RFC1930]

[RFC2119]

[RFC3339]

[RFC3986]

[RFC7230]

[RFC7231]

10.3. Privacy

The CI/T protocol does not carry any information about individual

end users of a CDN; there are no privacy concerns for end users.

The CI/T protocol does carry information that could be considered

commercially sensitive by CDN operators and content owners. The use

of mutually authenticated TLS to establish a secure session for the

transport of CI/T data, as discussed in Section 10.1, provides

confidentiality while the CI/T data is in transit and prevents

parties other than the authorized dCDN from gaining access to that

data. The dCDN MUST ensure that it only exposes CI/T data related to

a uCDN to clients it has authenticated as belonging to that uCDN.

11. References

11.1. Normative References

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Hawkinson, J. and T. Bates, "Guidelines for creation,

selection, and registration of an Autonomous System

(AS)", BCP 6, RFC 1930, DOI 10.17487/RFC1930, March 1996,

<https://www.rfc-editor.org/info/rfc1930>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

¶

¶

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc1930
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7230

[RFC7232]

[RFC7525]

[RFC8006]

[RFC8007]

[RFC8126]

[RFC8259]

[I-D.greevenbosch-appsawg-cbor-cddl]

[ISO8601]

[MPEG-DASH]

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/info/rfc7232>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,

"Content Delivery Network Interconnection (CDNI)

Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,

<https://www.rfc-editor.org/info/rfc8006>.

Murray, R. and B. Niven-Jenkins, "Content Delivery

Network Interconnection (CDNI) Control Interface /

Triggers", RFC 8007, DOI 10.17487/RFC8007, December 2016,

<https://www.rfc-editor.org/info/rfc8007>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

11.2. Informative References

Birkholz, H., Vigano, C., and

C. Bormann, "Concise data definition language (CDDL): a

notational convention to express CBOR data structures",

Work in Progress, Internet-Draft, draft-greevenbosch-

appsawg-cbor-cddl-11, 3 July 2017, <https://www.ietf.org/

archive/id/draft-greevenbosch-appsawg-cbor-cddl-11.txt>.

ISO, "Data elements and interchange formats --

Information interchange -- Representation of dates and

times", ISO 8601:2004, Edition 3, December 2004,

<https://www.iso.org/standard/40874.html>.

ISO, "Information technology -- Dynamic adaptive

streaming over HTTP (DASH) -- Part 1: Media presentation

https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8006
https://www.rfc-editor.org/info/rfc8007
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.ietf.org/archive/id/draft-greevenbosch-appsawg-cbor-cddl-11.txt
https://www.ietf.org/archive/id/draft-greevenbosch-appsawg-cbor-cddl-11.txt
https://www.iso.org/standard/40874.html

[MSS]

[PCRE841]

[RFC2818]

[RFC6707]

[RFC7336]

[RFC7337]

[RFC7736]

[RFC7975]

[RFC8216]

description and segment format", ISO/IEC 23009-1:2014,

Edition 2, May 2014, <https://www.iso.org/standard/

65274.html>.

Microsoft, "[MS-SSTR]: Smooth Streaming Protocol",

Protocol Revision 8.0, September 2017, <https://

msdn.microsoft.com/en-us/library/ff469518.aspx>.

Hazel, P., "Perl Compatible Regular Expressions", Version

8.41, 5 July 2017, <http://www.pcre.org/>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Niven-Jenkins, B., Le Faucheur, F., and N. Bitar,

"Content Distribution Network Interconnection (CDNI)

Problem Statement", RFC 6707, DOI 10.17487/RFC6707,

September 2012, <https://www.rfc-editor.org/info/

rfc6707>.

Peterson, L., Davie, B., and R. van Brandenburg, Ed.,

"Framework for Content Distribution Network

Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,

August 2014, <https://www.rfc-editor.org/info/rfc7336>.

Leung, K., Ed. and Y. Lee, Ed., "Content Distribution

Network Interconnection (CDNI) Requirements", RFC 7337,

DOI 10.17487/RFC7337, August 2014, <https://www.rfc-

editor.org/info/rfc7337>.

Ma, K., "Content Delivery Network Interconnection (CDNI)

Media Type Registration", RFC 7736, DOI 10.17487/RFC7736,

December 2015, <https://www.rfc-editor.org/info/rfc7736>.

Niven-Jenkins, B., Ed. and R. van Brandenburg, Ed.,

"Request Routing Redirection Interface for Content

Delivery Network (CDN) Interconnection", RFC 7975, DOI

10.17487/RFC7975, October 2016, <https://www.rfc-

editor.org/info/rfc7975>.

Pantos, R., Ed. and W. May, "HTTP Live Streaming", RFC

8216, DOI 10.17487/RFC8216, August 2017, <https://

www.rfc-editor.org/info/rfc8216>.

Appendix A. Formalization of the JSON Data

This appendix is non-normative.¶

https://www.iso.org/standard/65274.html
https://www.iso.org/standard/65274.html
https://msdn.microsoft.com/en-us/library/ff469518.aspx
https://msdn.microsoft.com/en-us/library/ff469518.aspx
http://www.pcre.org/
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc7336
https://www.rfc-editor.org/info/rfc7337
https://www.rfc-editor.org/info/rfc7337
https://www.rfc-editor.org/info/rfc7736
https://www.rfc-editor.org/info/rfc7975
https://www.rfc-editor.org/info/rfc7975
https://www.rfc-editor.org/info/rfc8216
https://www.rfc-editor.org/info/rfc8216

The JSON data described in this document has been formalized using

the CBOR Data Definition Language (CDDL) [I-D.greevenbosch-appsawg-

cbor-cddl] (where "CBOR" means "Concise Binary Object

Representation"), as follows:¶

CIT-object = CIT-command / Trigger-Status-Resource / Trigger-Collection

CIT-command ; use media type application/cdni; ptype=ci-trigger-command

= {

 ? trigger: Triggerspec

 ? cancel: [* URI]

 cdn-path: [* Cdn-PID]

}

Trigger-Status-Resource ; application/cdni; ptype=ci-trigger-status

= {

 trigger: Triggerspec

 ctime: Absolute-Time

 mtime: Absolute-Time

 ? etime: Absolute-Time

 status: Trigger-Status

 ? errors: [* Error-Description]

}

Trigger-Collection ; application/cdni; ptype=ci-trigger-collection

= {

 triggers: [* URI]

 ? staleresourcetime: int ; time in seconds

 ? coll-all: URI

 ? coll-pending: URI

 ? coll-active: URI

 ? coll-complete: URI

 ? coll-failed: URI

 ? cdn-id: Cdn-PID

}

Triggerspec = { ; see Section 5.2.1

 type: Trigger-Type

 ? metadata.urls: [* URI]

 ? content.urls: [* URI]

 ? content.ccid: [* Ccid]

 ? metadata.patterns: [* Pattern-Match]

 ? content.patterns: [* Pattern-Match]

}

Trigger-Type = "preposition" / "invalidate"

 / "purge" ; see Section 5.2.2

Trigger-Status = "pending" / "active" / "complete" / "processed"

 / "failed" / "cancelling" / "cancelled" ; see Section 5.2.3

Pattern-Match = { ; see Section 5.2.4

 pattern: tstr

 ? case-sensitive: bool

 ? match-query-string: bool

}

Absolute-Time = number ; seconds since UNIX epoch (Section 5.2.5)

Error-Description = { ; see Section 5.2.6

 error: Error-Code

 ? metadata.urls: [* URI]

 ? content.urls: [* URI]

 ? metadata.patterns: [* Pattern-Match]

 ? content.patterns: [* Pattern-Match]

 ? description: tstr

}

Error-Code = "emeta" / "econtent" / "eperm" / "ereject"

 / "ecdn" / "ecancelled" ; see Section 5.2.7

Ccid = tstr ; see RFC 8006

Cdn-PID = tstr .regexp "AS[0-9]+:[0-9]+"

URI = tstr

¶

Acknowledgments

The authors thank Kevin Ma for his input, and Carsten Bormann for

his review and formalization of the JSON data.

Authors' Addresses

Ori Finkelman

Qwilt

6, Ha'harash

Hod HaSharon 4524079

Israel

Email: ori.finkelman.ietf@gmail.com

Sanjay Mishra

Verizon

13100 Columbia Pike

Silver Spring, MD 20904

United States of America

Email: sanjay.mishra@verizon.com

Nir B. Sopher

Qwilt

6, Ha'harash

Hod HaSharon 4524079

Israel

Email: nir@apache.org

¶

mailto:ori.finkelman.ietf@gmail.com
mailto:sanjay.mishra@verizon.com
mailto:nir@apache.org

	Content Delivery Network Interconnection (CDNI) Control Interface / Triggers 2nd Edition
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Model for CDNI Triggers
	2.1. Timing of Triggered Activity
	2.2. Scope of Triggered Activity
	2.2.1. Multiple Interconnected CDNs

	2.3. Trigger Results

	3. Collections of Trigger Status Resources
	4. CDNI Trigger Interface
	4.1. Creating Triggers
	4.2. Checking Status
	4.2.1. Polling Trigger Status Resource Collections
	4.2.2. Polling Trigger Status Resources

	4.3. Canceling Triggers
	4.4. Deleting Triggers
	4.5. Expiry of Trigger Status Resources
	4.6. Loop Detection and Prevention
	4.7. Trigger Extensibility
	4.8. Error Handling
	4.8.1. Error propagation

	4.9. Content URLs

	5. CI/T Object Properties and Encoding
	5.1. CI/T Objects
	5.1.1. CI/T Commands
	5.1.2. Trigger Status Resources
	5.1.3. Trigger Collections

	5.2. Properties of CI/T Objects
	5.2.1. Trigger Specification
	5.2.2. Trigger Type
	5.2.3. Trigger Status
	5.2.4. PatternMatch
	5.2.5. RegexMatch
	5.2.6. Playlist
	5.2.7. MediaProtocol
	5.2.8. CI/T Trigger Extensions
	5.2.8.1. Enforcement Options
	5.2.8.2. GenericExtensionObject

	5.2.9. Absolute Time
	5.2.10. Error Description
	5.2.11. Error Code

	6. Trigger Extension Objects
	6.1. LocationPolicy extension
	6.2. TimePolicy Extension
	6.2.1. UTCWindow
	6.2.2. LocalTimeWindow
	6.2.3. DateLocalTime
	6.2.3.1. Date and Local Time Format
	6.2.3.2. Restrictions

	7. Footprint and Capabilities
	7.1. CI/T Playlist Protocol Capability Object
	7.1.1. CI/T Playlist Protocol Capability Object Serialization

	7.2. CI/T Trigger Extension Capability Object
	7.2.1. CI/T Trigger Extension Capability Object Serialization

	8. Examples
	8.1. Creating Triggers
	8.1.1. Preposition
	8.1.2. Invalidate
	8.1.3. Invalidation with Regex
	8.1.4. Preposition with Playlists

	8.2. Examining Trigger Status
	8.2.1. Collection of All Triggers
	8.2.2. Filtered Collections of Trigger Status Resources
	8.2.3. Individual Trigger Status Resources
	8.2.4. Polling for Changes in Status
	8.2.5. Deleting Trigger Status Resources
	8.2.6. Extensions with Error Propagation

	9. IANA Considerations
	9.1. CDNI Payload Type Parameter Registrations
	9.1.1. CDNI ci-trigger-command.v2 Payload Type
	9.1.2. CDNI ci-trigger-status.v2 Payload Type
	9.1.3. CDNI ci-trigger-collection.v2 Payload Type
	9.1.4. CDNI CI/T LocationPolicy Trigger Extension Type
	9.1.5. CDNI CI/T TimePolicy Trigger Extension Type
	9.1.6. CDNI FCI CI/T Playlist Protocol Payload Type
	9.1.7. CDNI FCI CI/T Extension Objects Payload Type

	9.2. "CDNI CI/T Trigger Types" Registry
	9.3. "CDNI CI/T Error Codes" Registry
	9.4. CDNI Media protocol types

	10. Security Considerations
	10.1. Authentication, Authorization, Confidentiality, Integrity Protection
	10.2. Denial of Service
	10.3. Privacy

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Formalization of the JSON Data
	Acknowledgments
	Authors' Addresses

