
Network Working Group B. Niven-Jenkins
Internet-Draft R. Murray
Intended status: Standards Track Velocix (Alcatel-Lucent)
Expires: February 3, 2017 M. Caulfield
 Cisco Systems
 K. Ma
 Ericsson
 August 2, 2016

CDN Interconnection Metadata
draft-ietf-cdni-metadata-20

Abstract

 The Content Delivery Networks Interconnection (CDNI) metadata
 interface enables interconnected Content Delivery Networks (CDNs) to
 exchange content distribution metadata in order to enable content
 acquisition and delivery. The CDNI metadata associated with a piece
 of content provides a downstream CDN with sufficient information for
 the downstream CDN to service content requests on behalf of an
 upstream CDN. This document describes both a base set of CDNI
 metadata and the protocol for exchanging that metadata.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 3, 2017.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CDN Interconnection Metadata August 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Terminology . 5
1.2. Supported Metadata Capabilities 5

2. Design Principles . 6
3. CDNI Metadata object model 7

 3.1. HostIndex, HostMatch, HostMetadata, PathMatch,
 PatternMatch and PathMetadata objects 8

3.2. Generic CDNI Metadata Objects 10
3.3. Metadata Inheritance and Override 13

4. CDNI Metadata objects . 14
4.1. Definitions of the CDNI structural metadata objects . . . 15
4.1.1. HostIndex . 15
4.1.2. HostMatch . 15
4.1.3. HostMetadata . 17
4.1.4. PathMatch . 18
4.1.5. PatternMatch . 19
4.1.6. PathMetadata . 20
4.1.7. GenericMetadata 21

 4.2. Definitions of the initial set of CDNI Generic Metadata
 objects . 23

4.2.1. SourceMetadata 23
4.2.1.1. Source . 24

4.2.2. LocationACL Metadata 25
4.2.2.1. LocationRule 27
4.2.2.2. Footprint . 27

4.2.3. TimeWindowACL . 29
4.2.3.1. TimeWindowRule 30
4.2.3.2. TimeWindow 31

4.2.4. ProtocolACL Metadata 31
4.2.4.1. ProtocolRule 32

4.2.5. DeliveryAuthorization Metadata 33

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Niven-Jenkins, et al. Expires February 3, 2017 [Page 2]

Internet-Draft CDN Interconnection Metadata August 2016

4.2.6. Cache . 34
4.2.7. Auth . 36
4.2.8. Grouping . 37

4.3. CDNI Metadata Simple Data Type Descriptions 37
4.3.1. Link . 37
4.3.1.1. Link Loop Prevention 39

4.3.2. Protocol . 39
4.3.3. Endpoint . 39
4.3.4. Time . 40
4.3.5. IPv4CIDR . 40
4.3.6. IPv6CIDR . 40
4.3.7. ASN . 41
4.3.8. CountryCode . 41

5. CDNI Metadata Capabilities 41
6. CDNI Metadata interface 42
6.1. Transport . 42
6.2. Retrieval of CDNI Metadata resources 43
6.3. Bootstrapping . 44
6.4. Encoding . 44
6.5. Extensibility . 45
6.6. Metadata Enforcement 46
6.7. Metadata Conflicts 46
6.8. Versioning . 47
6.9. Media Types . 48
6.10. Complete CDNI Metadata Example 48

7. IANA Considerations . 52
7.1. CDNI Payload Types 52
7.1.1. CDNI MI HostIndex Payload Type 53
7.1.2. CDNI MI HostMatch Payload Type 53
7.1.3. CDNI MI HostMetadata Payload Type 54
7.1.4. CDNI MI PathMatch Payload Type 54
7.1.5. CDNI MI PatternMatch Payload Type 54
7.1.6. CDNI MI PathMetadata Payload Type 54
7.1.7. CDNI MI SourceMetadata Payload Type 54
7.1.8. CDNI MI Source Payload Type 55
7.1.9. CDNI MI LocationACL Payload Type 55
7.1.10. CDNI MI LocationRule Payload Type 55
7.1.11. CDNI MI Footprint Payload Type 55
7.1.12. CDNI MI TimeWindowACL Payload Type 55
7.1.13. CDNI MI TimeWindowRule Payload Type 56
7.1.14. CDNI MI TimeWindow Payload Type 56
7.1.15. CDNI MI ProtocolACL Payload Type 56
7.1.16. CDNI MI ProtocolRule Payload Type 56
7.1.17. CDNI MI DeliveryAuthorization Payload Type 56
7.1.18. CDNI MI Cache Payload Type 57
7.1.19. CDNI MI Auth Payload Type 57
7.1.20. CDNI MI Grouping Payload Type 57

7.2. CDNI Metadata Footprint Types Registry 57

Niven-Jenkins, et al. Expires February 3, 2017 [Page 3]

Internet-Draft CDN Interconnection Metadata August 2016

7.3. CDNI Metadata Protocol Types Registry 58
8. Security Considerations 58
8.1. Authentication and Integrity 59
8.2. Confidentiality and Privacy 59
8.3. Securing the CDNI Metadata interface 60

9. Acknowledgements . 60
10. Contributing Authors . 60
11. References . 61
11.1. Normative References 61
11.2. Informative References 63

 Authors' Addresses . 64

1. Introduction

 Content Delivery Networks Interconnection (CDNI) [RFC6707] enables a
 downstream Content Delivery Network (dCDN) to service content
 requests on behalf of an upstream CDN (uCDN).

 The CDNI metadata interface is discussed in [RFC7336] along with four
 other interfaces that can be used to compose a CDNI solution (CDNI
 Control interface, CDNI Request Routing Redirection interface, CDNI
 Footprint & Capabilities Advertisement interface and CDNI Logging
 interface). [RFC7336] describes each interface and the relationships
 between them. The requirements for the CDNI metadata interface are
 specified in [RFC7337].

 The CDNI metadata associated with a piece of content (or with a set
 of content) provides a dCDN with sufficient information for servicing
 content requests on behalf of an uCDN, in accordance with the
 policies defined by the uCDN.

 This document defines the CDNI metadata interface which enables a
 dCDN to obtain CDNI metadata from an uCDN so that the dCDN can
 properly process and respond to:

 o Redirection requests received over the CDNI Request Routing
 Redirection interface [I-D.ietf-cdni-redirection].

 o Content requests received directly from User Agents.

 Specifically, this document specifies:

 o A data structure for mapping content requests and redirection
 requests to CDNI metadata objects (Section 3 and Section 4.1).

 o An initial set of CDNI Generic metadata objects (Section 4.2).

 o A HTTP web service for the transfer of CDNI metadata (Section 6).

https://datatracker.ietf.org/doc/html/rfc6707
https://datatracker.ietf.org/doc/html/rfc7336
https://datatracker.ietf.org/doc/html/rfc7336
https://datatracker.ietf.org/doc/html/rfc7337

Niven-Jenkins, et al. Expires February 3, 2017 [Page 4]

Internet-Draft CDN Interconnection Metadata August 2016

1.1. Terminology

 This document reuses the terminology defined in [RFC6707].

 Additionally, the following terms are used throughout this document
 and are defined as follows:

 o Object - a collection of properties.

 o Property - a key and value pair where the key is a property name
 and the value is the property value or another object.

 This document uses the phrase "[Object] A contains [Object] B" for
 simplicity when a strictly accurate phrase would be "[Object] A
 contains or references (via a Link object) [Object] B".

1.2. Supported Metadata Capabilities

 Only the metadata for a small set of initial capabilities is
 specified in this document. This set provides the minimum amount of
 metadata for basic CDN interoperability while still meeting the
 requirements set forth by [RFC7337].

 The following high-level functionality can be configured via the CDNI
 metadata objects specified in Section 4:

 o Acquisition Source: Metadata for allowing a dCDN to fetch content
 from a uCDN.

 o Delivery Access Control: Metadata for restricting (or permitting)
 access to content based on any of the following factors:

 * Location

 * Time Window

 * Delivery Protocol

 o Delivery Authorization: Metadata for authorizing dCDN user agent
 requests.

 o Cache Control: Metadata for controlling cache behavior of the
 dCDN.

 The metadata encoding described by this document is extensible in
 order to allow for future additions to this list.

https://datatracker.ietf.org/doc/html/rfc6707
https://datatracker.ietf.org/doc/html/rfc7337

Niven-Jenkins, et al. Expires February 3, 2017 [Page 5]

Internet-Draft CDN Interconnection Metadata August 2016

 The set of metadata specified in this document covers the initial
 capabilities above. It is only intended to support CDN
 interconnection for the delivery of content by a dCDN using HTTP/1.1
 [RFC7230] and for a dCDN to be able to acquire content from a uCDN
 using either HTTP/1.1 or HTTP/1.1 over TLS [RFC2818].

 Supporting CDN interconnection for the delivery of content using
 unencrypted HTTP/2 [RFC7540] (as well as for a dCDN to acquire
 content using unencrypted HTTP/2 or HTTP/2 over TLS) requires the
 registration of these protocol names in the CDNI Metadata Protocol
 Types registry Section 7.3.

 Delivery of content using HTTP/1.1 over TLS or HTTP/2 over TLS SHOULD
 follow the guidelines set forth in [RFC7525]. Offline configuration
 of TLS parameters between CDNs is beyond the scope of this document.

2. Design Principles

 The CDNI metadata interface was designed to achieve the following
 objectives:

 1. Cacheability of CDNI metadata objects;

 2. Deterministic mapping from redirection requests and content
 requests to CDNI metadata properties;

 3. Support for DNS redirection as well as application-specific
 redirection (for example HTTP redirection);

 4. Minimal duplication of CDNI metadata; and

 5. Leveraging of existing protocols.

 Cacheability can decrease the latency of acquiring metadata while
 maintaining its freshness, and therefore decrease the latency of
 serving content requests and redirection requests, without
 sacrificing accuracy. The CDNI metadata interface uses HTTP and its
 existing caching mechanisms to achieve CDNI metadata cacheability.

 Deterministic mappings from content to metadata properties eliminates
 ambiguity and ensures that policies are applied consistently by all
 dCDNs.

 Support for both HTTP and DNS redirection ensures that the CDNI
 metadata meets the same design principles for both HTTP and DNS based
 redirection schemes.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7525

Niven-Jenkins, et al. Expires February 3, 2017 [Page 6]

Internet-Draft CDN Interconnection Metadata August 2016

 Minimal duplication of CDNI metadata improves storage efficiency in
 the CDNs.

 Leveraging existing protocols avoids reinventing common mechanisms
 such as data structure encoding (by leveraging I-JSON [RFC7493]) and
 data transport (by leveraging HTTP [RFC7230]).

3. CDNI Metadata object model

 The CDNI metadata object model describes a data structure for mapping
 redirection requests and content requests to metadata properties.
 Metadata properties describe how to acquire content from an uCDN,
 authorize access to content, and deliver content from a dCDN. The
 object model relies on the assumption that these metadata properties
 can be grouped based on the hostname of the content and subsequently
 on the resource path (URI) of the content. The object model
 associates a set of CDNI metadata properties with a Hostname to form
 a default set of metadata properties for content delivered on behalf
 of that Hostname. That default set of metadata properties can be
 overridden by properties that apply to specific paths within a URI.

 Different Hostnames and URI paths will be associated with different
 sets of CDNI metadata properties in order to describe the required
 behaviour when a dCDN surrogate or request router is processing User
 Agent requests for content at that Hostname and URI path. As a
 result of this structure, significant commonality could exist between
 the CDNI metadata properties specified for different Hostnames,
 different URI paths within a Hostname and different URI paths on
 different Hostnames. For example the definition of which User Agent
 IP addresses should be grouped together into a single network or
 geographic location is likely to be common for a number of different
 Hostnames; although a uCDN is likely to have several different
 policies configured to express geo-blocking rules, it is likely that
 a single geo-blocking policy could be applied to multiple Hostnames
 delivered through the CDN.

 In order to enable the CDNI metadata for a given Hostname and URI
 Path to be decomposed into reusable sets of CDNI metadata properties,
 the CDNI metadata interface splits the CDNI metadata into separate
 objects. Efficiency is improved by enabling a single CDNI metadata
 object (that is shared across Hostname and/or URI paths) to be
 retrieved and stored by a dCDN once, even if it is referenced by the
 CDNI metadata for multiple Hostnames and/or URI paths.

 Important Note: Any CDNI metadata object A that contains another CDNI
 metadata object B can include a Link object specifying a URI that can
 be used to retrieve object B, instead of embedding object B within
 object A. The remainder of this document uses the phrase "[Object] A

https://datatracker.ietf.org/doc/html/rfc7493
https://datatracker.ietf.org/doc/html/rfc7230

Niven-Jenkins, et al. Expires February 3, 2017 [Page 7]

Internet-Draft CDN Interconnection Metadata August 2016

 contains [Object] B" for simplicity when a strictly accurate phrase
 would be "[Object] A contains or references (via a Link object)
 [Object] B". It is generally a deployment choice for the uCDN
 implementation to decide when to embed CDNI metadata objects and when
 to reference separate resources via Link objects.

Section 3.1 introduces a high level description of the HostIndex,
 HostMatch, HostMetadata, PathMatch, PatternMatch and PathMetadata
 objects, and describes the relationships between them.

Section 3.2 introduces a high level description of the CDNI
 GenericMetadata object which represents the level at which CDNI
 metadata override occurs between HostMetadata and PathMetadata
 objects.

Section 4 describes in detail the specific CDNI metadata objects and
 properties specified by this document which can be contained within a
 CDNI GenericMetadata object.

3.1. HostIndex, HostMatch, HostMetadata, PathMatch, PatternMatch and
 PathMetadata objects

 The relationships between the HostIndex, HostMatch, HostMetadata,
 PathMatch, PatternMatch and PathMetadata objects are described in
 Figure 1.

 +---------+ +---------+ +------------+
 |HostIndex+-(*)->|HostMatch+-(1)->|HostMetadata+-------(*)------+
 +---------+ +---------+ +------+-----+ |
 | |
 (*) |
 | V
 --> Contains or References V ******************
 (1) One and only one +---------+ *Generic Metadata*
 (*) Zero or more +--->|PathMatch| * Objects *
 | +----+---++ ******************
 | | | ^
 (*) (1) (1) +------------+ |
 | | +->|PatternMatch| |
 | V +------------+ |
 | +------------+ |
 +--+PathMetadata+-------(*)------+
 +------------+

 Figure 1: Relationships between CDNI Metadata Objects (Diagram
 Representation)

Niven-Jenkins, et al. Expires February 3, 2017 [Page 8]

Internet-Draft CDN Interconnection Metadata August 2016

 A HostIndex object (see Section 4.1.1) contains an array of HostMatch
 objects (see Section 4.1.2) that contain Hostnames (and/or IP
 addresses) for which content requests might be delegated to the dCDN.
 The HostIndex is the starting point for accessing the uCDN CDNI
 metadata data store. It enables the dCDN to deterministically
 discover which CDNI metadata objects it requires in order to deliver
 a given piece of content.

 The HostIndex links Hostnames (and/or IP addresses) to HostMetadata
 objects (see Section 4.1.3) via HostMatch objects. A HostMatch
 object defines a Hostname (or IP address) to match against a
 requested host and contains a HostMetadata object.

 HostMetadata objects contain the default GenericMetadata objects (see
Section 4.1.7) required to serve content for that host. When looking

 up CDNI metadata, the dCDN looks up the requested Hostname (or IP
 address) against the HostMatch entries in the HostIndex, from there
 it can find HostMetadata which describes the default metadata
 properties for each host as well as PathMetadata objects (see

Section 4.1.6), via PathMatch objects (see Section 4.1.4). PathMatch
 objects define patterns, contained inside PatternMatch objects (see

Section 4.1.5), to match against the requested URI path.
 PatternMatch objects contain the pattern strings and flags that
 describe the URI path that a PathMatch applies to. PathMetadata
 objects contain the GenericMetadata objects that apply to content
 requests matching the defined URI path pattern. PathMetadata
 properties override properties previously defined in HostMetadata or
 less specific PathMatch paths. PathMetadata objects can contain
 additional PathMatch objects to recursively define more specific URI
 paths to which GenericMetadata properties might be applied.

 A GenericMetadata object contains individual CDNI metadata objects
 which define the specific policies and attributes needed to properly
 deliver the associated content. For example, a GenericMetadata
 object could describe the source from which a CDN can acquire a piece
 of content. The GenericMetadata object is an atomic unit that can be
 referenced by HostMetadata or PathMetadata objects.

 For example, if "example.com" is a content provider, a HostMatch
 object could include an entry for "example.com" with the URI of the
 associated HostMetadata object. The HostMetadata object for
 "example.com" describes the metadata properties which apply to
 "example.com" and could contain PathMatches for "example.com/
 movies/*" and "example.com/music/*", which in turn reference
 corresponding PathMetadata objects that contain the properties for
 those more specific URI paths. The PathMetadata object for
 "example.com/movies/*" describes the properties which apply to that
 URI path. It could also contain a PathMatch object for

Niven-Jenkins, et al. Expires February 3, 2017 [Page 9]

Internet-Draft CDN Interconnection Metadata August 2016

 "example.com/movies/hd/*" which would reference the corresponding
 PathMetadata object for the "example.com/movies/hd/" path prefix.

 The relationships in Figure 1 are also represented in tabular format
 in Table 1 below.

 +--------------+--+
 | Data Object | Objects it contains or references |
 +--------------+--+
HostIndex	0 or more HostMatch objects.
HostMatch	1 HostMetadata object.
HostMetadata	0 or more PathMatch objects. 0 or more
	GenericMetadata objects.
PathMatch	1 PatternMatch object. 1 PathMetadata object.
PatternMatch	Does not contain or reference any other objects.
PathMetadata	0 or more PathMatch objects. 0 or more
	GenericMetadata objects.
 +--------------+--+

 Table 1: Relationships between CDNI Metadata Objects
 (Table Representation)

3.2. Generic CDNI Metadata Objects

 The HostMetadata and PathMetadata objects contain other CDNI metadata
 objects that contain properties which describe how User Agent
 requests for content should be processed, for example where to
 acquire the content from, authorization rules that should be applied,
 geo-blocking restrictions, and so on. Each such CDNI metadata object
 is a specialization of a CDNI GenericMetadata object. The
 GenericMetadata object abstracts the basic information required for
 metadata override and metadata distribution, from the specifics of
 any given property (i.e., property semantics, enforcement options,
 etc.).

 The GenericMetadata object defines the properties contained within it
 as well as whether or not the properties are "mandatory-to-enforce".
 If the dCDN does not understand or support a "mandatory-to-enforce"
 property, the dCDN MUST NOT serve the content. If the property is
 not "mandatory-to-enforce", then that GenericMetadata object can be
 safely ignored and the content request can be processed in accordance
 with the rest of the CDNI metadata.

 Although a CDN MUST NOT serve content to a User Agent if a
 "mandatory-to-enforce" property cannot be enforced, it could still be
 "safe-to-redistribute" that metadata to another CDN without
 modification. For example, in the cascaded CDN case, a transit CDN
 (tCDN) could pass through "mandatory-to-enforce" metadata to a dCDN.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 10]

Internet-Draft CDN Interconnection Metadata August 2016

 For metadata which does not require customization or translation
 (i.e., metadata that is "safe-to-redistribute"), the data
 representation received off the wire MAY be stored and redistributed
 without being understood or supported by the transit CDN. However,
 for metadata which requires translation, transparent redistribution
 of the uCDN metadata values might not be appropriate. Certain
 metadata can be safely, though perhaps not optimally, redistributed
 unmodified. For example, source acquisition address might not be
 optimal if transparently redistributed, but it might still work.

 Redistribution safety MUST be specified for each GenericMetadata
 property. If a CDN does not understand or support a given
 GenericMetadata property that is not "safe-to-redistribute", the CDN
 MUST set the "incomprehensible" flag to true for that GenericMetadata
 object before redistributing the metadata. The "incomprehensible"
 flag signals to a dCDN that the metadata was not properly transformed
 by the transit CDN. A CDN MUST NOT attempt to use metadata that has
 been marked as "incomprehensible" by a uCDN.

 Transit CDNs MUST NOT change the value of "mandatory-to-enforce" or
 "safe-to-redistribute" when propagating metadata to a dCDN. Although
 a transit CDN can set the value of "incomprehensible" to true, a
 transit CDN MUST NOT change the value of "incomprehensible" from true
 to false.

 Table 2 describes the action to be taken by a transit CDN (tCDN) for
 the different combinations of "mandatory-to-enforce" (MtE) and "safe-
 to-redistribute" (StR) properties, when the tCDN either does or does
 not understand the metadata in question:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 11]

Internet-Draft CDN Interconnection Metadata August 2016

 +-------+-------+------------+--------------------------------------+
MtE	StR	Metadata	Action
		Understood	
		by tCDN	
+-------+-------+------------+--------------------------------------+			
False	True	True	Can serve and redistribute.
False	True	False	Can serve and redistribute.
False	False	False	Can serve. MUST set
			"incomprehensible" to True when
			redistributing.
False	False	True	Can serve. Can redistribute after
			transforming the metadata (if the
			CDN knows how to do so safely),
			otherwise MUST set
			"incomprehensible" to True when
			redistributing.
True	True	True	Can serve and redistribute.
True	True	False	MUST NOT serve but can redistribute.
True	False	True	Can serve. Can redistribute after
			transforming the metadata (if the
			CDN knows how to do so safely),
			otherwise MUST set
			"incomprehensible" to True when
			redistributing.
True	False	False	MUST NOT serve. MUST set
			"incomprehensible" to True when
			redistributing.
 +-------+-------+------------+--------------------------------------+

 Table 2: Action to be taken by a tCDN for the different combinations
 of MtE and StR properties

 Table 3 describes the action to be taken by a dCDN for the different
 combinations of "mandatory-to-enforce" (MtE) and "incomprehensible"
 (Incomp) properties, when the dCDN either does or does not understand
 the metadata in question:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 12]

Internet-Draft CDN Interconnection Metadata August 2016

 +-------+--------+--------------+-----------------------------------+
MtE	Incomp	Metadata	Action
		Understood	
		by dCDN	
+-------+--------+--------------+-----------------------------------+			
False	False	True	Can serve.
False	True	True	Can serve but MUST NOT
			interpret/apply any metadata
			marked incomprehensible.
False	False	False	Can serve.
False	True	False	Can serve but MUST NOT
			interpret/apply any metadata
			marked incomprehensible.
True	False	True	Can serve.
True	True	True	MUST NOT serve.
True	False	False	MUST NOT serve.
True	True	False	MUST NOT serve.
 +-------+--------+--------------+-----------------------------------+

 Table 3: Action to be taken by a dCDN for the different combinations
 of MtE and Incomp properties

3.3. Metadata Inheritance and Override

 In the metadata object model, a HostMetadata object can contain
 multiple PathMetadata objects (via PathMatch objects). Each
 PathMetadata object can in turn contain other PathMetadata objects.
 HostMetadata and PathMetadata objects form an inheritance tree where
 each node in the tree inherits or overrides the property values set
 by its parent.

 GenericMetadata objects of a given type override all GenericMetadata
 objects of the same type previously defined by any parent object in
 the tree. GenericMetadata objects of a given type previously defined
 by a parent object in the tree are inherited when no object of the
 same type is defined by the child object. For example, if
 HostMetadata for the host "example.com" contains GenericMetadata
 objects of type LocationACL and TimeWindowACL, while a PathMetadata
 object which applies to "example.com/movies/*" defines an alternate
 GenericMetadata object of type TimeWindowACL, then:

 o the TimeWindowACL defined in the PathMetadata would override the
 TimeWindowACL defined in the HostMetadata for all User Agent
 requests for content under "example.com/movies/", and

 o the LocationACL defined in the HostMetadata would be inherited for
 all User Agent requests for content under "example.com/movies/".

Niven-Jenkins, et al. Expires February 3, 2017 [Page 13]

Internet-Draft CDN Interconnection Metadata August 2016

 A single HostMetadata or PathMetadata object MUST NOT contain
 multiple GenericMetadata objects of the same type. If an array of
 GenericMetadata contains objects of duplicate types, the receiver
 MUST ignore all but the first object of each type.

4. CDNI Metadata objects

Section 4.1 provides the definitions of each metadata object type
 introduced in Section 3. These metadata objects are described as
 structural metadata objects as they provide the structure for host
 and URI path-based inheritance and identify which GenericMetadata
 objects apply to a given User Agent content request.

Section 4.2 provides the definitions for a base set of core metadata
 objects which can be contained within a GenericMetadata object.
 These metadata objects govern how User Agent requests for content are
 handled. GenericMetadata objects can contain other GenericMetadata
 as properties; these can be referred to as sub-objects). As with all
 CDNI metadata objects, the value of the GenericMetadata sub-objects
 can be either a complete serialized representation of the sub-object,
 or a Link object that contains a URI that can be dereferenced to
 retrieve the complete serialized representation of the property sub-
 object.

Section 6.5 discusses the ability to extend the base set of
 GenericMetadata objects specified in this document with additional
 standards-based or vendor specific GenericMetadata objects that might
 be defined in the future in separate documents.

 dCDNs and tCDNs MUST support parsing of all CDNI metadata objects
 specified in this document. A dCDN does not have to implement the
 underlying functionality represented by non-structural
 GenericMetadata objects (though that might restrict the content that
 a given dCDN will be able to serve). uCDNs as generators of CDNI
 metadata only need to support generating the CDNI metadata that they
 need in order to express the policies required by the content they
 are describing. See Section 6.4 for more details on the specific
 encoding rules for CDNI metadata objects.

 Note: In the following sections, the term "mandatory-to-specify" is
 used to convey which properties MUST be included for a given
 structural or GenericMetadata object. When mandatory-to-specify is
 specified as "Yes" for an individual property, it means that if the
 object containing that property is included in a metadata response,
 then the mandatory-to-specify property MUST also be included
 (directly or by reference) in the response, e.g., a HostMatch
 property object without a host to match against does not make sense,

Niven-Jenkins, et al. Expires February 3, 2017 [Page 14]

Internet-Draft CDN Interconnection Metadata August 2016

 therefore, the host property is mandatory-to-specify inside a
 HostMatch object.

4.1. Definitions of the CDNI structural metadata objects

 Each of the sub-sections below describe the structural objects
 introduced in Section 3.1.

4.1.1. HostIndex

 The HostIndex object is the entry point into the CDNI metadata
 hierarchy. It contains an array of HostMatch objects. An incoming
 content request is checked against the Hostname (or IP address)
 specified by each of the listed HostMatch objects to find the
 HostMatch object which applies to the request.

 Property: hosts

 Description: Array of HostMatch objects. Hosts (HostMatch
 objects) MUST be evaluated in the order they appear and the
 first HostMatch object that matches the content request being
 processed MUST be used.

 Type: Array of HostMatch objects

 Mandatory-to-Specify: Yes.

 Example HostIndex object containing two HostMatch objects, where the
 first HostMatch object is embedded and the second HostMatch object is
 referenced:

 {
 "hosts": [
 {
 <Properties of embedded HostMatch object>
 },
 {
 "type": "MI.HostMatch",
 "href": "https://metadata.ucdn.example/hostmatch1234"
 }
]
 }

4.1.2. HostMatch

 The HostMatch object contains a Hostname or IP address to match
 against content requests. The HostMatch object also contains a
 HostMetadata object to apply if a match is found.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 15]

Internet-Draft CDN Interconnection Metadata August 2016

 Property: host

 Description: Hostname or IP address and optional port to match
 against the requested host, i.e., the [RFC3986] host and port.
 In order for a Hostname or IP address in a content request to
 match the Hostname or IP address in the host property the value
 from the content request when converted to lowercase MUST be
 identical to the value of the host property when converted to
 lowercase. All implementations MUST support IPv4 addresses
 encoded as specified by the 'IPv4address' rule in Section 3.2.2
 of [RFC3986]. IPv6 addresses MUST be encoded in one of the
 IPv6 address formats specified in [RFC5952] although receivers
 MUST support all IPv6 address formats specified in [RFC4291].
 Hostnames MUST conform to the Domain Name System (DNS) syntax
 defined in [RFC1034] and [RFC1123]. Internationalized Domain
 Names (IDN) must first be transformed to the IDNA encoding as
 per [RFC5891].

 Type: Endpoint

 Mandatory-to-Specify: Yes.

 Property: host-metadata

 Description: CDNI metadata to apply when delivering content
 that matches this host.

 Type: HostMetadata

 Mandatory-to-Specify: Yes.

 Example HostMatch object with an embedded HostMetadata object:

 {
 "host": "video.example.com",
 "host-metadata" : {
 <Properties of embedded HostMetadata object>
 }
 }

 Example HostMatch object referencing (via a Link object, see
Section 4.3.1) a HostMetadata object:

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc5952
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc5891

Niven-Jenkins, et al. Expires February 3, 2017 [Page 16]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "host": "video.example.com",
 "host-metadata" : {
 "type": "MI.HostMetadata",
 "href": "https://metadata.ucdn.example/host1234"
 }
 }

4.1.3. HostMetadata

 A HostMetadata object contains the CDNI metadata properties for
 content served for a particular host (defined in the HostMatch
 object) and possibly child PathMatch objects.

 Property: metadata

 Description: Array of host related metadata.

 Type: Array of GenericMetadata objects

 Mandatory-to-Specify: Yes.

 Property: paths

 Description: Path specific rules. Path patterns (PathMatch
 objects) MUST be evaluated in the order they appear and the
 first (and only the first) PathMatch object that matches the
 content request being processed MUST be used.

 Type: Array of PathMatch objects

 Mandatory-to-Specify: No.

 Example HostMetadata object containing a number of embedded
 GenericMetadata objects that will describe the default metadata for
 the host and an embedded PathMatch object that contains a path for
 which metadata exists that overrides the default metadata for the
 host:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 17]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "metadata": [
 {
 <Properties of 1st embedded GenericMetadata object>
 },
 {
 <Properties of 2nd embedded GenericMetadata object>
 },

 ...

 {
 <Properties of Nth embedded GenericMetadata object>
 }
],
 "paths": [
 {
 <Properties of embedded PathMatch object>
 }
]
 }

4.1.4. PathMatch

 A PathMatch object contains PatternMatch object with a path to match
 against a resource's URI path, as well as how to handle URI query
 parameters. The PathMatch also contains a PathMetadata object with
 GenericMetadata to apply if the resource's URI matches the pattern
 within the PatternMatch object.

 Property: path-pattern

 Description: Pattern to match against the requested resource's
 URI.

 Type: PatternMatch

 Mandatory-to-Specify: Yes.

 Property: path-metadata

 Description: CDNI metadata to apply when delivering content
 that matches the associated PatternMatch.

 Type: PathMetadata

 Mandatory-to-Specify: Yes.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 18]

Internet-Draft CDN Interconnection Metadata August 2016

 Example PathMatch object referencing the PathMetadata object to use
 for URIs that match the case-sensitive URI path pattern "/movies/*"
 (contained within an embedded PatternMatch object):

 {
 "path-pattern": {
 "pattern": "/movies/*",
 "case-sensitive": true
 },
 "path-metadata": {
 "type": "MI.PathMetadata",
 "href": "https://metadata.ucdn.example/host1234/pathDCE"
 }
 }

4.1.5. PatternMatch

 A PatternMatch object contains the pattern string and flags that
 describe the pattern expression.

 Property: pattern

 Description: A pattern for matching against the URI path, i.e.,
 against the [RFC3986] path-absolute. The pattern can contain
 the wildcards * and ?, where * matches any sequence of
 [RFC3986] pchar or "/" characters (including the empty string)
 and ? matches exactly one [RFC3986] pchar character. The three
 literals $, * and ? MUST be escaped as $$, $* and $? (where $
 is the designated escape character). All other characters are
 treated as literals.

 Type: String

 Mandatory-to-Specify: Yes.

 Property: case-sensitive

 Description: Flag indicating whether or not case-sensitive
 matching should be used. Note: Case-insensitivity applies to
 ALPHA characters in the URI path prior to percent-decoding
 [RFC3986].

 Type: Boolean

 Mandatory-to-Specify: No. Default is case-insensitive match.

 Example PatternMatch object that matches the case-sensitive URI path
 pattern "/movies/*". All query parameters will be ignored when

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Niven-Jenkins, et al. Expires February 3, 2017 [Page 19]

Internet-Draft CDN Interconnection Metadata August 2016

 matching URIs requested from surrogates by content clients against
 this path pattern:

 {
 "pattern": "/movies/*",
 "case-sensitive": true
 }

 Example PatternMatch object that matches the case-sensitive URI path
 pattern "/movies/*". Only the query parameter "sessionid" will be
 evaluated when matching URIs requested from surrogates by content
 clients against this path pattern:

 {
 "pattern": "/movies/*",
 "case-sensitive": true
 }

4.1.6. PathMetadata

 A PathMetadata object contains the CDNI metadata properties for
 content requests that match against the associated URI path (defined
 in a PathMatch object).

 Note that if DNS-based redirection is employed, then a dCDN will be
 unable to evaluate any metadata at the PathMetadata level or below
 because only the hostname of the content request is available at
 request routing time. dCDNs SHOULD still process all PathMetadata for
 the host before responding to the redirection request to detect if
 any unsupported metadata is specified. If any metadata not supported
 by the dCDN is marked as "mandatory-to-enforce", the dCDN SHOULD NOT
 accept the content redirection request, in order to avoid receiving
 content requests that it will not be able to satisfy/serve.

 Property: metadata

 Description: Array of path related metadata.

 Type: Array of GenericMetadata objects

 Mandatory-to-Specify: Yes.

 Property: paths

 Description: Path specific rules. Path patterns (PathMatch
 objects) MUST be evaluated in the order they appear and the
 first (and only the first) PathMatch object that matches the
 content request being processed MUST be used.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 20]

Internet-Draft CDN Interconnection Metadata August 2016

 Type: Array of PathMatch objects

 Mandatory-to-Specify: No.

 Example PathMetadata object containing a number of embedded
 GenericMetadata objects that describe the metadata to apply for the
 URI path defined in the parent PathMatch object, as well as a more
 specific PathMatch object.

 {
 "metadata": [
 {
 <Properties of 1st embedded GenericMetadata object>
 },
 {
 <Properties of 2nd embedded GenericMetadata object>
 },

 ...

 {
 <Properties of Nth embedded GenericMetadata object>
 }
],
 "paths": [
 {
 <Properties of embedded PathMatch object>
 }
]
 }

4.1.7. GenericMetadata

 A GenericMetadata object is a wrapper for managing individual CDNI
 metadata properties in an opaque manner.

 Property: generic-metadata-type

 Description: Case-insensitive CDNI metadata object type.

 Type: String containing the CDNI Payload Type [RFC7736] of the
 object contained in the generic-metadata-value property (see
 Table 4).

 Mandatory-to-Specify: Yes.

 Property: generic-metadata-value

https://datatracker.ietf.org/doc/html/rfc7736

Niven-Jenkins, et al. Expires February 3, 2017 [Page 21]

Internet-Draft CDN Interconnection Metadata August 2016

 Description: CDNI metadata object.

 Type: Format/Type is defined by the value of generic-metadata-
 type property above. Note: generic-metadata-values MUST NOT
 name any properties "href" (see Section 4.3.1).

 Mandatory-to-Specify: Yes.

 Property: mandatory-to-enforce

 Description: Flag identifying whether or not the enforcement of
 the property metadata is required.

 Type: Boolean

 Mandatory-to-Specify: No. Default is to treat metadata as
 mandatory to enforce (i.e., a value of True).

 Property: safe-to-redistribute

 Description: Flag identifying whether or not the property
 metadata can be safely redistributed without modification.

 Type: Boolean

 Mandatory-to-Specify: No. Default is allow transparent
 redistribution (i.e., a value of True).

 Property: incomprehensible

 Description: Flag identifying whether or not any CDN in the
 chain of delegation has failed to understand and/or failed to
 properly transform this metadata object. Note: This flag only
 applies to metadata objects whose safe-to-redistribute property
 has a value of False.

 Type: Boolean

 Mandatory-to-Specify: No. Default is comprehensible (i.e., a
 value of False).

 Example GenericMetadata object containing a metadata object that
 applies to the applicable URI path and/or host (within a parent
 PathMetadata and/or HostMetadata object, respectively):

Niven-Jenkins, et al. Expires February 3, 2017 [Page 22]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "mandatory-to-enforce": true,
 "safe-to-redistribute": true,
 "incomprehensible": false,
 "generic-metadata-type": <CDNI Payload Type of this metadata object>,
 "generic-metadata-value":
 {
 <Properties of this metadata object>
 }
 }

4.2. Definitions of the initial set of CDNI Generic Metadata objects

 The objects defined below are intended to be used in the
 GenericMetadata object generic-metadata-value field as defined in

Section 4.1.7 and their generic-metadata-type property MUST be set to
 the appropriate CDNI Payload Type as defined in Table 4.

4.2.1. SourceMetadata

 Source metadata provides the dCDN with information about content
 acquisition, i.e., how to contact an uCDN Surrogate or an Origin
 Server to obtain the content to be served. The sources are not
 necessarily the actual Origin Servers operated by the CSP but might
 be a set of Surrogates in the uCDN.

 Property: sources

 Description: Sources from which the dCDN can acquire content,
 listed in order of preference.

 Type: Array of Source objects (see Section 4.2.1.1)

 Mandatory-to-Specify: No. Default is to use static
 configuration, out-of-band from the metadata interface.

 Example SourceMetadata object (which contains two Source objects)
 that describes which servers the dCDN should use for acquiring
 content for the applicable URI path and/or host:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 23]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "generic-metadata-type": "MI.SourceMetadata",
 "generic-metadata-value":
 {
 "sources": [
 {
 "endpoints": [
 "a.service123.ucdn.example",
 "b.service123.ucdn.example"
],
 "protocol": "http/1.1"
 },
 {
 "endpoints": ["origin.service123.example"],
 "protocol": "http/1.1"
 }
]
 }
 }

4.2.1.1. Source

 A Source object describes the source to be used by the dCDN for
 content acquisition (e.g., a Surrogate within the uCDN or an
 alternate Origin Server), the protocol to be used, and any
 authentication method to be used when contacting that source.

 Endpoints within a Source object MUST be treated as equivalent/equal.
 A uCDN can specify an array of sources in preference order within a
 SourceMetadata object, and then for each preference ranked Source
 object, a uCDN can specify an array of endpoints that are equivalent
 (e.g., a pool of servers that are not behind a load balancer).

 Property: acquisition-auth

 Description: Authentication method to use when requesting
 content from this source.

 Type: Auth (see Section 4.2.7)

 Mandatory-to-Specify: No. Default is no authentication
 required.

 Property: endpoints

 Description: Origins from which the dCDN can acquire content.
 If multiple endpoints are specified they are all equal, i.e.,

Niven-Jenkins, et al. Expires February 3, 2017 [Page 24]

Internet-Draft CDN Interconnection Metadata August 2016

 the list is not in preference order (e.g., a pool of servers
 behind a load balancer).

 Type: Array of Endpoint objects (See Section 4.3.3)

 Mandatory-to-Specify: Yes.

 Property: protocol

 Description: Network retrieval protocol to use when requesting
 content from this source.

 Type: Protocol (see Section 4.3.2)

 Mandatory-to-Specify: Yes.

 Example Source object that describes a pair of endpoints (servers)
 the dCDN can use for acquiring content for the applicable host and/or
 URI path:

 {
 "endpoints": [
 "a.service123.ucdn.example",
 "b.service123.ucdn.example"
],
 "protocol": "http/1.1"
 }

4.2.2. LocationACL Metadata

 LocationACL metadata defines which locations a User Agent needs to be
 in, in order to be able to receive the associated content.

 A LocationACL which does not include a locations property results in
 an action of allow all, meaning that delivery can be performed
 regardless of the User Agent's location, otherwise a CDN MUST take
 the action from the first footprint to match against the User Agent's
 location. If two or more footprints overlap, the first footprint
 that matches against the User Agent's location determines the action
 a CDN MUST take. If the locations property is included but is empty,
 or if none of the listed footprints matches the User Agent's
 location, then the result is an action of deny.

 Although the LocationACL, TimeWindowACL (see Section 4.2.3), and
 ProtocolACL (see Section 4.2.4) are independent GenericMetadata
 objects, they can provide conflicting information to a dCDN, e.g., a
 content request which is simultaneously allowed based on the
 LocationACL and denied based on the TimeWindowACL. The dCDN MUST use

Niven-Jenkins, et al. Expires February 3, 2017 [Page 25]

Internet-Draft CDN Interconnection Metadata August 2016

 the logical AND of all ACLs (where 'allow' is true and 'deny' is
 false) to determine whether or not a request should be allowed.

 Property: locations

 Description: Access control list which allows or denies
 (blocks) delivery based on the User Agent's location.

 Type: Array of LocationRule objects (see Section 4.2.2.1)

 Mandatory-to-Specify: No. Default is allow all locations.

 Example LocationACL object that allows the dCDN to deliver content to
 any location/IP address:

 {
 "generic-metadata-type": "MI.LocationACL",
 "generic-metadata-value":
 {
 }
 }

 Example LocationACL object (which contains a LocationRule object
 which itself contains a Footprint object) that only allows the dCDN
 to deliver content to User Agents in the USA:

 {
 "generic-metadata-type": "MI.LocationACL",
 "generic-metadata-value":
 {
 "locations": [
 {
 "action": "allow",
 "footprints": [
 {
 "footprint-type": "countrycode",
 "footprint-value": ["us"]
 }
]
 }
]
 }
 }

Niven-Jenkins, et al. Expires February 3, 2017 [Page 26]

Internet-Draft CDN Interconnection Metadata August 2016

4.2.2.1. LocationRule

 A LocationRule contains or references an array of Footprint objects
 and the corresponding action.

 Property: footprints

 Description: Array of footprints to which the rule applies.

 Type: Array of Footprint objects (see Section 4.2.2.2)

 Mandatory-to-Specify: Yes.

 Property: action

 Description: Defines whether the rule specifies locations to
 allow or deny.

 Type: Enumeration [allow|deny] encoded as a lowercase string

 Mandatory-to-Specify: No. Default is deny.

 Example LocationRule object (which contains a Footprint object) that
 allows the dCDN to deliver content to clients in the USA:

 {
 "action": "allow",
 "footprints": [
 {
 "footprint-type": "countrycode",
 "footprint-value": ["us"]
 }
]
 }

4.2.2.2. Footprint

 A Footprint object describes the footprint to which a LocationRule
 can be applied to, e.g., an IPv4 address range or a geographic
 location.

 Property: footprint-type

 Description: Registered footprint type (see Section 7.2). The
 footprint types specified by this document are: "ipv4cidr"
 (IPv4CIDR, see Section 4.3.5), "ipv6cidr" (IPv6CIDR, see

Section 4.3.6), "asn" (Autonomous System Number, see

Niven-Jenkins, et al. Expires February 3, 2017 [Page 27]

Internet-Draft CDN Interconnection Metadata August 2016

Section 4.3.7) and "countrycode" (Country Code, see
Section 4.3.8).

 Type: Lowercase String

 Mandatory-to-Specify: Yes.

 Property: footprint-value

 Description: Array of footprint values conforming to the
 specification associated with the registered footprint type.
 Footprint values can be simple strings (e.g., IPv4CIDR,
 IPv6CIDR, ASN, and CountryCode), however, other Footprint
 objects can be defined in the future, along with a more complex
 encoding (e.g., GPS coordinate tuples).

 Type: Array of footprints

 Mandatory-to-Specify: Yes.

 Example Footprint object describing a footprint covering the USA:

 {
 "footprint-type": "countrycode",
 "footprint-value": ["us"]
 }

 Example Footprint object describing a footprint covering the IP
 address ranges 192.0.2.0/24 and 198.51.100.0/24:

 {
 "footprint-type": "ipv4cidr",
 "footprint-value": ["192.0.2.0/24", "198.51.100.0/24"]
 }

 Example Footprint object describing a footprint covering the IP
 address ranges 2001:db8::/32:

 {
 "footprint-type": "ipv6cidr",
 "footprint-value": ["2001:db8::/32"]
 }

 Example Footprint object describing a footprint covering the
 autonomous system 64496:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 28]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "footprint-type": "asn",
 "footprint-value": ["as64496"]
 }

4.2.3. TimeWindowACL

 TimeWindowACL metadata defines time-based restrictions.

 A TimeWindowACL which does not include a times property results in an
 action of allow all, meaning that delivery can be performed
 regardless of the time of the User Agent's request, otherwise a CDN
 MUST take the action from the first window to match against the
 current time. If two or more windows overlap, the first window that
 matches against the current time determines the action a CDN MUST
 take. If the times property is included but is empty, or if none of
 the listed windows matches the current time, then the result is an
 action of deny.

 Although the LocationACL (see Section 4.2.2), TimeWindowACL, and
 ProtocolACL (see Section 4.2.4) are independent GenericMetadata
 objects, they can provide conflicting information to a dCDN, e.g., a
 content request which is simultaneously allowed based on the
 LocationACL and denied based on the TimeWindowACL. The dCDN MUST use
 the logical AND of all ACLs (where 'allow' is true and 'deny' is
 false) to determine whether or not a request should be allowed.

 Property: times

 Description: Access control list which allows or denies
 (blocks) delivery based on the time of a User Agent's request.

 Type: Array of TimeWindowRule objects (see Section 4.2.3.1)

 Mandatory-to-Specify: No. Default is allow all time windows.

 Example TimeWIndowACL object (which contains a TimeWindowRule object
 which itself contains a TimeWIndow object) that only allows the dCDN
 to deliver content to clients between 09:00 01/01/2000 UTC and 17:00
 01/01/2000 UTC:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 29]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "generic-metadata-type": "MI.TimeWindowACL",
 "generic-metadata-value":
 {
 "times": [
 {
 "action": "allow",
 "windows": [
 {
 "start": 946717200,
 "end": 946746000
 }
]
 }
]
 }
 }

4.2.3.1. TimeWindowRule

 A TimeWindowRule contains or references an array of TimeWindow
 objects and the corresponding action.

 Property: windows

 Description: Array of time windows to which the rule applies.

 Type: Array of TimeWindow objects (see Section 4.2.3.2)

 Mandatory-to-Specify: Yes.

 Property: action

 Description: Defines whether the rule specifies time windows to
 allow or deny.

 Type: Enumeration [allow|deny] encoded as a lowercase string

 Mandatory-to-Specify: No. Default is deny.

 Example TimeWIndowRule object (which contains a TimeWIndow object)
 that only allows the dCDN to deliver content to clients between 09:00
 01/01/2000 UTC and 17:00 01/01/2000 UTC:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 30]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "action": "allow",
 "windows": [
 {
 "start": 946717200,
 "end": 946746000
 }
]
 }

4.2.3.2. TimeWindow

 A TimeWindow object describes a time range which can be applied by an
 TimeWindowACL, e.g., start 946717200 (i.e., 09:00 01/01/2000 UTC),
 end: 946746000 (i.e., 17:00 01/01/2000 UTC).

 Property: start

 Description: The start time of the window.

 Type: Time (see Section 4.3.4)

 Mandatory-to-Specify: Yes.

 Property: end

 Description: The end time of the window.

 Type: Time (see Section 4.3.4)

 Mandatory-to-Specify: Yes.

 Example TimeWIndow object that describes a time window from 09:00
 01/01/2000 UTC to 17:00 01/01/2000 UTC:

 {
 "start": 946717200,
 "end": 946746000
 }

4.2.4. ProtocolACL Metadata

 ProtocolACL metadata defines delivery protocol restrictions.

 A ProtocolACL which does not include a protocol-acl property results
 in an action of allow all, meaning that delivery can be performed
 regardless of the protocol in the User Agent's request, otherwise a
 CDN MUST take the action from the first protocol to match against the

Niven-Jenkins, et al. Expires February 3, 2017 [Page 31]

Internet-Draft CDN Interconnection Metadata August 2016

 request protocol. If two or more request protocols overlap, the
 first protocol that matches the request protocol determines the
 action a CDN MUST take. If the protocol-acl property is included but
 is empty, or if none of the listed protocol matches the request
 protocol, then the result is an action of deny.

 Although the LocationACL, TimeWindowACL, and ProtocolACL are
 independent GenericMetadata objects, they can provide conflicting
 information to a dCDN, e.g., a content request which is
 simultaneously allowed based on the ProtocolACL and denied based on
 the TimeWindowACL. The dCDN MUST use the logical AND of all ACLs
 (where 'allow' is true and 'deny' is false) to determine whether or
 not a request should be allowed.

 Property: protocol-acl

 Description: Description: Access control list which allows or
 denies (blocks) delivery based on delivery protocol.

 Type: Array of ProtocolRule objects (see Section 4.2.4.1)

 Mandatory-to-Specify: No. Default is allow all protocols.

 Example ProtocolACL object (which contains a ProtocolRule object)
 that only allows the dCDN to deliver content using HTTP/1.1:

 {
 "generic-metadata-type": "MI.ProtocolACL",
 "generic-metadata-value":
 {
 "protocol-acl": [
 {
 "action": "allow",
 "protocols": ["http/1.1"]
 }
]
 }
 }

4.2.4.1. ProtocolRule

 A ProtocolRule contains or references an array of Protocol objects
 and the corresponding action.

 Property: protocols

 Description: Array of protocols to which the rule applies.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 32]

Internet-Draft CDN Interconnection Metadata August 2016

 Type: Array of Protocols (see Section 4.3.2)

 Mandatory-to-Specify: Yes.

 Property: action

 Description: Defines whether the rule specifies protocols to
 allow or deny.

 Type: Enumeration [allow|deny] encoded as a lowercase string

 Mandatory-to-Specify: No. Default is deny.

 Example ProtocolRule object (which contains a ProtocolRule object)
 that allows the dCDN to deliver content using HTTP/1.1:

 {
 "action": "allow",
 "protocols": ["http/1.1"]
 }

4.2.5. DeliveryAuthorization Metadata

 Delivery Authorization defines authorization methods for the delivery
 of content to User Agents.

 Property: delivery-auth-methods

 Description: Options for authorizing content requests.
 Delivery for a content request is authorized if any of the
 authorization methods in the list is satisfied for that
 request.

 Type: Array of Auth objects (see Section 4.2.7)

 Mandatory-to-Specify: No. Default is no authorization
 required.

 Example DeliveryAuthorization object (which contains an Auth object):

Niven-Jenkins, et al. Expires February 3, 2017 [Page 33]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "generic-metadata-type": "MI.DeliveryAuthorization",
 "generic-metadata-value":
 {
 "delivery-auth-methods": [
 {
 "auth-type": <CDNI Payload Type of this Auth object>,
 "auth-value":
 {
 <Properties of this Auth object>
 }
 }
]
 }
 }

4.2.6. Cache

 A Cache object describes the cache control parameters to be applied
 to the content by intermediate caches.

 Cache keys are generated from the URI of the content request
 [RFC7234]. In some cases, a CDN or content provider might want
 certain path segments or query parameters to be excluded from the
 cache key generation. The Cache object provides guidance on what
 parts of the path and query string to include.

 Property: exclude-path-pattern

 Description: A pattern for matching against the URI path, i.e.,
 against the [RFC3986] path-absolute. The pattern can contain
 the wildcards * and ?, where * matches any sequence of
 [RFC3986] pchar or "/" characters (including the empty string)
 and ? matches exactly one [RFC3986] pchar character. The three
 literals $, * and ? MUST be escaped as $$, $* and $? (where $
 is the designated escape character). All other characters are
 treated as literals. Cache key generation MUST only include
 the portion of the path-absolute that matches the wildcard
 portions of the pattern. Note: Inconsistency between the
 PatternMatch pattern Section 4.1.5 and the exclude-path-pattern
 can result in inefficient caching.

 Type: String

 Mandatory-to-Specify: No. Default is to use the full URI path-
 absolute to generate the cache key.

 Property: include-query-strings

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Niven-Jenkins, et al. Expires February 3, 2017 [Page 34]

Internet-Draft CDN Interconnection Metadata August 2016

 Description: Allows a Surrogate to specify the URI query string
 parameters [RFC3986] to include when comparing the requested
 URI against the URIs in its cache for equivalence. Matching
 query parameters MUST be case-insensitive. If all query
 parameters should be ignored, then the list MUST be specified
 and MUST be empty. If a query parameter appears multiple times
 in the query string, each instance value MUST be aggregated
 prior to comparison. For consistent cache key generation,
 query parameters SHOULD be evaluated in the order specified in
 this array.

 Type: Array of String

 Mandatory-to-Specify: No. Default is to consider all query
 string parameters when comparing URIs.

 Example Cache object that instructs the dCDN to use the full URI path
 and ignore all query parameters:

 {
 "generic-metadata-type": "MI.Cache",
 "generic-metadata-value":
 {
 "include-query-strings": []
 }
 }

 Example Cache object that instructs the dCDN to exclude the "CDNX"
 path prefix and only include the (case-insensitive) query parameters
 named "mediaid" and "providerid":

 {
 "generic-metadata-type": "MI.Cache",
 "generic-metadata-value":
 {
 "exclude-path-pattern": "/CDNX/*",
 "include-query-strings": ["mediaid", "providerid"]
 }
 }

 Example Cache object that instructs the dCDN to exclude the "CDNX"
 path prefix, but includes all query parameters:

https://datatracker.ietf.org/doc/html/rfc3986

Niven-Jenkins, et al. Expires February 3, 2017 [Page 35]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "generic-metadata-type": "MI.Cache",
 "generic-metadata-value":
 {
 "exclude-path-pattern": "/CDNX/*"
 }
 }

4.2.7. Auth

 An Auth object defines authentication and authorization methods to be
 used during content acquisition and content delivery, respectively.

 Note: This document does not define any Auth methods. Individual
 Auth methods are being defined separately (e.g., URI Signing
 [I-D.ietf-cdni-uri-signing]). The GenericMetadata which contain Auth
 objects is defined herein for convenience and so as not to be
 specific to any particular Auth method.

 Property: auth-type

 Description: Auth type (The CDNI Payload Type [RFC7736] of the
 GenericMetadata object contained in the auth-value property).

 Type: String

 Mandatory-to-Specify: Yes.

 Property: auth-value

 Description: An object conforming to the specification
 associated with the Auth type.

 Type: GenericMetadata Object

 Mandatory-to-Specify: Yes.

 Example Auth object:

https://datatracker.ietf.org/doc/html/rfc7736

Niven-Jenkins, et al. Expires February 3, 2017 [Page 36]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "generic-metadata-type": "MI.Auth",
 "generic-metadata-value":
 {
 "auth-type": <CDNI Payload Type of this Auth object>,
 "auth-value":
 {
 <Properties of this Auth object>
 }
 }
 }

4.2.8. Grouping

 A Grouping object identifies a group of content to which a given
 asset belongs.

 Property: ccid

 Description: Content Collection identifier for an application-
 specific purpose such as logging aggregation.

 Type: String

 Mandatory-to-Specify: No. Default is an empty string.

 Example Grouping object that specifies a Content Collection
 Identifier for the content associated with the Grouping object's
 parent HostMetadata and PathMetadata:

 {
 "generic-metadata-type": "MI.Grouping",
 "generic-metadata-value":
 {
 "ccid": "ABCD"
 }
 }

4.3. CDNI Metadata Simple Data Type Descriptions

 This section describes the simple data types that are used for
 properties of CDNI metadata objects.

4.3.1. Link

 A Link object can be used in place of any of the objects or
 properties described above. Link objects can be used to avoid
 duplication if the same metadata information is repeated within the

Niven-Jenkins, et al. Expires February 3, 2017 [Page 37]

Internet-Draft CDN Interconnection Metadata August 2016

 metadata tree. When a Link object replaces another object, its href
 property is set to the URI of the resource and its type property is
 set to the CDNI Payload Type of the object it is replacing.

 dCDNs can detect the presence of a Link object by detecting the
 presence of a property named "href" within the object. This means
 that GenericMetadata types MUST NOT contain a property named "href"
 because doing so would conflict with the ability for dCDNs to detect
 Link objects being used to reference a GenericMetadata object.

 Property: href

 Description: The URI of the addressable object being
 referenced.

 Type: String

 Mandatory-to-Specify: Yes.

 Property: type

 Description: The CDNI Payload type of the object being
 referenced.

 Type: String

 Mandatory-to-Specify: No. If the container specifies the type
 (e.g., the HostIndex object contains an array of HostMatch
 objects, so a Link object in the list of HostMatch objects must
 reference a HostMatch), then it is not necessary to explicitly
 specify a type.

 Example Link object referencing a HostMatch object:

 {
 "type": "MI.HostMatch",
 "href": "https://metadata.ucdn.example/hostmatch1234"
 }

 Example Link object referencing a HostMatch object, without an
 explicit type, inside a HostIndex object:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 38]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "hosts": [
 {
 <Properties of embedded HostMatch object>
 },
 {
 "href": "https://metadata.ucdn.example/hostmatch1234"
 }
]
 }

4.3.1.1. Link Loop Prevention

 When following a Link, CDNI metadata clients SHOULD verify that the
 CDNI Payload Type of the object retrieved matches the expected CDNI
 Payload Type, as indicated by the link object. For GenericMetadata
 objects, type checks will prevent self references; however, incorrect
 linking can result in circular references for structural metadtata
 objects, specifically, PathMatch and PathMetadata objects Figure 1.
 To prevent the circular references, CDNI metadata clients SHOULD
 verify that no duplicate Links occur for PathMatch or PathMetadata
 objects.

4.3.2. Protocol

 Protocol objects are used to specify registered protocols for content
 acquisition or delivery (see Section 7.3).

 Type: String

 Example:

 "http/1.1"

4.3.3. Endpoint

 A Hostname (with optional port) or an IP address (with optional
 port).

 All implementations MUST support IPv4 addresses encoded as specified
 by the 'IPv4address' rule in Section 3.2.2 of [RFC3986]. IPv6
 addresses MUST be encoded in one of the IPv6 address formats
 specified in [RFC5952] although receivers MUST support all IPv6
 address formats specified in [RFC4291]. Hostnames MUST conform to
 the Domain Name System (DNS) syntax defined in [RFC1034] and
 [RFC1123]. Internationalized Domain Names (IDN) must first be
 transformed to the IDNA encoding as per [RFC5891].

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc5952
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc5891

Niven-Jenkins, et al. Expires February 3, 2017 [Page 39]

Internet-Draft CDN Interconnection Metadata August 2016

 Type: String

 Example Hostname:

 "metadata.ucdn.example"

 Example IPv4 address:

 "192.0.2.1"

 Example IPv6 address (with port number):

 "[2001:db8::1]:81"

4.3.4. Time

 A time value expressed in seconds since the Unix epoch (i.e., zero
 hours, zero minutes, zero seconds, on January 1, 1970) Coordinated
 Universal Time (UTC) [POSIX].

 Type: Integer

 Example Time representing 09:00:00 01/01/2000 UTC:

 946717200

4.3.5. IPv4CIDR

 An IPv4address CIDR block encoded as specified by the 'IPv4address'
 rule in Section 3.2.2 of [RFC3986] followed by a / followed by an
 unsigned integer representing the leading bits of the routing prefix
 (i.e., IPv4 CIDR notation). Single IP addresses can be expressed as
 /32.

 Type: String

 Example IPv4 CIDR:

 "192.0.2.0/24"

4.3.6. IPv6CIDR

 An IPv6address CIDR block encoded in one of the IPv6 address formats
 specified in [RFC5952] followed by a / followed by an unsigned
 integer representing the leading bits of the routing prefix (i.e.,
 IPv6 CIDR notation). Single IP addresses can be expressed as /128.

 Type: String

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc5952

Niven-Jenkins, et al. Expires February 3, 2017 [Page 40]

Internet-Draft CDN Interconnection Metadata August 2016

 Example IPv6 CIDR:

 "2001:db8::/32"

4.3.7. ASN

 An Autonomous System Number encoded as a string consisting of the
 characters "as" (in lowercase) followed by the Autonomous System
 number [RFC6793].

 Type: String

 Example ASN:

 "as64496"

4.3.8. CountryCode

 An ISO 3166-1 alpha-2 code [ISO3166-1] in lowercase.

 Type: String

 Example Country Code representing the USA:

 "us"

5. CDNI Metadata Capabilities

 CDNI metadata is used to convey information pertaining to content
 delivery from uCDN to dCDN. For optional metadata, it can be useful
 for the uCDN to know if the dCDN supports the underlying
 functionality described by the metadata, prior to delegating any
 content requests to the dCDN. If some metadata is "mandatory-to-
 enforce", and the dCDN does not support it, any delegated requests
 for content that requires that metadata will fail. The uCDN will
 likely want to avoid delegating those requests to that dCDN.
 Likewise, for any metadata which might be assigned optional values,
 it could be useful for the uCDN to know which values a dCDN supports,
 prior to delegating any content requests to that dCDN. If the
 optional value assigned to a given piece of content's metadata is not
 supported by the dCDN, any delegated requests for that content can
 fail, so again the uCDN is likely to want to avoid delegating those
 requests to that dCDN.

 The CDNI Footprint and Capabilities Interface (FCI) provides a means
 of advertising capabilities from dCDN to uCDN [RFC7336]. Support for
 optional metadata types and values can be advertised using the FCI.

https://datatracker.ietf.org/doc/html/rfc6793
https://datatracker.ietf.org/doc/html/rfc7336

Niven-Jenkins, et al. Expires February 3, 2017 [Page 41]

Internet-Draft CDN Interconnection Metadata August 2016

6. CDNI Metadata interface

 This section specifies an interface to enable a dCDN to retrieve CDNI
 metadata objects from a uCDN.

 The interface can be used by a dCDN to retrieve CDNI metadata objects
 either:

 o Dynamically as required by the dCDN to process received requests.
 For example in response to a query from an uCDN over the CDNI
 Request Routing Redirection interface (RI)
 [I-D.ietf-cdni-redirection] or in response to receiving a request
 for content from a User Agent. Or;

 o In advance of being required. For example in the case of pre-
 positioned CDNI metadata acquisition, initiated through the "CDNI
 Control interface / Triggers" (CI/T) interface
 [I-D.ietf-cdni-control-triggers].

 The CDNI metadata interface is built on the principles of HTTP web
 services. In particular, this means that requests and responses over
 the interface are built around the transfer of representations of
 hyperlinked resources. A resource in the context of the CDNI
 metadata interface is any object in the object model (as described in

Section 3 and Section 4).

 To retrieve CDNI metadata, a CDNI metadata client (i.e., a client in
 the dCDN) first makes a HTTP GET request for the URI of the HostIndex
 which provides the CDNI metadata client with an array of Hostnames
 for which the uCDN can delegate content delivery to the dCDN. The
 CDNI metadata client can then obtain any other CDNI metadata objects
 by making a HTTP GET requests for any linked metadata objects it
 requires.

 CDNI metadata servers (i.e., servers in the uCDN) are free to assign
 whatever structure they desire to the URIs for CDNI metadata objects
 and CDNI metadata clients MUST NOT make any assumptions regarding the
 structure of CDNI metadata URIs or the mapping between CDNI metadata
 objects and their associated URIs. Therefore any URIs present in the
 examples in this document are purely illustrative and are not
 intended to impose a definitive structure on CDNI metadata interface
 implementations.

6.1. Transport

 The CDNI metadata interface uses HTTP as the underlying protocol
 transport [RFC7230].

https://datatracker.ietf.org/doc/html/rfc7230

Niven-Jenkins, et al. Expires February 3, 2017 [Page 42]

Internet-Draft CDN Interconnection Metadata August 2016

 The HTTP Method in the request defines the operation the request
 would like to perform. A server implementation of the CDNI metadata
 interface MUST support the HTTP GET and HEAD methods.

 The corresponding HTTP Response returns the status of the operation
 in the HTTP Status Code and returns the current representation of the
 resource (if appropriate) in the Response Body. HTTP Responses that
 contain a response body SHOULD include an ETag to enable validation
 of cached versions of returned resources.

 As the CDNI metadata interface builds on top of HTTP, CDNI metadata
 server implementations MAY make use of any HTTP feature when
 implementing the CDNI metadata interface, for example, a CDNI
 metadata server MAY make use of HTTP's caching mechanisms to indicate
 that the returned response/representation can be reused without re-
 contacting the CDNI metadata server.

6.2. Retrieval of CDNI Metadata resources

 In the general case, a CDNI metadata server makes CDNI metadata
 objects available via a unique URIs and thus, in order to retrieve
 CDNI metadata, a CDNI metadata client first makes a HTTP GET request
 for the URI of the HostIndex which provides an array of Hostnames for
 which the uCDN can delegate content delivery to the dCDN.

 In order to retrieve the CDNI metadata for a particular request the
 CDNI metadata client processes the received HostIndex object and
 finds the corresponding HostMetadata entry (by matching the hostname
 in the request against the hostnames listed in the HostMatch
 objects). If the HostMetadata is linked (rather than embedded), the
 CDNI metadata client then makes a GET request for the URI specified
 in the href property of the Link object which points to the
 HostMetadata object itself.

 In order to retrieve the most specific metadata for a particular
 request, the CDNI metadata client inspects the HostMetadata for
 references to more specific PathMetadata objects (by matching the URI
 path in the request against the path-patterns in any PathMatch
 objects listed in the HostMetadata object). If any PathMetadata are
 found to match (and are linked rather than embedded), the CDNI
 metadata client makes another GET request for the PathMetadata. Each
 PathMetadata object can also include references to yet more specific
 metadata. If this is the case, the CDNI metadata client continues
 requesting PathMatch and PathMetadata objects recursively. The CDNI
 metadata client repeats this approach of processing metadata objects
 and retrieving (via HTTP GETs) any linked objects until it has all
 the metadata objects it requires in order to process the redirection
 request from an uCDN or the content request from a User Agent.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 43]

Internet-Draft CDN Interconnection Metadata August 2016

 In cases where a dCDN is not able to retrieve the entire set of CDNI
 metadata associated with a User Agent request, or it has retrieved
 that metadata but it is stale according to standard HTTP caching
 rules and cannot be revalidated, for example because the uCDN is
 unreachable or returns a HTTP 4xx or 5xx status in response to some
 or all of the dCDN's CDNI metadata requests, the dCDN MUST NOT serve
 the requested content.

 Where a dCDN is interconnected with multiple uCDNs, the dCDN needs to
 determine which uCDN's CDNI metadata should be used to handle a
 particular User Agent request.

 When application level redirection (e.g., HTTP 302 redirects) is
 being used between CDNs, it is expected that the dCDN will be able to
 determine the uCDN that redirected a particular request from
 information contained in the received request (e.g., via the URI).
 With knowledge of which uCDN routed the request, the dCDN can choose
 the correct uCDN from which to obtain the HostIndex. Note that the
 HostIndexes served by each uCDN can be unique.

 In the case of DNS redirection there is not always sufficient
 information carried in the DNS request from User Agents to determine
 the uCDN that redirected a particular request (e.g., when content
 from a given host is redirected to a given dCDN by more than one
 uCDN) and therefore dCDNs will have to apply local policy when
 deciding which uCDN's metadata to apply.

6.3. Bootstrapping

 The URI for the HostIndex object of a given uCDN needs to be
 configured in the dCDN. All other objects/resources are then
 discoverable from the HostIndex object by following any links in the
 HostIndex object and through the referenced HostMetadata and
 PathMetadata objects and their GenericMetadata sub-objects.

 Manual configuration of the URI for the HostIndex object is outside
 the scope of this document.

6.4. Encoding

 CDNI metadata objects MUST be encoded as I-JSON objects [RFC7493]
 containing a dictionary of (key,value) pairs where the keys are the
 property names and the values are the associated property values.

 The keys of the dictionary are the names of the properties associated
 with the object and are therefore dependent on the specific object
 being encoded (i.e., dependent on the CDNI Payload Type of the
 returned resource). Likewise, the values associated with each

https://datatracker.ietf.org/doc/html/rfc7493

Niven-Jenkins, et al. Expires February 3, 2017 [Page 44]

Internet-Draft CDN Interconnection Metadata August 2016

 property (dictionary key) are dependent on the specific object being
 encoded (i.e., dependent on the CDNI Payload Type of the returned
 resource).

 Dictionary keys (properties) in I-JSON are case sensitive. By
 convention, any dictionary key (property) defined by this document
 (for example, the names of CDNI metadata object properties) MUST be
 lowercase.

6.5. Extensibility

 The set of GenericMetadata objects can be extended with additional
 (standards based or vendor specific) metadata objects through the
 specification of new GenericMetadata objects. The GenericMetadata
 object defined in Section 4.1.7 specifies a type field and a type-
 specific value field that allows any metadata to be included in
 either the HostMetadata or PathMetadata arrays.

 As with the initial GenericMetadata types defined in Section 4.2,
 future GenericMetadata types MUST specify the information necessary
 for constructing and decoding the GenericMetadata object.

 Any document which defines a new GenericMetadata type MUST:

 1. Specify and register the CDNI Payload Type [RFC7736] used to
 identify the new GenericMetadata type being specified.

 2. Define the set of properties associated with the new
 GenericMetadata object. GenericMetadata MUST NOT contain a
 property named "href" because doing so would conflict with the
 ability to detect Link objects (see Section 4.3.1).

 3. Define a name, description, type, and whether or not the property
 is mandatory-to-specify.

 4. Describe the semantics of the new type including its purpose and
 example of a use case to which it applies including an example
 encoded in I-JSON.

 5. Describe the security and privacy consequences, for both the
 user-agent and the CDN, of the new GenericMetadata object.

 6. Describe any relation to, conflict with, or obsolescence of other
 existing CDNI metadata objects.

 Note: In the case of vendor specific extensions, vendor-identifying
 CDNI Payload Type names will decrease the possibility of
 GenericMetadata type collisions.

https://datatracker.ietf.org/doc/html/rfc7736

Niven-Jenkins, et al. Expires February 3, 2017 [Page 45]

Internet-Draft CDN Interconnection Metadata August 2016

6.6. Metadata Enforcement

 At any given time, the set of GenericMetadata types supported by the
 uCDN might not match the set of GenericMetadata types supported by
 the dCDN.

 In cases where a uCDN sends metadata containing a GenericMetadata
 type that a dCDN does not support, the dCDN MUST enforce the
 semantics of the "mandatory-to-enforce" property. If a dCDN does not
 understand or is unable to perform the functions associated with any
 "mandatory-to-enforce" metadata, the dCDN MUST NOT service any
 requests for the corresponding content.

 Note: Ideally, uCDNs would not delegate content requests to a dCDN
 that does not support the "mandatory-to-enforce" metadata associated
 with the content being requested. However, even if the uCDN has a
 priori knowledge of the metadata supported by the dCDN (e.g., via the
 FCI or through out-of-band negotiation between CDN operators),
 metadata support can fluctuate or be inconsistent (e.g., due to mis-
 communication, mis-configuration, or temporary outage). Thus, the
 dCDN MUST always evaluate all metadata associated with redirection
 and content requests and reject any requests where "mandatory-to-
 enforce" metadata associated with the content cannot be enforced.

6.7. Metadata Conflicts

 It is possible that new metadata definitions will obsolete or
 conflict with existing GenericMetadata (e.g., a future revision of
 the CDNI metadata interface could redefine the Auth GenericMetadata
 object or a custom vendor extension could implement an alternate Auth
 metadata option). If multiple metadata (e.g., MI.Auth.v2,
 vendor1.Auth, and vendor2.Auth) all conflict with an existing
 GenericMetadata object (i.e., MI.Auth) and all are marked as
 "mandatory-to-enforce", it could be ambiguous which metadata should
 be applied, especially if the functionality of the metadata overlap.

 As described in Section 3.3, metadata override only applies to
 metadata objects of the same exact type found in HostMetadata and
 nested PathMetadata structures. The CDNI metadata interface does not
 support enforcement of dependencies between different metadata types.
 It is the responsibility of the CSP and the CDN operators to ensure
 that metadata assigned to a given piece of content do not conflict.

 Note: Because metadata is inherently ordered in HostMetadata and
 PathMetadata arrays, as well as in the PathMatch hierarchy, multiple
 conflicting metadata types MAY be used, however, metadata hierarchies
 SHOULD ensure that independent PathMatch root objects are used to
 prevent ambiguous or conflicting metadata definitions.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 46]

Internet-Draft CDN Interconnection Metadata August 2016

6.8. Versioning

 The version of CDNI metadata objects is conveyed inside the CDNI
 Payload Type that is included in either the HTTP Content-Type header,
 for example: "Content-Type: application/cdni; ptype=MI.HostIndex",
 when retrieved via a link, or in the link type (Section 4.3.1),
 generic-metadata-type (Section 4.1.7), or auth-type (Section 4.2.7)
 properties in the JSON payload. The CDNI Payload Type uniquely
 identifies the specification defining that object, including any
 relation to, conflicts with, or obsolescence of other metadata.
 There is no explicit version mapping requirement, however, for ease
 of understanding, metadata creators SHOULD make new versions of
 metadata easily visible via the CDNI Payload Type, e.g., by appending
 a version string. Note: A version string is optional on the first
 version, e.g., MI.HostIndex, but could be added for subsequent
 versions, e.g., MI.HostIndex.v2, MI.HostIndex.v3, etc.

 Except when referenced by a Link object, nested metadata objects
 (i.e., structural metadata below the HostIndex; Source objects;
 Location, TimeWindow, and Protocol Rule objects; and Footprint and
 TimeWindow objects) can be serialized into a JSON payload without
 explicit CDNI Payload Type information. The type is inferred from
 the outer structural metadata, generic metadata, or auth object CDNI
 Payload Type. To avoid ambiguity when revising nestable metadata
 objects, any outer metadata object(s) MUST be reversioned and
 allocated new CDNI Payload Type(s) at the same time. For example,
 the MI.HostIndex object defined in this document contains an array of
 MI.HostMatch objects, which each in turn contains a MI.HostMetadata
 object. If a new MI.HostMetadata.v2 object were required, the outer
 MI.HostIndex and MI.HostMatch objects would need to be revised, e.g.,
 to MI.HostIndex.v2 and MI.HostMatch.v2, respectively. Similarly, if
 a new MI.TimeWindowRule.v2 object was required, the outer
 MI.TimeWindowACL object would need to be revised, e.g., to
 MI.TimeWindowACL.v2; the MI.TimeWindowRule.v2 object, though, could
 still contain MI.TimeWindow objects, if so specified.

 HTTP requests sent to a metadata server SHOULD include an Accept
 header with the CDNI Payload Type of the expected object. Metadata
 clients can specify multiple CDNI Payload Types in the Accept header,
 for example, if a metadata client is capable of processing two
 different versions of the same type of object (defined by different
 CDNI Payload Types) it might decide to include both in the Accept
 header.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 47]

Internet-Draft CDN Interconnection Metadata August 2016

6.9. Media Types

 All CDNI metadata objects use the Media Type "application/cdni". The
 CDNI Payload Type for each object then contains the object name of
 that object as defined by this document, prefixed with "MI.".
 Table 4 lists the CDNI Payload Type for the metadata objects
 (resources) specified in this document.

 +-----------------------+--------------------------+
 | Data Object | CDNI Payload Type |
 +-----------------------+--------------------------+
 | HostIndex | MI.HostIndex |
 | HostMatch | MI.HostMatch |
 | HostMetadata | MI.HostMetadata |
 | PathMatch | MI.PathMatch |
 | PatternMatch | MI.PatternMatch |
 | PathMetadata | MI.PathMetadata |
 | SourceMetadata | MI.SourceMetadata |
 | Source | MI.Source |
 | LocationACL | MI.LocationACL |
 | LocationRule | MI.LocationRule |
 | Footprint | MI.Footprint |
 | TimeWindowACL | MI.TimeWindowACL |
 | TimeWindowRule | MI.TimeWindowRule |
 | TimeWindow | MI.TimeWindow |
 | ProtocolACL | MI.ProtocolACL |
 | ProtocolRule | MI.ProtocolRule |
 | DeliveryAuthorization | MI.DeliveryAuthorization |
 | Cache | MI.Cache |
 | Auth | MI.Auth |
 | Grouping | MI.Grouping |
 +-----------------------+--------------------------+

 Table 4: CDNI Payload Types for CDNI Metadata objects

6.10. Complete CDNI Metadata Example

 A dCDN requests the HostIndex and receive the following object with a
 CDNI payload type of "MI.HostIndex":

Niven-Jenkins, et al. Expires February 3, 2017 [Page 48]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "hosts": [
 {
 "host": "video.example.com",
 "host-metadata" : {
 "type": "MI.HostMetadata",
 "href": "https://metadata.ucdn.example/host1234"
 }
 },
 {
 "host": "images.example.com",
 "host-metadata" : {
 "type": "MI.HostMetadata",
 "href": "https://metadata.ucdn.example/host5678"
 }
 }
]
 }

 If the incoming request has a Host header with "video.example.com"
 then the dCDN would fetch the HostMetadata object from
 "https://metadata.ucdn.example/host1234" expecting a CDNI payload
 type of "MI.HostMetadata":

 {
 "metadata": [
 {
 "generic-metadata-type": "MI.SourceMetadata",
 "generic-metadata-value": {
 "sources": [
 {
 "endpoint": ["acq1.ucdn.example"],
 "protocol": "http/1.1"
 },
 {
 "endpoint": ["acq2.ucdn.example"],
 "protocol": "http/1.1"
 }
]
 }
 },
 {
 "generic-metadata-type": "MI.LocationACL",
 "generic-metadata-value": {
 "locations": [
 {
 "footprints": [
 {

Niven-Jenkins, et al. Expires February 3, 2017 [Page 49]

Internet-Draft CDN Interconnection Metadata August 2016

 "footprint-type": "ipv4cidr",
 "footprint-value": ["192.0.2.0/24"]
 },
 {
 "footprint-type": "ipv6cidr",
 "footprint-value": ["2001:db8::/32"]
 },
 {
 "footprint-type": "countrycode",
 "footprint-value": ["us"]
 },
 {
 "footprint-type": "asn",
 "footprint-value": ["as64496"]
 }
],
 "action": "deny"
 }
]
 }
 },
 {
 "generic-metadata-type": "MI.ProtocolACL",
 "generic-metadata-value": {
 "protocol-acl": [
 {
 "protocols": [
 "http/1.1"
],
 "action": "allow"
 }
]
 }
 }
],
 "paths": [
 {
 "path-pattern": {
 "pattern": "/video/trailers/*"
 },
 "path-metadata": {
 "type": "MI.PathMetadata",
 "href": "https://metadata.ucdn.example/host1234/pathABC"
 }
 },
 {
 "path-pattern": {
 "pattern": "/video/movies/*"

Niven-Jenkins, et al. Expires February 3, 2017 [Page 50]

Internet-Draft CDN Interconnection Metadata August 2016

 },
 "path-metadata": {
 "type": "MI.PathMetadata",
 "href": "https://metadata.ucdn.example/host1234/pathDEF"
 }
 }
]
 }

 Suppose the path of the requested resource matches the "/video/
 movies/*" pattern, the next metadata requested would be for
 "https://metadata.ucdn.example/host1234/pathDCE" with an expected
 CDNI payload type of "MI.PathMetadata":

 {
 "metadata": [],
 "paths": [
 {
 "path-pattern": {
 "pattern": "/videos/movies/hd/*"
 },
 "path-metadata": {
 "type": "MI.PathMetadata",
 "href":
 "https://metadata.ucdn.example/host1234/pathDEF/path123"
 }
 }
]
 }

 Finally, if the path of the requested resource also matches the
 "/videos/movies/hd/*" pattern, the dCDN would also fetch the
 following object from
 "https://metadata.ucdn.example/host1234/pathDEF/path123" with CDNI
 payload type "MI.PathMetadata":

Niven-Jenkins, et al. Expires February 3, 2017 [Page 51]

Internet-Draft CDN Interconnection Metadata August 2016

 {
 "metadata": [
 {
 "generic-metadata-type": "MI.TimeWindowACL",
 "generic-metadata-value": {
 "times": [
 "windows": [
 {
 "start": "1213948800",
 "end": "1327393200"
 }
],
 "action": "allow"
]
 }
 }
]
 }

 The final set of metadata which applies to the requested resource
 includes a SourceMetadata, a LocationACL, a ProtocolACL, and a
 TimeWindowACL.

7. IANA Considerations

7.1. CDNI Payload Types

 This document requests the registration of the following CDNI Payload
 Types under the IANA CDNI Payload Type registry:

Niven-Jenkins, et al. Expires February 3, 2017 [Page 52]

Internet-Draft CDN Interconnection Metadata August 2016

 +--------------------------+---------------+
 | Payload Type | Specification |
 +--------------------------+---------------+
 | MI.HostIndex | RFCthis |
 | MI.HostMatch | RFCthis |
 | MI.HostMetadata | RFCthis |
 | MI.PathMatch | RFCthis |
 | MI.PatternMatch | RFCthis |
 | MI.PathMetadata | RFCthis |
 | MI.SourceMetadata | RFCthis |
 | MI.Source | RFCthis |
 | MI.LocationACL | RFCthis |
 | MI.LocationRule | RFCthis |
 | MI.Footprint | RFCthis |
 | MI.TimeWindowACL | RFCthis |
 | MI.TimeWindowRule | RFCthis |
 | MI.TimeWindow | RFCthis |
 | MI.ProtocolACL | RFCthis |
 | MI.ProtocolRule | RFCthis |
 | MI.DeliveryAuthorization | RFCthis |
 | MI.Cache | RFCthis |
 | MI.Auth | RFCthis |
 | MI.Grouping | RFCthis |
 +--------------------------+---------------+

 [RFC Editor: Please replace RFCthis with the published RFC number for
 this document.]

7.1.1. CDNI MI HostIndex Payload Type

 Purpose: The purpose of this payload type is to distinguish HostIndex
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.1

7.1.2. CDNI MI HostMatch Payload Type

 Purpose: The purpose of this payload type is to distinguish HostMatch
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.2

Niven-Jenkins, et al. Expires February 3, 2017 [Page 53]

Internet-Draft CDN Interconnection Metadata August 2016

7.1.3. CDNI MI HostMetadata Payload Type

 Purpose: The purpose of this payload type is to distinguish
 HostMetadata MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.3

7.1.4. CDNI MI PathMatch Payload Type

 Purpose: The purpose of this payload type is to distinguish PathMatch
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.4

7.1.5. CDNI MI PatternMatch Payload Type

 Purpose: The purpose of this payload type is to distinguish
 PatternMatch MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.5

7.1.6. CDNI MI PathMetadata Payload Type

 Purpose: The purpose of this payload type is to distinguish
 PathMetadata MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.1.6

7.1.7. CDNI MI SourceMetadata Payload Type

 Purpose: The purpose of this payload type is to distinguish
 SourceMetadata MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.1

Niven-Jenkins, et al. Expires February 3, 2017 [Page 54]

Internet-Draft CDN Interconnection Metadata August 2016

7.1.8. CDNI MI Source Payload Type

 Purpose: The purpose of this payload type is to distinguish Source MI
 objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.1.1

7.1.9. CDNI MI LocationACL Payload Type

 Purpose: The purpose of this payload type is to distinguish
 LocationACL MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.2

7.1.10. CDNI MI LocationRule Payload Type

 Purpose: The purpose of this payload type is to distinguish
 LocationRule MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.2.1

7.1.11. CDNI MI Footprint Payload Type

 Purpose: The purpose of this payload type is to distinguish Footprint
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.2.2

7.1.12. CDNI MI TimeWindowACL Payload Type

 Purpose: The purpose of this payload type is to distinguish
 TimeWindowACL MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.3

Niven-Jenkins, et al. Expires February 3, 2017 [Page 55]

Internet-Draft CDN Interconnection Metadata August 2016

7.1.13. CDNI MI TimeWindowRule Payload Type

 Purpose: The purpose of this payload type is to distinguish
 TimeWindowRule MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.3.1

7.1.14. CDNI MI TimeWindow Payload Type

 Purpose: The purpose of this payload type is to distinguish
 TimeWindow MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.3.2

7.1.15. CDNI MI ProtocolACL Payload Type

 Purpose: The purpose of this payload type is to distinguish
 ProtocolACL MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.4

7.1.16. CDNI MI ProtocolRule Payload Type

 Purpose: The purpose of this payload type is to distinguish
 ProtocolRule MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.4.1

7.1.17. CDNI MI DeliveryAuthorization Payload Type

 Purpose: The purpose of this payload type is to distinguish
 DeliveryAuthorization MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.5

Niven-Jenkins, et al. Expires February 3, 2017 [Page 56]

Internet-Draft CDN Interconnection Metadata August 2016

7.1.18. CDNI MI Cache Payload Type

 Purpose: The purpose of this payload type is to distinguish Cache MI
 objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.6

7.1.19. CDNI MI Auth Payload Type

 Purpose: The purpose of this payload type is to distinguish Auth MI
 objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.7

7.1.20. CDNI MI Grouping Payload Type

 Purpose: The purpose of this payload type is to distinguish Grouping
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 4.2.8

7.2. CDNI Metadata Footprint Types Registry

 The IANA is requested to create a new "CDNI Metadata Footprint Types"
 subregistry in the "Content Delivery Networks Interconnection (CDNI)
 Parameters" registry. The "CDNI Metadata Footprint Types" namespace
 defines the valid Footprint object type values used by the Footprint
 object in Section 4.2.2.2. Additions to the Footprint type namespace
 conform to the "Specification Required" policy as defined in
 [RFC5226]. The designated expert will verify that new type
 definitions do not duplicate existing type definitions and prevent
 gratuitous additions to the namespace. New registrations are
 required to provide a clear description of how to interpret new
 footprint types.

 The following table defines the initial Footprint Registry values:

https://datatracker.ietf.org/doc/html/rfc5226

Niven-Jenkins, et al. Expires February 3, 2017 [Page 57]

Internet-Draft CDN Interconnection Metadata August 2016

 +----------------+-------------------------------+---------------+
 | Footprint Type | Description | Specification |
 +----------------+-------------------------------+---------------+
 | ipv4cidr | IPv4 CIDR address block | RFCthis |
 | ipv6cidr | IPv6 CIDR address block | RFCthis |
 | asn | Autonomous System (AS) Number | RFCthis |
 | countrycode | ISO 3166-1 alpha-2 code | RFCthis |
 +----------------+-------------------------------+---------------+

 [RFC Editor: Please replace RFCthis with the published RFC number for
 this document.]

7.3. CDNI Metadata Protocol Types Registry

 The IANA is requested to create a new "CDNI Metadata Protocol Types"
 subregistry in the "Content Delivery Networks Interconnection (CDNI)
 Parameters" registry. The "CDNI Metadata Protocol Types" namespace
 defines the valid Protocol object values in Section 4.3.2, used by
 the SourceMetadata and ProtocolACL objects. Additions to the
 Protocol namespace conform to the "Specification Required" policy as
 defined in [RFC5226], where the specification defines the Protocol
 Type and the protocol to which it is associated. The designated
 expert will verify that new protocol definitions do not duplicate
 existing protocol definitions and prevent gratuitous additions to the
 namespace.

 The following table defines the initial Protocol values corresponding
 to the HTTP and HTTPS protocols:

 +-----------+----------------------+---------------+----------------+
 | Protocol | Description | Type | Protocol |
 | Type | | Specification | Specifications |
 +-----------+----------------------+---------------+----------------+
http/1.1	Hypertext Transfer	RFCthis	RFC7230
	Protocol -- HTTP/1.1		
https/1.1	HTTP/1.1 Over TLS	RFCthis	RFC7230,
			RFC2818
 +-----------+----------------------+---------------+----------------+

 [RFC Editor: Please replace RFCthis with the published RFC number for
 this document.]

8. Security Considerations

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc2818

Niven-Jenkins, et al. Expires February 3, 2017 [Page 58]

Internet-Draft CDN Interconnection Metadata August 2016

8.1. Authentication and Integrity

 A malicious metadata server, proxy server, or attacker, impersonating
 an authentic uCDN metadata interface without being detected, could
 provide false metadata to a dCDN that either:

 o Denies service for one or more pieces of content to one or more
 User Agents;

 o Directs dCDNs to contact malicious origin servers instead of the
 actual origin servers, and substitute legitimate content with
 malware or slanderous alternate content; or

 o Removes delivery restrictions (e.g., LocationACL, TimeWindowACL,
 ProtocolACL, or Auth metadata), allowing access to content that
 would otherwise be denied, and thus possibly violating license
 restrictions and incurring unwarranted delivery costs.

 Unauthorized access to metadata could also enable a malicious
 metadata client to continuously issue metadata requests in order to
 overload a uCDN's metadata server(s).

 Unauthorized access to metadata could further result in leakage of
 private information. A malicious metadata client could request
 metadata in order to gain access to origin servers, as well as
 information pertaining to content restrictions.

 An implementation of the CDNI metadata interface MUST use mutual
 authentication and message authentication codes to prevent
 unauthorized access to and undetected modification of metadata (see

Section 8.3).

8.2. Confidentiality and Privacy

 Unauthorized viewing of metadata could result in leakage of private
 information. Content provider origin and policy information is
 conveyed through the CDNI metadata interface. A third party could
 intercept metadata transactions in order to gain access to origin
 servers, as well as information pertaining to content restrictions
 and usage patterns.

 Note: The distribution of metadata by a uCDN to dCDNs could introduce
 privacy concerns for some content providers, e.g., dCDNs accepting
 content requests for a content provider's content might be able to
 obtain additional information and usage patterns relating to the
 users of a content provider's services. Content providers with
 concerns about divulging information to dCDNs can instruct their uCDN
 partners not to use CDNI when delivering their content.

Niven-Jenkins, et al. Expires February 3, 2017 [Page 59]

Internet-Draft CDN Interconnection Metadata August 2016

 An implementation of the CDNI metadata interface MUST use strong
 encryption to prevent unauthorized interception or monitoring of
 metadata (see Section 8.3).

8.3. Securing the CDNI Metadata interface

 An implementation of the CDNI metadata interface MUST support TLS
 transport as per [RFC2818] and [RFC7230].

 TLS MUST be used by the server-side (dCDN) and the client-side (uCDN)
 of the CDNI metadata interface, including authentication of the
 remote end, unless alternate methods are used for ensuring the
 security of the information in the CDNI metadata interface requests
 and responses (such as setting up an IPsec tunnel between the two
 CDNs or using a physically secured internal network between two CDNs
 that are owned by the same corporate entity).

 The use of TLS for transport of the CDNI metadata interface messages
 allows:

 o The dCDN and uCDN to authenticate each other.

 and, once they have mutually authenticated each other, it allows:

 o The dCDN and uCDN to authorize each other (to ensure they are
 transmitting/receiving CDNI metadata requests and responses from
 an authorized CDN);

 o CDNI metadata interface requests and responses to be transmitted
 with confidentiality; and

 o The integrity of the CDNI metadata interface requests and
 responses to be protected during the exchange.

 When TLS is used, the general TLS usage guidance in [RFC7525] MUST be
 followed.

9. Acknowledgements

 The authors would like to thank David Ferguson, Francois Le Faucheur,
 Jan Seedorf and Matt Miller for their valuable comments and input to
 this document.

10. Contributing Authors

 [RFC Editor Note: Please move the contents of this section to the
 Authors' Addresses section prior to publication as an RFC.]

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7525

Niven-Jenkins, et al. Expires February 3, 2017 [Page 60]

Internet-Draft CDN Interconnection Metadata August 2016

 Grant Watson
 Velocix (Alcatel-Lucent)
 3 Ely Road
 Milton, Cambridge CB24 6AA
 UK

 Email: gwatson@velocix.com

 Kent Leung
 Cisco Systems
 3625 Cisco Way
 San Jose, 95134
 USA

 Email: kleung@cisco.com

11. References

11.1. Normative References

 [ISO3166-1]
 The International Organization for Standardization, "Codes
 for the representation of names of countries and their
 subdivisions -- Part 1: Country codes", ISO 3166-1:2013,
 2013.

 [POSIX] Institute of Electrical and Electronics Engineers,
 "Information Technology Portable Operating System
 Interface (POSIX) Part 1: System Application Program
 Interface (API) [C Language]", IEEE P1003.1, 1990.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <http://www.rfc-editor.org/info/rfc1123>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc1034
http://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
http://www.rfc-editor.org/info/rfc1123
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Niven-Jenkins, et al. Expires February 3, 2017 [Page 61]

Internet-Draft CDN Interconnection Metadata August 2016

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

 [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", RFC 6707, DOI 10.17487/RFC6707, September
 2012, <http://www.rfc-editor.org/info/rfc6707>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <http://www.rfc-editor.org/info/rfc7493>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5891
http://www.rfc-editor.org/info/rfc5891
https://datatracker.ietf.org/doc/html/rfc5952
http://www.rfc-editor.org/info/rfc5952
https://datatracker.ietf.org/doc/html/rfc6707
http://www.rfc-editor.org/info/rfc6707
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7493
http://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525

Niven-Jenkins, et al. Expires February 3, 2017 [Page 62]

Internet-Draft CDN Interconnection Metadata August 2016

11.2. Informative References

 [I-D.ietf-cdni-control-triggers]
 Murray, R. and B. Niven-Jenkins, "CDNI Control Interface /
 Triggers", draft-ietf-cdni-control-triggers-15 (work in
 progress), May 2016.

 [I-D.ietf-cdni-redirection]
 Niven-Jenkins, B. and R. Brandenburg, "Request Routing
 Redirection interface for CDN Interconnection", draft-

ietf-cdni-redirection-19 (work in progress), July 2016.

 [I-D.ietf-cdni-uri-signing]
 Leung, K., Faucheur, F., Brandenburg, R., Downey, B., and
 M. Fisher, "URI Signing for CDN Interconnection (CDNI)",

draft-ietf-cdni-uri-signing-09 (work in progress), June
 2016.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC6793] Vohra, Q. and E. Chen, "BGP Support for Four-Octet
 Autonomous System (AS) Number Space", RFC 6793,
 DOI 10.17487/RFC6793, December 2012,
 <http://www.rfc-editor.org/info/rfc6793>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

 [RFC7336] Peterson, L., Davie, B., and R. van Brandenburg, Ed.,
 "Framework for Content Distribution Network
 Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,
 August 2014, <http://www.rfc-editor.org/info/rfc7336>.

 [RFC7337] Leung, K., Ed. and Y. Lee, Ed., "Content Distribution
 Network Interconnection (CDNI) Requirements", RFC 7337,
 DOI 10.17487/RFC7337, August 2014,
 <http://www.rfc-editor.org/info/rfc7337>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/draft-ietf-cdni-control-triggers-15
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-redirection-19
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-redirection-19
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-uri-signing-09
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc6793
http://www.rfc-editor.org/info/rfc6793
https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7336
http://www.rfc-editor.org/info/rfc7336
https://datatracker.ietf.org/doc/html/rfc7337
http://www.rfc-editor.org/info/rfc7337
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Niven-Jenkins, et al. Expires February 3, 2017 [Page 63]

Internet-Draft CDN Interconnection Metadata August 2016

 [RFC7736] Ma, K., "Content Delivery Network Interconnection (CDNI)
 Media Type Registration", RFC 7736, DOI 10.17487/RFC7736,
 December 2015, <http://www.rfc-editor.org/info/rfc7736>.

Authors' Addresses

 Ben Niven-Jenkins
 Velocix (Alcatel-Lucent)
 3 Ely Road
 Milton, Cambridge CB24 6AA
 UK

 Email: ben@velocix.com

 Rob Murray
 Velocix (Alcatel-Lucent)
 3 Ely Road
 Milton, Cambridge CB24 6AA
 UK

 Email: rmurray@velocix.com

 Matt Caulfield
 Cisco Systems
 1414 Massachusetts Avenue
 Boxborough, MA 01719
 USA

 Phone: +1 978 936 9307
 Email: mcaulfie@cisco.com

 Kevin J. Ma
 Ericsson
 43 Nagog Park
 Acton, MA 01720
 USA

 Phone: +1 978-844-5100
 Email: kevin.j.ma@ericsson.com

https://datatracker.ietf.org/doc/html/rfc7736
http://www.rfc-editor.org/info/rfc7736

Niven-Jenkins, et al. Expires February 3, 2017 [Page 64]

