Network Working Group Internet-Draft Intended status: Standards Track Expires: October 17, 2013 Danhua. Wang, Ed. Huawei Technologies B. Niven-Jenkins, Ed. Velocix (Alcatel-Lucent) Xiaoyan. He Huawei Chen. Ge China Telecom Wei. Ni China Mobile April 15, 2013

Request Routing Redirection Interface for CDN Interconnection draft-ietf-cdni-redirection-00

Abstract

The Request Routing Interface comprises of (1) the asynchronous advertisement of footprint and capabilities by a downstream CDN that allows a upstream CDN to decide whether to redirect particular user requests to that downstream CDN; and (2) the synchronous operation of an upstream CDN requesting whether a downstream CDN is prepared to accept a user request and of a downstream CDN responding with how to actually redirect the user request. This document describes an interface for the latter part, i.e. the CDNI request routing/ Redirection Interface.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at <u>http://datatracker.ietf.org/drafts/current/</u>.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 17, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>http://trustee.ietf.org/license-info</u>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction		<u>2</u>
<u>2</u> . Terminology		<u>3</u>
$\underline{3}$. Interface function and operation overview		<u>4</u>
4. HTTP based RESTful interface for the Redirection Interface		5
<u>4.1</u> . Information passed in RI requests & responses		7
<u>4.2</u> . JSON encoding of RI requests & responses		<u>9</u>
<u>4.3</u> . DNS redirection	. 1	10
<u>4.3.1</u> . DNS Redirection requests	. 1	10
<u>4.3.2</u> . DNS Redirection responses	. 1	<u>12</u>
<u>4.4</u> . HTTP Redirection	. 1	<u>13</u>
<u>4.4.1</u> . HTTP Redirection requests	. 1	<u>13</u>
<u>4.4.2</u> . HTTP Redirection responses	. 1	<u>14</u>
•		
<u>4.5</u> . Indicating the cacheability and scope of responses	. 1	<u>15</u>
<u>4.5</u> . Indicating the cacheability and scope of responses <u>4.6</u> . Error responses		15 17
	. 1	
<u>4.6</u> . Error responses	· 1	17
4.6Error responses.4.7Loop detection & prevention.	· 1	17 18
4.6. Error responses	· 1 · 1 · 1	17 18 19
4.6 Error responses	· 1 · 1 · 1	17 18 19 19
4.6. Error responses4.7. Loop detection & prevention5. Security Considerations6. IANA Considerations7. Acknowledgements		17 18 19 19 20
4.6. Error responses		17 18 19 19 20 20
4.6. Error responses4.7. Loop detection & prevention5. Security Considerations6. IANA Considerations7. Acknowledgements8. Outstanding considerations9. Contributing Authors		17 18 19 19 20 20 20
4.6. Error responses4.7. Loop detection & prevention5. Security Considerations6. IANA Considerations7. Acknowledgements8. Outstanding considerations9. Contributing Authors10. References		17 18 19 20 20 20 20

<u>1</u>. Introduction

A Content Delivery Network (CDN) is a system built on an existing IP network which is used for large scale content delivery, via prefetching or dynamically caching content on its distributed surrogates (caching servers). [RFC6707] describes the problem area of interconnecting CDNs.

The CDNI request routing interface outlined in [<u>I-D.ietf-cdni-framework</u>] comprises of:

- 1. The asynchronous advertisement of footprint and capabilities by a downstream CDN that allows a upstream CDN to decide whether to redirect particular user requests to that downstream CDN.
- 2. The synchronous operation of an upstream CDN requesting whether a downstream CDN is prepared to accept a user request and of a downstream CDN responding with how to actually redirect the user request.

This document describes an interface for the latter part, i.e. the CDNI request routing/Redirection Interface (RI).

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

This document reuses the terminology defined in [<u>RFC6707</u>]. The term "Distinguished CDN Domain" defined in [<u>I-D.ietf-cdni-framework</u>] is also reused in this document.

The following additional terms are introduced by this document:

Application Level Redirection: The act of using an application specific redirection mechanism for the request routing process of a CDN. The Redirection Target (RT) is the result of the routing decision of a CDN at the time it receives a content request via an application specific protocol response. Examples of an application level redirection are HTTP 302 Redirection and RTMP 302 Redirection.

DNS Redirection: The act of using DNS name resolution for the request routing process of a CDN. In DNS Redirection, the DNS name server of the CDN makes the routing decision based on a local policy and selects one or more Redirection Targets (RTs) and redirects the user agent to the RT(s) by returning the details of the RT(s) in response to the DNS query request from the user agent's DNS resolver.

HTTP Redirection: The act of using an HTTP redirection response for the request routing process of a CDN. The Redirection Target (RT) is the result of the routing decision of a CDN at the time it receives a content request via HTTP. HTTP Redirection is a particular case of Application Level Redirection.

Redirection Target (RT): A Redirection Target is the endpoint to which the user agent is redirected. In CDNI, a RT may point to a number of different components, some examples include a surrogate in the same CDN as the request router, a request router in a downstream CDN or a surrogate in a downstream CDN, etc.

3. Interface function and operation overview

[[Editor's note: Need to factor token authorisation into a future draft when that work is more stable/mature within the WG.]]

The CDNI request routing/Redirection Interface (RI) is one of the main building blocks required in order to interconnect CDNs. The main function of the Redirection Interface is to allow the Request Routing systems in interconnected CDNs to communicate to facilitate the redirection of User Agent requests between interconnected CDNs.

The detailed requirements for the Redirection Interface and their relative priorities are described in section 5 of [I-D.ietf-cdni-requirements].

The User Agent will make a request to a request router in the uCDN using one of either DNS or HTTP. If the RI is used between the uCDN and one or more dCDNs. The dCDN's RI response may contain a Redirection Target with a type that is compatible with the protocol used between User Agent and uCDN request router. The dCDN has control over the Redirection Target it provides and depending on the returned Redirection Target, the User Agent's request may be redirected to:

- o The final Surrogate, which may be in the dCDN or another dCDN (if dCDN delegates the delivery to another CDN).
- o A request router (in dCDN or another CDN) that will be using a redirection protocol (DNS or HTTP) which may or may not be the same as original redirection protocol.

The Redirection Interface operates between the Request Routing systems of a pair of interconnected CDNs. To enable communication over the Redirection Interface, the two interconnected CDNs need to know the end point (URI) in the other CDN to query. For example, an Upstream CDN needs to know the URI (end point) in a Downstream CDN to send its CDNI request routing queries to.

The Redirection Interface URI may be statically pre-configured, dynamically discovered via the CDNI control interface, or discovered via other means. However, such discovery mechanisms are not specified in this document, as they are considered out of the scope of the Redirection Interface specification.

CDNI solutions must support both of the request routing mechanisms illustrated in section 2.1 of [<u>I-D.ietf-cdni-framework</u>], namely Iterative Request Redirection and Recursive Request Redirection. However, the Iterative Request Redirection method does not invoke any interaction over the Redirection Interface between interconnected CDNs. Therefore, the Redirection Interface is only relevant in the case of Recursive Request Redirection and so this document will not discuss Iterative Request Redirection further.

In the case of Recursive Request Redirection, in order to perform redirection of a request received from a User Agent, the Upstream CDN queries the Downstream CDN so that the Downstream CDN can select and provide a Redirection Target. In cases where a uCDN has a choice of dCDNs it is down to the uCDN to decide (for example via configured policies) which dCDN(s) to query and in which order to query them. A number of strategies are possible including selecting a preferred dCDN based on local policy, possibly falling back to querying an alternative dCDN(s) if the first dCDN does not return a Redirection Target or otherwise reject the uCDN's RI request. A more complex strategy could be to query multiple dCDNs in parallel before selecting one and using the Redirection Target provided by that dCDN.

The Upstream CDN->User Agent redirection protocols addressed in this draft are: DNS redirection and HTTP redirection. Other types of application level redirection will not be discussed further in this draft. However the Redirection Interface is designed to be extensible and could be extended to support additional application level redirection protocols.

Also, according to the CDNI generic and request routing interface requirements, the CDNI solution shall support mechanisms to prevent and detect RI request loops. To meet such requirements, this document defines a loop prevention and detection mechanism as part of the Redirection Interface.

4. HTTP based RESTful interface for the Redirection Interface

This document defines a simple RESTful interface for the Redirection Interface based on HTTP [RFC2616], where the attributes of a User Agent's requests are encapsulated along with any other data that can aid the downstream CDN in processing the requests. The RI response encapsulates the attributes of the RT(s) that the upstream CDN should

return to the User Agent (if it decides to utilize the Downstream CDN for delivery) along with the policy for how the response can be reused.

The same RESTful interface is used for both DNS and HTTP redirection of User Agent's requests, although the contents of the RI requests/ responses contain data specific to either DNS or HTTP redirection.

This approach has been chosen because it enables CDN operators to only have to deploy a single (RESTful) interface for the RI between their CDNs, regardless of the User Agent redirection method. In this way, from an operational point of view there is only one interface to monitor, manage, develop troubleshooting tools for, etc.

In addition, having a single RI where the attributes of the User Agent's DNS or HTTP request are encapsulated along with the other data required for the downstream CDN to make a request routing decision, avoids having to try and encapsulate or proxy DNS/HTTP/RTMP /etc requests and find ways to somehow embed the additional CDNI request routing/Redirection Interface properties/data within those End User DNS/HTTP/RTMP/etc requests.

Finally, the RI is easily extendable to support other User Agent request redirection methods (e.g. RTMP 302 redirection).

The generic Recursive Request Redirection message flow between Request Routing systems in a pair of interconnected CDNs is as follows:

User	Agent		CDN	B RR	CDN A	RR
	UA Request	(DNS or H	HTTP)			
					>	(1)
				HTTP POST to CDN B's	RI	
				URI encapsulating UA		
	l			request attributes		
				<		(2)
				1		
				HTTP Response with be	ody	
	l			containing attributes	s of	
				protocol specific		
				response to return to	AU C	
	l				>	(3)
	l	Protocol	speci	fic response (redirec	tion)	
	<					(4)
	l					

Figure 1: Generic Recursive Request Redirection message flow

- The User Agent sends its request, either DNS request or HTTP request, to CDN A. The Request Routing System of CDN A processes the request and, through local policy, it recognizes that the request is best served by another CDN, specifically CDN B (or that CDN B is one of a number of candidate dCDNs it could use).
- 2. The Request Routing System of CDN A sends an HTTP POST to CDN B's RI URI containing the attributes of the User Agent's request.
- 3. The Request Routing System of CDN B processes the request and assuming the request is well formed, etc. responds with an HTTP "200" response with a message body containing the RT(s) to return to the User Agent as well as parameters that indicate the properties of the response (cacheability and scope).
- 4. The Request Routing System of CDN A sends a protocol specific response (containing the returned attributes) to the User Agent, so that the User Agent's request will be redirected to the RT(s) returned by CDN B.

4.1. Information passed in RI requests & responses

The information passed in RI requests splits into two basic categories:

1. The attributes of the User Agent's request to the upstream CDN.

2. Properties/parameters that the uCDN can use to control the dCDN's response or that can help the dCDN make its decision.

To assist the routing decision of a Downstream CDN, the Upstream CDN shall convey as much information as possible to the Downstream CDN, for example the URI of the requested content and the User Agent's location information, when those are known by the uCDN Request Routing system.

In order for the Downstream CDN to determine whether it is capable of delivering any requested content, it requires CDNI metadata related to the content the User Agent is requesting. That metadata will describe the content and any policies associated with it. It is expected that the RI request contains sufficient information for the Request Router in the Downstream CDN to be able to retrieve the require CDNI Metadata via the CDNI Metadata interface.

The information passed in RI responses splits into two basic categories:

- 1. The attributes of the RT to return to the User Agent in the DNS response or HTTP response.
- 2. Parameters/policies that indicate the properties of the response, such as, whether it is cacheable, the scope of the response, etc.

In addition to details of how to redirect the User Agent, the Downstream CDN may wish to return additional policy to the Upstream CDN to help the Upstream CDN with future RI requests. For example the Downstream CDN may wish to return a policy that expresses "this response can be reused without requiring a RI request for 60 seconds provided the User Agent's IP address is in the range 192.0.2.0 -192.0.2.255".

These additional policies split into two basic categories:

- An indication of the cacheability of the response carried in the HTTP response headers (to reduce the number of subsequent RI requests the uCDN needs to make).
- o The scope of the response (if it is cacheable) carried within the body of the HTTP response. For example whether the response applies to a wider range of IP addresses than what was included in the RI request.

The cacheability of the response is indicated using the standard HTTP Cache-Control mechanisms.

4.2. JSON encoding of RI requests & responses

The body of RI requests and responses is a JSON object containing a dictionary of keys. Keys MUST always be encoded in lowercase. Unknown keys MUST be ignored but the response MUST NOT be considered invalid unless the syntax of the request is invalid.

The following keys are defined:

Кеу	Request/Response	Description
dns	Both 	The attributes of the UA's DNS request or the attributes of the RT(s) to return in a DNS response.
http	Both 	The attributes of the UA's HTTP request or the attributes of the RT to return in a HTTP response.
scope	Response 	The scope of the response (if it is cacheable). For example whether the response applies to a wider range of IP addresses than what was included in the RI request.
error	Response 	Additional details if the response is an error response.
cdn-path	Both 	<pre> A List of Strings. Contains the CDN Provider IDs of previous CDNs this RI request has passed through. When cascading a RI request the transit CDN appends its own CDN Provider ID to the list in cdn-path so that downstream CDNs can detect loops in the RI request chain. Transit CDNs should check the cdn-path and not cascade the RI request to downstream CDNs that are already listed in cdn-path. The cdn-path MUST be reflected back in RI responses.</pre>
max-hops	Request 	Integer specifying the Maximum Number of hops (CDN Provider IDs) this request is allowed to be propagated along. This allows the uCDN to crudely constrain the latency of the request routing

| | | chain. +----+

Top-Level keys in RI requests/responses

A single request or response MUST contain only one of the dns or http keys. Requests MUST contain a cdn-path key.

[[Editor's note: Need some text/section specifying the Media Types for RI requests/responses]]

[[Editor's note: Need some text on minimum attributes to be able to (at least parse) - e.g. A/AAAA/CNAME, etc)]]

[[Editor's note: Need section detailing format/etc for scope and error keys]]

Note: All implementations MUST support IPv4 addresses encoded as specified by the 'IPv4address' rule in Section 3.2.2 of [RFC3986] and MUST support all IPv6 address formats specified in [RFC4291]. Server implementations SHOULD use IPv6 address formats specified in [RFC5952].

4.3. DNS redirection

The following sections provide more detailed descriptions of the information that should be passed in RI requests and responses for DNS redirection.

4.3.1. DNS Redirection requests

For DNS based redirection the uCDN needs to pass the following information to the dCDN in the RI request:

- o The IP address of the DNS resolver that made the DNS request to the Upstream CDN.
- o The type of DNS query made (A, AAAA, RCODEs, etc.).
- o The class of DNS query made (usually IN). [[Editor's Note: Do we need to include class or can we always assume it is IN?]]
- o The fully qualified domain name for which DNS redirection is being requested.
- o The IP address or prefix of the User Agent (if known to the Upstream CDN, e.g. through draft-vandergaast-edns-client-subnet).

The information above is encoded as a set of key:value pairs within the dns dictionary as follows:

+ Key	+ Value	Mandatory	Description
resolver-ip	String 	Yes	The IP address of the UA's DNS resolver.
qtype 	String 	Yes	The type of DNS query made by the UA's DNS resolvers in uppercase (A, AAAA, etc.).
qclass	String 	Yes	The class of DNS query made in uppercase (IN, etc.).
qname 	String 	Yes	The fully qualified domain name being queried.
c-subnet 	String 	No	The IP address of the UA in CIDR format.
dns-only 	Boolean 	No	If True then dCDN MUST only use DNS redirection to a surrogate and MUST include the dns-only property set to True on any cascaded RI requests. Defaults to False.

An example RI request (uCDN->dCDN) for DNS based redirection:

```
POST /dcdn/ri HTTP/1.1
Host: rr1.dcdn.example.net
Accept: application/vnd.cdni.ri.response+json
{
    "dns" : {
        "resolver-ip" : "192.0.2.1",
        "c-subnet" : "198.51.100.0/24",
        "..."
```

```
"qtype" : "A",
"qclass" : "IN",
"qname" : "www.example.com"
},
"cdn-path": ["AS65551:0"],
"max-hops": 3
```

}

4.3.2. DNS Redirection responses

For DNS based redirection the dCDN needs to return one of the following to the uCDN in the RI response:

- o The IP address of (or a CNAME to) the RT (if the dCDN is performing DNS based redirection); or
- o The IP address of (or a CNAME to) a RT which is a Request Router (if the dCDN is performing HTTP based redirection).

The information above is encoded as a set of key:value pairs within the dns dictionary as follows:

rcode Integer Yes DNS response code. name String Yes The fully qualified domain name the response relates to. a List of No Set of IPv4 Addresses of String RT(s). aaaa List of No Set of IPv6 Addresses of	+	+ Value	-+ Mandatory	++ Description
cname List of No Set of fully qualified String domain names of RT(s). ttl Integer No TTL of DNS response. Default is 0.	name a aaaa aaaa cname	String List of String List of String List of String String	Yes No No No	<pre> The fully qualified domain name the response relates to. Set of IPv4 Addresses of RT(s). Set of IPv6 Addresses of RT(s). Set of fully qualified domain names of RT(s). TTL of DNS response. </pre>

Response must contain at least one of a, aaaa, cname.

An example of a successful RI response (dCDN->uCDN) for DNS based redirection:

[[Editor's note: Currently shows both A/AAAA & CNAME in single response, need to split to show the different use cases]]

```
HTTP/1.1 200 OK
Date: Mon, 06 Aug 2012 18:41:38 GMT
Content-Type: application/vnd.cdni.ri.response+json
```

```
{
   "dns" : {
    "rcode" : 0,
    "name" : "www.example.com",
```

```
"a" : ["192.0.2.200", "192.0.2.201"],
"aaaa" : ["2001:DB8::C8", "2001:DB8::C9"],
"cname" : ["rr1.dcdn.example",
                        "rr2.dcdn.example"],
                    "ttl" : 60
}
```

4.4. HTTP Redirection

The following sections provide more detailed descriptions of the information that should be passed in RI requests and responses for HTTP redirection.

<u>4.4.1</u>. HTTP Redirection requests

For HTTP based redirection the uCDN MUST pass the following information to the dCDN in the RI request:

- o The IP address of the User Agent.
- o The URL requested by the User Agent.

The uCDN MAY also pass additional information to the dCDN in the RI request, such as:

- o The HTTP method or version number of the User Agent's request.
- o Additional HTTP header included in the User Agent request.

The information above is encoded as a set of key:value pairs within the http dictionary as follows:

+			+
Key	Value	Mandatory	Description
c-ip	String	Yes	The IP address of the UA/client
cs-uri 	String	Yes	The URI requested by the UA/client.
cs(<headername>) </headername>	String	NO	<pre>The contents of the HTTP header named <headername> as a string, for example cs(Cookie) would contain the content of the HTTP Cookie: header. Two </headername></pre>

. . . .

```
Request Routing Redirection
Internet-Draft
                                                April 2013
                         I
                                  | special <HeaderName>s
                 1
                 1
                        | are defined: cs(Method) |
                 1
                        | and cs(HTTP-Version)
                        | which contain the
                 | contents of the Method & |
                        | HTTP-Version parts of
                        | the Request-Line as
                 | defined in <u>Section 5.1</u>
                         | of [RFC2616].
```

An example RI request (uCDN->dCDN) for HTTP based redirection:

```
POST/dcdn/rri HTTP/1.1
Host: rr1.dcdn.example.net
Accept: application/vnd.cdni.rrri.response+json
{
    "http": {
        "c-ip": "198.51.100.1",
        "cs-uri": "http://www.example.com"
    },
    "cdn-path": ["AS65551:0"],
    "max-hops": 3
}
```

<u>4.4.2</u>. HTTP Redirection responses

For HTTP based redirection the dCDN needs to return one of the following to the uCDN in the RI response:

- o A URL pointing to the selected RT (if the dCDN is redirecting the User Agent directly to a surrogate); or
- o A URL pointing to a RT which is a Request Router (if the dCDN is not redirecting the User Agent directly to a surrogate).

The information above is encoded as a set of key:value pairs within the http dictionary as follows:

+----+
| Key | Value | Mandatory | Description |
+----+
sc-status	Integer	Yes	The status code of
			the HTTP response to
			return to the UA

1	I		(usually 302).
cs-uri	String	Yes	The URI requested by
			the UA/client.
sc-location	String	Yes	The contents of the
			Location header to
			return to the UA
			(i.e. a URI pointing
			to the RT(s)).
sc-cache-control	String	No	The contents of the
			Cache-Control header
	I		to return to the UA.
+	-+	-+	+

[[Editor's Note: Should we change the format above to align with the cs() format for headers on the RI request and allow the dCDN to signal back any headers it wants in the response as sc(<HeaderName>)? How to handle sc-status in that case - as a "special" header or separate key? Probably need to give some advice on HTTP headers the uCDN may want to override/not pass through, e.g. Server:?]]

An example of a successful RI response (dCDN->uCDN) for HTTP based redirection:

HTTP/1.1 200 OK Date: Mon, 06 Aug 2012 18:41:38 GMT Content-Type: application/vnd.cdni.ri.response+json

```
{
   "http": {
    "sc-status": 302,
    "cs-uri": "http://www.example.com"
    "sc-location":
    "http://sur1.dcdn.example/ucdn/example.com",
    "sc-cache-control" : "public, max-age=30"
  }
}
```

<u>4.5</u>. Indicating the cacheability and scope of responses

[[Editor's note: Need to expand text a little.]]

Cacheability is via the standard HTTP Cache-Control mechanisms.

Scope is encoded as a set of key:value pairs within the scope dictionary as follows:

+----+ l Key | Value | Mandatory | Description +----+ | iprange| List of| No| A List of IP subnets in CIDR||| String|| notation that this RI|||||| response can be reused for,|||||| provided the RI response is| | still considered fresh.

If a uCDN has multiple cached responses with overlapping scopes, longest prefix matching of the User Agent's IP against the IP subnets in the scope of each response SHOULD be used to select the most appropriate RI response to use. [[Editor's note: is this always true? What about the most recent response, should that override older ones for the overlappign scope?]]

Example of DNS redirection response from <u>Section 4.3.2</u> that is cacheable by the uCDN for 60 seconds and can be returned to any User Agent with an IPv4 address in 198.51.100.0/16.

```
HTTP/1.1 200 OK
Date: Mon, 06 Aug 2012 18:41:38 GMT
Content-Type: application/vnd.cdni.ri.response+json
Cache-Control: public, max-age=60
```

```
{
  "dns" : {
    "rcode" : 0,
    "name" : "www.example.com",
    "a" : ["192.0.2.200", "192.0.2.201"],
    "aaaa" : ["2001:DB8::C8", "2001:DB8::C9"],
    "cname" : ["rr1.dcdn.example",
              "rr2.dcdn.example"],
    "ttl" : 60
  }
  "scope" : {
   "iprange" : ["198.51.100.0/16"]
 }
}
```

Example of HTTP redirection response from <u>Section 4.4.2</u> that is cacheable by the uCDN for 60 seconds and can be returned to any User Agent with an IPv4 address in 198.51.100.0/16.

```
HTTP/1.1 200 OK
Date: Mon, 06 Aug 2012 18:41:38 GMT
Content-Type: application/vnd.cdni.ri.response+json
Cache-Control: public, max-age=60
{
  "http": {
    "sc-status": 302,
    "cs-uri": "http://www.example.com"
    "sc-location":
      "http://sur1.dcdn.example/ucdn/example.com",
    "sc-cache-control" : "public, max-age=30"
  }
  "scope" : {
   "iprange" : ["198.51.100.0/16"]
 }
}
```

4.6. Error responses

[[Editor's note: Probably need more explanation & examples of errors that shouldn't be propagated to the User Agent?]]

RI error response examples.

RI error response (dCDN->uCDN) for DNS based User Agent requests:

```
Internet-Draft
```

```
HTTP/1.1 500 Server Error
Date: Mon, 06 Aug 2012 18:41:38 GMT
Content-Type: application/vnd.cdni.rrri.error+json
Cache-Control: private, no-cache
{
  "dns" : {
    "rcode" : 4
                                          # DNS response code (e.g.
                                         # doesn't support AAAA)
    "name" : "www.example.com",
                                         # domain name response
                                          # relates to
  },
  "error" : {
    "code" : TBD,
                                          # Give each error type its
                                          # own numeric code
    "description" :
                                          # Give more informative
    "IPv6/AAAA queries are not supported" # description than just
  }
                                          # protocol specific error
                                          # codes
}
RI error response (dCDN->uCDN) for HTTP based User Agent requests:
HTTP/1.1 500 Server Error
Date: Mon, 06 Aug 2012 18:41:38 GMT
Content-Type: application/vnd.cdni.rrri.error+json
Cache-Control: private, no-cache
{
   "http": {
      "rcode": 400,
                                          # HTTP response code
      "url": "http://www.example.com",
                                          # URL response
                                          # relates to
      }
    "error" : {
    "code" : TBD,
                                          # Give each error type its
                                          # own numeric code
    "description" : TBD
                                          # Give more informative
                                          # description than just
 }
                                          # protocol specific error
                                          # codes
}
```

In order to prevent and detect RI request loops, each CDN MUST insert its CDN Provider ID into the cdn-path key of every RI request it originates or cascades. When receiving RI requests a dCDN should check the cdn-path and reject any RI requests which already contain the downstream CDN's Provider ID in the cdn-path. Transit CDNs should check the cdn-path and not cascade the RI request to downstream CDNs that are already listed in cdn-path. CDNs MUST NOT propagate to any downstream CDNs if the number of CDN Provider IDs in cdn-path (including the CDN's own Provider ID) is equal to or greater than max-hops.

The CDN Provider ID uniquely identifies each CDN provider during the course of request routing redirection. It consists of the the characters AS followed by the CDN Provider's AS number, then a colon (':') and an additional qualifier that is used to guarantee uniqueness in case a particular AS has multiple independent CDNs deployed. For example "AS65551:0".

If a downstream CDN receives a RI request whose cdn-path already contains that downstream CDN's Provider ID the downstream CDN MUST send a RI response with an error code of [[TBD]].

It should be noted that the loop detection & prevention mechanisms described above only cover preventing and detecting loops within the RI itself. In the cases where the IP address(es) or URI(s) returned in RI responses do not resolve directly to a surrogate in the final dCDN it is also possible to have redirection loops where Request Routers in different CDNs direct User Agents in a loop.

5. Security Considerations

[[Editor's note: Not sure if this current text is really security considerations or whether it is better placed elsewhere in the document.]]

In HTTP based Recursive Request Redirection, the end user's web browsers will not send cookies if the content request is redirected to a URL in a different domain rather than the original CP's domain, e.g. the Downstream CDN's domain. If the browser is expected to send any cookies associated with the original CP's domain, this will cause problem that the CP's policy is not enforced by the CDN.

The <u>section 5.2</u> of draft [<u>I-D.peterson-cdni-strawman</u>] has discussed a similar question and given a solution.

6. IANA Considerations

This document makes no request of IANA.

7. Acknowledgements

The authors would like to thank Ray Brandenburg, Taesang Choi, Francois le Faucheur and Scott Wainner for their valuable comments and input to this document.

8. Outstanding considerations

Along with the various Editor's notes in the document, the following items still need to be addressed:

- o What extra properties/fields are required to cover all DNS/HTTP redirection cases?
- o Do we need Queries other than A/AAAA & response other than A/AAAA/ CNAME?
- o Response scopes other than IP address? (AS? URL match?)
- o Better Security Considerations section.
- o Description/specification for how to extend the protocol with additional optimonal parameters/attributes.

9. Contributing Authors

[RFC Editor Note: Please move the contents of this section to the Authors' Addresses section prior to publication as an RFC.]

Spencer Dawkins Huawei

Email: spencer@wonderhamster.org

Yunfei Zhang

Email: hishigh@gmail.com

10. References

<u>**10.1</u>**. Normative References</u>

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.

- [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, <u>RFC</u> <u>3986</u>, January 2005.
- [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", <u>RFC 4291</u>, February 2006.
- [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text Representation", <u>RFC 5952</u>, August 2010.
- [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", <u>RFC 2616</u>, June 1999.

10.2. Informative References

[RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content Distribution Network Interconnection (CDNI) Problem Statement", <u>RFC 6707</u>, September 2012.

[I-D.ietf-cdni-framework]

Peterson, L. and B. Davie, "Framework for CDN Interconnection", <u>draft-ietf-cdni-framework-03</u> (work in progress), February 2013.

[I-D.ietf-cdni-requirements]

Leung, K. and Y. Lee, "Content Distribution Network Interconnection (CDNI) Requirements", <u>draft-ietf-cdni-</u> requirements-06 (work in progress), April 2013.

[I-D.peterson-cdni-strawman]

Peterson, L. and J. Hartman, "A Simple Approach to CDN Interconnection", <u>draft-peterson-cdni-strawman-01</u> (work in progress), May 2011.

Authors' Addresses

Wang Danhua (editor) Huawei Technologies No. 101 Software Avenue Nanjing, Jiangsu Province 210001 P.R.China

Phone: +86-25-56624734 Fax: +86-25-56624702 Email: wangdanhua@huawei.com

Ben Niven-Jenkins (editor) Velocix (Alcatel-Lucent) 3 Ely Road Milton, Cambridge CB24 6DD UK

Email: ben@velocix.com

He Xiaoyan Huawei B2, Huawei Industrial Base 518129 P.R.China

Email: hexiaoyan@huawei.com

Ge Chen China Telecom 109 West Zhongshan Ave,Tianhe District Guangzhou P.R. China

Email: cheng@gsta.com

Ni Wei China Mobile No.32 Xuanwumen West Street Xicheng District Beijing 100053 P.R. China

Email: niwei@chinamobile.com