
Workgroup: CDNI

Internet-Draft: draft-ietf-cdni-uri-signing-22

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: R. van Brandenburg

Tiledmedia

K. Leung P. Sorber

Apple, Inc.

URI Signing for Content Delivery Network Interconnection (CDNI)

Abstract

This document describes how the concept of URI Signing supports the

content access control requirements of Content Delivery Network

Interconnection (CDNI) and proposes a URI Signing method as a JSON

Web Token (JWT) profile.

The proposed URI Signing method specifies the information needed to

be included in the URI to transmit the signed JWT, as well as the

claims needed by the signed JWT to authorize a User Agent (UA). The

mechanism described can be used both in CDNI and single Content

Delivery Network (CDN) scenarios.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Background and overview on URI Signing

1.3. CDNI URI Signing Overview

1.4. URI Signing in a non-CDNI context

2. JWT Format and Processing Requirements

2.1. JWT Claims

2.1.1. Issuer (iss) claim

2.1.2. Subject (sub) claim

2.1.3. Audience (aud) claim

2.1.4. Expiry Time (exp) claim

2.1.5. Not Before (nbf) claim

2.1.6. Issued At (iat) claim

2.1.7. JWT ID (jti) claim

2.1.8. CDNI Claim Set Version (cdniv) claim

2.1.9. CDNI Critical Claims Set (cdnicrit) claim

2.1.10. Client IP (cdniip) claim

2.1.11. CDNI URI Container (cdniuc) claim

2.1.12. CDNI Expiration Time Setting (cdniets) claim

2.1.13. CDNI Signed Token Transport (cdnistt) claim

2.1.14. CDNI Signed Token Depth (cdnistd) claim

2.1.15. URI Container Forms

2.1.15.1. URI Hash Container (hash:)

2.1.15.2. URI Regular Expression Container (regex:)

2.2. JWT Header

3. URI Signing Token Renewal

3.1. Overview

3.2. Signed Token Renewal mechanism

3.2.1. Required Claims

3.3. Communicating a signed JWTs in Signed Token Renewal

3.3.1. Support for cross-domain redirection

4. Relationship with CDNI Interfaces

4.1. CDNI Control Interface

4.2. CDNI Footprint & Capabilities Advertisement Interface

4.3. CDNI Request Routing Redirection Interface

4.4. CDNI Metadata Interface

4.5. CDNI Logging Interface

5. URI Signing Message Flow

5.1. HTTP Redirection

5.2. DNS Redirection

¶

6. IANA Considerations

6.1. CDNI Payload Type

6.1.1. CDNI UriSigning Payload Type

6.2. CDNI Logging Record Type

6.2.1. CDNI Logging Record Version 2 for HTTP

6.3. CDNI Logging Field Names

6.4. CDNI URI Signing Verification Code

6.5. CDNI URI Signing Signed Token Transport

6.6. JSON Web Token Claims Registration

6.6.1. Registry Contents

6.7. Expert Review Guidance

7. Security Considerations

8. Privacy

9. Acknowledgements

10. Contributors

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Signed URI Package Example

A.1. Simple Example

A.2. Complex Example

A.3. Signed Token Renewal Example

Authors' Addresses

1. Introduction

This document describes the concept of URI Signing and how it can be

used to provide access authorization in the case of redirection

between cooperating CDNs and between a Content Service Provider

(CSP) and a CDN. The primary goal of URI Signing is to make sure

that only authorized UAs are able to access the content, with a CSP

being able to authorize every individual request. It should be noted

that URI Signing is not a content protection scheme; if a CSP wants

to protect the content itself, other mechanisms, such as Digital

Rights Management (DRM), are more appropriate. In addition to access

control, URI Signing also has benefits in reducing the impact of

denial-of-service attacks.

The overall problem space for CDN Interconnection (CDNI) is

described in CDNI Problem Statement [RFC6707]. This document, along

with the CDNI Requirements [RFC7337] document and the CDNI Framework

[RFC7336], describes the need for interconnected CDNs to be able to

implement an access control mechanism that enforces a CSP's

distribution policies.

Specifically, the CDNI Framework [RFC7336] states:

The CSP may also trust the CDN operator to perform actions such

as delegating traffic to additional downstream CDNs, and to

¶

¶

¶

enforce per-request authorization performed by the CSP using

techniques such as URI Signing.

In particular, the following requirement is listed in the CDNI

Requirements [RFC7337]:

MI-16 {HIGH} The CDNI Metadata interface shall allow signaling of

authorization checks and verification that are to be performed by

the Surrogate before delivery. For example, this could

potentially include the need to verify information (e.g., Expiry

time, Client IP address) required for access authorization.

This document defines a method of signing URIs that allows

Surrogates in interconnected CDNs to enforce a per-request

authorization initiated by the CSP. Splitting the role of initiating

per-request authorization by the CSP and the role of verifying this

authorization by the CDN allows any arbitrary distribution policy to

be enforced across CDNs without the need of CDNs to have any

awareness of the specific CSP distribution policies.

The method is implemented using Signed JSON Web Tokens (JWTs)

[RFC7519].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terminology defined in the CDNI Problem

Statement [RFC6707].

This document also uses the terminology of the JSON Web Token (JWT)

[RFC7519].

In addition, the following terms are used throughout this document:

Signed URI: A URI for which a signed JWT is provided.

Target CDN URI: URI created by the CSP to direct a UA towards the

Upstream CDN (uCDN). The Target CDN URI can be signed by the CSP

and verified by the uCDN and possibly further Downstream CDNs

(dCDNs).

Redirection URI: URI created by the uCDN to redirect a UA towards

the dCDN. The Redirection URI can be signed by the uCDN and

verified by the dCDN. In a cascaded CDNI scenario, there can be

more than one Redirection URI.

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

Signed Token Renewal: A series of signed JWTs that are used for

subsequent access to a set of related resources in a CDN, such as

a set of HTTP Adaptive Streaming files. Every time a signed JWT

is used to access a particular resource, a new signed JWT is sent

along with the resource that can be used to request the next

resource in the set. When generating a new signed JWT in Signed

Token Renewal, parameters are carried over from one signed JWT to

the next.

1.2. Background and overview on URI Signing

A CSP and CDN are assumed to have a trust relationship that enables

the CSP to authorize access to a content item, which is realized in

practice by including a set of claims in a signed JWT in the URI

before redirecting a UA to the CDN. Using these attributes, it is

possible for a CDN to check an incoming content request to see

whether it was authorized by the CSP (e.g., based on the UA's IP

address or a time window). To prevent the UA from altering the

claims a JWT MUST be signed.

Figure 1, shown below, presents an overview of the URI Signing

mechanism in the case of a CSP with a single CDN. When the UA

browses for content on CSP's website (#1), it receives HTML web

pages with embedded content URIs. Upon requesting these URIs, the

CSP redirects to a CDN, creating a Target CDN URI (#2)

(alternatively, the Target CDN URI itself is embedded in the HTML).

The Target CDN URI is the Signed URI which may include the IP

address of the UA and/or a time window. The signed URI always

contains a signed JWT generated by the CSP using a shared secret or

private key. Once the UA receives the response with the Signed URI,

it sends a new HTTP request using the Signed URI to the CDN (#3).

Upon receiving the request, the CDN authenticates the Signed URI by

verifying the signed JWT. If applicable, the CDN checks whether the

source IP address of the HTTP request matches the one in the Signed

URI and/or if the time window is still valid. After these claims are

verified, the CDN delivers the content (#4).

*

¶

¶

¶

Figure 1: Figure 1: URI Signing in a CDN Environment

1.3. CDNI URI Signing Overview

In a CDNI environment, as shown in Figure 2 below, URI Signing

operates the same way in the initial steps #1 and #2 but the later

steps involve multiple CDNs delivering the content. The main

difference from the single CDN case is a redirection step between

the uCDN and the dCDN. In step #3, the UA may send an HTTP request

or a DNS request, depending on whether HTTP-based or DNS-based

request routing is used. The uCDN responds by directing the UA

towards the dCDN using either a Redirection URI (i.e., a Signed URI

generated by the uCDN) or a DNS reply, respectively (#4). Once the

UA receives the response, it sends the Redirection URI/Target CDN

URI to the dCDN (#5). The received URI is verified by the dCDN

before delivering the content (#6). Note: The CDNI call flows are

covered in Detailed URI Signing Operation (Section 5).

 / \

 | CSP |< * * * * * * * * * * *

 \ / Trust *

 -------- relationship *

 ^ | *

 | | *

 1. Browse | | 2. Signed *

 for | | URI *

 content | | *

 | v v

 +------+ 3. Signed URI --------

 | User |----------------->/ \

 | Agent| | CDN |

 | |<-----------------\ /

 +------+ 4. Content --------

 Delivery

¶

Figure 2: Figure 2: URI Signing in a CDNI Environment

The trust relationships between CSP, uCDN, and dCDN have direct

implications for URI Signing. In the case shown in Figure 2, the CSP

has a trust relationship with the uCDN. The delivery of the content

may be delegated to a dCDN, which has a relationship with the uCDN

but may have no relationship with the CSP.

In CDNI, there are two methods for request routing: DNS-based and

HTTP-based. For DNS-based request routing, the Signed URI (i.e., the

Target CDN URI) provided by the CSP reaches the dCDN directly. In

the case where the dCDN does not have a trust relationship with the

CSP, this means that either an asymmetric public/private key method

needs to be used for computing the signed JWT (because the CSP and

dCDN are not able to exchange symmetric shared secret keys), or the

 +-------------------------+

 |Request Redirection Modes|

 +-------------------------+

 | a) HTTP |

 | b) DNS |

 +-------------------------+

 / \< * * * * * * * * * * * * * *

 | CSP |< * * * * * * * * * * * *

 \ / Trust * *

 -------- relationship * *

 ^ | * *

 | | 2. Signed * *

 1. Browse | | URI in * *

 for | | HTML * *

 content | | * *

 | v 3.a)Signed URI v *

 +------+ b)DNS request -------- * Trust

 | User |----------------->/ \ * relationship

 | Agent| | uCDN | * (optional)

 | |<-----------------\ / *

 +------+ 4.a)Redirection URI------- *

 ^ | b)DNS Reply ^ *

 | | * *

 | | Trust relationship * *

 | | * *

 6. Content | | 5.a)Redirection URI * *

 delivery | | b)Signed URI(after v v

 | | DNS exchange) --------

 | +---------------------->/ \ [May be

 | | dCDN | cascaded

 +--------------------------\ / CDNs]

¶

CSP needs to allow the uCDN to redistribute shared keys to a subset

of their dCDNs.

For HTTP-based request routing, the Signed URI (i.e., the Target CDN

URI) provided by the CSP reaches the uCDN. After this URI has been

verified by the uCDN, the uCDN creates and signs a new Redirection

URI, redirecting the UA to the dCDN. Since this new URI can have a

new signed JWT, the relationship between the dCDN and CSP is not

relevant. Because a relationship between uCDN and dCDN always

exists, either asymmetric public/private keys or symmetric shared

secret keys can be used for URI Signing with HTTP-based request

routing. Note that the signed Redirection URI MUST maintain HTTPS as

the scheme if it was present in the original and it MAY be upgraded

from HTTP to HTTPS.

Two types of keys can be used for URI Signing: asymmetric keys and

symmetric keys. Asymmetric keys are based on a public/private key

pair mechanism and always contain a private key known only to the

entity signing the URI (either CSP or uCDN) and a public key for the

verification of the Signed URI. With symmetric keys, the same key is

used by both the signing entity for signing the URI and the

verifying entity for verifying the Signed URI. Regardless of the

type of keys used, the verifying entity has to obtain in a manner

that allows trust to be placed in the assertions made using that key

(either the public or the symmetric key). There are very different

requirements (outside the scope of this document) for distributing

asymmetric keys and symmetric keys. Key distribution for symmetric

keys requires confidentiality to prevent third parties from getting

access to the key, since they could then generate valid Signed URIs

for unauthorized requests. Key distribution for asymmetric keys does

not require confidentiality since public keys can typically be

distributed openly (because they cannot be used to sign URIs) and

the corresponding private keys are kept secret by the URI signer.

1.4. URI Signing in a non-CDNI context

While the URI Signing method defined in this document was primarily

created for the purpose of allowing URI Signing in CDNI scenarios,

i.e., between a uCDN and a dCDN, there is nothing in the defined URI

Signing method that precludes it from being used in a non-CDNI

context. As such, the described mechanism could be used in a single-

CDN scenario such as shown in Figure 1 in Section 1.2, for example

to allow a CSP that uses different CDNs to only have to implement a

single URI Signing mechanism.

2. JWT Format and Processing Requirements

The concept behind URI Signing is based on embedding a signed JSON

Web Token (JWT) [RFC7519] in an HTTP or HTTPS URI [RFC7230] (see

¶

¶

¶

¶

[RFC7230] Section 2.7). The signed JWT contains a number of claims

that can be verified to ensure the UA has legitimate access to the

content.

This document specifies the following attribute for embedding a

signed JWT in a Target CDN URI or Redirection URI:

URI Signing Package (URISigningPackage): The URI attribute that

encapsulates all the URI Signing claims in a signed JWT encoded

format. This attribute is exposed in the Signed URI as a path-

style parameter or a form-style parameter.

The parameter name of the URI Signing Package Attribute is defined

in the CDNI Metadata (Section 4.4). If the CDNI Metadata interface

is not used, or does not include a parameter name for the URI

Signing Package Attribute, the parameter name can be set by

configuration (out of scope of this document).

The URI Signing Package will be found by parsing any path-style

parameters and form-style parameters looking for a key name matching

the URI Signing Package Attribute. Both parameter styles MUST be

supported to allow flexibility of operation. The first matching

parameter SHOULD be taken to provide the signed JWT, though

providing more than one matching key is undefined behavior.

The following is an example where the URI Signing Package Attribute

name is "token" and the signed JWT is "SIGNEDJWT":

2.1. JWT Claims

This section identifies the set of claims that can be used to

enforce the CSP distribution policy. New claims can be introduced in

the future to extend the distribution policy capabilities.

In order to provide distribution policy flexibility, the exact

subset of claims used in a given signed JWT is a runtime decision.

Claim requirements are defined in the CDNI Metadata (Section 4.4).

If the CDNI Metadata interface is not used, or does not include

claim requirements, the claim requirements can be set by

configuration (out of scope of this document).

The following claims (where the "JSON Web Token Claims" registry

claim name is specified in parenthesis below) are used to enforce

the distribution policies. All of the listed claims are mandatory to

implement in a URI Signing implementation, but are not mandatory to

use in a given signed JWT. (The "optional" and "mandatory"

identifiers in square brackets refer to whether or not a given claim

MUST be present in a URI Signing JWT.)

¶

¶

*

¶

¶

¶

¶

http://example.com/media/path?come=data&token=SIGNEDJWT&other=data¶

¶

¶

¶

Note: The time on the entities that generate and verify the signed

URI MUST be in sync. In the CDNI case, this means that CSP, uCDN,

and dCDN servers need to be time-synchronized. It is RECOMMENDED to

use NTP [RFC5905] for time synchronization.

Note: See the Security Considerations (Section 7) section on the

limitations of using an expiration time and client IP address for

distribution policy enforcement.

2.1.1. Issuer (iss) claim

Issuer (iss) [optional] - The semantics in [RFC7519] Section 4.1.1

MUST be followed. If this claim is used it MUST be used to confirm

that the indicated key was provided by said issuer and used to sign

the JWT. If the CDN verifying the signed JWT does not support Issuer

verification, or if the Issuer in the signed JWT does not match the

list of known acceptable Issuers, the CDN MUST reject the request.

If the received signed JWT contains an Issuer claim, then any JWT

subsequently generated for CDNI redirection MUST also contain an

Issuer claim, and the Issuer value MUST be updated to identify the

redirecting CDN. If the received signed JWT does not contain an

Issuer claim, an Issuer claim MAY be added to a signed JWT generated

for CDNI redirection.

2.1.2. Subject (sub) claim

Subject (sub) [optional] - The semantics in [RFC7519] Section 4.1.2

MUST be followed. If this claim is used, it MUST be a JSON Web

Encryption (JWE [RFC7516]) Object in compact serialization form,

because it contains personally identifiable information. This claim

contains information about the subject (for example, a user or an

agent) that MAY be used to verify the signed JWT. If the received

signed JWT contains a Subject claim, then any JWT subsequently

generated for CDNI redirection MUST also contain a Subject claim,

and the Subject value MUST be the same as in the received signed

JWT. A signed JWT generated for CDNI redirection MUST NOT add a

Subject claim if no Subject claim existed in the received signed

JWT.

2.1.3. Audience (aud) claim

Audience (aud) [optional] - The semantics in [RFC7519] Section 4.1.3

MUST be followed. This claim is used to ensure that the CDN

verifying the JWT is an intended recipient of the request. The claim

MUST contain an identity on behalf of whom the CDN can verify the

token (e.g., the CSP or any CDN in the chain). A CDN MAY modify the

claim as long it can generate a valid signature.

¶

¶

¶

¶

¶

2.1.4. Expiry Time (exp) claim

Expiry Time (exp) [optional] - The semantics in [RFC7519] Section

4.1.4 MUST be followed, though URI Signing implementations MUST NOT

allow for any time synchronization "leeway". If this claim is used

and the CDN verifying the signed JWT does not support Expiry Time

verification, or if the Expiry Time in the signed JWT corresponds to

a time equal to or earlier than the time of the content request, the

CDN MUST reject the request. If the received signed JWT contains a

Expiry Time claim, then any JWT subsequently generated for CDNI

redirection MUST also contain an Expiry Time claim, and the Expiry

Time value MUST be the same as in the received signed JWT. A signed

JWT generated for CDNI redirection MUST NOT add an Expiry Time claim

if no Expiry Time claim existed in the received signed JWT.

2.1.5. Not Before (nbf) claim

Not Before (nbf) [optional] - The semantics in [RFC7519] Section

4.1.5 MUST be followed, though URI Signing implementations MUST NOT

allow for any time synchronization "leeway". If this claim is used

and the CDN verifying the signed JWT does not support Not Before

time verification, or if the Not Before time in the signed JWT

corresponds to a time later than the time of the content request,

the CDN MUST reject the request. If the received signed JWT contains

a Not Before time claim, then any JWT subsequently generated for

CDNI redirection MUST also contain a Not Before time claim, and the

Not Before time value MUST be the same as in the received signed

JWT. A signed JWT generated for CDNI redirection MUST NOT add a Not

Before time claim if no Not Before time claim existed in the

received signed JWT.

2.1.6. Issued At (iat) claim

Issued At (iat) [optional] - The semantics in [RFC7519] Section

4.1.6 MUST be followed. If the received signed JWT contains an

Issued At claim, then any JWT subsequently generated for CDNI

redirection MUST also contain an Issued At claim, and the Issued At

value MUST be updated to identify the time the new JWT was

generated. If the received signed JWT does not contain an Issued At

claim, an Issued At claim MAY be added to a signed JWT generated for

CDNI redirection.

2.1.7. JWT ID (jti) claim

JWT ID (jti) [optional] - The semantics in [RFC7519] Section 4.1.7

MUST be followed. A JWT ID can be used to prevent replay attacks if

the CDN stores a list of all previously used values, and verifies

that the value in the current JWT has never been used before. If the

signed JWT contains a JWT ID claim and the CDN verifying the signed

¶

¶

¶

JWT either does not support JWT ID storage or has previously seen

the value used in a request for the same content, then the CDN MUST

reject the request. If the received signed JWT contains a JWT ID

claim, then any JWT subsequently generated for CDNI redirection MUST

also contain a JWT ID claim, and the value MUST be the same as in

the received signed JWT. If the received signed JWT does not contain

a JWT ID claim, a JWT ID claim MUST NOT be added to a signed JWT

generated for CDNI redirection. Sizing of the JWT ID is application

dependent given the desired security constraints.

2.1.8. CDNI Claim Set Version (cdniv) claim

CDNI Claim Set Version (cdniv) [optional] - The CDNI Claim Set

Version (cdniv) claim provides a means within a signed JWT to tie

the claim set to a specific version of this specification. The cdniv

claim is intended to allow changes in and facilitate upgrades across

specifications. The type is JSON integer and the value MUST be set

to "1", for this version of the specification. In the absence of

this claim, the value is assumed to be "1". For future versions this

claim will be mandatory. Implementations MUST reject signed JWTs

with unsupported CDNI Claim Set versions.

2.1.9. CDNI Critical Claims Set (cdnicrit) claim

CDNI Critical Claims Set (cdnicrit) [optional] - The CDNI Critical

Claims Set (cdnicrit) claim indicates that extensions to this

specification are being used that MUST be understood and processed.

Its value is a comma separated listing of claims in the Signed JWT

that use those extensions. If any of the listed extension claims are

not understood and supported by the recipient, then the Signed JWT

MUST be rejected. Producers MUST NOT include claim names defined by

this specification, duplicate names, or names that do not occur as

claim names within the Signed JWT in the cdnicrit list. Producers

MUST NOT use the empty list "" as the cdnicrit value. Recipients MAY

consider the Signed JWT to be invalid if the cdnicrit list contains

any claim names defined by this specification or if any other

constraints on its use are violated. This claim MUST be understood

and processed by all implementations.

2.1.10. Client IP (cdniip) claim

Client IP (cdniip) [optional] - The Client IP (cdniip) claim holds

an IP address or IP prefix for which the Signed URI is valid. This

is represented in CIDR notation, with dotted decimal format for IPv4

addresses [RFC0791] or canonical text representation for IPv6

addresses [RFC5952]. The request MUST be rejected if sourced from a

client outside of the specified IP range. Since the client IP is

considered personally identifiable information this field MUST be a

JSON Web Encryption (JWE [RFC7516]) Object in compact serialization

¶

¶

¶

form. If the CDN verifying the signed JWT does not support Client IP

verification, or if the Client IP in the signed JWT does not match

the source IP address in the content request, the CDN MUST reject

the request. The type of this claim is a JSON string that contains

the JWE. If the received signed JWT contains a Client IP claim, then

any JWT subsequently generated for CDNI redirection MUST also

contain a Client IP claim, and the Client IP value MUST be the same

as in the received signed JWT. A signed JWT generated for CDNI

redirection MUST NOT add a Client IP claim if no Client IP claim

existed in the received signed JWT.

It should be noted that use of this claim can cause issues, for

example in situations with dual-stack IPv4 and IPv6 networks, MPTCP,

QUIC, and mobile clients switching from WiFi to Cellular networks

where the client's source address can change, even between address

families. This claim exists mainly for legacy feature parity

reasons, therefore use of this claim should be done judiciously. An

example of a reasonable use case would be making a signed JWT for an

internal preview of an asset where the end consumer understands that

they must be originated from the same IP for the entirety of the

session. Using this claim at large is discouraged.

2.1.11. CDNI URI Container (cdniuc) claim

URI Container (cdniuc) [optional] - The URI Container (cdniuc) holds

the URI representation before a URI Signing Package is added. This

representation can take one of several forms detailed in Section

2.1.15. If the URI Container used in the signed JWT does not match

the URI of the content request, the CDN verifying the signed JWT

MUST reject the request. When comparing the URI, the percent encoded

form as defined in [RFC3986] Section 2.1 MUST be used. When

redirecting a URI, the CDN generating the new signed JWT MAY change

the URI Container to comport with the URI being used in the

redirection.

2.1.12. CDNI Expiration Time Setting (cdniets) claim

CDNI Expiration Time Setting (cdniets) [optional] - The CDNI

Expiration Time Setting (cdniets) claim provides a means for setting

the value of the Expiry Time (exp) claim when generating a

subsequent signed JWT in Signed Token Renewal. Its type is a JSON

numeric value. It denotes the number of seconds to be added to the

time at which the JWT is verified that gives the value of the Expiry

Time (exp) claim of the next signed JWT. The CDNI Expiration Time

Setting (cdniets) SHOULD NOT be used when not using Signed Token

Renewal and MUST be present when using Signed Token Renewal.

¶

¶

¶

¶

2.1.13. CDNI Signed Token Transport (cdnistt) claim

CDNI Signed Token Transport (cdnistt) [optional] - The CDNI Signed

Token Transport (cdnistt) claim provides a means of signalling the

method through which a new signed JWT is transported from the CDN to

the UA and vice versa for the purpose of Signed Token Renewal. Its

type is a JSON integer. Values for this claim are defined in Section

6.5. If using this claim you MUST also specify a CDNI Expiration

Time Setting (cdniets) as noted above.

2.1.14. CDNI Signed Token Depth (cdnistd) claim

CDNI Signed Token Depth (cdnistd) [optional] - The CDNI Signed Token

Depth (cdnistd) claim is used to associate a subsequent signed JWT,

generated as the result of a CDNI Signed Token Transport claim, with

a specific URI subset. Its type is a JSON integer. Signed JWTs MUST

NOT use a negative value for the CDNI Signed Token Depth claim.

If the transport used for Signed Token Transport allows the CDN to

associate the path component of a URI with tokens (e.g., an HTTP

Cookie Path as described in section 4.1.2.4 of [RFC6265]), the CDNI

Signed Token Depth value is the number of path segments that should

be considered significant for this association. A CDNI Signed Token

Depth of zero means that the client SHOULD be directed to return the

token with requests for any path. If the CDNI Signed Token Depth is

greater than zero, then the client SHOULD be directed to return the

token for future requests wherein the first CDNI Signed Token Depth

segments of the path match the first CDNI Signed Token Depth

segments of the signed URI path. This matching MUST use the URI with

the token removed, as specified in Section 2.1.15.

If the URI path to match contains fewer segments than the CDNI

Signed Token Depth claim, a signed JWT MUST NOT be generated for the

purposes of Signed Token Renewal. If the CDNI Signed Token Depth

claim is omitted, it means the same thing as if its value were zero.

If the received signed JWT contains a CDNI Signed Token Depth claim,

then any JWT subsequently generated for CDNI redirection or Signed

Token Transport MUST also contain a CDNI Signed Token Depth claim,

and the value MUST be the same as in the received signed JWT.

2.1.15. URI Container Forms

The URI Container (cdniuc) claim takes one of the following forms:

'hash:' or 'regex:'. More forms may be added in the future to extend

the capabilities.

¶

¶

¶

¶

¶

Before comparing a URI with contents of this container, the

following steps MUST be performed:

Prior to verification, remove the signed JWT from the URI. This

removal is only for the purpose of determining if the URI

matches; all other purposes will use the original URI. If the

signed JWT is terminated by anything other than a sub-delimiter

(as defined in [RFC3986] Section 2.2), everything from the

reserved character (as defined in [RFC3986] Section 2.2) that

precedes the URI Signing Package Attribute to the last character

of the signed JWT will be removed, inclusive. Otherwise,

everything from the first character of the URI Signing Package

Attribute to the sub-delimiter that terminates the signed JWT

will be removed, inclusive.

Normalize the URI according to section 2.7.3 [RFC7230] and

sections 6.2.2 and 6.2.3 [RFC3986]. This applies to both

generation and verification of the signed JWT.

2.1.15.1. URI Hash Container (hash:)

Prefixed with 'hash:', this string is a URL Segment form ([RFC6920]

Section 5) of the URI.

2.1.15.2. URI Regular Expression Container (regex:)

Prefixed with 'regex:', this string is any POSIX Section 9 [POSIX.1]

Extended Regular Expression compatible regular expression used to

match against the requested URI. These regular expressions MUST be

evaluated in the POSIX locale (POSIX Section 7.2 [POSIX.1]).

Note: Because '\' has special meaning in JSON [RFC8259] as the

escape character within JSON strings, the regular expression

character '\' MUST be escaped as '\\'.

An example of a 'regex:' is the following:

Note: Due to computational complexity of executing arbitrary regular

expressions, it is RECOMMENDED to only execute after verifying the

JWT to ensure its authenticity.

2.2. JWT Header

The header of the JWT MAY be passed via the CDNI Metadata interface

instead of being included in the URISigningPackage. The header value

MUST be transmitted in the serialized encoded form and prepended to

the JWT payload and signature passed in the URISigningPackage prior

to verification. This reduces the size of the signed JWT token.

¶

*

¶

*

¶

¶

¶

¶

¶

[^:]*\\://[^/]*/folder/content/quality_[^/]*/segment.{3}\\.mp4(\\?.*)?¶

¶

¶

3. URI Signing Token Renewal

3.1. Overview

For content that is delivered via HTTP in a segmented fashion, such

as MPEG-DASH [MPEG-DASH] or HTTP Live Streaming (HLS) [RFC8216],

special provisions need to be made in order to ensure URI Signing

can be applied. In general, segmented protocols work by breaking

large objects (e.g., videos) into a sequence of small independent

segments. Such segments are then referenced by a separate manifest

file, which either includes a list of URLs to the segments or

specifies an algorithm through which a User Agent can construct the

URLs to the segments. Requests for segments therefore originate from

the manifest file and, unless the URLs in the manifest file point to

the CSP, are not subjected to redirection and URI Signing. This

opens up a vulnerability to malicious User Agents sharing the

manifest file and deep-linking to the segments.

One method for dealing with this vulnerability would be to include,

in the manifest itself, Signed URIs that point to the individual

segments. There exist a number of issues with that approach. First,

it requires the CDN delivering the manifest to rewrite the manifest

file for each User Agent, which would require the CDN to be aware of

the exact segmentation protocol used. Secondly, it could also

require the expiration time of the Signed URIs to be valid for an

extended duration if the content described by the manifest is meant

to be consumed in real time. For instance, if the manifest file were

to contain a segmented video stream of more than 30 minutes in

length, Signed URIs would require to be valid for a at least 30

minutes, thereby reducing their effectiveness and that of the URI

Signing mechanism in general. For a more detailed analysis of how

segmented protocols such as HTTP Adaptive Streaming protocols affect

CDNI, see Models for HTTP-Adaptive-Streaming-Aware CDNI [RFC6983].

The method described in this section allows CDNs to use URI Signing

for segmented content without having to include the Signed URIs in

the manifest files themselves.

3.2. Signed Token Renewal mechanism

In order to allow for effective access control of segmented content,

the URI Signing mechanism defined in this section is based on a

method through which subsequent segment requests can be linked

together. As part of the JWT verification procedure, the CDN can

generate a new signed JWT that the UA can use to do a subsequent

request. More specifically, whenever a UA successfully retrieves a

segment, it receives, in the HTTP 2xx Successful message, a signed

JWT that it can use whenever it requests the next segment. As long

as each successive signed JWT is correctly verified before a new one

¶

¶

¶

is generated, the model is not broken and the User Agent can

successfully retrieve additional segments. Given the fact that with

segmented protocols, it is usually not possible to determine a

priori which segment will be requested next (i.e., to allow for

seeking within the content and for switching to a different

representation), the Signed Token Renewal uses the URI Regular

Expression Container scoping mechanisms in the URI Container

(cdniuc) claim to allow a signed JWT to be valid for more than one

URL.

In order for this renewal of signed JWTs to work, it is necessary

for a UA to extract the signed JWT from the HTTP 2xx Successful

message of an earlier request and use it to retrieve the next

segment. The exact mechanism by which the client does this is

outside the scope of this document. However, in order to also

support legacy UAs that do not include any specific provisions for

the handling of signed JWTs, Section 3.3 defines a mechanism using

HTTP Cookies [RFC6265] that allows such UAs to support the concept

of renewing signed JWTs without requiring any additional UA support.

3.2.1. Required Claims

The cdnistt claim (Section 2.1.13) and cdniets claim (Section

2.1.12) MUST both be present for Signed Token Renewal. cdnistt MAY

bt set to a value of '0' to mean no Signed Token Renewal, but there

still MUST be a corresponding cdniets that verifies as a JSON

number. However, if use of Signed Token Renewal is not desired, it

is RECOMMENDED to simply omit both.

3.3. Communicating a signed JWTs in Signed Token Renewal

This section assumes the value of the CDNI Signed Token Transport

(cdnistt) claim has been set to 1.

When using the Signed Token Renewal mechanism, the signed JWT is

transported to the UA via a 'URISigningPackage' cookie added to the

HTTP 2xx Successful message along with the content being returned to

the UA, or to the HTTP 3xx Redirection message in case the UA is

redirected to a different server.

3.3.1. Support for cross-domain redirection

For security purposes, the use of cross-domain cookies is not

supported in some application environments. As a result, the Cookie-

based method for transport of the Signed Token described in Section

3.3 might break if used in combination with an HTTP 3xx Redirection

response where the target URL is in a different domain. In such

scenarios, Signed Token Renewal of a signed JWT SHOULD be

communicated via the query string instead, in a similar fashion to

how regular signed JWTs (outside of Signed Token Renewal) are

¶

¶

¶

¶

¶

communicated. Note the value of the CDNI Signed Token Transport

(cdnistt) claim MUST be set to 2.

Note that the process described herein only works in cases where

both the manifest file and segments constituting the segmented

content are delivered from the same domain. In other words, any

redirection between different domains needs to be carried out while

retrieving the manifest file.

4. Relationship with CDNI Interfaces

Some of the CDNI Interfaces need enhancements to support URI

Signing. A dCDN that supports URI Signing needs to be able to

advertise this capability to the uCDN. The uCDN needs to select a

dCDN based on such capability when the CSP requires access control

to enforce its distribution policy via URI Signing. Also, the uCDN

needs to be able to distribute via the CDNI Metadata interface the

information necessary to allow the dCDN to verify a Signed URI.

Events that pertain to URI Signing (e.g., request denial or delivery

after and access authorization decision has been made) need to be

included in the logs communicated through the CDNI Logging

interface.

4.1. CDNI Control Interface

URI Signing has no impact on this interface.

4.2. CDNI Footprint & Capabilities Advertisement Interface

The CDNI Request Routing: Footprint and Capabilities Semantics

document [RFC8008] defines support for advertising CDNI Metadata

capabilities, via CDNI Payload Type. The CDNI Payload Type

registered in Section 6.1 can be used for capability advertisement.

4.3. CDNI Request Routing Redirection Interface

The CDNI Request Routing Redirection Interface [RFC7975] describes

the recursive request redirection method. For URI Signing, the uCDN

signs the URI provided by the dCDN. URI Signing therefore has no

impact on this interface.

4.4. CDNI Metadata Interface

The CDNI Metadata Interface [RFC8006] describes the CDNI metadata

distribution needed to enable content acquisition and delivery. For

URI Signing, a new CDNI metadata object is specified.

¶

¶

¶

¶

¶

¶

¶

The UriSigning Metadata object contains information to enable URI

Signing and verification by a dCDN. The UriSigning properties are

defined below.

Property: enforce

Description: URI Signing enforcement flag. Specifically, this

flag indicates if the access to content is subject to URI

Signing. URI Signing requires the dCDN to ensure that the URI

is signed and verified before delivering content. Otherwise,

the dCDN does not perform verification, regardless of whether

or not the URI is signed.

Type: Boolean

Mandatory-to-Specify: No. The default is true.

Property: issuers

Description: A list of valid Issuers against which the Issuer

claim in the signed JWT may be cross-referenced against the

key issuer with.

Type: Array of Strings

Mandatory-to-Specify: No. The default is an empty list. An

empty list means that any Issuer is acceptable.

Property: package-attribute

Description: The attribute name to use for the URI Signing

Package.

Type: String

Mandatory-to-Specify: No. The default is "URISigningPackage".

Property: jwt-header

Description: The header part of JWT that is used for verifying

a signed JWT when the JWT token in the URI Signing Package

does not contain a header part.

Type: String

Mandatory-to-Specify: No. By default, the header is assumed to

be included in the JWT token.

The following is an example of a URI Signing metadata payload with

all default values:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following is an example of a URI Signing metadata payload with

explicit values:

4.5. CDNI Logging Interface

For URI Signing, the dCDN reports that enforcement of the access

control was applied to the request for content delivery. When the

request is denied due to enforcement of URI Signing, the reason is

logged.

The following CDNI Logging field for URI Signing SHOULD be supported

in the HTTP Request Logging Record as specified in CDNI Logging

Interface [RFC7937], using the new "cdni_http_request_v2" record-

type registered in Section 6.2.1.

s-uri-signing (mandatory):

format: 3DIGIT

field value: this characterises the URI Signing verification

performed by the Surrogate on the request. The allowed values

are registered in Section 6.4.

occurrence: there MUST be zero or exactly one instance of this

field.

{

 "generic-metadata-type": "MI.UriSigning"

 "generic-metadata-value": {}

}

¶

¶

{

 "generic-metadata-type": "MI.UriSigning"

 "generic-metadata-value":

 {

 "enforce": true,

 "issuers": ["csp", "ucdn1", "ucdn2"],

 "package-attribute": "usp",

 "jwt-header":

 {

 "alg": "ES256",

 "kid": "P5UpOv0eMq1wcxLf7WxIg09JdSYGYFDOWkldueaImf0"

 }

 }

}

¶

¶

¶

* ¶

- ¶

-

¶

-

¶

s-uri-signing-deny-reason (optional):

format: QSTRING

field value: a string for providing further information in

case the signed JWT was rejected, e.g., for debugging

purposes.

occurrence: there MUST be zero or exactly one instance of this

field.

5. URI Signing Message Flow

URI Signing supports both HTTP-based and DNS-based request routing.

JSON Web Token (JWT) [RFC7519] defines a compact, URL-safe means of

representing claims to be transferred between two parties. The

claims in a Signed JWT are encoded as a JSON object that is used as

the payload of a JSON Web Signature (JWS) structure enabling the

claims to be digitally signed or integrity protected with a Message

Authentication Code (MAC).

5.1. HTTP Redirection

For HTTP-based request routing, a set of information that is unique

to a given end user content request is included in a Signed JWT,

using key information that is specific to a pair of adjacent CDNI

hops (e.g., between the CSP and the uCDN or between the uCDN and a

dCDN). This allows a CDNI hop to ascertain the authenticity of a

given request received from a previous CDNI hop.

The URI Signing method (assuming HTTP redirection, iterative request

routing, and a CDN path with two CDNs) includes the following steps:

* ¶

- ¶

-

¶

-

¶

¶

¶

¶

 End-User dCDN uCDN CSP

 | | | |

 | 1.CDNI FCI interface used to | |

 | advertise URI Signing capability| |

 | |------------------->| |

 | | | |

 | 2.Provides information to verify Signed JWT |

 | | |<-------------------|

 | | | |

 | 3.CDNI Metadata interface used to| |

 | provide URI Signing attributes| |

 | |<-------------------| |

 : : : :

 : (Later in time) : : :

 |4.Authorization request | |

 |--->|

 | | | [Apply distribution

 | | | policy] |

 | | | |

 | | (ALT: Authorization decision)

 |5.Request is denied | | <Negative> |

 |<---|

 | | | |

 |6.CSP provides signed URI | <Positive> |

 |<---|

 | | | |

 |7.Content request | | |

 |-->| [Verifiy URI |

 | | | signature] |

 | | | |

 | | (ALT: Verification result) |

 |8.Request is denied | <Negative>| |

 |<--| |

 | | | |

 |9.Re-sign URI and redirect to <Positive>| |

 | dCDN (newly signed URI) | |

 |<--| |

 | | | |

 |10.Content request | | |

 |------------------->| [Verify URI | |

 | | signature] | |

 | | | |

 | (ALT: Verification result) | |

 |11.Request is denied| <Negative> | |

 |<-------------------| | |

 | | | |

 |12.Content delivery | <Positive> | |

 |<-------------------| | |

 : : : :

 : (Later in time) : : :

 |13.CDNI Logging interface to include URI Signing information |

 | |------------------->| |

Figure 3: Figure 4: HTTP-based Request Routing with URI Signing

Using the CDNI Footprint & Capabilities Advertisement

interface, the dCDN advertises its capabilities including URI

Signing support to the uCDN.

CSP provides to the uCDN the information needed to verify

signed URIs from that CSP. For example, this information will

include one or more keys used for validation.

Using the CDNI Metadata interface, the uCDN communicates to a

dCDN the information needed to verify signed URIs from the uCDN

for the given CSP. For example, this information may include

the URI query string parameter name for the URI Signing Package

Attribute in addition to keys used for validation.

When a UA requests a piece of protected content from the CSP,

the CSP makes a specific authorization decision for this unique

request based on its local distribution policy.

If the authorization decision is negative, the CSP rejects the

request and sends an error code (e.g., 403 Forbidden) in the

HTTP response.

If the authorization decision is positive, the CSP computes a

Signed JWT that is based on unique parameters of that request

and conveys it to the end user as the URI to use to request the

content.

On receipt of the corresponding content request, the uCDN

verifies the Signed JWT in the URI using the information

provided by the CSP.

If the verification result is negative, the uCDN rejects the

request and sends an error code 403 Forbidden in the HTTP

response.

If the verification result is positive, the uCDN computes a

Signed JWT that is based on unique parameters of that request

and provides it to the end user as the URI to use to further

request the content from the dCDN.

On receipt of the corresponding content request, the dCDN

verifies the Signed JWT in the signed URI using the information

provided by the uCDN in the CDNI Metadata.

If the verification result is negative, the dCDN rejects the

request and sends an error code 403 Forbidden in the HTTP

response.

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

If the verification result is positive, the dCDN serves the

request and delivers the content.

At a later time, the dCDN reports logging events that include

URI Signing information.

With HTTP-based request routing, URI Signing matches well the

general chain of trust model of CDNI both with symmetric and

asymmetric keys because the key information only needs to be

specific to a pair of adjacent CDNI hops.

5.2. DNS Redirection

For DNS-based request routing, the CSP and uCDN must agree on a

trust model appropriate to the security requirements of the CSP's

particular content. Use of asymmetric public/private keys allows for

unlimited distribution of the public key to dCDNs. However, if a

shared secret key is preferred, then the CSP may want to restrict

the distribution of the key to a (possibly empty) subset of trusted

dCDNs. Authorized Delivery CDNs need to obtain the key information

to verify the signed URI.

The URI Signing method (assuming iterative DNS request routing and a

CDN path with two CDNs) includes the following steps.

12.

¶

13.

¶

¶

¶

¶

 End-User dCDN uCDN CSP

 | | | |

 | 1.CDNI FCI interface used to | |

 | advertise URI Signing capability| |

 | |------------------->| |

 | | | |

 | 2.Provides information to verify Signed JWT |

 | | |<-------------------|

 | 3.CDNI Metadata interface used to| |

 | provide URI Signing attributes| |

 | |<-------------------| |

 : : : :

 : (Later in time) : : :

 |4.Authorization request | |

 |--->|

 | | | [Apply distribution

 | | | policy] |

 | | | |

 | | (ALT: Authorization decision)

 |5.Request is denied | | <Negative> |

 |<---|

 | | | |

 |6.Provides signed URI | <Positive> |

 |<---|

 | | | |

 |7.DNS request | | |

 |-->| |

 | | | |

 |8.Redirect DNS to dCDN | |

 |<--| |

 | | | |

 |9.DNS request | | |

 |------------------->| | |

 | | | |

 |10.IP address of Surrogate | |

 |<-------------------| | |

 | | | |

 |11.Content request | | |

 |------------------->| [Verify URI | |

 | | signature] | |

 | | | |

 | (ALT: Verification result) | |

 |12.Request is denied| <Negative> | |

 |<-------------------| | |

 | | | |

 |13.Content delivery | <Positive> | |

 |<-------------------| | |

 : : : :

 : (Later in time) : : :

 |14.CDNI Logging interface to report URI Signing information |

 | |------------------->| |

Figure 4: Figure 5: DNS-based Request Routing with URI Signing

Using the CDNI Footprint & Capabilities Advertisement

interface, the dCDN advertises its capabilities including URI

Signing support to the uCDN.

CSP provides to the uCDN the information needed to verify

Signed JWTs from that CSP. For example, this information will

include one or more keys used for validation.

Using the CDNI Metadata interface, the uCDN communicates to a

dCDN the information needed to verify Sigbned JWTs from the CSP

(e.g., the URI query string parameter name for the URI Signing

Package Attribute). In the case of symmetric key, the uCDN

checks if the dCDN is allowed by CSP to obtain the shared

secret key.

When a UA requests a piece of protected content from the CSP,

the CSP makes a specific authorization decision for this unique

request based on its local distribution policy.

If the authorization decision is negative, the CSP rejects the

request and sends an error code (e.g., 403 Forbidden) in the

HTTP response.

If the authorization decision is positive, the CSP computes a

Signed JWT that is based on unique parameters of that request

and includes it in the URI provided to the end user to request

the content.

End user sends DNS request to the uCDN.

On receipt of the DNS request, the uCDN redirects the request

to the dCDN.

End user sends DNS request to the dCDN.

On receipt of the DNS request, the dCDN responds with IP

address of one of its Surrogates.

On receipt of the corresponding content request, the dCDN

verifies the Signed JWT in the URI using the information

provided by the uCDN in the CDNI Metadata.

If the verification result is negative, the dCDN rejects the

request and sends an error code 403 Forbidden in the HTTP

response.

If the verification result is positive, the dCDN serves the

request and delivers the content.

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7. ¶

8.

¶

9. ¶

10.

¶

11.

¶

12.

¶

13.

¶

At a later time, dCDN reports logging events that includes URI

Signing information.

With DNS-based request routing, URI Signing matches well the general

chain of trust model of CDNI when used with asymmetric keys because

the only key information that needs to be distributed across

multiple, possibly untrusted, CDNI hops is the public key, which is

generally not confidential.

With DNS-based request routing, URI Signing does not match well with

the general chain of trust model of CDNI when used with symmetric

keys because the symmetric key information needs to be distributed

across multiple CDNI hops, to CDNs with which the CSP may not have a

trust relationship. This raises a security concern for applicability

of URI Signing with symmetric keys in case of DNS-based inter-CDN

request routing. Due to these concerns, this architecture is NOT

RECOMMENDED.

6. IANA Considerations

6.1. CDNI Payload Type

This document requests the registration of the following CDNI

Payload Type under the IANA "CDNI Payload Types" registry:

Payload Type Specification

MI.UriSigning RFCthis

Table 1

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

6.1.1. CDNI UriSigning Payload Type

Purpose: The purpose of this payload type is to distinguish

UriSigning MI objects (and any associated capability advertisement).

Interface: MI/FCI

Encoding: see Section 4.4

6.2. CDNI Logging Record Type

This document requests the registration of the following CDNI

Logging record-type under the IANA "CDNI Logging record-types"

registry:

record-types Reference Description

cdni_http_request_v2 RFCthis
Extension to CDNI Logging Record

version 1 for content delivery using

14.

¶

¶

¶

¶

¶

¶

¶

¶

¶

record-types Reference Description

HTTP, to include URI Signing logging

fields

Table 2

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

6.2.1. CDNI Logging Record Version 2 for HTTP

The "cdni_http_request_v2" record-type supports all of the fields

supported by the "cdni_http_request_v1" record-type [RFC7937] plus

the two additional fields "s-uri-signing" and "s-uri-signing-deny-

reason", registered by this document in Section 6.3. The name,

format, field value, and occurence information for the two new

fields can be found in Section 4.5 of this document.

6.3. CDNI Logging Field Names

This document requests the registration of the following CDNI

Logging fields under the IANA "CDNI Logging Field Names" registry:

Field Name Reference

s-uri-signing RFCthis

s-uri-signing-deny-reason RFCthis

Table 3

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

6.4. CDNI URI Signing Verification Code

The IANA is requested to create a new "CDNI URI Signing Verification

Code" subregistry, in the "Content Delivery Networks Interconnection

(CDNI) Parameters" registry. The "CDNI URI Signing Verification

Code" namespace defines the valid values associated with the s-uri-

signing CDNI Logging Field. The CDNI URI Signing Verification Code

is a 3DIGIT value as defined in Section 4.5. Additions to the CDNI

URI Signing Verification Code namespace will conform to the

"Specification Required" policy as defined in [RFC8126]. Updates to

this subregistry are expected to be infrequent.

Value Reference Description

000 RFCthis No signed JWT verification performed

200 RFCthis Signed JWT verification performed and verified

400 RFCthis
Signed JWT verification performed and rejected

because of incorrect signature

401 RFCthis
Signed JWT verification performed and rejected

because of Issuer enforcement

¶

¶

¶

¶

¶

Value Reference Description

402 RFCthis
Signed JWT verification performed and rejected

because of Subject enforcement

403 RFCthis
Signed JWT verification performed and rejected

because of Audience enforcement

404 RFCthis
Signed JWT verification performed and rejected

because of Expiration Time enforcement

405 RFCthis
Signed JWT verification performed and rejected

because of Not Before enforcement

406 RFCthis

Signed JWT verification performed and rejected

because only one of CDNI Signed Token Transport or

CDNI Expiration Time Setting present.

407 RFCthis
Signed JWT verification performed and rejected

because of JWT ID enforcement

408 RFCthis
Signed JWT verification performed and rejected

because of Version enforcement

409 RFCthis
Signed JWT verification performed and rejected

because of Critical Extension enforcement

410 RFCthis
Signed JWT verification performed and rejected

because of Client IP enforcement

411 RFCthis
Signed JWT verification performed and rejected

because of URI Container enforcement

500 RFCthis
Unable to perform signed JWT verification because

of malformed URI

Table 4

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

6.5. CDNI URI Signing Signed Token Transport

The IANA is requested to create a new "CDNI URI Signing Signed Token

Transport" subregistry in the "Content Delivery Networks

Interconnection (CDNI) Parameters" registry. The "CDNI URI Signing

Signed Token Transport" namespace defines the valid values that may

be in the Signed Token Transport (cdnistt) JWT claim. Additions to

the Signed Token Transport namespace conform to the "Specification

Required" policy as defined in [RFC8126]. Updates to this

subregistry are expected to be infrequent.

The following table defines the initial Enforcement Information

Elements:

Value Description RFC

0 Designates token transport is not enabled RFCthis

1 Designates token transport via cookie RFCthis

2 Designates token transport via query string RFCthis

Table 5

¶

¶

¶

[RFC Editor: Please replace RFCthis with the published RFC number

for this document.]

6.6. JSON Web Token Claims Registration

This specification registers the following Claims in the IANA "JSON

Web Token Claims" registry [IANA.JWT.Claims] established by

[RFC7519].

6.6.1. Registry Contents

Claim Name: cdniv

Claim Description: CDNI Claim Set Version

Change Controller: IESG

Specification Document(s): Section 2.1.8 of [[this specification

]]

Claim Name: cdnicrit

Claim Description: CDNI Critical Claims Set

Change Controller: IESG

Specification Document(s): Section 2.1.9 of [[this specification

]]

Claim Name: cdniip

Claim Description: CDNI IP Address

Change Controller: IESG

Specification Document(s): Section 2.1.10 of [[this

specification]]

Claim Name: cdniuc

Claim Description: CDNI URI Container

Change Controller: IESG

Specification Document(s): Section 2.1.11 of [[this

specification]]

Claim Name: cdniets

Claim Description: CDNI Expiration Time Setting for Signed Token

Renewal

Change Controller: IESG

Specification Document(s): Section 2.1.12 of [[this

specification]]

Claim Name: cdnistt

Claim Description: CDNI Signed Token Transport Method for Signed

Token Renewal

Change Controller: IESG

Specification Document(s): Section 2.1.13 of [[this

specification]]

Claim Name: cdnistd

Claim Description: CDNI Signed Token Depth

Change Controller: IESG

Specification Document(s): Section 2.1.14 of [[this

specification]]

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

6.7. Expert Review Guidance

Generally speaking, we should determine the registration has a

rational justification and does not duplicate a previous

registration. Early assignment should be permissible as long as

there is a reasonable expectation that the specification will become

formalized. Expert Reviewers should be empowered to make

determinations, but generally speaking they should allow new claims

that do not otherwise introduce conflicts with implementation or

things that may lead to confusion. They should also follow the

guidelines of [RFC8126] Section 5 when sensible.

7. Security Considerations

This document describes the concept of URI Signing and how it can be

used to provide access authorization in the case of CDNI. The

primary goal of URI Signing is to make sure that only authorized UAs

are able to access the content, with a CSP being able to authorize

every individual request. It should be noted that URI Signing is not

a content protection scheme; if a CSP wants to protect the content

itself, other mechanisms, such as DRM, are more appropriate.

CDNI URI Signing Signed Tokens leverage JSON Web Tokens and thus

guidelines in [RFC8725] are applicable for all JWT interactions.

In general, it holds that the level of protection against

illegitimate access can be increased by including more claims in the

signed JWT. The current version of this document includes claims for

enforcing Issuer, Client IP Address, Not Before time, and Expiration

Time, however this list can be extended with other, more complex,

attributes that are able to provide some form of protection against

some of the vulnerabilities highlighted below.

That said, there are a number of aspects that limit the level of

security offered by URI Signing and that anybody implementing URI

Signing should be aware of.

Replay attacks: A (valid) Signed URI may be used to perform

replay attacks. The vulnerability to replay attacks can be

reduced by picking a relatively short window between the Not

Before time and Expiration Time attributes, although this is

limited by the fact that any HTTP-based request needs a window of

at least a couple of seconds to prevent sudden network issues

from denying legitimate UAs access to the content. One may also

reduce exposure to replay attacks by including a unique one-time

access ID via the JWT ID attribute (jti claim). Whenever the dCDN

receives a request with a given unique ID, it adds that ID to the

list of 'used' IDs. In the case an illegitimate UA tries to use

the same URI through a replay attack, the dCDN can deny the

¶

¶

¶

¶

¶

*

request based on the already-used access ID. This list should be

kept bounded. A reasonable approach would be to expire the

entries based on the exp claim value. If no exp claim is present

then a simple LRU could be used, however this would allow values

to eventually be reused.

Illegitimate clients behind a NAT: In cases where there are

multiple users behind the same NAT, all users will have the same

IP address from the point of view of the dCDN. This results in

the dCDN not being able to distinguish between different users

based on Client IP Address which can lead to illegitimate users

being able to access the content. One way to reduce exposure to

this kind of attack is to not only check for Client IP but also

for other attributes, e.g., attributes that can be found in HTTP

headers. However, this may be easily circumvented by a

sophisticated attacker.

The shared key between CSP and uCDN may be distributed to dCDNs -

including cascaded CDNs. Since this key can be used to legitimately

sign a URL for content access authorization, it is important to know

the implications of a compromised shared key. While using a shared

key scheme can be convenient, this architecture is NOT RECOMMENDED

due to the risks associated. It is included for legacy feature

parity and is highly discouraged in new implementations.

If a shared key usable for signing is compromised, an attacker can

use it to perform a denial-of-service attack by forcing the CDN to

evaluate prohibitively expensive regular expressions embedded in a

cdniuc claim. As a result, compromised keys should be timely revoked

in order to prevent exploitation.

8. Privacy

The privacy protection concerns described in CDNI Logging Interface

[RFC7937] apply when the client's IP address (cdniip) or Subject

(sub) is embedded in the Signed URI. For this reason, the mechanism

described in Section 2 encrypts the Client IP or Subject before

including it in the URI Signing Package (and thus the URL itself).

9. Acknowledgements

The authors would like to thank the following people for their

contributions in reviewing this document and providing feedback:

Scott Leibrand, Kevin Ma, Ben Niven-Jenkins, Thierry Magnien, Dan

York, Bhaskar Bhupalam, Matt Caulfield, Samuel Rajakumar, Iuniana

Oprescu, Leif Hedstrom, Gancho Tenev, Brian Campbell, and Chris

Lemmons.

¶

*

¶

¶

¶

¶

¶

[POSIX.1]

[RFC0791]

[RFC2119]

[RFC3986]

[RFC5905]

[RFC5952]

[RFC6265]

10. Contributors

In addition, the authors would also like to make special mentions

for certain people who contributed significant sections to this

document.

Matt Caulfield provided content for the CDNI Metadata Interface

section.

Emmanuel Thomas provided content for HTTP Adaptive Streaming.

Matt Miller provided consultation on JWT usage as well as code to

generate working JWT examples.

11. References

11.1. Normative References

"The Open Group Base Specifications Issue 7", IEEE Std

1003.1 2018 Edition, 31 January 2018, <http://

pubs.opengroup.org/onlinepubs/9699919799/>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6

Address Text Representation", RFC 5952, DOI 10.17487/

RFC5952, August 2010, <https://www.rfc-editor.org/info/

rfc5952>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

¶

*

¶

* ¶

*

¶

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265

[RFC6707]

[RFC6920]

[RFC7230]

[RFC7516]

[RFC7519]

[RFC7937]

[RFC8006]

[RFC8126]

[RFC8174]

[RFC8259]

Niven-Jenkins, B., Le Faucheur, F., and N. Bitar,

"Content Distribution Network Interconnection (CDNI)

Problem Statement", RFC 6707, DOI 10.17487/RFC6707,

September 2012, <https://www.rfc-editor.org/info/

rfc6707>.

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,

Keranen, A., and P. Hallam-Baker, "Naming Things with

Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,

<https://www.rfc-editor.org/info/rfc6920>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/info/rfc7516>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Le Faucheur, F., Ed., Bertrand, G., Ed., Oprescu, I.,

Ed., and R. Peterkofsky, "Content Distribution Network

Interconnection (CDNI) Logging Interface", RFC 7937, DOI

10.17487/RFC7937, August 2016, <https://www.rfc-

editor.org/info/rfc7937>.

Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,

"Content Delivery Network Interconnection (CDNI)

Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,

<https://www.rfc-editor.org/info/rfc8006>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc6707
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7937
https://www.rfc-editor.org/info/rfc7937
https://www.rfc-editor.org/info/rfc8006
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[IANA.JWT.Claims]

[MPEG-DASH]

[RFC6983]

[RFC7336]

[RFC7337]

[RFC7517]

[RFC7975]

[RFC8008]

[RFC8216]

[RFC8725]

11.2. Informative References

IANA, "JSON Web Token Claims", <http://

www.iana.org/assignments/jwt>.

ISO, "Information technology -- Dynamic adaptive

streaming over HTTP (DASH) -- Part 1: Media presentation

description and segment format", ISO/IEC 23009-1:2014,

Edition 2, May 2014, <http://www.iso.org/standard/

65274.html>.

van Brandenburg, R., van Deventer, O., Le Faucheur, F.,

and K. Leung, "Models for HTTP-Adaptive-Streaming-Aware

Content Distribution Network Interconnection (CDNI)", RFC

6983, DOI 10.17487/RFC6983, July 2013, <https://www.rfc-

editor.org/info/rfc6983>.

Peterson, L., Davie, B., and R. van Brandenburg, Ed.,

"Framework for Content Distribution Network

Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,

August 2014, <https://www.rfc-editor.org/info/rfc7336>.

Leung, K., Ed. and Y. Lee, Ed., "Content Distribution

Network Interconnection (CDNI) Requirements", RFC 7337,

DOI 10.17487/RFC7337, August 2014, <https://www.rfc-

editor.org/info/rfc7337>.

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Niven-Jenkins, B., Ed. and R. van Brandenburg, Ed.,

"Request Routing Redirection Interface for Content

Delivery Network (CDN) Interconnection", RFC 7975, DOI

10.17487/RFC7975, October 2016, <https://www.rfc-

editor.org/info/rfc7975>.

Seedorf, J., Peterson, J., Previdi, S., van Brandenburg,

R., and K. Ma, "Content Delivery Network Interconnection

(CDNI) Request Routing: Footprint and Capabilities

Semantics", RFC 8008, DOI 10.17487/RFC8008, December

2016, <https://www.rfc-editor.org/info/rfc8008>.

Pantos, R., Ed. and W. May, "HTTP Live Streaming", RFC

8216, DOI 10.17487/RFC8216, August 2017, <https://

www.rfc-editor.org/info/rfc8216>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token

Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/

http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/jwt
http://www.iso.org/standard/65274.html
http://www.iso.org/standard/65274.html
https://www.rfc-editor.org/info/rfc6983
https://www.rfc-editor.org/info/rfc6983
https://www.rfc-editor.org/info/rfc7336
https://www.rfc-editor.org/info/rfc7337
https://www.rfc-editor.org/info/rfc7337
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7975
https://www.rfc-editor.org/info/rfc7975
https://www.rfc-editor.org/info/rfc8008
https://www.rfc-editor.org/info/rfc8216
https://www.rfc-editor.org/info/rfc8216

RFC8725, February 2020, <https://www.rfc-editor.org/info/

rfc8725>.

Appendix A. Signed URI Package Example

This section contains three examples of token usage: a simple

example with only the required claim present, a complex example

which demonstrates the full JWT claims set, including an encrypted

Client IP (cdniip), and one that uses a Signed Token Renewal.

Note: All of the examples have whitespace added to improve

formatting and readability, but are not present in the generated

content.

All examples use the following JWK Set [RFC7517]:

Note: They are the public signing key, the private signing key, and

the shared secret enctyption key, respectively. The public and

private signing keys have the same fingerprint and only vary by the

'd' parameter that is missing from the public signing key.

¶

¶

¶

{ "keys": [

 {

 "kty": "EC",

 "kid": "P5UpOv0eMq1wcxLf7WxIg09JdSYGYFDOWkldueaImf0",

 "use": "sig",

 "alg": "ES256",

 "crv": "P-256",

 "x": "be807S4O7dzB6I4hTiCUvmxCI6FuxWba1xYBlLSSsZ8",

 "y": "rOGC4vI69g-WF9AGEVI37sNNwbjIzBxSjLvIL7f3RBA"

 },

 {

 "kty": "EC",

 "kid": "P5UpOv0eMq1wcxLf7WxIg09JdSYGYFDOWkldueaImf0",

 "use": "sig",

 "alg": "ES256",

 "crv": "P-256",

 "x": "be807S4O7dzB6I4hTiCUvmxCI6FuxWba1xYBlLSSsZ8",

 "y": "rOGC4vI69g-WF9AGEVI37sNNwbjIzBxSjLvIL7f3RBA",

 "d": "yaowezrCLTU6yIwUL5RQw67cHgvZeMTLVZXjUGb1A1M"

 },

 {

 "kty": "oct",

 "kid": "f-WbjxBC3dPuI3d24kP2hfvos7Qz688UTi6aB0hN998",

 "use": "enc",

 "alg": "A128GCM",

 "k": "4uFxxV7fhNmrtiah2d1fFg"

 }

]}

¶

¶

https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725

A.1. Simple Example

This example is a simple common usage example containing a minimal

subset of claims that the authors find most useful.

The JWT Claim Set before signing:

Note: "sha-256;2tderfWPa86Ku7YnzW51YUp7dGUjBS_3SW3ELx4hmWY" is the

URL Segment form ([RFC6920] Section 5) of "http://cdni.example/foo/

bar".

The signed JWT:

A.2. Complex Example

This example uses all fields except for those dealing with Signed

Token Renewal, including Client IP (cdniip) and Subject (sub) which

are encrpyted. This significantly increases the size of the signed

JWT token.

JWE for Client IP (cdniip) of [2001:db8::1/32]:

JWE for Subject (sub) of "UserToken":

The JWT Claim Set before signing:

¶

¶

¶

{

 "exp": 1474243500,

 "iss": "uCDN Inc",

 "cdniuc": "hash:sha-256;2tderfWPa86Ku7YnzW51YUp7dGUjBS_3SW3ELx4hmWY"

}

¶

¶

eyJhbGciOiJFUzI1NiIsImtpZCI6IlA1VXBPdjBlTXExd2N4TGY3V3hJZzA5SmRTWU

dZRkRPV2tsZHVlYUltZjAifQ.eyJleHAiOjE0NzQyNDM1MDAsImlzcyI6InVDRE4gS

W5jIiwiY2RuaXVjIjoiaGFzaDpzaGEtMjU2OzJ0ZGVyZldQYTg2S3U3WW56VzUxWVV

wN2RHVWpCU18zU1czRUx4NGhtV1kifQ.qzzAB9akC-HoEzQrkOoODWjMC0PEZRrmWz

2rSMcpLtvxyxVodlB2xcpl4J4ABhLLOJzgzL9B39TljTqZApSOpQ

¶

¶

¶

eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XYmp4QkMzZFB1ST

NkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..SuzoOnfg-GVh-BOc.wQ9iS

R1sTj-A04CiDmvcgg.9Ts_cIEUw6Yc6U5HaH1UPQ

¶

¶

eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XYmp4QkMzZFB1ST

NkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..XsJ7ySeChORSIojp.R1U8E

SGU2NnW.DWR8pTbeCwQZca6SitfX_g

¶

¶

The signed JWT:

A.3. Signed Token Renewal Example

This example uses fields for Signed Token Renewal.

The JWT Claim Set before signing:

The signed JWT:

{

 "aud": "dCDN LLC",

 "sub": "eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XYmp4

QkMzZFB1STNkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..XsJ7ySeChORS

Iojp.R1U8ESGU2NnW.DWR8pTbeCwQZca6SitfX_g",

 "cdniip": "eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiZGlyIiwia2lkIjoiZi1XY

mp4QkMzZFB1STNkMjRrUDJoZnZvczdRejY4OFVUaTZhQjBoTjk5OCJ9..SuzoOnfg-

GVh-BOc.wQ9iSR1sTj-A04CiDmvcgg.9Ts_cIEUw6Yc6U5HaH1UPQ",

 "cdniv": 1,

 "exp": 1474243500,

 "iat": 1474243200,

 "iss": "uCDN Inc",

 "jti": "5DAafLhZAfhsbe",

 "nbf": 1474243200,

 "cdniuc": "regex:http://cdni\\.example/foo/bar/[0-9]{3}\\.png"

}

¶

¶

eyJhbGciOiJFUzI1NiIsImtpZCI6IlA1VXBPdjBlTXExd2N4TGY3V3hJZzA5SmRTWU

dZRkRPV2tsZHVlYUltZjAifQ.eyJhdWQiOiJkQ0ROIExMQyIsInN1YiI6ImV5Smxib

U1pT2lKQk1USTRSME5OSWl3aVlXeG5Jam9pWkdseUlpd2lhMmxrSWpvaVppMVhZbXA

0UWtNelpGQjFTVE5rTWpSclVESm9ablp2Y3pkUmVqWTRPRlZVYVRaaFFqQm9Uams1T

0NKOS4uWHNKN3lTZUNoT1JTSW9qcC5SMVU4RVNHVTJOblcuRFdSOHBUYmVDd1FaY2E

2U2l0ZlhfZyIsImNkbmlpcCI6ImV5SmxibU1pT2lKQk1USTRSME5OSWl3aVlXeG5Ja

m9pWkdseUlpd2lhMmxrSWpvaVppMVhZbXA0UWtNelpGQjFTVE5rTWpSclVESm9ablp

2Y3pkUmVqWTRPRlZVYVRaaFFqQm9Uams1T0NKOS4uU3V6b09uZmctR1ZoLUJPYy53U

TlpU1Ixc1RqLUEwNENpRG12Y2dnLjlUc19jSUVVdzZZYzZVNUhhSDFVUFEiLCJjZG5

pdiI6MSwiZXhwIjoxNDc0MjQzNTAwLCJpYXQiOjE0NzQyNDMyMDAsImlzcyI6InVDR

E4gSW5jIiwianRpIjoiNURBYWZMaFpBZmhzYmUiLCJuYmYiOjE0NzQyNDMyMDAsImN

kbml1YyI6InJlZ2V4Omh0dHA6Ly9jZG5pXFwuZXhhbXBsZS9mb28vYmFyL1swLTlde

zN9XFwucG5nIn0.XEi1NeP8Lzh6ECcbp6EoqYlnJGikaGp6F3lIJ7ZJt3bim6tOtuD

pCQxmEQxobzIpWOCNdpB8kvxM_s95brKjNQ

¶

¶

¶

{

 "cdniets": 30,

 "cdnistt": 1,

 "cdnistd": 2,

 "exp": 1474243500,

 "cdniuc": "regex:http://cdni\\.example/foo/bar/[0-9]{3}\\.ts"

}

¶

¶

Once the server verifies the signed JWT it will return a new signed

JWT with an updated expiry time (exp) as shown below. Note the

expiry time is increased by the expiration time setting (cdniets)

value.

The JWT Claim Set before signing:

The signed JWT:

Authors' Addresses

Ray van Brandenburg

Tiledmedia

Anna van Buerenplein 1

Den Haag

Phone: +31 88 866 7000

Email: ray@tiledmedia.com

Kent Leung

Email: mail4kentl@gmail.com

Phil Sorber

Apple, Inc.

1800 Wazee Street

Suite 410

Denver, CO 80202

eyJhbGciOiJFUzI1NiIsImtpZCI6IlA1VXBPdjBlTXExd2N4TGY3V3hJZzA5SmRTWU

dZRkRPV2tsZHVlYUltZjAifQ.eyJjZG5pZXRzIjozMCwiY2RuaXN0dCI6MSwiY2Rua

XN0ZCI6MiwiZXhwIjoxNDc0MjQzNTAwLCJjZG5pdWMiOiJyZWdleDpodHRwOi8vY2R

uaVxcLmV4YW1wbGUvZm9vL2Jhci9bMC05XXszfVxcLnRzIn0.wsSvwxY8mtRax7HK_

dro_l6m-mM-HYdeaUoTSgVS5XTIhXBsCPsYQncsradmgmOWHDDOxsSMVVTjHe5E5YH

ZlQ

¶

¶

¶

{

 "cdniets": 30,

 "cdnistt": 1,

 "cdnistd": 2,

 "exp": 1474243530,

 "cdniuc": "regex:http://cdni\\.example/foo/bar/[0-9]{3}\\.ts"

}

¶

¶

eyJhbGciOiJFUzI1NiIsImtpZCI6IlA1VXBPdjBlTXExd2N4TGY3V3hJZzA5SmRTWU

dZRkRPV2tsZHVlYUltZjAifQ.eyJjZG5pZXRzIjozMCwiY2RuaXN0dCI6MSwiY2Rua

XN0ZCI6MiwiZXhwIjoxNDc0MjQzNTMwLCJjZG5pdWMiOiJyZWdleDpodHRwOi8vY2R

uaVxcLmV4YW1wbGUvZm9vL2Jhci9bMC05XXszfVxcLnRzIn0.SITeoIVZ8-yeE_GBV

jYEo1P2LN-EId1gEJ6baR3Au7Dzh2o_O7LhH3k6wHY081sYMdXHucB0P5ocp-r7gqe

ruQ

¶

tel:+31%2088%20866%207000
mailto:ray@tiledmedia.com
mailto:mail4kentl@gmail.com

United States

Email: sorber@apple.com

mailto:sorber@apple.com

	URI Signing for Content Delivery Network Interconnection (CDNI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Background and overview on URI Signing
	1.3. CDNI URI Signing Overview
	1.4. URI Signing in a non-CDNI context

	2. JWT Format and Processing Requirements
	2.1. JWT Claims
	2.1.1. Issuer (iss) claim
	2.1.2. Subject (sub) claim
	2.1.3. Audience (aud) claim
	2.1.4. Expiry Time (exp) claim
	2.1.5. Not Before (nbf) claim
	2.1.6. Issued At (iat) claim
	2.1.7. JWT ID (jti) claim
	2.1.8. CDNI Claim Set Version (cdniv) claim
	2.1.9. CDNI Critical Claims Set (cdnicrit) claim
	2.1.10. Client IP (cdniip) claim
	2.1.11. CDNI URI Container (cdniuc) claim
	2.1.12. CDNI Expiration Time Setting (cdniets) claim
	2.1.13. CDNI Signed Token Transport (cdnistt) claim
	2.1.14. CDNI Signed Token Depth (cdnistd) claim
	2.1.15. URI Container Forms
	2.1.15.1. URI Hash Container (hash:)
	2.1.15.2. URI Regular Expression Container (regex:)

	2.2. JWT Header

	3. URI Signing Token Renewal
	3.1. Overview
	3.2. Signed Token Renewal mechanism
	3.2.1. Required Claims

	3.3. Communicating a signed JWTs in Signed Token Renewal
	3.3.1. Support for cross-domain redirection

	4. Relationship with CDNI Interfaces
	4.1. CDNI Control Interface
	4.2. CDNI Footprint & Capabilities Advertisement Interface
	4.3. CDNI Request Routing Redirection Interface
	4.4. CDNI Metadata Interface
	4.5. CDNI Logging Interface

	5. URI Signing Message Flow
	5.1. HTTP Redirection
	5.2. DNS Redirection

	6. IANA Considerations
	6.1. CDNI Payload Type
	6.1.1. CDNI UriSigning Payload Type

	6.2. CDNI Logging Record Type
	6.2.1. CDNI Logging Record Version 2 for HTTP

	6.3. CDNI Logging Field Names
	6.4. CDNI URI Signing Verification Code
	6.5. CDNI URI Signing Signed Token Transport
	6.6. JSON Web Token Claims Registration
	6.6.1. Registry Contents

	6.7. Expert Review Guidance

	7. Security Considerations
	8. Privacy
	9. Acknowledgements
	10. Contributors
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Signed URI Package Example
	A.1. Simple Example
	A.2. Complex Example
	A.3. Signed Token Renewal Example

	Authors' Addresses

