
cellar S. Lhomme
Internet-Draft
Intended status: Standards Track D. Rice
Expires: March 27, 2017
 M. Bunkus
 September 23, 2016

Extensible Binary Meta Language
draft-ietf-cellar-ebml-00

Abstract

 This document defines the Extensible Binary Meta Language (EBML)
 format as a genearlized file format for any type of data in a
 hierarchical form. EBML is designed as a binary equivalent to XML
 and utilizes a storage-efficient approach to building nested Elements
 with identifiers, lengths, and values. Similar to how an XML Schema
 defines the structure and semantics of an XML Document, this document
 defines an EBML Schema to convey the semantics of an EBML Document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Lhomme, et al. Expires March 27, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EBML September 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. EBML specifications . 2
1.1. Introduction . 2
1.2. Notation and Conventions 3
1.3. Security Considerations 3
1.4. Structure . 4
1.5. Variable Size Integer 4
1.5.1. VINT_WIDTH . 4
1.5.2. VINT_MARKER . 4
1.5.3. VINT_DATA . 4
1.5.4. VINT Examples . 5

1.6. Element ID . 5
1.7. Element Data Size . 6
1.8. EBML Element Types 8
1.9. EBML Document . 11
1.9.1. EBML Header . 12
1.9.2. EBML Body . 12

1.10. EBML Stream . 13
1.11. Elements semantic . 13
1.11.1. EBML Schema . 13
1.11.2. EBML Header Elements 22
1.11.3. Global elements (used everywhere in the format) . . 25

2.1. URIs . 27
 Authors' Addresses . 27

1. EBML specifications

1.1. Introduction

 EBML, short for Extensible Binary Meta Language, specifies a binary
 and octet (byte) aligned format inspired by the principle of XML.

 The goal of the EBML Specification is to define a generic, binary,
 space-efficient format that may be utilized to define more complex
 formats (such as containers for multimedia content) using an EBML
 Schema. The definition of the EBML format recognizes the idea behind
 HTML and XML as a good one: separate structure and semantics allowing
 the same structural layer to be used with multiple, possibly widely
 differing semantic layers. Except for the EBML Header and a few
 global elements this specification does not define particular EBML
 format semantics; however this specification is intended to define
 how other EBML-based formats may be defined.

Lhomme, et al. Expires March 27, 2017 [Page 2]

Internet-Draft EBML September 2016

 EBML uses a simple approach of building Elements upon three pieces of
 data (tag, length, and value) as this approach is well known, easy to
 parse, and allows selective data parsing. The EBML structure
 additionally allows for hierarchical arrangement to support complex
 structural formats in an efficient manner.

1.2. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

1.3. Security Considerations

 EBML itself does not offer any kind of security. It has nothing to
 do with authentication, it does not provide confidentiality, only
 marginally useful and effective data integrity options (CRC
 elements).

 EBML does not provide any kind of authorization.

 Even if the semantic layer offers any kind of encryption, EBML itself
 may leak information at both the semantic layer (as declared via the
 DocType element) and within the EBML structure (you can derive the
 presence of EBML elements even with an unknown semantic layer with a
 heuristic approach; not without errors, of course, but with a certain
 degree of confidence).

 Attacks on an EBML reader may include: - Invalid Element IDs that are
 longer than the limit stated in the EBMLMaxIDLength Element of the
 EBML Header. - Invalid Element IDs that are not encoded in the
 shortest-possible way. - Invalid Element IDs comprised of reserved
 values. - Invalid Element Data Size values that are longer than the
 limit stated in the EBMLMaxSizeLength Element of the EBML Header. -
 Invalid Element Data Size values (e.g. extending the length of the
 Element beyond the scope of the Parent Element; possibly triggering
 access-out-of-bounds issues). - Very high lengths in order to force
 out-of-memory situations resulting in a denial of service, access-
 out-of-bounds issues etc. - Missing Elements that are mandatory and
 have no declared default value. - Usage of 0x00 octets in EBML
 Elements with a string type. - Usage of invalid UTF-8 encoding in
 EBML Elements of UTF-8 type (e.g. in order to trigger access-out-of-
 bounds or buffer overflow issues). - Usage of invalid data in EBML
 Elements with a date type.

https://datatracker.ietf.org/doc/html/rfc2119

Lhomme, et al. Expires March 27, 2017 [Page 3]

Internet-Draft EBML September 2016

1.4. Structure

 EBML uses a system of Elements to compose an EBML Document. Elements
 incorporate three parts: an Element ID, an Element Data Size, and
 Element Data. The Element Data, which is described by the Element
 ID, may include either binary data or one or many other Elements.

1.5. Variable Size Integer

 The Element ID and Element Data Size are both encoded as a Variable
 Size Integer, developed according to a UTF-8 like system. The
 Variable Size Integer is composed of a VINT_WIDTH, VINT_MARKER, and
 VINT_DATA, in that order. Variable Size Integers shall be referred
 to as VINT for shorthand.

1.5.1. VINT_WIDTH

 Each Variable Size Integer begins with a VINT_WIDTH which consists of
 zero or many zero-value bits. The count of consecutive zero-values
 of the VINT_WIDTH plus one equals the length in octets of the
 Variable Size Integer. For example, a Variable Size Integer that
 starts with a VINT_WIDTH which contains zero consecutive zero-value
 bits is one octet in length and a Variable Size Integer that starts
 with one consecutive zero-value bit is two octets in length. The
 VINT_WIDTH MUST only contain zero-value bits or be empty.

1.5.2. VINT_MARKER

 The VINT_MARKER serves as a separator between the VINT_WIDTH and
 VINT_DATA. Each Variable Size Integer MUST contain exactly one
 VINT_MARKER. The VINT_MARKER MUST be one bit in length and contain a
 bit with a value of one. The first bit with a value of one within
 the Variable Size Integer is the VINT_MARKER.

1.5.3. VINT_DATA

 The VINT_DATA portion of the Variable Size Integer includes all data
 that follows (but not including) the VINT_MARKER until end of the
 Variable Size Integer whose length is derived from the VINT_WIDTH.
 The bits required for the VINT_WIDTH and the VINT_MARKER combined use
 one bit per octet of the total length of the Variable Size Integer.
 Thus a Variable Size Integer of 1 octet length supplies 7 bits for
 VINT_DATA, a 2 octet length supplies 14 bits for VINT_DATA, and a 3
 octet length supplies 21 bits for VINT_DATA. If the number of bits
 required for VINT_DATA are less than the bit size of VINT_DATA, then
 VINT_DATA may be zero-padded to the left to a size that fits. The
 VINT_DATA value MUST be expressed as a big-endian unsigned integer.

Lhomme, et al. Expires March 27, 2017 [Page 4]

Internet-Draft EBML September 2016

1.5.4. VINT Examples

 This table shows examples of Variable Size Integers at widths of 1 to
 5 octets. The Representation column depicts a binary expression of
 Variable Size Integers where VINT_WIDTH is depicted by '0', the
 VINT_MARKER as '1', and the VINT_DATA as 'x'.

 +-------------+------+--+
 | Octet Width | Size | Representation |
 +-------------+------+--+
1	2^7	1xxx xxxx
2	2^14	01xx xxxx xxxx xxxx
3	2^21	001x xxxx xxxx xxxx xxxx xxxx
4	2^28	0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx
5	2^35	0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
		xxxx
 +-------------+------+--+

 Note that data encoded as a Variable Size Integer may be rendered at
 octet widths larger than needed to store the data. In this table a
 binary value of 0b10 is shown encoded as different Variable Size
 Integers with widths from one octet to four octet. All four encoded
 examples have identical semantic meaning though the VINT_WIDTH and
 the padding of the VINT_DATA vary.

 +--------------+-------------+--------------------------------------+
 | Binary Value | Octet Width | As Represented in Variable Size |
 | | | Integer |
 +--------------+-------------+--------------------------------------+
10	1	1000 0010
10	2	0100 0000 0000 0010
10	3	0010 0000 0000 0000 0000 0010
10	4	0001 0000 0000 0000 0000 0000 0000
		0010
 +--------------+-------------+--------------------------------------+

1.6. Element ID

 The Element ID MUST be encoded as a Variable Size Integer. By
 default, EBML Element IDs may be encoded in lengths from one octet to
 four octets, although Element IDs of greater lengths may be used if
 the octet length of the EBML Document's longest Element ID is
 declared in the EBMLMaxIDLength Element of the EBML Header. The
 VINT_DATA component of the Element ID MUST NOT be set to either all
 zero values or all one values. The VINT_DATA component of the
 Element ID MUST be encoded at the shortest valid length. For
 example, an Element ID with binary encoding of 1011 1111 is valid,
 whereas an Element ID with binary encoding of 0100 0000 0011 1111

Lhomme, et al. Expires March 27, 2017 [Page 5]

Internet-Draft EBML September 2016

 stores a semantically equal VINT_DATA but is invalid because a
 shorter VINT encoding is possible. The following table details this
 specific example further:

 +------------+-------------+----------------+-------------------+
 | VINT_WIDTH | VINT_MARKER | VINT_DATA | Element ID Status |
 +------------+-------------+----------------+-------------------+
 | | 1 | 0111111 | Valid |
 | 0 | 1 | 00000000111111 | Invalid |
 +------------+-------------+----------------+-------------------+

 The octet length of an Element ID determines its EBML Class.

 +------------+--------------+--------------------------------+
 | EBML Class | Octet Length | Number of Possible Element IDs |
 +------------+--------------+--------------------------------+
 | Class A | 1 | 2^7 - 2 = 126 |
 | Class B | 2 | 2^14 - 2^7 - 1 = 16,255 |
 | Class C | 3 | 2^21 - 2^14 - 1 = 2,080,767 |
 | Class D | 4 | 2^28 - 2^21 - 1 = 266,388,303 |
 +------------+--------------+--------------------------------+

1.7. Element Data Size

 The Element Data Size expresses the length in octets of Element Data.
 The Element Data Size itself MUST be encoded as a Variable Size
 Integer. By default, EBML Element Data Sizes can be encoded in
 lengths from one octet to eight octets, although Element Data Sizes
 of greater lengths MAY be used if the octet length of the EBML
 Document's longest Element Data Size is declared in the
 EBMLMaxSizeLength Element of the EBML Header. Unlike the VINT_DATA
 of the Element ID, the VINT_DATA component of the Element Data Size
 is not required to be encoded at the shortest valid length. For
 example, an Element Data Size with binary encoding of 1011 1111 or a
 binary encoding of 0100 0000 0011 1111 are both valid Element Data
 Sizes and both store a semantically equal value.

 Although an Element ID with all VINT_DATA bits set to zero is
 invalid, an Element Data Size with all VINT_DATA bits set to zero is
 allowed for EBML Data Types which do not mandate a non-zero length.
 An Element Data Size with all VINT_DATA bits set to zero indicates
 that the Element Data of the Element is zero octets in length. Such
 an Element is referred to as an Empty Element. If an Empty Element
 has a "default" value declared then that default value MUST be
 interpreted as the value of the Empty Element. If an Empty Element
 has no "default" value declared then the semantic meaning of Empty
 Element is defined as part of the definition of the EBML Element
 Types.

Lhomme, et al. Expires March 27, 2017 [Page 6]

Internet-Draft EBML September 2016

 An Element Data Size with all VINT_DATA bits set to one is reserved
 as an indicator that the size of the Element is unknown. The only
 reserved value for the VINT_DATA of Element Data Size is all bits set
 to one. This rule allows for an Element to be written and read
 before the size of the Element is known; however unknown Element Data
 Size values SHOULD NOT be used unnecessarily. An Element with an
 unknown Element Data Size MUST be a Master-element in that it
 contains other EBML Elements as sub-elements. Master-elements MAY
 only use an unknown size if the "unknownsizeallowed" attribute of the
 EBML Schema is set to true. The end of a Master-element with unknown
 size is determined by the beginning of the next element that is not a
 valid sub-element of that Master-element. An Element with an unknown
 Element Data Size is referred to as an "Unknown-Sized Element".

 For Element Data Sizes encoded at octet lengths from one to eight,
 this table depicts the range of possible values that can be encoded
 as an Element Data Size. An Element Data Size with an octet length
 of 8 is able to express a size of 2^56-2 or 72,057,594,037,927,934
 octets (or about 72 petabytes). The maximum possible value that can
 be stored as Element Data Size is referred to as "VINTMAX".

 +--------------+----------------------+
 | Octet Length | Possible Value Range |
 +--------------+----------------------+
 | 1 | 0 to 2^7-2 |
 | 2 | 0 to 2^14-2 |
 | 3 | 0 to 2^21-2 |
 | 4 | 0 to 2^28-2 |
 | 5 | 0 to 2^35-2 |
 | 6 | 0 to 2^42-2 |
 | 7 | 0 to 2^49-2 |
 | 8 | 0 to 2^56-2 |
 +--------------+----------------------+

 If the length of Element Data equals 2^(n*7)-1 then the octet length
 of the Element Data Size MUST be at least n+1. This rule prevents an
 Element Data Size from being expressed as a reserved value. For
 example, an Element with an octet length of 127 MUST NOT be encoded
 in an Element Data Size encoding with a one octet length. The
 following table clarifies this rule by showing a valid and invalid
 expression of an Element Data Size with a VINT_DATA of 127 (which is
 equal to 2^(1*7)-1).

Lhomme, et al. Expires March 27, 2017 [Page 7]

Internet-Draft EBML September 2016

 +------------+-------------+----------------+-----------------------+
 | VINT_WIDTH | VINT_MARKER | VINT_DATA | Element Data Size |
 | | | | Status |
 +------------+-------------+----------------+-----------------------+
	1	1111111	Reserved (meaning
			Unknown)
0	1	00000001111111	Valid (meaning 127
			octets)
 +------------+-------------+----------------+-----------------------+

1.8. EBML Element Types

 Each defined EBML Element MUST have a declared Element Type. The
 Element Type defines a concept for storing data that may be
 constrained by length, endianness, and purpose.

 +------------+--+
 | Element | Signed Integer |
 | Data Type | |
 +------------+--+
Endianness	Big-endian
Length	A Signed Integer Element MUST declare a length that
	is no greater than 8 octets. An Signed Integer
	Element with a zero-octet length represents an
	integer value of zero.
Definition	A Signed Integer stores an integer (meaning that it
	can be written without a fractional component) which
	may be negative, positive, or zero. Because EBML
	limits Signed Integers to 8 octets in length a
	Signed Element may store a number from
	-9,223,372,036,854,775,808 to
	+9,223,372,036,854,775,807.
 +------------+--+

Lhomme, et al. Expires March 27, 2017 [Page 8]

Internet-Draft EBML September 2016

 +------------+--+
 | Element | Unsigned Integer |
 | Data Type | |
 +------------+--+
Endianness	Big-endian
Length	A Unsigned Integer Element MUST declare a length
	that is no greater than 8 octets. An Unsigned
	Integer Element with a zero-octet length represents
	an integer value of zero.
Definition	An Unsigned Integer stores an integer (meaning that
	it can be written without a fractional component)
	which may be positive or zero. Because EBML limits
	Unsigned Integers to 8 octets in length an unsigned
	Element may store a number from 0 to
	18,446,744,073,709,551,615.
 +------------+--+

 +------------+--+
 | Element | Float |
 | Data Type | |
 +------------+--+
Endianness	Big-endian
Length	A Float Element MUST declare of length of either 0
	octets (0 bit), 4 octets (32 bit) or 8 octets (64
	bit). A Float Element with a zero-octet length
	represents a numerical value of zero.
Definition	A Float Elements stores a floating-point number as
	defined in IEEE 754.
 +------------+--+

 +------------+--+
 | Element | String |
 | Data Type | |
 +------------+--+
Endianness	None
Length	A String Element may declare any length from zero to
	"VINTMAX".
Definition	A String Element may either be empty (zero-length)
	or contain Printable ASCII characters in the range
	of 0x20 to 0x7E. Octets with all bits set to zero
	may follow the string value when needed.
 +------------+--+

Lhomme, et al. Expires March 27, 2017 [Page 9]

Internet-Draft EBML September 2016

 +------------+--+
 | Element | UTF-8 |
 | Data Type | |
 +------------+--+
Endianness	None
Length	A UTF-8 Element may declare any length from zero to
	"VINTMAX".
Definition	A UTF-8 Element shall contain only a valid Unicode
	string as defined in RFC 2279 [2]. Octets with all
	bits set to zero may follow the UTF-8 value when
	needed.
 +------------+--+

 +------------+--+
 | Element | Date |
 | Data Type | |
 +------------+--+
Endianness	None
Length	A Date Element MUST declare a length of either 0
	octets or 8 octets. A Date Element with a zero-octet
	length represents a timestamp of
	2001-01-01T00:00:00.000000000 UTC.
Definition	The Date Element MUST contain a Signed Integer that
	expresses a point in time referenced in nanoseconds
	from the precise beginning of the third millennium
	of the Gregorian Calendar in Coordinated Universal
	Time (also known as 2001-01-01T00:00:00.000000000
	UTC). This provides a possible expression of time
	from 1708-09-11T00:12:44.854775808 UTC to
	2293-04-11T11:47:16.854775807 UTC.
 +------------+--+

https://datatracker.ietf.org/doc/html/rfc2279

Lhomme, et al. Expires March 27, 2017 [Page 10]

Internet-Draft EBML September 2016

 +------------+--+
 | Element | Master-element |
 | Data Type | |
 +------------+--+
Endianness	None
Length	A Master-element may declare any length from zero to
	"VINTMAX". The Master-element may also use an
	unknown length. See the section on Element Data Size
	for rules that apply to elements of unknown length.
Definition	The Master-element contains zero, one, or many other
	elements. Elements contained within a Master-element
	must be defined for use at levels greater than the
	level of the Master-element. For instance is a
	Master-element occurs on level 2 then all contained
	Elements must be valid at level 3. Element Data
	stored within Master-elements SHOULD only consist of
	EBML Elements and SHOULD NOT contain any data that
	is not part of an EBML Element. When EBML is used in
	transmission or streaming, data that is not part of
	an EBML Element is permitted to be present within a
	Master-element if "unknownsizeallowed" is enabled
	within that Master-element's definition. In this
	case, the reader should skip data until a valid
	Element ID of the same level or the next greater
	level of the Master-element is found. What Element
	IDs are considered valid within a Master-element is
	identified by the EBML Schema for that version of
	the EBML Document Type. Any data contained with a
	Master-element that is not part of an Element SHOULD
	be ignored.
 +------------+--+

 +--------------+--+
 | Element Data | Binary |
 | Type | |
 +--------------+--+
Endianness	None
Length	A binary element may declare any length from zero
	to "VINTMAX".
Definition	The contents of a Binary element should not be
	interpreted by the EBML parser.
 +--------------+--+

1.9. EBML Document

 An EBML Document is comprised of only two components, an EBML Header
 and an EBML Body. An EBML Document MUST start with an EBML Header
 which declares significant characteristics of the entire EBML Body.

Lhomme, et al. Expires March 27, 2017 [Page 11]

Internet-Draft EBML September 2016

 An EBML Document MAY only consist of EBML Elements and MUST NOT
 contain any data that is not part of an EBML Element. The initial
 EBML Element of an EBML Document and the Elements that follow it are
 considered Level 0 Elements. If an EBML Master-element is considered
 to be at level N and it contains one or many other EBML Elements then
 the contained Elements shall be considered at Level N+1. Thus a
 Level 2 Element would have to be contained by a Master-element (at
 Level 1) that is contained by another Master-element (at Level 0).

1.9.1. EBML Header

 The EBML Header is a declaration that provides processing
 instructions and identification of the EBML Body. The EBML Header
 may be considered as analogous to an XML Declaration. All EBML
 Documents MUST begin with a valid EBML Header.

 The EBML Header documents the EBML Schema (also known as the EBML
 DocType) that may be used to semantically interpret the structure and
 meaning of the EBML Document. Additionally the EBML Header documents
 the versions of both EBML and the EBML Schema that were used to write
 the EBML Document and the versions required to read the EBML
 Document.

 The EBML Header consists of a single Master-element with an Element
 ID of 'EBML'. The EBML Header MUST ONLY contain EBML Elements that
 are defined as part of the EBML Specification.

 All EBML Elements within the EBML Header MUST NOT utilize any Element
 ID with a length greater than 4 octets. All EBML Elements within the
 EBML Header MUST NOT utilize any Element Data Size with a length
 greater than 4 octets.

1.9.2. EBML Body

 All data of an EBML Document following the EBML Header may be
 considered the EBML Body. The end of the EBML Body, as well as the
 end of the EBML Document that contains the EBML Body, is considered
 as whichever comes first: the beginning of a new level 0 EBML Header
 or the end of the file. The EBML Body MAY only consist of EBML
 Elements and MUST NOT contain any data that is not part of an EBML
 Element. Although the EBML specification itself defines precisely
 what EBML Elements are to be used within the EBML Header, the EBML
 specification does not name or define what EBML Elements are to be
 used within the EBML Body. The definition of what EBML Elements are
 to be used within the EBML Body is defined by an EBML Schema.

Lhomme, et al. Expires March 27, 2017 [Page 12]

Internet-Draft EBML September 2016

1.10. EBML Stream

 An EBML Stream is a file that consists of one or many EBML Documents
 that are concatenated together. An occurrence of a Level 0 EBML
 Header marks the beginning of an EBML Document.

1.11. Elements semantic

1.11.1. EBML Schema

 An EBML Schema is an XML Document that defines the properties,
 arrangement, and usage of EBML Elements that compose a specific EBML
 Document Type. The relationship of an EBML Schema to an EBML
 Document may be considered analogous to the relationship of an XML
 Schema [3] to an XML Document [4]. An EBML Schema MUST be clearly
 associated with one or many EBML Document Types. An EBML Schema must
 be expressed as well-formed XML. An EBML Document Type is identified
 by a unique string stored within the EBML Header element called
 DocType; for example "matroska" or "webm".

 As an XML Document, the EBML Schema MUST use "<EBMLSchema>" as the
 top level element. The "<EBMLSchema>" element MAY contain
 "<element>" sub-elements. Each "<element>" defines one EBML Element
 through the use of several attributes which are defined in the
 section on Section 1.11.1.1. EBML Schemas MAY contain additional
 attributes to extend the semantics but MUST NOT conflict is the
 definitions of the "<element>" attributes defined within this
 specification.

 Within the EBML Schema each EBML Element is defined to occur at a
 specific level. For any specificied EBML Element that is not at
 level 0, the Parent EBML Element refers to the EBML Master-element
 that that EBML Element is contained within. For any specifiied EBML
 Master-element the Child EBML Element refers to the EBML Elements
 that may be immediately contained within that Master-element. For
 any EBML Element that is not defined at level 0, the Parent EBML
 Element may be identified by the preceding "<element>" node which has
 a lower value as the defined "level" attribute. The only exception
 for this rule are Global EBML Elements which may occur within any
 Parent EBML Element within the restriction of the Global EBML
 Element's range declaration.

 An EBML Schema MUST declare exactly one Element at Level 0 (referred
 to as the Root Element) that MUST occur exactly once within an EBML
 Document. The Root Element MUST be mandatory (with minOccurs set to
 1) and MUST be defined to occur exactly once (maxOccurs set to 1).
 Note that the EBML and Void Elements may also occur at Level 0 but
 are not considered to be Root Elements.

Lhomme, et al. Expires March 27, 2017 [Page 13]

Internet-Draft EBML September 2016

 Elements defined to only occur at Level 1 are known as Top-Level
 Elements.

 The EBML Schema does not itself document the EBML Header, but
 documents all data of the EBML Document that follows the EBML Header.
 The EBML Header itself is documented by this specification in the

Section 1.11.2 section. The EBML Schema also does not document
 Global Elements that are defined by the EBML Specification (namely
 Void and CRC-32).

1.11.1.1. EBML Schema Element Attributes

 Within an EBML Schema the "<EBMLSchema>" uses the following
 attributes to define the EBML Schema:

 +-----------+----------+--+
 | attribute | required | definition |
 | name | | |
 +-----------+----------+--+
docType	Yes	The "docType" lists the official name of
		the EBML Document Type that is defined by
		the EBML Schema; for example, "<EBMLSchema
		docType="matroska">".
version	Yes	The "version" lists an incremental non-
		negative integer that specifies the
		version of the docType documented by the
		EBML Schema. Unlike XML Schemas, an EBML
		Schema documents all versions of a
		docType's definition rather than using
		separate EBML Schemas for each version of
		a docType. Elements may be introduced and
		deprecated by using the "minver" and
		"maxver" attributes of .
 +-----------+----------+--+

 Within an EBML Schema the "<element>" uses the following attributes
 to define an EBML Element.

 +--------------------+----------+-----------------------------------+
 | attribute name | required | definition |
 +--------------------+----------+-----------------------------------+
name	Yes	The official human-readable name
		of the EBML Element. The value of
		the name MUST be in the form of
		an NCName as defined by the XML
		Schema specification [5].
level	Yes	The level notes at what
		hierarchical depth the EBML

Lhomme, et al. Expires March 27, 2017 [Page 14]

Internet-Draft EBML September 2016

		Element may occur within an EBML
		Document. The Root Element of an
		EBML Document is at level 0 and
		the Elements that it may contain
		are at level 1. The level MUST be
		expressed as an integer. Note
		that Elements defined as "global"
		and "recursive" MAY occur at a
		level greater than or equal to
		the defined "level".
global	No	A boolean to express if an EBML
		Element MUST occur at its defined
		level or may occur within any
		Parent EBML Element. If the
		"global" attribute is not
		expressed for that Element then
		that element is to be considered
		not global.
id	Yes	The Element ID expressed in
		hexadecimal notation prefixed by
		a '0x'. To reduce the risk of
		false positives while parsing
		EBML Streams, the IDs of the Root
		Element and Top-Level Elements
		SHOULD be at least 4 octets in
		length. Element IDs defined for
		use at Level 0 or Level 1 MAY use
		shorter octet lengths to
		facilitate padding and optimize
		edits to EBML Documents; for
		instance, the EBML Void Element
		uses an Element ID with a one
		octet length to allow its usage
		in more writing and editing
		scenarios.
minOccurs	No	An integer to express the minimal
		number of occurrences that the
		EBML Element MUST occur within
		its Parent Element if its Parent
		Element is used. If the Element
		has no Parent Level (as is the
		case with Elements at Level 0),
		then minOccurs refers to
		constaints on the Element's
		occurrence within the EBML
		Document. If the minOccurs
		attribute is not expressed for
		that Element then that Element

Lhomme, et al. Expires March 27, 2017 [Page 15]

Internet-Draft EBML September 2016

		shall be considered to have a
		minOccurs value of 0. This value
		of minOccurs MUST be a positive
		integer. The semantic meaning of
		minOccurs within an EBML Schema
		is considered analogous to the
		meaning of minOccurs within an
		XML Schema [6]. Note that
		Elements with minOccurs set to
		"1" that also have a default
		value declared are not required
		to be stored but are required to
		be interpretted, see the Section
		1.11.1.6.
maxOccurs	No	A value to express the maximum
		number of occurrences that the
		EBML Element MAY occur within its
		Parent Element if its Parent
		Element is used. If the Element
		has no Parent Level (as is the
		case with Elements at Level 0),
		then maxOccurs refers to
		constaints on the Element's
		occurrence within the EBML
		Document. This value may be
		either a positive integer or the
		term "unbounded" to indicate
		there is no maximum number of
		occurrences or the term
		"identical" to indicate that the
		Element is an Section 1.11.1.3.
		If the maxOccurs attribute is not
		expressed for that Element then
		that Element shall be considered
		to have a maxOccurs value of 1.
		The semantic meaning of maxOccurs
		within an EBML Schema is
		considered analogous to the
		meaning of minOccurs within an
		XML Schema [7], with EBML Schema
		adding the concept of Identically
		Recurring Elements.
range	No	For Elements which are of
		numerical types (Unsigned
		Integer, Signed Integer, Float,
		and Date) a numerical range may
		be specified. If specified that
		the value of the EBML Element

Lhomme, et al. Expires March 27, 2017 [Page 16]

Internet-Draft EBML September 2016

		MUST be within the defined range
		inclusively. See the Section
		1.11.1.4 for rules applied to
		expression of range values.
default	No	A default value may be provided.
		If an Element is mandatory but
		not written within its Parent
		EBML Element, then the parser of
		the EBML Document MUST insert the
		defined default value of the
		Element. EBML Elements that are
		Master-elements MUST NOT declare
		a default value.
type	Yes	As defined within the Section
		1.8, the type MUST be set to one
		of the following values:
		'integer' (signed integer),
		'uinteger' (unsigned integer),
		'float', 'string', 'date',
		'utf-8', 'master', or 'binary'.
unknownsizeallowed	No	A boolean to express if an EBML
		Element MAY be used as an
		"Unknown-Sized Element" (having
		all VINT_DATA bits of Element
		Data Size set to 1). The
		"unknownsizeallowed" attribute
		only applies to Master-elements.
		If the "unknownsizeallowed"
		attribute is not used it is
		assumed that the element is not
		allowed to use an unknown Element
		Data Size.
recursive	No	A boolean to express if an EBML
		Element MAY be stored
		recursively. In this case the
		Element MAY be stored at levels
		greater that defined in the
		"level" attribute if the Element
		is a Child Element of a Parent
		Element with the same Element ID.
		The "recursive" attribute only
		applies to Master-elements. If
		the "recursive" attribute is not
		used it is assumed that the
		element is not allowed to be used
		recursively.
minver	No	The "minver" (minimum version)
		attribute stores a non-negative

Lhomme, et al. Expires March 27, 2017 [Page 17]

Internet-Draft EBML September 2016

		integer that represents the first
		version of the docType to support
		the element. If the "minver"
		attribute is not used it is
		assumed that the element has a
		minimum version of "1".
maxver	No	The "maxver" (maximum version)
		attribute stores a non-negative
		integer that represents the last
		or most recent version of the
		docType to support the element.
		If the "maxver" attribute is not
		used it is assumed that the
		element has a maximum version
		equal to the value stored in the
		"version" attribute of .
 +--------------------+----------+-----------------------------------+

 The "<element>" nodes shall contain a description of the meaning and
 use of the EBML Element stored within one or many "<documentation>"
 sub-elements. The "<documentation>" sub-element may use a "lang"
 attribute which may be set to the RFC 5646 value of the language of
 the element's documentation. The "<documentation>" sub-element may
 use a "type" attribute to distinguish the meaning of the
 documentation. Recommended values for the "<documentation>" sub-
 element's "type" attribute include: "definition", "rationale", "usage
 notes", and "references".

 The "<element>" nodes MUST be arranged hierarchically according to
 the permitted structure of the EBML Document Type. An "<element>"
 node that defines an EBML Element which is a Child Element of another
 Parent Element MUST be stored as an immediate sub-element of the
 "<element>" node that defines the Parent Element. "<element>" nodes
 that define Level 0 Elements and Global Elements should be sub-
 elements of "<EBMLSchema>".

1.11.1.2. EBML Schema Example

https://datatracker.ietf.org/doc/html/rfc5646

Lhomme, et al. Expires March 27, 2017 [Page 18]

Internet-Draft EBML September 2016

<?xml version="1.0" encoding="utf-8"?>
<EBMLSchema docType="files-in-ebml-demo" version="1">
 <!-- Root Element-->
 <element name="Files" level="0" id="0x1946696C" type="master">
 <documentation lang="en" type="definition">Container of data and
 attributes representing one or many files.</documentation>
 <element name="File" level="1" id="0x6146" type="master" minOccurs="1"
 maxOccurs="unbounded">
 <documentation lang="en" type="definition">An attached file.
 </documentation>
 <element name="FileName" level="2" id="0x614E" type="utf-8"
 minOccurs="1">
 <documentation lang="en" type="definition">Filename of the attached
 file.</documentation>
 </element>
 <element name="MimeType" level="2" id="0x464D" type="string"
 minOccurs="1">
 <documentation lang="en" type="definition">MIME type of the
 file.</documentation>
 </element>
 <element name="ModificationTimestamp" level="2" id="0x4654"
 type="date" minOccurs="1">
 <documentation lang="en" type="definition">Modification timestamp of
 the file.</documentation>
 </element>
 <element name="Data" level="2" id="0x4664" type="binary"
 minOccurs="1">
 <documentation lang="en" type="definition">The data of the
 file.</documentation>
 </element>
 </element>
 </element>
</EBMLSchema>

1.11.1.3. Identically Recurring Elements

 An Identically Recurring Element is an Element that may occur within
 its Parent Element more than once but that each recurrence within
 that Parent Element MUST be identical both in storage and semantics.
 Identically Recurring Elements are permitted to be stored multiple
 times within the same Parent Element in order to increase data
 resilience and optimize the use of EBML in transmission. Identically
 Recurring Elements SHOULD include a CRC-32 Element as a Child
 Element; this is especially recommended when EBML is used for long-
 term storage or transmission. If a Parent Element contains more than
 one copy of an Identically Recurring Element which includes a CRC-32
 Child Element then the first instance of the Identically Recurring
 Element with a valid CRC-32 value should be used for interpretation.

Lhomme, et al. Expires March 27, 2017 [Page 19]

Internet-Draft EBML September 2016

 If a Parent Element contains more than one copy of an Identically
 Recurring Element which does not contain a CRC-32 Child Element or if
 CRC-32 Child Elements are present but none are valid then the first
 instance of the Identically Recurring Element should be used for
 interpretation.

1.11.1.4. Expression of range

 The "range" attribute MUST only be used with EBML Elements that are
 either "signed integer", "unsigned integer", or "float". The "range"
 attribute does not support date EBML Elements. The "range"
 expression may contain whitespace for readability but whitespace
 within a "range" expression MUST NOT convey meaning. The expression
 of the "range" MUST adhere to one of the following forms:

 o "x-y" where x and y are integers or floats and "y" must be greater
 than "x", meaning that the value must be greater than or equal to
 "x" and less than or equal to "y".

 o ">x" where "x" is an integer or float, meaning that the value MUST
 be greater than "x".

 o "x" where "x" is an integer or float, meaning that the value MUST
 be equal "x".

 The "range" may use the prefix "not" to indicate that the expressed
 range is negated. Please also see the section on Section 1.11.1.5.

1.11.1.5. Textual expression of Floats

 When a float value is represented textually in an EBML Schema, such
 as within a "default" or "range" value, the float values MUST be
 expressed as a Hexadecimal Floating-Point Constants as defined in the
 C11 standard ISO/IEC 9899:2011 [8] (see section 6.4.4.2 on Floating
 Constants). The following table provides examples of expressions of
 float ranges.

 +-------------------+---+
 | as decimal | as Hexadecimal Floating-Point Constants |
 +-------------------+---+
 | 0.0-1.0 | 0x0p+1-0x1p+0 |
 | 1.0-256.0 | 0x1p+0-0x1p+8 |
 | 0.857421875 | 0x1.b7p-1 |
 | -1.0--0.857421875 | -0x1p+0--0x1.b7p-1 |
 +-------------------+---+

 Within an expression of a float range, as in an integer range, the
 "-" (hyphen) character is the separator between the minimal and

Lhomme, et al. Expires March 27, 2017 [Page 20]

Internet-Draft EBML September 2016

 maximum value permitted by the range. Note that Hexadecimal
 Floating-Point Constants also use a "-" (hyphen) when indicating a
 negative binary power. Within a float range, when a "-" (hyphen) is
 immediately preceded by a letter "p", then the "-" (hyphen) is a part
 of the Hexadecimal Floating-Point Constant which notes negative
 binary power. Within a float range, when a "-" (hyphen) is not
 immediately preceded by a letter "p", then the "-" (hyphen)
 represents the separator between the minimal and maximum value
 permitted by the range.

1.11.1.6. Note on the Use of default attributes to define Mandatory
 EBML Elements

 If a Mandatory EBML Element has a default value declared by an EBML
 Schema and the EBML Element's value is equal to the declared default
 value then that Element is not required to be present within the EBML
 Document if its Parent EBML Element is present. In this case, the
 default value of the Mandatory EBML Element may be assumed although
 the EBML Element is not present within its Parent EBML Element. Also
 in this case the parser of the EBML Document MUST insert the defined
 default value of the Element.

 If a Mandatory EBML Element has no default value declared by an EBML
 Schema and its Parent EBML Element is present than the EBML Element
 must be present as well. If a Mandatory EBML Element has a default
 value declared by an EBML Schema and its Parent EBML Element is
 present and the EBML Element's value is NOT equal to the declared
 default value then the EBML Element MUST be used.

 This table clarifies if a Mandatory EBML Element MUST be written,
 according to if the default value is declared, if the value of the
 EBML Element is equal to the declared default value, and if the
 Parent EBML Element is used.

Lhomme, et al. Expires March 27, 2017 [Page 21]

Internet-Draft EBML September 2016

 +---------------+----------------+--------------+-------------------+
Is the	Is the value	Is the	Then is storing
default value	equal to	Parent	the EBML Element
declared?	default?	Element	required?
		used?	
+---------------+----------------+--------------+-------------------+			
Yes	Yes	Yes	No
Yes	Yes	No	No
Yes	No	Yes	Yes
Yes	No	No	No
No	n/a	Yes	Yes
No	n/a	No	No
No	n/a	Yes	Yes
No	n/a	No	No
 +---------------+----------------+--------------+-------------------+

1.11.1.7. Note on the Use of default attributes to define non-Mandatory
 EBML Elements

 If an EBML Element is not Mandatory, has a defined default value, and
 is an Empty EBML Element then the EBML Element MUST be interpreted as
 expressing the default value.

1.11.2. EBML Header Elements

 This specification here contains definitions of all EBML Elements of
 the EBML Header.

 +-------------+---+
 | Name | EBML |
 +-------------+---+
Level	0
EBML ID	[1A][45][DF][A3]
Mandatory	Yes
Multiple	No
Range	-
Default	-
Type	Master-element
Description	Set the EBML characteristics of the data to follow.
	Each EBML Document has to start with this.
 +-------------+---+

Lhomme, et al. Expires March 27, 2017 [Page 22]

Internet-Draft EBML September 2016

 +-------------+---+
 | Name | EBMLVersion |
 +-------------+---+
Level	1
EBML ID	[42][86]
Mandatory	Yes
Multiple	No
Range	1
Default	1
Type	Unsigned Integer
Description	The version of EBML parser used to create the EBML
	Document.
 +-------------+---+

 +-------------+---+
 | Name | EBMLReadVersion |
 +-------------+---+
Level	1
EBML ID	[42][F7]
Mandatory	Yes
Multiple	No
Range	1
Default	1
Type	Unsigned Integer
Description	The minimum EBML version a parser has to support to
	read this EBML Document.
 +-------------+---+

 +-------------+---+
 | Name | EBMLMaxIDLength |
 +-------------+---+
Level	1
EBML ID	[42][F2]
Mandatory	Yes
Multiple	No
Range	>3
Default	4
Type	Unsigned Integer
Description	The EBMLMaxIDLength is the maximum length in octets
	of the Element IDs to be found within the EBML
	Body. An EBMLMaxIDLength value of four is
	recommended, though larger values are allowed.
 +-------------+---+

Lhomme, et al. Expires March 27, 2017 [Page 23]

Internet-Draft EBML September 2016

 +-------------+---+
 | Name | EBMLMaxSizeLength |
 +-------------+---+
Level	1
EBML ID	[42][F3]
Mandatory	Yes
Multiple	No
Range	>0
Default	8
Type	Unsigned Integer
Description	The EBMLMaxSizeLength is the maximum length in
	octets of the expression of all Element Data Sizes
	to be found within the EBML Body. To be clear
	EBMLMaxSizeLength documents the maximum 'length' of
	all Element Data Size expressions within the EBML
	Body and not the maximum 'value' of all Element
	Data Size expressions within the EBML Body.
	Elements that have a Element Data Size expression
	which is larger in octets than what is expressed by
	EBMLMaxSizeLength SHALL be considered invalid.
 +-------------+---+

 +-------------+---+
 | Name | DocType |
 +-------------+---+
Level	1
EBML ID	[42][82]
Mandatory	Yes
Multiple	No
Range	-
Default	matroska
Type	String
Description	A string that describes and identifies the content
	of the EBML Body that follows this EBML Header.
 +-------------+---+

Lhomme, et al. Expires March 27, 2017 [Page 24]

Internet-Draft EBML September 2016

 +-------------+---+
 | Name | DocTypeVersion |
 +-------------+---+
Level	1
EBML ID	[42][87]
Mandatory	Yes
Multiple	No
Range	-
Default	1
Type	Unsigned Integer
Description	The version of DocType interpreter used to create
	the EBML Document.
 +-------------+---+

 +-------------+---+
 | Name | DocTypeReadVersion |
 +-------------+---+
Level	1
EBML ID	[42][85]
Mandatory	Yes
Multiple	No
Range	-
Default	1
Type	Unsigned Integer
Description	The minimum DocType version an interpreter has to
	support to read this EBML Document.
 +-------------+---+

1.11.3. Global elements (used everywhere in the format)

Lhomme, et al. Expires March 27, 2017 [Page 25]

Internet-Draft EBML September 2016

 +-------------+---+
 | Name | CRC-32 |
 +-------------+---+
Level	1+
Global	Yes
EBML ID	[BF]
Mandatory	No
Range	-
Default	-
Type	Binary
Description	The CRC-32 Element contains a 32 bit Cyclic
	Redundancy Check value of all the Element Data of
	the Parent Element as stored except for the CRC-32
	Element itself. When the CRC-32 Element is present,
	the CRC-32 Element MUST be the first ordered
	Element within its Parent Element for easier
	reading. All Top-Level Elements of an EBML Document
	SHOULD include a CRC-32 Element as a Child Element.
	The CRC in use is the IEEE-CRC-32 algorithm as used
	in the ISO 3309 standard and in section 8.1.1.6.2
	of ITU-T recommendation V.42, with initial value of
	0xFFFFFFFF. The CRC value MUST be computed on a
	little endian bitstream and MUST use little endian
	storage.
 +-------------+---+

 +-------------+---+
 | Name | Void |
 +-------------+---+
Level	0+
Global	Yes
EBML ID	[EC]
Mandatory	No
Multiple	Yes
Range	-
Default	-
Type	Binary
Description	Used to void damaged data, to avoid unexpected
	behaviors when using damaged data. The content is
	discarded. Also used to reserve space in a sub-
	element for later use.
 +-------------+---+

2. References

Lhomme, et al. Expires March 27, 2017 [Page 26]

Internet-Draft EBML September 2016

2.1. URIs

 [1] https://tools.ietf.org/html/rfc2119

 [2] http://www.faqs.org/rfcs/rfc2279.html

 [3] http://www.w3.org/XML/Schema#dev

 [4] http://www.w3.org/TR/xml/

 [5] http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-decl

 [6] https://www.w3.org/TR/xmlschema-0/#ref6

 [7] https://www.w3.org/TR/xmlschema-0/#ref6

 [8] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Authors' Addresses

 Steve Lhomme

 Dave Rice

 Moritz Bunkus

https://tools.ietf.org/html/rfc2119
http://www.faqs.org/rfcs/rfc2279.html
http://www.w3.org/XML/Schema#dev
http://www.w3.org/TR/xml/
http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-decl
https://www.w3.org/TR/xmlschema-0/#ref6
https://www.w3.org/TR/xmlschema-0/#ref6
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Lhomme, et al. Expires March 27, 2017 [Page 27]

