
cellar S. Lhomme
Internet-Draft
Intended status: Standards Track D. Rice
Expires: August 30, 2017
 M. Bunkus
 February 26, 2017

Extensible Binary Meta Language
draft-ietf-cellar-ebml-02

Abstract

 This document defines the Extensible Binary Meta Language (EBML)
 format as a generalized file format for any type of data in a
 hierarchical form. EBML is designed as a binary equivalent to XML
 and uses a storage-efficient approach to build nested Elements with
 identifiers, lengths, and values. Similar to how an XML Schema
 defines the structure and semantics of an XML Document, this document
 defines how EBML Schemas are created to convey the semantics of an
 EBML Document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 30, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lhomme, et al. Expires August 30, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EBML February 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notation and Conventions 3
3. Security Considerations 6
4. Structure . 7
5. Variable Size Integer . 7
5.1. VINT_WIDTH . 7
5.2. VINT_MARKER . 8
5.3. VINT_DATA . 8
5.4. VINT Examples . 8

6. Element ID . 9
7. Element Data Size . 10
8. EBML Element Types . 12
8.1. Signed Integer Element 13
8.2. Unsigned Integer Element 13
8.3. Float Element . 13
8.4. String Element . 13
8.5. UTF-8 Element . 14
8.6. Date Element . 14
8.7. Master Element . 14
8.8. Binary Element . 15

9. EBML Document . 15
9.1. EBML Header . 15
9.2. EBML Body . 16

10. EBML Stream . 16
11. Elements semantic . 16
11.1. EBML Schema . 16
11.1.1. Element . 17
11.1.2. Attributes . 17
11.1.3. Element . 17
11.1.4. Attributes . 18
11.1.5. Element . 22
11.1.6. Attributes . 22
11.1.7. Element . 23
11.1.8. Element . 23
11.1.9. Attributes . 23
11.1.10. XML Schema for EBML Schema 23
11.1.11. EBML Schema Example 25
11.1.12. Identically Recurring Elements 25
11.1.13. Expression of range 26
11.1.14. Textual expression of Floats 26

Lhomme, et al. Expires August 30, 2017 [Page 2]

Internet-Draft EBML February 2017

 11.1.15. Note on the Use of default attributes to define
 Mandatory EBML Elements 27

11.2. EBML Header Elements 28
11.2.1. EBML Element . 28
11.2.2. EBMLVersion Element 28
11.2.3. EBMLReadVersion Element 29
11.2.4. EBMLMaxIDLength Element 29
11.2.5. EBMLMaxSizeLength Element 30
11.2.6. DocType Element 30
11.2.7. DocTypeVersion Element 31
11.2.8. DocTypeReadVersion Element 31

11.3. Global elements (used everywhere in the format) 31
11.3.1. Void Element . 32

12. References . 32
12.1. Normative References 32
12.2. Informative References 34

 Authors' Addresses . 34

1. Introduction

 "EBML", short for Extensible Binary Meta Language, specifies a binary
 and octet (byte) aligned format inspired by the principle of XML (a
 framework for structuring data).

 The goal of this document is to define a generic, binary, space-
 efficient format that can be used to define more complex formats
 (such as containers for multimedia content) using an "EBML Schema".
 The definition of the "EBML" format recognizes the idea behind HTML
 and XML as a good one: separate structure and semantics allowing the
 same structural layer to be used with multiple, possibly widely
 differing semantic layers. Except for the "EBML Header" and a few
 global elements this specification does not define particular "EBML"
 format semantics; however this specification is intended to define
 how other "EBML"-based formats can be defined.

 "EBML" uses a simple approach of building "Elements" upon three
 pieces of data (tag, length, and value) as this approach is well
 known, easy to parse, and allows selective data parsing. The "EBML"
 structure additionally allows for hierarchical arrangement to support
 complex structural formats in an efficient manner.

2. Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Lhomme, et al. Expires August 30, 2017 [Page 3]

Internet-Draft EBML February 2017

 This document defines specific terms in order to define the format
 and application of "EBML". Specific terms are defined below:

 "Child Element": A "Child Element" is a relative term to describe the
 "EBML Elements" immediately contained within a "Master Element".

 "Descendant Element": A "Descendant Element" is a relative term to
 describe any "EBML Elements" contained within a "Master Element",
 including any of the "Child Elements" of its "Child Elements", and so
 on.

 "EBML": Extensible Binary Meta Language

 "Element Data": The value(s) of the "EBML Element" which is
 identified by its "Element ID" and "Element Data Size". The form of
 the "Element Data" is defined by this document and the corresponding
 "EBML Schema" of the Element's "EBML Document Type".

 "Element Data Size": An expression, encoded as a "Variable Size
 Integer", of the length in octets of "Element Data".

 "EBML Body": All data of an "EBML Document" following the "EBML
 Header" may be considered the "EBML Body".

 "EBML Class": A representation of the octet length of an "Element
 ID".

 "EBML Document": An "EBML Document" is a datastream comprised of only
 two components, an "EBML Header" and an "EBML Body".

 "EBML Document Type": An "EBML Document Type" is a name provided by
 an "EBML Schema" for a particular implementation of "EBML" for a data
 format (examples: matroska and webm).

 "EBML Element": A foundation block of data that contains three parts:
 an "Element ID", an "Element Data Size", and "Element Data".

 "EBML Header": The "EBML Header" is a declaration that provides
 processing instructions and identification of the "EBML Body". The
 "EBML Header" may be considered as analogous to an XML Declaration
 [W3C.REC-xml-20081126] (see section 2.8 on Prolog and Document Type
 Declaration).

 "EBML Reader": An "EBML Reader" is a data parser that interprets the
 semantics of an "EBML Document" and creates a way for programs to use
 "EBML".

Lhomme, et al. Expires August 30, 2017 [Page 4]

Internet-Draft EBML February 2017

 "EBML Schema": A standardized definition for the structure of an
 "EBML Document Type".

 "EBML Stream": An "EBML Stream" is a file that consists of one or
 more "EBML Documents" that are concatenated together.

 "Element ID": The "Element ID" is a binary value, encoded as a
 "Variable Size Integer", used to uniquely identify a defined "EBML
 Element" within a specific "EBML Schema".

 "Element Name": The official human-readable name of the "EBML
 Element".

 "Element Path": The hierarchy of "Parent Element" where the "EBML
 Element" is expected to be found in the "EBML Body".

 "Empty Element": An "Empty Element" is an "EBML Element" that has an
 "Element Data Size" with all "VINT_DATA" bits set to zero which
 indicates that the "Element Data" of the Element is zero octets in
 length.

 "Master Element": The "Master Element" contains zero, one, or many
 other "EBML Elements".

 "Parent Element": A relative term to describe the "Master Element"
 which contains a specified element. For any specified "EBML Element"
 that is not at "Root Level", the "Parent Element" refers to the
 "Master Element" in which that "EBML Element" is contained.

 "Root Element": A mandatory, non-repeating "EBML Element" which
 occurs at the top level of the path hierarchy within an "EBML Body"
 and contains all other "EBML Elements" of the "EBML Body", excepting
 optional "Void Elements".

 "Root Level": The starting level in the hierarchy of an "EBML
 Document".

 "Top-Level Element": An "EBML Element" defined to only occur as a
 "Child Element" of the "Root Element".

 "Unknown-Sized Element": An Element with an unknown "Element Data
 Size".

 "Variable Size Integer": A compact variable-length binary value which
 defines its own length.

 "VINT": Also known as "Variable Size Integer".

Lhomme, et al. Expires August 30, 2017 [Page 5]

Internet-Draft EBML February 2017

 "VINTMAX": The maximum possible value that can be stored as "Element
 Data Size".

3. Security Considerations

 "EBML" itself does not offer any kind of security and does not
 provide confidentiality. "EBML" does not provide any kind of
 authorization. "EBML" only offers marginally useful and effective
 data integrity options, such as CRC elements.

 Even if the semantic layer offers any kind of encryption, "EBML"
 itself could leak information at both the semantic layer (as declared
 via the DocType element) and within the "EBML" structure (you can
 derive the presence of "EBML Elements" even with an unknown semantic
 layer with a heuristic approach; not without errors, of course, but
 with a certain degree of confidence).

 Attacks on an "EBML Reader" could include:

 o Invalid "Element IDs" that are longer than the limit stated in the
 "EBMLMaxIDLength Element" of the "EBML Header".

 o Invalid "Element IDs" that are not encoded in the shortest-
 possible way.

 o Invalid "Element IDs" comprised of reserved values.

 o Invalid "Element Data Size" values that are longer than the limit
 stated in the "EBMLMaxSizeLength Element" of the "EBML Header".

 o Invalid "Element Data Size" values (e.g. extending the length of
 the "EBML Element" beyond the scope of the "Parent Element";
 possibly triggering access-out-of-bounds issues).

 o Very high lengths in order to force out-of-memory situations
 resulting in a denial of service, access-out-of-bounds issues etc.

 o Missing "EBML Elements" that are mandatory and have no declared
 default value.

 o Usage of "0x00" octets in "EBML Elements" with a string type.

 o Usage of invalid UTF-8 encoding in "EBML Elements" of UTF-8 type
 (e.g. in order to trigger access-out-of-bounds or buffer overflow
 issues).

 o Usage of invalid data in "EBML Elements" with a date type.

Lhomme, et al. Expires August 30, 2017 [Page 6]

Internet-Draft EBML February 2017

 Side channel attacks could exploit:

 o The semantic equivalence of the same string stored in a "String
 Element" or "UTF-8 Element" with and without zero-bit padding.

 o The semantic equivalence of "VINT_DATA" within "Element Data Size"
 with to different lengths due to left-padding zero bits.

 o Data contained within a "Master Element" which is not itself part
 of an "EBML Element".

 o Extraneous copies of "Identically Recurring Element".

 o Copies of "Identically Recurring Element" within a "Parent
 Element" that contain invalid "CRC-32 Elements".

 o Use of "Void Elements".

4. Structure

 "EBML" uses a system of Elements to compose an "EBML Document".
 "EBML Elements" incorporate three parts: an "Element ID", an "Element
 Data Size", and "Element Data". The "Element Data", which is
 described by the "Element ID", includes either binary data, one or
 many other "EBML Elements", or both.

5. Variable Size Integer

 The "Element ID" and "Element Data Size" are both encoded as a
 "Variable Size Integer", developed according to a UTF-8 like system.
 The "Variable Size Integer" is composed of a "VINT_WIDTH",
 "VINT_MARKER", and "VINT_DATA", in that order. "Variable Size
 Integers" SHALL left-pad the "VINT_DATA" value with zero bits so that
 the whole "Variable Size Integer" is octet-aligned. "Variable Size
 Integers" SHALL be referred to as "VINT" for shorthand.

5.1. VINT_WIDTH

 Each "Variable Size Integer" begins with a "VINT_WIDTH" which
 consists of zero or many zero-value bits. The count of consecutive
 zero-values of the "VINT_WIDTH" plus one equals the length in octets
 of the "Variable Size Integer". For example, a "Variable Size
 Integer" that starts with a "VINT_WIDTH" which contains zero
 consecutive zero-value bits is one octet in length and a "Variable
 Size Integer" that starts with one consecutive zero-value bit is two
 octets in length. The "VINT_WIDTH" MUST only contain zero-value bits
 or be empty.

Lhomme, et al. Expires August 30, 2017 [Page 7]

Internet-Draft EBML February 2017

 Within the "EBML Header" the "VINT_WIDTH" MUST NOT exceed three bits
 in length (meaning that the "Variable Size Integer" MUST NOT exceed
 four octets in length). Within the "EBML Body", when "VINTs" are
 used to express an "Element ID", the maximum length allowed for the
 "VINT_WIDTH" is one less than the value set in the "EBMLMaxIDLength
 Element". Within the "EBML Body", when "VINTs" are used to express
 an "Element Data Size", the maximum length allowed for the
 "VINT_WIDTH" is one less than the value set in the "EBMLMaxSizeLength
 Element".

5.2. VINT_MARKER

 The "VINT_MARKER" serves as a separator between the "VINT_WIDTH" and
 "VINT_DATA". Each "Variable Size Integer" MUST contain exactly one
 "VINT_MARKER". The "VINT_MARKER" MUST be one bit in length and
 contain a bit with a value of one. The first bit with a value of one
 within the "Variable Size Integer" is the "VINT_MARKER".

5.3. VINT_DATA

 The "VINT_DATA" portion of the "Variable Size Integer" includes all
 data that follows (but not including) the "VINT_MARKER" until end of
 the "Variable Size Integer" whose length is derived from the
 "VINT_WIDTH". The bits required for the "VINT_WIDTH" and the
 "VINT_MARKER" combined use one out of eight bits of the total length
 of the "Variable Size Integer". Thus a "Variable Size Integer" of 1
 octet length supplies 7 bits for "VINT_DATA", a 2 octet length
 supplies 14 bits for "VINT_DATA", and a 3 octet length supplies 21
 bits for "VINT_DATA". If the number of bits required for "VINT_DATA"
 are less than the bit size of "VINT_DATA", then "VINT_DATA" SHOULD be
 zero-padded to the left to a size that fits. The "VINT_DATA" value
 MUST be expressed as a big-endian unsigned integer.

5.4. VINT Examples

 This table shows examples of "Variable Size Integers" with lengths
 from 1 to 5 octets. The Size column refers to the size of the
 "VINT_DATA" in bits. The Representation column depicts a binary
 expression of "Variable Size Integers" where "VINT_WIDTH" is depicted
 by '0', the "VINT_MARKER" as '1', and the "VINT_DATA" as 'x'.

Lhomme, et al. Expires August 30, 2017 [Page 8]

Internet-Draft EBML February 2017

 +-------------+------+--+
 | Octet | Size | Representation |
 | Length | | |
 +-------------+------+--+
1	2^7	1xxx xxxx
2	2^14	01xx xxxx xxxx xxxx
3	2^21	001x xxxx xxxx xxxx xxxx xxxx
4	2^28	0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx
5	2^35	0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
		xxxx
 +-------------+------+--+

 Data encoded as a "Variable Size Integer" MAY be rendered at octet
 lengths larger than needed to store the data. In this table a binary
 value of "0b10" is shown encoded as different "Variable Size
 Integers" with lengths from one octet to four octet. All four
 encoded examples have identical semantic meaning though the
 "VINT_WIDTH" and the padding of the "VINT_DATA" vary.

 +--------------+--------------+-------------------------------------+
 | Binary Value | Octet Length | As Represented in Variable Size |
 | | | Integer |
 +--------------+--------------+-------------------------------------+
10	1	1000 0010
10	2	0100 0000 0000 0010
10	3	0010 0000 0000 0000 0000 0010
10	4	0001 0000 0000 0000 0000 0000 0000
		0010
 +--------------+--------------+-------------------------------------+

6. Element ID

 The "Element ID" MUST be encoded as a "Variable Size Integer". By
 default, "Element IDs" are encoded in lengths from one octet to four
 octets, although "Element IDs" of greater lengths are used if the
 octet length of the longest "Element ID" of the "EBML Document" is
 declared in the "EBMLMaxIDLength Element" of the "EBML Header" (see

Section 11.2.4). The "VINT_DATA" component of the "Element ID" MUST
 NOT be set to either all zero values or all one values. The
 "VINT_DATA" component of the "Element ID" MUST be encoded at the
 shortest valid length. For example, an "Element ID" with binary
 encoding of "1011 1111" is valid, whereas an "Element ID" with binary
 encoding of "0100 0000 0011 1111" stores a semantically equal
 "VINT_DATA" but is invalid because a shorter "VINT" encoding is
 possible. Additionally, an "Element ID" with binary encoding of
 "1111 1111" is invalid since the "VINT_DATA" section is set to all
 one values, whereas an "Element ID" with binary encoding of "0100

Lhomme, et al. Expires August 30, 2017 [Page 9]

Internet-Draft EBML February 2017

 0000 0111 1111" stores a semantically equal "VINT_DATA" and is the
 shortest "VINT" encoding is possible.

 The following table details these specific examples further:

 +------------+-------------+----------------+-----------------------+
 | VINT_WIDTH | VINT_MARKER | VINT_DATA | Element ID Status |
 +------------+-------------+----------------+-----------------------+
	1	0000000	Invalid: "VINT_DATA"
			MUST NOT be set to
			all 0
0	1	00000000000000	Invalid: "VINT_DATA"
			MUST NOT be set to
			all 0
	1	0000001	Valid
0	1	00000000000001	Invalid: A shorter
			"VINT_DATA" encoding
			is available.
	1	0111111	Valid
0	1	00000000111111	Invalid: A shorter
			"VINT_DATA" encoding
			is available.
	1	1111111	Invalid: "VINT_DATA"
			MUST NOT be set to
			all 1
0	1	00000001111111	Valid
 +------------+-------------+----------------+-----------------------+

 The octet length of an "Element ID" determines its "EBML Class".

 +------------+--------------+--------------------------------+
 | EBML Class | Octet Length | Number of Possible Element IDs |
 +------------+--------------+--------------------------------+
 | Class A | 1 | 2^7 - 2 = 126 |
 | Class B | 2 | 2^14 - 2^7 - 1 = 16,255 |
 | Class C | 3 | 2^21 - 2^14 - 1 = 2,080,767 |
 | Class D | 4 | 2^28 - 2^21 - 1 = 266,338,303 |
 +------------+--------------+--------------------------------+

7. Element Data Size

 The "Element Data Size" expresses the length in octets of "Element
 Data". The "Element Data Size" itself MUST be encoded as a "Variable
 Size Integer". By default, "Element Data Sizes" can be encoded in
 lengths from one octet to eight octets, although "Element Data Sizes"
 of greater lengths MAY be used if the octet length of the longest
 "Element Data Size" of the "EBML Document" is declared in the
 "EBMLMaxSizeLength Element" of the "EBML Header" (see

Lhomme, et al. Expires August 30, 2017 [Page 10]

Internet-Draft EBML February 2017

Section 11.2.5). Unlike the "VINT_DATA" of the "Element ID", the
 "VINT_DATA" component of the "Element Data Size" is not mandated to
 be encoded at the shortest valid length. For example, an "Element
 Data Size" with binary encoding of "1011 1111" or a binary encoding
 of "0100 0000 0011 1111" are both valid "Element Data Sizes" and both
 store a semantically equal value (both "0b00000000111111" and
 "0b0111111", the "VINT_DATA" sections of the examples, represent the
 integer 63).

 Although an "Element ID" with all "VINT_DATA" bits set to zero is
 invalid, an "Element Data Size" with all "VINT_DATA" bits set to zero
 is allowed for "EBML Element Types" which do not mandate a non-zero
 length (see Section 8). An "Element Data Size" with all "VINT_DATA"
 bits set to zero indicates that the "Element Data" is zero octets in
 length. Such an "EBML Element" is referred to as an "Empty Element".
 If an "Empty Element" has a "default" value declared then the "EBML
 Reader" MUST interpret the value of the "Empty Element" as the
 "default" value. If an "Empty Element" has no "default" value
 declared then the "EBML Reader" MUST interpret the value of the
 "Empty Element" as defined as part of the definition of the
 corresponding "EBML Element Type" associated with the "Element ID".

 An "Element Data Size" with all "VINT_DATA" bits set to one is
 reserved as an indicator that the size of the "EBML Element" is
 unknown. The only reserved value for the "VINT_DATA" of "Element
 Data Size" is all bits set to one. An "EBML Element" with an unknown
 "Element Data Size" is referred to as an "Unknown-Sized Element".
 Only "Master Elements" SHALL be "Unknown-Sized Elements". "Master
 Elements" MUST NOT use an unknown size unless the
 "unknownsizeallowed" attribute of their "EBML Schema" is set to true
 (see Section 11.1.4.10). The use of "Unknown-Sized Elements" allows
 for an "EBML Element" to be written and read before the size of the
 "EBML Element" is known. "Unknown-Sized Element" MUST NOT be used or
 defined unnecessarily; however if the "Element Data Size" is not
 known before the "Element Data" is written, such as in some cases of
 data streaming, then "Unknown-Sized Elements" MAY be used. The end
 of an "Unknown-Sized Element" is determined by whichever comes first:
 the end of the file or the beginning of the next "EBML Element",
 defined by this document or the corresponding "EBML Schema", that is
 not independently valid as "Descendant Element" of the "Unknown-Sized
 Element".

 For "Element Data Sizes" encoded at octet lengths from one to eight,
 this table depicts the range of possible values that can be encoded
 as an "Element Data Size". An "Element Data Size" with an octet
 length of 8 is able to express a size of 2^56-2 or
 72,057,594,037,927,934 octets (or about 72 petabytes). The maximum

Lhomme, et al. Expires August 30, 2017 [Page 11]

Internet-Draft EBML February 2017

 possible value that can be stored as "Element Data Size" is referred
 to as "VINTMAX".

 +--------------+----------------------+
 | Octet Length | Possible Value Range |
 +--------------+----------------------+
 | 1 | 0 to 2^7-2 |
 | 2 | 0 to 2^14-2 |
 | 3 | 0 to 2^21-2 |
 | 4 | 0 to 2^28-2 |
 | 5 | 0 to 2^35-2 |
 | 6 | 0 to 2^42-2 |
 | 7 | 0 to 2^49-2 |
 | 8 | 0 to 2^56-2 |
 +--------------+----------------------+

 If the length of "Element Data" equals "2^(n*7)-1" then the octet
 length of the "Element Data Size" MUST be at least "n+1". This rule
 prevents an "Element Data Size" from being expressed as a reserved
 value. For example, an "EBML Element" with an octet length of 127
 MUST NOT be encoded in an "Element Data Size" encoding with a one
 octet length. The following table clarifies this rule by showing a
 valid and invalid expression of an "Element Data Size" with a
 "VINT_DATA" of 127 (which is equal to 2^(1*7)-1).

 +------------+-------------+----------------+-----------------------+
 | VINT_WIDTH | VINT_MARKER | VINT_DATA | Element Data Size |
 | | | | Status |
 +------------+-------------+----------------+-----------------------+
	1	1111111	Reserved (meaning
			Unknown)
0	1	00000001111111	Valid (meaning 127
			octets)
 +------------+-------------+----------------+-----------------------+

8. EBML Element Types

 "EBML Elements" are defined by an "EBML Schema" which MUST declare
 one of the following "EBML Element Types" for each "EBML Element".
 An "EBML Element Type" defines a concept of storing data within an
 "EBML Element" that describes such characteristics as length,
 endianness, and definition.

 "EBML Elements" which are defined as a "Signed Integer Element",
 "Unsigned Integer Element", "Float Element", or "Date Element" use
 big endian storage.

Lhomme, et al. Expires August 30, 2017 [Page 12]

Internet-Draft EBML February 2017

8.1. Signed Integer Element

 A "Signed Integer Element" MUST declare a length from zero to eight
 octets. If the "EBML Element" is not defined to have a "default"
 value, then a "Signed Integer Element" with a zero-octet length
 represents an integer value of zero.

 A "Signed Integer Element" stores an integer (meaning that it can be
 written without a fractional component) which could be negative,
 positive, or zero. Signed Integers MUST be stored with two's
 complement notation with the leftmost bit being the sign bit.
 Because "EBML" limits Signed Integers to 8 octets in length a "Signed
 Integer Element" stores a number from -9,223,372,036,854,775,808 to
 +9,223,372,036,854,775,807.

8.2. Unsigned Integer Element

 An "Unsigned Integer Element" MUST declare a length from zero to
 eight octets. If the "EBML Element" is not defined to have a
 "default" value, then an "Unsigned Integer Element" with a zero-octet
 length represents an integer value of zero.

 An "Unsigned Integer Element" stores an integer (meaning that it can
 be written without a fractional component) which could be positive or
 zero. Because "EBML" limits Unsigned Integers to 8 octets in length
 an "Unsigned Integer Element" stores a number from 0 to
 18,446,744,073,709,551,615.

8.3. Float Element

 A "Float Element" MUST declare a length of either zero octets (0
 bit), four octets (32 bit) or eight octets (64 bit). If the "EBML
 Element" is not defined to have a "default" value, then a "Float
 Element" with a zero-octet length represents a numerical value of
 zero.

 A "Float Element" stores a floating-point number as defined in
 [IEEE.754.1985].

8.4. String Element

 A "String Element" MUST declare a length in octets from zero to
 "VINTMAX". If the "EBML Element" is not defined to have a "default"
 value, then a "String Element" with a zero-octet length represents an
 empty string.

 A "String Element" MUST either be empty (zero-length) or contain
 printable ASCII characters [RFC0020] in the range of "0x20" to

https://datatracker.ietf.org/doc/html/rfc0020

Lhomme, et al. Expires August 30, 2017 [Page 13]

Internet-Draft EBML February 2017

 "0x7E". Octets with all bits set to zero MAY follow the string value
 when needed, such as reducing the length of a stored string while
 maintaining the same "Element Data Size". A string with one or more
 octets with all bits set to zero and a string without one or more
 octets with all bits set to zero are semantically equal.

8.5. UTF-8 Element

 A "UTF-8 Element" MUST declare a length in octets from zero to
 "VINTMAX". If the "EBML Element" is not defined to have a "default"
 value, then a "UTF-8 Element" with a zero-octet length represents an
 empty string.

 A "UTF-8 Element" contains only a valid Unicode string as defined in
 [RFC2279]. Octets with all bits set to zero MAY follow the string
 value when needed, such as reducing the length of a stored UTF-8 data
 while maintaining the same "Element Data Size". A UTF-8 value with
 one or more octets with all bits set to zero and a UTF-8 value
 without one or more octets with all bits set to zero are semantically
 equal.

8.6. Date Element

 A "Date Element" MUST declare a length of either zero octets or eight
 octets. If the "EBML Element" is not defined to have a "default"
 value, then a "Date Element" with a zero-octet length represents a
 timestamp of 2001-01-01T00:00:00.000000000 UTC [RFC3339].

 The "Date Element" stores an integer in the same format as the
 "Signed Integer Element" that expresses a point in time referenced in
 nanoseconds from the precise beginning of the third millennium of the
 Gregorian Calendar in Coordinated Universal Time (also known as
 2001-01-01T00:00:00.000000000 UTC). This provides a possible
 expression of time from 1708-09-11T00:12:44.854775808 UTC to
 2293-04-11T11:47:16.854775807 UTC.

8.7. Master Element

 A "Master Element" MUST declare a length in octets from zero to
 "VINTMAX". The "Master Element" MAY also use an unknown length. See

Section 7 for rules that apply to elements of unknown length.

 The "Master Element" contains zero, one, or many other elements.
 "EBML Elements" contained within a "Master Element" MUST have the
 "EBMLParentPath" of their "Element Path" equals to the
 "EBMLReferencePath" of the "Master Element" "Element Path" (see

Section 11.1.4.2). "Element Data" stored within "Master Elements"
 SHOULD only consist of "EBML Elements" and SHOULD NOT contain any

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc3339

Lhomme, et al. Expires August 30, 2017 [Page 14]

Internet-Draft EBML February 2017

 data that is not part of an "EBML Element". When "EBML" is used in
 transmission or streaming, data that is not part of an "EBML Element"
 is permitted to be present within a "Master Element" if
 "unknownsizeallowed" is enabled within the definition for that
 "Master Element". In this case, the "EBML Reader" should skip data
 until a valid "Element ID" of the same "EBMLParentPath" or the next
 upper level "Element Path" of the "Master Element" is found. What
 "Element IDs" are considered valid within a "Master Element" is
 identified by the "EBML Schema" for that version of the "EBML
 Document Type". Any data contained within a "Master Element" that is
 not part of a "Child Element" MUST be ignored.

8.8. Binary Element

 A "Binary Element" MUST declare a length in octets from zero to
 "VINTMAX".

 The contents of a "Binary Element" should not be interpreted by the
 "EBML Reader".

9. EBML Document

 An "EBML Document" is comprised of only two components, an "EBML
 Header" and an "EBML Body". An "EBML Document" MUST start with an
 "EBML Header" that declares significant characteristics of the entire
 "EBML Body". An "EBML Document" consists of "EBML Elements" and MUST
 NOT contain any data that is not part of an "EBML Element".

9.1. EBML Header

 The "EBML Header" is a declaration that provides processing
 instructions and identification of the "EBML Body". The "EBML
 Header" of an "EBML Document" is analogous to the XML Declaration of
 an XML Document.

 The "EBML Header" documents the "EBML Schema" (also known as the
 "EBML DocType") that is used to semantically interpret the structure
 and meaning of the "EBML Document". Additionally the "EBML Header"
 documents the versions of both "EBML" and the "EBML Schema" that were
 used to write the "EBML Document" and the versions required to read
 the "EBML Document".

 The "EBML Header" consists of a single "Master Element" with an
 "Element Name" of "EBML" and "Element ID" of "0x1A45DFA3" (see

Section 11.2.1). The "EBML Header" MUST only contain "EBML Elements"
 that are defined as part of this document.

Lhomme, et al. Expires August 30, 2017 [Page 15]

Internet-Draft EBML February 2017

 All "EBML Elements" within the "EBML Header" MUST NOT use any
 "Element ID" with a length greater than 4 octets. All "EBML
 Elements" within the "EBML Header" MUST NOT use any "Element Data
 Size" with a length greater than 4 octets.

9.2. EBML Body

 All data of an "EBML Document" following the "EBML Header" is the
 "EBML Body". The end of the "EBML Body", as well as the end of the
 "EBML Document" that contains the "EBML Body", is considered as
 whichever comes first: the beginning of a new "EBML Header" at the
 "Root Level" or the end of the file. The "EBML Body" MUST consist
 only of "EBML Elements" and MUST NOT contain any data that is not
 part of an "EBML Element". This document defines precisely what
 "EBML Elements" are to be used within the "EBML Header", but does not
 name or define what "EBML Elements" are to be used within the "EBML
 Body". The definition of what "EBML Elements" are to be used within
 the "EBML Body" is defined by an "EBML Schema".

10. EBML Stream

 An "EBML Stream" is a file that consists of one or many "EBML
 Documents" that are concatenated together. An occurrence of a "EBML
 Header" at the "Root Level" marks the beginning of an "EBML
 Document".

11. Elements semantic

11.1. EBML Schema

 An "EBML Schema" is an XML Document that defines the properties,
 arrangement, and usage of "EBML Elements" that compose a specific
 "EBML Document Type". The relationship of an "EBML Schema" to an
 "EBML Document" may be considered analogous to the relationship of an
 XML Schema [W3C.REC-xmlschema-0-20010502] to an XML Document
 [W3C.REC-xml-20081126]. An "EBML Schema" MUST be clearly associated
 with one or many "EBML Document Types". An "EBML Schema" must be
 expressed as well-formed XML. An "EBML Document Type" is identified
 by a string stored within the "EBML Header" in the "DocType Element";
 for example "matroska" or "webm" (see Section 11.2.6). The "DocType"
 value for an "EBML Document Type" SHOULD be unique and persistent.

 An "EBML Schema" MUST declare exactly one "EBML Element" at "Root
 Level" (referred to as the "Root Element") that MUST occur exactly
 once within an "EBML Document". The "Void Element" MAY also occur at
 "Root Level" but is not considered to be "Root Elements" (see

Section 11.3.1).

Lhomme, et al. Expires August 30, 2017 [Page 16]

Internet-Draft EBML February 2017

 The "EBML Schema" does not itself document the "EBML Header", but
 documents all data of the "EBML Document" that follows the "EBML
 Header". The "EBML Header" itself is documented by this
 specification in the "EBML Header Elements" (see Section 11.2). The
 "EBML Schema" also does not document "Global Elements" that are
 defined by this document (namely the "Void Element" and the "CRC-32
 Element").

11.1.1. Element

 As an XML Document, the "EBML Schema" MUST use "<EBMLSchema>" as the
 top level element. The "<EBMLSchema>" element MAY contain
 "<element>" sub-elements.

11.1.2. Attributes

 Within an "EBML Schema" the "<EBMLSchema>" element uses the following
 attributes:

11.1.2.1. docType

 The "docType" lists the official name of the "EBML Document Type"
 that is defined by the "EBML Schema"; for example, "<EBMLSchema
 docType="matroska">".

 The "docType" attribute is REQUIRED within the "<EBMLSchema>"
 Element.

11.1.2.2. version

 The "version" lists an incremental non-negative integer that
 specifies the version of the docType documented by the "EBML Schema".
 Unlike XML Schemas, an "EBML Schema" documents all versions of a
 docType's definition rather than using separate "EBML Schemas" for
 each version of a "docType". "EBML Elements" may be introduced and
 deprecated by using the "minver" and "maxver" attributes of
 "<element>".

 The "version" attribute is REQUIRED within the "<EBMLSchema>"
 Element.

11.1.3. Element

 Each "<element>" defines one "EBML Element" through the use of
 several attributes that are defined in Section 11.1.2. "EBML
 Schemas" MAY contain additional attributes to extend the semantics
 but MUST NOT conflict with the definitions of the "<element>"
 attributes defined within this document.

Lhomme, et al. Expires August 30, 2017 [Page 17]

Internet-Draft EBML February 2017

 The "<element>" nodes contain a description of the meaning and use of
 the "EBML Element" stored within one or many "<documentation>" sub-
 elements and zero or one "<restriction>" sub-element. All
 "<element>" nodes MUST be sub-elements of the "<EBMLSchema>".

11.1.4. Attributes

 Within an "EBML Schema" the "<element>" uses the following attributes
 to define an "EBML Element":

11.1.4.1. name

 The "name" provides the official human-readable name of the "EBML
 Element". The value of the name MUST be in the form of characters
 "A" to "Z", "a" to "z", "0" to "9", "-" and ".".

 The "name" attribute is REQUIRED.

11.1.4.2. path

 The path defines the allowed storage locations of the "EBML Element"
 within an "EBML Document". This path MUST be defined with the full
 hierarchy of "EBML Elements" separated with a "/". The top "EBML
 Element" in the path hierarchy being the first in the value. The
 syntax of the "path" attribute is defined using this Augmented
 Backus-Naur Form (ABNF) [RFC5234] with the case sensitive update
 [RFC7405] notation:

 The "path" attribute is REQUIRED.

EBMLFullPath = EBMLElementOccurrence "(" EBMLReferencePath ")"
EBMLReferencePath = [EBMLParentPath] EBMLElementPath
EBMLParentPath = EBMLFixedParent EBMLLastParent
EBMLFixedParent = *(EBMLPathAtom)
EBMLElementPath = EBMLPathAtom / EBMLPathAtomRecursive
EBMLPathAtom = PathDelimiter EBMLAtomName
EBMLPathAtomRecursive = "(1*(" EBMLPathAtom "))"
EBMLLastParent = EBMLPathAtom / EBMLVariableParent
EBMLVariableParent = "(" VariableParentOccurrence "\)"
EBMLAtomName = 1*(EBMLNameChar)
EBMLNameChar = ALPHA / DIGIT / "-" / "."
PathDelimiter = "\"
EBMLElementOccurrence = [EBMLMinOccurrence] "*" [EBMLMaxOccurrence]
EBMLMinOccurrence = 1*DIGIT
EBMLMaxOccurrence = 1*DIGIT
VariableParentOccurrence = [PathMinOccurrence] "*" [PathMaxOccurrence]
PathMinOccurrence = 1*DIGIT
PathMaxOccurrence = 1*DIGIT

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405

Lhomme, et al. Expires August 30, 2017 [Page 18]

Internet-Draft EBML February 2017

 The ""*"", ""("" and "")"" symbols MUST be interpreted as they are
 defined in the ABNF.

 The "EBMLPathAtom" part of the "EBMLElementPath" MUST be equal to the
 "name" attribute of the "EBML Schema".

 The starting "PathDelimiter" of the path corresponds to the root of
 the "EBML Document".

 The "EBMLElementOccurrence" part is interpreted as an ABNF Variable
 Repetition. The repetition amounts correspond to how many times the
 "EBML Element" can be found in its "Parent Element".

 The "EBMLMinOccurrence" represents the minimum number of occurrences
 of this "EBML Element" within its "Parent Element". Each instance of
 the "Parent Element" MUST contain at least this many instances of
 this "EBML Element". If the "EBML Element" has an empty
 "EBMLParentPath" then "EBMLMinOccurrence" refers to constraints on
 the occurrence of the "EBML Element" within the "EBML Document". If
 "EBMLMinOccurrence" is not present then that "EBML Element" is
 considered to have a "EBMLMinOccurrence" value of 0. The semantic
 meaning of "EBMLMinOccurrence" within an "EBML Schema" is considered
 analogous to the meaning of "minOccurs" within an "XML Schema".
 "EBML Elements" with "EBMLMinOccurrence" set to "1" that also have a
 "default" value (see Section 11.1.4.8) declared are not REQUIRED to
 be stored but are REQUIRED to be interpreted, see Section 11.1.15.
 An "EBML Element" defined with a "EBMLMinOccurrence" value greater
 than zero is called a "Mandatory EBML Element".

 The "EBMLMaxOccurrence" represents the maximum number of occurrences
 of this "EBML Element" within its "Parent Element". Each instance of
 the "Parent Element" MUST contain at most this many instances of this
 "EBML Element". If the "EBML Element" has an empty "EBMLParentPath"
 then "EBMLMaxOccurrence" refers to constraints on the occurrence of
 the "EBML Element" within the "EBML Document". If
 "EBMLMaxOccurrence" is not present then that "EBML Element" is
 considered to have no maximum occurrence. The semantic meaning of
 "EBMLMaxOccurrence" within an "EBML Schema path" is considered
 analogous to the meaning of "maxOccurs" within an "XML Schema".

 The "VariableParentOccurrence" part is interpreted as an ABNF
 Variable Repetition. The repetition amounts correspond to the amount
 of unspecified "Parent Element" levels there can be between the
 "EBMLFixedParent" and the actual "EBMLElementPath".

 If the path contains a "EBMLPathAtomRecursive" part, the "EBML
 Element" can occur within itself recursively (see the

Section 11.1.4.11).

Lhomme, et al. Expires August 30, 2017 [Page 19]

Internet-Draft EBML February 2017

11.1.4.3. id

 The "Element ID" encoded as a "Variable Size Integer" expressed in
 hexadecimal notation prefixed by a "0x" that is read and stored in
 big-endian order. To reduce the risk of false positives while
 parsing "EBML Streams", the "Element IDs" of the "Root Element" and
 "Top-Level Elements" SHOULD be at least 4 octets in length. "Element
 IDs" defined for use at "Root Level" or directly under the "Root
 Level" MAY use shorter octet lengths to facilitate padding and
 optimize edits to "EBML Documents"; for instance, the "Void Element"
 uses an "Element ID" with a one octet length to allow its usage in
 more writing and editing scenarios.

 The "id" attribute is REQUIRED.

11.1.4.4. minOccurs

 An integer expressing the minimum number of occurrences of this "EBML
 Element" within its "Parent Element". The "minOccurs" value MUST be
 equal to the "EBMLMinOccurrence" value of the "path".

 The "minOccurs" attribute is OPTIONAL. If the "minOccurs" attribute
 is not present then that "EBML Element" is considered to have a
 "minOccurs" value of 0.

11.1.4.5. maxOccurs

 An integer expressing the maximum number of occurrences of this "EBML
 Element" within its "Parent Element". The "maxOccurs" value MUST be
 equal to the "EBMLMaxOccurrence" value of the "path".

 The "maxOccurs" attribute is OPTIONAL. If the "maxOccurs" attribute
 is not present then that "EBML Element" is considered to have no
 maximum occurrence, similar to "unbounded" in the XML world.

11.1.4.6. range

 A numerical range for "EBML Elements" which are of numerical types
 (Unsigned Integer, Signed Integer, Float, and Date). If specified
 the value of the "EBML Element" MUST be within the defined range.
 See Section 11.1.13 for rules applied to expression of range values.

 The "range" attribute is OPTIONAL. If the "range" attribute is not
 present then any value legal for the "type" attribute is valid.

Lhomme, et al. Expires August 30, 2017 [Page 20]

Internet-Draft EBML February 2017

11.1.4.7. size

 A value to express the valid length of the "Element Data" as written
 measured in octets. The "size" provides a constraint in addition to
 the Length value of the definition of the corresponding "EBML Element
 Type". This "size" MUST be expressed as either a non-negative
 integer or a range (see Section 11.1.13) that consists of only non-
 negative integers and valid operators.

 The "size" attribute is OPTIONAL. If the "size" attribute is not
 present for that "EBML Element" then that "EBML Element" is only
 limited in size by the definition of the associated "EBML Element
 Type".

11.1.4.8. default

 If an Element is mandatory (has a "EBMLMinOccurrence" value greater
 than zero) but not written within its "Parent Element" or stored as
 an "Empty Element", then the "EBML Reader" of the "EBML Document"
 MUST semantically interpret the "EBML Element" as present with this
 specified default value for the "EBML Element". "EBML Elements" that
 are "Master Elements" MUST NOT declare a "default" value. "EBML
 Elements" with a "minOccurs" value greater than 1 MUST NOT declare a
 "default" value.

 The "default" attribute is OPTIONAL.

11.1.4.9. type

 The "type" MUST be set to one of the following values: 'integer'
 (signed integer), 'uinteger' (unsigned integer), 'float', 'string',
 'date', 'utf-8', 'master', or 'binary'. The content of each "type"
 is defined within Section 8.

 The "type" attribute is REQUIRED.

11.1.4.10. unknownsizeallowed

 A boolean to express if an "EBML Element" MAY be used as an "Unknown-
 Sized Element" (having all "VINT_DATA" bits of "Element Data Size"
 set to 1). "EBML Elements" that are not "Master Elements" MUST NOT
 set "unknownsizeallowed" to true. An "EBML Element" that is defined
 with an "unknownsizeallowed" attribute set to 1 MUST also have the
 "unknownsizeallowed" attribute of its "Parent Element" set to 1.

 The "unknownsizeallowed" attribute is OPTIONAL. If the
 "unknownsizeallowed" attribute is not used then that "EBML Element"
 is not allowed to use an unknown "Element Data Size".

Lhomme, et al. Expires August 30, 2017 [Page 21]

Internet-Draft EBML February 2017

11.1.4.11. recursive

 A boolean to express if an "EBML Element" MAY be stored recursively.
 In this case the "EBML Element" MAY be stored within another "EBML
 Element" that has the same "Element ID". Which itself can be stored
 in an "EBML Element" that has the same "Element ID", and so on.
 "EBML Elements" that are not "Master Elements" MUST NOT set
 "recursive" to true.

 If the "path" contains a "EBMLPathAtomRecursive" part then the
 "recursive" value MUST be true and false otherwise.

 The "recursive" attribute is OPTIONAL. If the "recursive" attribute
 is not present then the "EBML Element" MUST NOT be used recursively.

11.1.4.12. minver

 The "minver" (minimum version) attribute stores a non-negative
 integer that represents the first version of the "docType" to support
 the "EBML Element".

 The "minver" attribute is OPTIONAL. If the "minver" attribute is not
 present then the "EBML Element" has a minimum version of "1".

11.1.4.13. maxver

 The "maxver" (maximum version) attribute stores a non-negative
 integer that represents the last or most recent version of the
 "docType" to support the element. "maxver" MUST be greater than or
 equal to "minver".

 The "maxver" attribute is OPTIONAL. If the "maxver" attribute is not
 present then the "EBML Element" has a maximum version equal to the
 value stored in the "version" attribute of "<EBMLSchema>".

11.1.5. Element

 The "<documentation>" element provides additional information about
 the "EBML Element".

11.1.6. Attributes

11.1.6.1. lang

 A "lang" attribute which is set to the [RFC5646] value of the
 language of the element's documentation.

 The "lang" attribute is OPTIONAL.

https://datatracker.ietf.org/doc/html/rfc5646

Lhomme, et al. Expires August 30, 2017 [Page 22]

Internet-Draft EBML February 2017

11.1.6.2. type

 A "type" attribute distinguishes the meaning of the documentation.
 Values for the "<documentation>" sub-element's "type" attribute MUST
 include one of the following: "definition", "rationale", "usage
 notes", and "references".

 The "type" attribute is OPTIONAL.

11.1.7. Element

 The "<restriction>" element provides information about restrictions
 to the allowable values for the "EBML Element" which are listed in
 "<enum>" elements.

11.1.8. Element

 The "<enum>" element stores a list of values allowed for storage in
 the "EBML Element". The values MUST match the "type" of the "EBML
 Element" (for example "<enum value="Yes">" can not be a valid value
 for a "EBML Element" that is defined as an unsigned integer). An
 "<enum>" element MAY also store "<documentation>" elements to further
 describe the "<enum>".

11.1.9. Attributes

11.1.9.1. label

 The "label" provides a concise expression for human consumption that
 describes what the "value" of the "<enum>" represents.

 The "label" attribute is OPTIONAL.

11.1.9.2. value

 The "value" represents data that MAY be stored within the "EBML
 Element".

 The "value" attribute is REQUIRED.

11.1.10. XML Schema for EBML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="https://ietf.org/cellar/ebml" targetNamespace="https://
ietf.org/cellar/ebml" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" version="01">
 <xsd:element name="EBMLSchema" type="EBMLSchemaType"/>
 <xsd:complexType name="EBMLSchemaType">
 <xsd:sequence>

 <xsd:element name="element" type="elementType" minOccurs="0"
maxOccurs="unbounded"/>

Lhomme, et al. Expires August 30, 2017 [Page 23]

Internet-Draft EBML February 2017

 </xsd:sequence>
 <xsd:attribute name="docType" use="required"/>
 <xsd:attribute name="version" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="elementType">
 <xsd:sequence>
 <xsd:element name="documentation" type="documentationType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="restriction" type="restrictionType" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" use="required"/>
 <xsd:attribute name="path" use="required"/>
 <xsd:attribute name="id" use="required"/>
 <xsd:attribute name="minOccurs" default="0"/>
 <xsd:attribute name="maxOccurs" default="1"/>
 <xsd:attribute name="range"/>
 <xsd:attribute name="size"/>
 <xsd:attribute name="default"/>
 <xsd:attribute name="type" use="required"/>
 <xsd:attribute name="unknownsizeallowed"/>
 <xsd:attribute name="recursive"/>
 <xsd:attribute name="minver" default="1"/>
 <xsd:attribute name="maxver"/>
 </xsd:complexType>
 <xsd:complexType name="restrictionType">
 <xsd:sequence>
 <xsd:element name="enum" type="enumType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="enumType">
 <xsd:sequence>
 <xsd:element name="documentation" type="documentationType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="label"/>
 <xsd:attribute name="value" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="documentationType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="lang"/>
 <xsd:attribute name="type"/>
 </xsd:complexType>
</xsd:schema>

Lhomme, et al. Expires August 30, 2017 [Page 24]

Internet-Draft EBML February 2017

11.1.11. EBML Schema Example

<?xml version="1.0" encoding="utf-8"?>
<EBMLSchema xmlns="https://ietf.org/cellar/ebml" docType="files-in-ebml-demo"
version="1">
 <!-- Root Element-->
 <element name="Files" path="*1(\Files)" id="0x1946696C" type="master">
 <documentation lang="en" type="definition">Container of data and
 attributes representing one or many files.</documentation>
 </element>
 <element name="File" path="1*(\Files\File)" id="0x6146" type="master"
minOccurs="1">
 <documentation lang="en" type="definition">An attached file.</documentation>
 </element>
 <element name="FileName" path="1*1(\Files\File\FileName)" id="0x614E"
type="utf-8"
 minOccurs="1">
 <documentation lang="en" type="definition">Filename of the attached file.
 </documentation>
 </element>
 <element name="MimeType" path="1*1(\Files\File\MimeType)" id="0x464D"
type="string"
 minOccurs="1">
 <documentation lang="en" type="definition">MIME type of the file.</
documentation>
 </element>
 <element name="ModificationTimestamp"
path="1*1(\Files\File\ModificationTimestamp)"
 id="0x4654" type="date" minOccurs="1">
 <documentation lang="en" type="definition">Modification timestamp of the
file.
 </documentation>
 </element>
 <element name="Data" path="1*1(\Files\File\Data)" id="0x4664" type="binary"
 minOccurs="1">
 <documentation lang="en" type="definition">The data of the file.</
documentation>
 </element>
</EBMLSchema>

11.1.12. Identically Recurring Elements

 An "Identically Recurring Element" is an "EBML Element" that MAY
 occur within its "Parent Element" more than once but that each
 recurrence within that "Parent Element" MUST be identical both in
 storage and semantics. "Identically Recurring Elements" are
 permitted to be stored multiple times within the same "Parent
 Element" in order to increase data resilience and optimize the use of

 "EBML" in transmission. For instance a pertinent "Top-Level Element"
 could be periodically resent within a data stream so that an "EBML
 Reader" which starts reading the stream from the middle could better
 interpret the contents. "Identically Recurring Elements" SHOULD
 include a "CRC-32 Element" as a "Child Element"; this is especially
 recommended when "EBML" is used for long-term storage or
 transmission. If a "Parent Element" contains more than one copy of
 an "Identically Recurring Element" which includes a "CRC-32 Element"

Lhomme, et al. Expires August 30, 2017 [Page 25]

Internet-Draft EBML February 2017

 as a "Child Element" then the first instance of the "Identically
 Recurring Element" with a valid CRC-32 value should be used for
 interpretation. If a "Parent Element" contains more than one copy of
 an "Identically Recurring Element" which does not contain a "CRC-32
 Element" or if "CRC-32 Elements" are present but none are valid then
 the first instance of the "Identically Recurring Element" should be
 used for interpretation.

11.1.13. Expression of range

 The "range" attribute MUST only be used with "EBML Elements" that are
 either "signed integer", "unsigned integer", "float", or "date". The
 "range" expression may contain whitespace for readability but
 whitespace within a "range" expression MUST NOT convey meaning. The
 expression of the "range" MUST adhere to one of the following forms:

 o "x-y" where x and y are integers or floats and "y" MUST be greater
 than "x", meaning that the value MUST be greater than or equal to
 "x" and less than or equal to "y". "x" MUST be less than "y".

 o ">x" where "x" is an integer or float, meaning that the value MUST
 be greater than "x".

 o ">=x" where "x" is an integer or float, meaning that the value
 MUST be greater than or equal to "x".

 o "<x" where "x" is an integer or float, meaning that the value MUST
 be less than "x".

 o "<=x" where "x" is an integer or float, meaning that the value
 MUST be less than or equal to "x".

 o "x" where "x" is an integer or float, meaning that the value MUST
 be equal "x".

 The "range" may use the prefix "not" to indicate that the expressed
 range is negated. Please also see Section 11.1.14.

11.1.14. Textual expression of Floats

 When a float value is represented textually in an "EBML Schema", such
 as within a "default" or "range" value, the float values MUST be
 expressed as Hexadecimal Floating-Point Constants as defined in the
 C11 standard [ISO.9899.2011] (see section 6.4.4.2 on Floating
 Constants). The following table provides examples of expressions of
 float ranges.

Lhomme, et al. Expires August 30, 2017 [Page 26]

Internet-Draft EBML February 2017

 +-------------------+---+
 | as decimal | as Hexadecimal Floating-Point Constants |
 +-------------------+---+
 | 0.0-1.0 | "0x0p+1-0x1p+0" |
 | 1.0-256.0 | "0x1p+0-0x1p+8" |
 | 0.857421875 | "0x1.b7p-1" |
 | -1.0--0.857421875 | "-0x1p+0--0x1.b7p-1" |
 +-------------------+---+

 Within an expression of a float range, as in an integer range, the
 "-" (hyphen) character is the separator between the minimal and
 maximum value permitted by the range. Hexadecimal Floating-Point
 Constants also use a "-" (hyphen) when indicating a negative binary
 power. Within a float range, when a "-" (hyphen) is immediately
 preceded by a letter "p", then the "-" (hyphen) is a part of the
 Hexadecimal Floating-Point Constant which notes negative binary
 power. Within a float range, when a "-" (hyphen) is not immediately
 preceded by a letter "p", then the "-" (hyphen) represents the
 separator between the minimal and maximum value permitted by the
 range.

11.1.15. Note on the Use of default attributes to define Mandatory EBML
 Elements

 If a "Mandatory EBML Element" has a default value declared by an
 "EBML Schema" and the value of the "EBML Element" is equal to the
 declared default value then that "EBML Element" is not required to be
 present within the "EBML Document" if its "Parent Element" is
 present. In this case, the default value of the "Mandatory EBML
 Element" MUST be interpreted by the "EBML Reader" although the "EBML
 Element" is not present within its "Parent Element".

 If a "Mandatory EBML Element" has no default value declared by an
 "EBML Schema" and its "Parent Element" is present then the "EBML
 Element" MUST be present as well. If a "Mandatory EBML Element" has
 a default value declared by an "EBML Schema" and its "Parent Element"
 is present and the value of the "EBML Element" is NOT equal to the
 declared default value then the "EBML Element" MUST be present.

 This table clarifies if a "Mandatory EBML Element" MUST be written,
 according to if the "default" value is declared, if the value of the
 "EBML Element" is equal to the declared "default" value, and if the
 "Parent Element" is used.

Lhomme, et al. Expires August 30, 2017 [Page 27]

Internet-Draft EBML February 2017

 +---------------+---------------+---------------+-------------------+
Is the	Is the value	Is the Parent	Then is storing
default value	equal to	Element	the EBML Element
declared?	default?	present?	REQUIRED?
+---------------+---------------+---------------+-------------------+			
Yes	Yes	Yes	No
Yes	Yes	No	No
Yes	No	Yes	Yes
Yes	No	No	No
No	n/a	Yes	Yes
No	n/a	No	No
 +---------------+---------------+---------------+-------------------+

11.2. EBML Header Elements

 This document contains definitions of all "EBML Elements" of the
 "EBML Header".

11.2.1. EBML Element

 name: "EBML"

 path: "1*1(\EBML)"

 id: "0x1A45DFA3"

 minOccurs: 1

 maxOccurs: 1

 type: "Master Element"

 description: Set the "EBML" characteristics of the data to follow.
 Each "EBML Document" has to start with this.

11.2.2. EBMLVersion Element

 name: "EBMLVersion"

 path: "1*1(\EBML\EBMLVersion)"

 id "0x4286"

 minOccurs: 1

 maxOccurs: 1

 range: not 0

Lhomme, et al. Expires August 30, 2017 [Page 28]

Internet-Draft EBML February 2017

 default: 1

 type: Unsigned Integer

 description: The version of "EBML" specifications used to create the
 "EBML Document". The version of "EBML" defined in this document is
 1, so "EBMLVersion" SHOULD be 1.

11.2.3. EBMLReadVersion Element

 name: "EBMLReadVersion"

 path: "1*1(\EBML\EBMLReadVersion)"

 id: "0x42F7"

 minOccurs: 1

 maxOccurs: 1

 range: 1

 default: 1

 type: Unsigned Integer

 description: The minimum "EBML" version an "EBML Reader" has to
 support to read this "EBML Document". The "EBMLReadVersion Element"
 MUST be less than or equal to "EBMLVersion".

11.2.4. EBMLMaxIDLength Element

 name: "EBMLMaxIDLength"

 path: "1*1(\EBML\EBMLMaxIDLength)"

 id "0x42F2"

 minOccurs: 1

 maxOccurs: 1

 range: >=4

 default: 4

 type: Unsigned Integer

Lhomme, et al. Expires August 30, 2017 [Page 29]

Internet-Draft EBML February 2017

 description: The "EBMLMaxIDLength Element" stores the maximum length
 in octets of the "Element IDs" to be found within the "EBML Body".
 An "EBMLMaxIDLength Element" value of four is RECOMMENDED, though
 larger values are allowed.

11.2.5. EBMLMaxSizeLength Element

 name: "EBMLMaxSizeLength"

 path: "1*1(\EBML\EBMLMaxSizeLength)"

 id "0x42F3"

 minOccurs: 1

 maxOccurs: 1

 range: not 0

 default: 8

 type: Unsigned Integer

 description: The "EBMLMaxSizeLength Element" stores the maximum
 length in octets of the expression of all "Element Data Sizes" to be
 found within the "EBML Body". To be clear the "EBMLMaxSizeLength
 Element" documents the maximum 'length' of all "Element Data Size"
 expressions within the "EBML Body" and not the maximum 'value' of all
 "Element Data Size" expressions within the "EBML Body". "EBML
 Elements" that have an "Element Data Size" expression which is larger
 in octets than what is expressed by "EBMLMaxSizeLength ELEMENT" SHALL
 be considered invalid.

11.2.6. DocType Element

 name: "DocType"

 path: "1*1(\EBML\DocType)"

 id "0x4282"

 minOccurs: 1

 maxOccurs: 1

 size: >0

 type: String

Lhomme, et al. Expires August 30, 2017 [Page 30]

Internet-Draft EBML February 2017

 description: A string that describes and identifies the content of
 the "EBML Body" that follows this "EBML Header".

11.2.7. DocTypeVersion Element

 name: "DocTypeVersion"

 path: "1*1(\EBML\DocTypeVersion)"

 id "0x4287"

 minOccurs: 1

 maxOccurs: 1

 default: 1

 type: Unsigned Integer

 description: The version of "DocType" interpreter used to create the
 "EBML Document".

11.2.8. DocTypeReadVersion Element

 name: DocTypeReadVersion

 path: "1*1(\EBML\DocTypeReadVersion)"

 id "0x4285"

 minOccurs: 1

 maxOccurs: 1

 default: 1

 type: Unsigned Integer

 description: The minimum "DocType" version an "EBML Reader" has to
 support to read this "EBML Document". The value of the
 "DocTypeReadVersion Element" MUST be less than or equal to the value
 of the "DocTypeVersion Element".

11.3. Global elements (used everywhere in the format)

 name: CRC-32

 path: "*1((1*\)\CRC-32)"

Lhomme, et al. Expires August 30, 2017 [Page 31]

Internet-Draft EBML February 2017

 id: "0xBF"

 minOccurs: 0

 maxOccurs: 1

 size: 4

 type: Binary

 description: The "CRC-32 Element" contains a 32-bit Cyclic Redundancy
 Check value of all the "Element Data" of the "Parent Element" as
 stored except for the "CRC-32 Element" itself. When the "CRC-32
 Element" is present, the "CRC-32 Element" MUST be the first ordered
 "EBML Element" within its "Parent Element" for easier reading. All
 "Top-Level Elements" of an "EBML Document" that are "Master Elements"
 SHOULD include a "CRC-32 Element" as a "Child Element". The CRC in
 use is the IEEE-CRC-32 algorithm as used in the [ISO.3309.1979]
 standard and in section 8.1.1.6.2 of [ITU.V42.1994], with initial
 value of "0xFFFFFFFF". The CRC value MUST be computed on a little
 endian bitstream and MUST use little endian storage.

11.3.1. Void Element

 name: Void

 path: "*((*\)\Void)"

 id: "0xEC"

 minOccurs: 0

 type: Binary

 description: Used to void damaged data, to avoid unexpected behaviors
 when using damaged data. The content is discarded. Also used to
 reserve space in a sub-element for later use.

12. References

12.1. Normative References

 [IEEE.754.1985]
 Institute of Electrical and Electronics Engineers,
 "Standard for Binary Floating-Point Arithmetic",
 IEEE Standard 754, August 1985.

Lhomme, et al. Expires August 30, 2017 [Page 32]

Internet-Draft EBML February 2017

 [ISO.3309.1979]
 International Organization for Standardization, "Data
 communication - High-level data link control procedures -
 Frame structure", ISO Standard 3309, 1979.

 [ISO.9899.2011]
 International Organization for Standardization,
 "Programming languages - C", ISO Standard 9899, 2011.

 [ITU.V42.1994]
 International Telecommunications Union, "Error-correcting
 Procedures for DCEs Using Asynchronous-to-Synchronous
 Conversion", ITU-T Recommendation V.42, 1994.

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,

 <http://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, DOI 10.17487/RFC2279, January 1998,
 <http://www.rfc-editor.org/info/rfc2279>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <http://www.rfc-editor.org/info/rfc5646>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DOI 10.17487/RFC7405, December 2014,

 <http://www.rfc-editor.org/info/rfc7405>.

https://datatracker.ietf.org/doc/html/rfc20
http://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2279
http://www.rfc-editor.org/info/rfc2279
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
http://www.rfc-editor.org/info/rfc5646
https://datatracker.ietf.org/doc/html/rfc7405
http://www.rfc-editor.org/info/rfc7405

Lhomme, et al. Expires August 30, 2017 [Page 33]

Internet-Draft EBML February 2017

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

12.2. Informative References

 [W3C.REC-xmlschema-0-20010502]
 Fallside, D., "XML Schema Part 0: Primer", World Wide Web
 Consortium Recommendation REC-xmlschema-0-20010502, May
 2001,
 <http://www.w3.org/TR/2001/REC-xmlschema-0-20010502>.

Authors' Addresses

 Steve Lhomme

 Dave Rice

 Moritz Bunkus

http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502

Lhomme, et al. Expires August 30, 2017 [Page 34]

