
Workgroup: cellar

Internet-Draft: draft-ietf-cellar-ebml-14

Published: 1 December 2019

Intended Status: Standards Track

Expires: 3 June 2020

Authors: S. Lhomme D. Rice M. Bunkus

Extensible Binary Meta Language

Abstract

This document defines the Extensible Binary Meta Language (EBML)

format as a generalized file format for any type of data in a

hierarchical form. EBML is designed as a binary equivalent to XML

and uses a storage-efficient approach to build nested Elements with

identifiers, lengths, and values. Similar to how an XML Schema

defines the structure and semantics of an XML Document, this

document defines how EBML Schemas are created to convey the

semantics of an EBML Document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 June 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Notation and Conventions

3. Structure

4. Variable Size Integer

4.1. VINT_WIDTH

4.2. VINT_MARKER

4.3. VINT_DATA

4.4. VINT Examples

5. Element ID

6. Element Data Size

6.1. Data Size Format

6.2. Unknown Data Size

6.3. Data Size Values

7. EBML Element Types

7.1. Signed Integer Element

7.2. Unsigned Integer Element

7.3. Float Element

7.4. String Element

7.5. UTF-8 Element

7.6. Date Element

7.7. Master Element

7.8. Binary Element

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8. EBML Document

8.1. EBML Header

8.2. EBML Body

9. EBML Stream

10. EBML Versioning

10.1. EBML Header Version

10.2. EBML Document Version

11. Elements semantic

11.1. EBML Schema

11.1.1. EBML Schema Example

11.1.2. <EBMLSchema> Element

11.1.3. <EBMLSchema> Attributes

11.1.4. <element> Element

11.1.5. <element> Attributes

11.1.6. <documentation> Element

11.1.7. <documentation> Attributes

11.1.8. <implementation_note> Element

11.1.9. <implementation_note> Attributes

11.1.10. <restriction> Element

11.1.11. <enum> Element

11.1.12. <enum> Attributes

11.1.13. <extension> Element

11.1.14. <extension> Attributes

11.1.15. XML Schema for EBML Schema

11.1.16. Identically Recurring Elements

11.1.17. Textual expression of floats

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.1.18. Note on the use of default attributes to define

Mandatory EBML Elements

11.2. EBML Header Elements

11.2.1. EBML Element

11.2.2. EBMLVersion Element

11.2.3. EBMLReadVersion Element

11.2.4. EBMLMaxIDLength Element

11.2.5. EBMLMaxSizeLength Element

11.2.6. DocType Element

11.2.7. DocTypeVersion Element

11.2.8. DocTypeReadVersion Element

11.2.9. DocTypeExtension Element

11.2.10. DocTypeExtensionName Element

11.2.11. DocTypeExtensionVersion Element

11.3. Global Elements

11.3.1. CRC-32 Element

11.3.2. Void Element

12. Considerations for Reading EBML Data

13. Terminating Elements

14. Guidelines for Updating Elements

14.1. Reducing a Element Data in Size

14.1.1. Adding a Void Element

14.1.2. Extending the Element Data Size

14.1.3. Terminating Element Data

14.2. Considerations when Updating Elements with Cyclic

Redundancy Check (CRC)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

15. Backward and Forward Compatibility

15.1. Backward Compatibility

15.2. Forward Compatibility

16. Security Considerations

17. IANA Considerations

17.1. CELLAR EBML Element ID Registry

17.2. CELLAR EBML DocType Registry

18. Normative References

19. Informative References

Authors' Addresses

1. Introduction

EBML, short for Extensible Binary Meta Language, specifies a binary

and octet (byte) aligned format inspired by the principle of XML (a

framework for structuring data).

The goal of this document is to define a generic, binary, space-

efficient format that can be used to define more complex formats

using an EBML Schema. EBML is used by the multimedia container

Matroska. The applicability of EBML for other use cases is beyond

the scope of this document.

The definition of the EBML format recognizes the idea behind HTML

and XML as a good one: separate structure and semantics allowing the

same structural layer to be used with multiple, possibly widely

differing semantic layers. Except for the EBML Header and a few

Global Elements this specification does not define particular EBML

format semantics; however this specification is intended to define

how other EBML-based formats can be defined, such as the audio-video

container formats Matroska and WebM.

EBML uses a simple approach of building Elements upon three pieces

of data (tag, length, and value) as this approach is well known,

easy to parse, and allows selective data parsing. The EBML structure

additionally allows for hierarchical arrangement to support complex

structural formats in an efficient manner.

A typical EBML file has the following structure:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/Matroska-Org/matroska-specification/

2. Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document defines specific terms in order to define the format

and application of EBML. Specific terms are defined below:

EBML: Extensible Binary Meta Language

EBML Document Type: A name provided by an EBML Schema to designate a

particular implementation of EBML for a data format (e.g.: matroska

and webm).

EBML Schema: A standardized definition for the structure of an EBML

Document Type.

EBML Document: A datastream comprised of only two components, an

EBML Header and an EBML Body.

EBML Reader: A data parser that interprets the semantics of an EBML

Document and creates a way for programs to use EBML.

EBML Stream: A file that consists of one or more EBML Documents that

are concatenated together.

EBML Header: A declaration that provides processing instructions and

identification of the EBML Body. The EBML Header is analogous to an

XML Declaration [W3C.REC-xml-20081126] (see section 2.8 on Prolog

and Document Type Declaration).

EBML Body: All data of an EBML Document following the EBML Header.

Variable Size Integer: A compact variable-length binary value which

defines its own length.

VINT: Also known as Variable Size Integer.

EBML Header (master)

 + DocType (string)

 + DocTypeVersion (unsigned integer)

EBML Body Root (master)

 + ElementA (utf-8)

 + Parent (master)

 + ElementB (integer)

 + Parent (master)

 + ElementB (integer)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

EBML Element: A foundation block of data that contains three parts:

an Element ID, an Element Data Size, and Element Data.

Element ID: The Element ID is a binary value, encoded as a Variable

Size Integer, used to uniquely identify a defined EBML Element

within a specific EBML Schema.

EBML Class: A representation of the octet length of an Element ID.

Element Data Size: An expression, encoded as a Variable Size

Integer, of the length in octets of Element Data.

VINTMAX: The maximum possible value that can be stored as Element

Data Size.

Unknown-Sized Element: An Element with an unknown Element Data Size.

Element Data: The value(s) of the EBML Element which is identified

by its Element ID and Element Data Size. The form of the Element

Data is defined by this document and the corresponding EBML Schema

of the Element's EBML Document Type.

Root Level: The starting level in the hierarchy of an EBML Document.

Root Element: A mandatory, non-repeating EBML Element which occurs

at the top level of the path hierarchy within an EBML Body and

contains all other EBML Elements of the EBML Body, excepting

optional Void Elements.

Top-Level Element: An EBML Element defined to only occur as a Child

Element of the Root Element.

Master Element: The Master Element contains zero, one, or many other

EBML Elements.

Child Element: A Child Element is a relative term to describe the

EBML Elements immediately contained within a Master Element.

Parent Element: A relative term to describe the Master Element which

contains a specified element. For any specified EBML Element that is

not at Root Level, the Parent Element refers to the Master Element

in which that EBML Element is contained.

Descendant Element: A relative term to describe any EBML Elements

contained within a Master Element, including any of the Child

Elements of its Child Elements, and so on.

Void Element: A Void Element is an Element used to overwrite data or

reserve space within a Master Element for later use.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Element Name: The human-readable name of the EBML Element.

Element Path: The hierarchy of Parent Element where the EBML Element

is expected to be found in the EBML Body.

Empty Element: An EBML Element that has an Element Data Size with

all VINT_DATA bits set to zero, which indicates that the Element

Data of the Element is zero octets in length.

3. Structure

EBML uses a system of Elements to compose an EBML Document. EBML

Elements incorporate three parts: an Element ID, an Element Data

Size, and Element Data. The Element Data, which is described by the

Element ID, includes either binary data, one or more other EBML

Elements, or both.

4. Variable Size Integer

The Element ID and Element Data Size are both encoded as a Variable

Size Integer. The Variable Size Integer is composed of a VINT_WIDTH,

VINT_MARKER, and VINT_DATA, in that order. Variable Size Integers

MUST left-pad the VINT_DATA value with zero bits so that the whole

Variable Size Integer is octet-aligned. Variable Size Integer will

be referred to as VINT for shorthand.

4.1. VINT_WIDTH

Each Variable Size Integer begins with a VINT_WIDTH which consists

of zero or many zero-value bits. The count of consecutive zero-

values of the VINT_WIDTH plus one equals the length in octets of the

Variable Size Integer. For example, a Variable Size Integer that

starts with a VINT_WIDTH which contains zero consecutive zero-value

bits is one octet in length and a Variable Size Integer that starts

with one consecutive zero-value bit is two octets in length. The

VINT_WIDTH MUST only contain zero-value bits or be empty.

Within the EBML Header the VINT_WIDTH of a VINT MUST NOT exceed

three bits in length (meaning that the Variable Size Integer MUST

NOT exceed four octets in length) except if said VINT is used to

express the Element Data Size of an EBML Element with Element Name

EBML and Element ID 0x1A45DFA3 (see Section 11.2.1) in which case

the VINT_WIDTH MUST NOT exceed seven bits in length. Within the EBML

Body, when a VINT is used to express an Element ID, the maximum

length allowed for the VINT_WIDTH is one less than the value set in

the EBMLMaxIDLength Element. Within the EBML Body, when a VINT is

used to express an Element Data Size, the maximum length allowed for

the VINT_WIDTH is one less than the value set in the

EBMLMaxSizeLength Element.

¶

¶

¶

¶

¶

¶

¶

4.2. VINT_MARKER

The VINT_MARKER serves as a separator between the VINT_WIDTH and

VINT_DATA. Each Variable Size Integer MUST contain exactly one

VINT_MARKER. The VINT_MARKER is one bit in length and contain a bit

with a value of one. The first bit with a value of one within the

Variable Size Integer is the VINT_MARKER.

4.3. VINT_DATA

The VINT_DATA portion of the Variable Size Integer includes all data

that follows (but not including) the VINT_MARKER until end of the

Variable Size Integer whose length is derived from the VINT_WIDTH.

The bits required for the VINT_WIDTH and the VINT_MARKER use one out

of every eight bits of the total length of the Variable Size

Integer. Thus a Variable Size Integer of 1 octet length supplies 7

bits for VINT_DATA, a 2 octet length supplies 14 bits for VINT_DATA,

and a 3 octet length supplies 21 bits for VINT_DATA. If the number

of bits required for VINT_DATA are less than the bit size of

VINT_DATA, then VINT_DATA MUST be zero-padded to the left to a size

that fits. The VINT_DATA value MUST be expressed as a big-endian

unsigned integer.

4.4. VINT Examples

This table shows examples of Variable Size Integers with lengths

from 1 to 5 octets. The Usable Bits column refers to the number of

bits that can be used in the VINT_DATA. The Representation column

depicts a binary expression of Variable Size Integers where

VINT_WIDTH is depicted by 0, the VINT_MARKER as 1, and the VINT_DATA

as x.

Octet

Length

Usable

Bits
Representation

1 7 1xxx xxxx

2 14 01xx xxxx xxxx xxxx

3 21 001x xxxx xxxx xxxx xxxx xxxx

4 28 0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

5 35
0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx

Table 1

Data encoded as a Variable Size Integer may be rendered at octet

lengths larger than needed to store the data in order to facilitate

overwriting it at a later date, e.g. when its final size isn't known

in advance. In this table a binary value of 0b10 is shown encoded as

different Variable Size Integers with lengths from one octet to four

octets. All four encoded examples have identical semantic meaning

though the VINT_WIDTH and the padding of the VINT_DATA vary.

¶

¶

¶

¶

Binary Value Octet Length As Represented in Variable Size Integer

10 1 1000 0010

10 2 0100 0000 0000 0010

10 3 0010 0000 0000 0000 0000 0010

10 4 0001 0000 0000 0000 0000 0000 0000 0010

Table 2

5. Element ID

The Element ID is encoded as a Variable Size Integer. By default,

Element IDs are encoded in lengths from one octet to four octets,

although Element IDs of greater lengths MAY be used if the

EBMLMaxIDLength Element of the EBML Header is set to a value greater

than four (see Section 11.2.4). The VINT_DATA component of the

Element ID MUST NOT be either defined or written as either all zero

values or all one values. Any Element ID with the VINT_DATA

component set as all zero values or all one values MUST be ignored.

The VINT_DATA component of the Element ID MUST be encoded at the

shortest valid length. For example, an Element ID with binary

encoding of 1011 1111 is valid, whereas an Element ID with binary

encoding of 0100 0000 0011 1111 stores a semantically equal

VINT_DATA but is invalid because a shorter VINT encoding is

possible. Additionally, an Element ID with binary encoding of 1111

1111 is invalid since the VINT_DATA section is set to all one

values, whereas an Element ID with binary encoding of 0100 0000 0111

1111 stores a semantically equal VINT_DATA and is the shortest

possible VINT encoding.

The following table details these specific examples further:

VINT_WIDTH VINT_MARKER VINT_DATA Element ID Status

1 0000000
Invalid: VINT_DATA MUST NOT

be set to all 0

0 1 00000000000000
Invalid: VINT_DATA MUST NOT

be set to all 0

1 0000001 Valid

0 1 00000000000001
Invalid: A shorter VINT_DATA

encoding is available.

1 0111111 Valid

0 1 00000000111111
Invalid: A shorter VINT_DATA

encoding is available.

1 1111111
Invalid: VINT_DATA MUST NOT

be set to all 1

0 1 00000001111111 Valid

Table 3

The octet length of an Element ID determines its EBML Class.

¶

¶

¶

EBML Class Length Possible IDs Number of IDs

Class A 1 0x81 - 0xFE 126

Class B 2 0x407F - 0x7FFE 16,256

Class C 3 0x203FFF - 0x3FFFFE 2,080,768

Class D 4 0x101FFFFF - 0x1FFFFFFE 268,338,304

Table 4

6. Element Data Size

6.1. Data Size Format

The Element Data Size expresses the length in octets of Element

Data. The Element Data Size itself is encoded as a Variable Size

Integer. By default, Element Data Sizes can be encoded in lengths

from one octet to eight octets, although Element Data Sizes of

greater lengths MAY be used if the octet length of the longest

Element Data Size of the EBML Document is declared in the

EBMLMaxSizeLength Element of the EBML Header (see Section 11.2.5).

Unlike the VINT_DATA of the Element ID, the VINT_DATA component of

the Element Data Size is not mandated to be encoded at the shortest

valid length. For example, an Element Data Size with binary encoding

of 1011 1111 or a binary encoding of 0100 0000 0011 1111 are both

valid Element Data Sizes and both store a semantically equal value

(both 0b00000000111111 and 0b0111111, the VINT_DATA sections of the

examples, represent the integer 63).

Although an Element ID with all VINT_DATA bits set to zero is

invalid, an Element Data Size with all VINT_DATA bits set to zero is

allowed for EBML Element Types which do not mandate a non-zero

length (see Section 7). An Element Data Size with all VINT_DATA bits

set to zero indicates that the Element Data is zero octets in

length. Such an EBML Element is referred to as an Empty Element. If

an Empty Element has a default value declared then the EBML Reader

MUST interpret the value of the Empty Element as the default value.

If an Empty Element has no default value declared then the EBML

Reader MUST use the value of the Empty Element for the corresponding

EBML Element Type of the Element ID, 0 for numbers and an empty

string for strings.

6.2. Unknown Data Size

An Element Data Size with all VINT_DATA bits set to one is reserved

as an indicator that the size of the EBML Element is unknown. The

only reserved value for the VINT_DATA of Element Data Size is all

bits set to one. An EBML Element with an unknown Element Data Size

is referred to as an Unknown-Sized Element. A Master Element MAY be

an Unknown-Sized Element; however an EBML Element that is not a

Master Element MUST NOT be an Unknown-Sized Element. Master Elements

¶

¶

MUST NOT use an unknown size unless the unknownsizeallowed attribute

of their EBML Schema is set to true (see Section 11.1.5.10).

The use of Unknown-Sized Elements allows for an EBML Element to be

written and read before the size of the EBML Element is known.

Unknown-Sized Element MUST NOT be used or defined unnecessarily;

however if the Element Data Size is not known before the Element

Data is written, such as in some cases of data streaming, then

Unknown-Sized Elements MAY be used. The end of an Unknown-Sized

Element is determined by whichever comes first:

Any EBML Element that is a valid Parent Element of the Unknown-

Sized Element according to the EBML Schema, Global Elements

excluded.

Any valid EBML Element according to the EBML Schema, Global

Elements excluded, that is not a Descendant Element of the

Unknown-Sized Element but share a common direct parent, such as a

Top-Level Element.

Any EBML Element that is a valid Root Element according to the

EBML Schema, Global Elements excluded.

The end of the Parent Element with a known size has been reached.

The end of the EBML Document, either when reaching the end of the

file or because a new EBML Header started.

Consider an Unknown-Sized Element which EBML path is

\root\level1\level2\elt. When reading a new Element ID, assuming the

EBML Path of that new Element is valid, here are some possible and

impossible ways that this new Element is ending elt:

EBML Path of new element Status

\root\level1\level2
Ends the Unknown-Sized Element, as

it is a new Parent Element

\root\level1
Ends the Unknown-Sized Element, as

it is a new Parent Element

\root
Ends the Unknown-Sized Element, as

it is a new Root Element

\root2
Ends the Unknown-Sized Element, as

it is a new Root Element

\root\level1\level2\other
Ends the Unknown-Sized Element, as

they share the same parent

\root\level1\level2\elt
Ends the Unknown-Sized Element, as

they share the same parent

\root\level1\level2\elt\inside
Doesn't end the Unknown-Sized

Element, it's a child of elt

\root\level1\level2\elt\<global>

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

EBML Path of new element Status

Global Element is valid, it's a

child of elt

\root\level1\level2\<global>

Global Element cannot be assumed to

have this path, while parsing elt

it can only be a child of elt

Table 5

6.3. Data Size Values

For Element Data Sizes encoded at octet lengths from one to eight,

this table depicts the range of possible values that can be encoded

as an Element Data Size. An Element Data Size with an octet length

of 8 is able to express a size of 2^56-2 or 72,057,594,037,927,934

octets (or about 72 petabytes). The maximum possible value that can

be stored as Element Data Size is referred to as VINTMAX.

Octet Length Possible Value Range

1 0 to 2

2 0 to 2

3 0 to 2

4 0 to 2

5 0 to 2

6 0 to 2

7 0 to 2

8 0 to 2

Table 6

If the length of Element Data equals 2^(n*7)-1 then the octet length

of the Element Data Size MUST be at least n+1. This rule prevents an

Element Data Size from being expressed as the unknown size value.

The following table clarifies this rule by showing a valid and

invalid expression of an Element Data Size with a VINT_DATA of 127

(which is equal to 2^(1*7)-1) and 16,383 (which is equal to 2

VINT_WIDTH VINT_MARKER VINT_DATA
Element Data Size

Status

1 1111111
Reserved (meaning

Unknown)

0 1 00000001111111
Valid (meaning 127

octets)

00 1 000000000000001111111
Valid (meaning 127

octets)

0 1 11111111111111
Reserved (meaning

Unknown)

00 1 000000011111111111111 Valid (16,383 octets)

Table 7

¶

7-2

14-2

21-2

28-2

35-2

42-2

49-2

56-2

(2*7)-1).¶

7. EBML Element Types

EBML Elements are defined by an EBML Schema (see Section 11.1) which

MUST declare one of the following EBML Element Types for each EBML

Element. An EBML Element Type defines a concept of storing data

within an EBML Element that describes such characteristics as

length, endianness, and definition.

EBML Elements which are defined as a Signed Integer Element,

Unsigned Integer Element, Float Element, or Date Element use big

endian storage.

7.1. Signed Integer Element

A Signed Integer Element MUST declare a length from zero to eight

octets. If the EBML Element is not defined to have a default value,

then a Signed Integer Element with a zero-octet length represents an

integer value of zero.

A Signed Integer Element stores an integer (meaning that it can be

written without a fractional component) which could be negative,

positive, or zero. Signed Integers are stored with two's complement

notation with the leftmost bit being the sign bit. Because EBML

limits Signed Integers to 8 octets in length a Signed Integer

Element stores a number from -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807.

7.2. Unsigned Integer Element

An Unsigned Integer Element MUST declare a length from zero to eight

octets. If the EBML Element is not defined to have a default value,

then an Unsigned Integer Element with a zero-octet length represents

an integer value of zero.

An Unsigned Integer Element stores an integer (meaning that it can

be written without a fractional component) which could be positive

or zero. Because EBML limits Unsigned Integers to 8 octets in length

an Unsigned Integer Element stores a number from 0 to

18,446,744,073,709,551,615.

7.3. Float Element

A Float Element MUST declare a length of either zero octet (0 bit),

four octets (32 bit) or eight octets (64 bit). If the EBML Element

is not defined to have a default value, then a Float Element with a

zero-octet length represents a numerical value of zero.

A Float Element stores a floating-point number as defined in [IEEE.

754.1985].

¶

¶

¶

¶

¶

¶

¶

¶

7.4. String Element

A String Element MUST declare a length in octets from zero to

VINTMAX. If the EBML Element is not defined to have a default value,

then a String Element with a zero-octet length represents an empty

string.

A String Element MUST either be empty (zero-length) or contain

printable ASCII characters [RFC0020] in the range of 0x20 to 0x7E,

with an exception made for termination (see Section 13).

7.5. UTF-8 Element

A UTF-8 Element MUST declare a length in octets from zero to

VINTMAX. If the EBML Element is not defined to have a default value,

then a UTF-8 Element with a zero-octet length represents an empty

string.

A UTF-8 Element contains only a valid Unicode string as defined in

[RFC3629], with an exception made for termination (see Section 13).

7.6. Date Element

A Date Element MUST declare a length of either zero octets or eight

octets. If the EBML Element is not defined to have a default value,

then a Date Element with a zero-octet length represents a timestamp

of 2001-01-01T00:00:00.000000000 UTC [RFC3339].

The Date Element stores an integer in the same format as the Signed

Integer Element that expresses a point in time referenced in

nanoseconds from the precise beginning of the third millennium of

the Gregorian Calendar in Coordinated Universal Time (also known as

2001-01-01T00:00:00.000000000 UTC). This provides a possible

expression of time from 1708-09-11T00:12:44.854775808 UTC to

2293-04-11T11:47:16.854775807 UTC.

7.7. Master Element

A Master Element MUST declare a length in octets from zero to

VINTMAX. The Master Element MAY also use an unknown length. See

Section 6 for rules that apply to elements of unknown length.

The Master Element contains zero, one, or many other elements. EBML

Elements contained within a Master Element MUST have the

EBMLParentPath of their Element Path equal to the EBMLFullPath of

the Master Element Element Path (see Section 11.1.5.2). Element Data

stored within Master Elements SHOULD only consist of EBML Elements

and SHOULD NOT contain any data that is not part of an EBML Element.

The EBML Schema identifies what Element IDs are valid within the

Master Elements for that version of the EBML Document Type. Any data

¶

¶

¶

¶

¶

¶

¶

contained within a Master Element that is not part of a Child

Element MUST be ignored.

7.8. Binary Element

A Binary Element MUST declare a length in octets from zero to

VINTMAX.

The contents of a Binary Element should not be interpreted by the

EBML Reader.

8. EBML Document

An EBML Document is comprised of only two components, an EBML Header

and an EBML Body. An EBML Document MUST start with an EBML Header

that declares significant characteristics of the entire EBML Body.

An EBML Document consists of EBML Elements and MUST NOT contain any

data that is not part of an EBML Element.

8.1. EBML Header

The EBML Header is a declaration that provides processing

instructions and identification of the EBML Body. The EBML Header of

an EBML Document is analogous to the XML Declaration of an XML

Document.

The EBML Header documents the EBML Schema (also known as the EBML

DocType) that is used to semantically interpret the structure and

meaning of the EBML Document. Additionally the EBML Header documents

the versions of both EBML and the EBML Schema that were used to

write the EBML Document and the versions required to read the EBML

Document.

The EBML Header MUST contain a single Master Element with an Element

Name of EBML and Element ID of 0x1A45DFA3 (see Section 11.2.1) and

any number of additional EBML Elements within it. The EBML Header of

an EBML Document that uses an EBMLVersion of 1 MUST only contain

EBML Elements that are defined as part of this document.

8.2. EBML Body

All data of an EBML Document following the EBML Header is the EBML

Body. The end of the EBML Body, as well as the end of the EBML

Document that contains the EBML Body, is reached at whichever comes

first: the beginning of a new EBML Header at the Root Level or the

end of the file. The EBML Body MUST NOT contain any data that is not

part of an EBML Element. This document defines precisely which EBML

Elements are to be used within the EBML Header, but does not name or

define which EBML Elements are to be used within the EBML Body. The

¶

¶

¶

¶

¶

¶

¶

definition of which EBML Elements are to be used within the EBML

Body is defined by an EBML Schema.

9. EBML Stream

An EBML Stream is a file that consists of one or more EBML Documents

that are concatenated together. An occurrence of a EBML Header at

the Root Level marks the beginning of an EBML Document.

10. EBML Versioning

An EBML Document handles 2 different versions: the version of the

EBML Header and the version of the EBML Body. Both versions are

meant to be backward compatible.

10.1. EBML Header Version

The version of the EBML Header is found in EBMLVersion. An EBML

parser can read an EBML Header if it can read either the EBMLVersion

version or a version equal or higher than the one found in

EBMLReadVersion.

10.2. EBML Document Version

The version of the EBML Body is found in EBMLDocTypeVersion. A

parser for the particular DocType format can read the EBML Document

if it can read either the EBMLDocTypeVersion version of that format

or a version equal or higher than the one found in

EBMLDocTypeReadVersion.

11. Elements semantic

11.1. EBML Schema

An EBML Schema is a well-formed XML Document [W3C.REC-xml-20081126]

that defines the properties, arrangement, and usage of EBML Elements

that compose a specific EBML Document Type. The relationship of an

EBML Schema to an EBML Document is analogous to the relationship of

an XML Schema [W3C.REC-xmlschema-0-20041028] to an XML Document

[W3C.REC-xml-20081126]. An EBML Schema MUST be clearly associated

with one or more EBML Document Types. An EBML Document Type is

identified by a string stored within the EBML Header in the DocType

Element; for example matroska or webm (see Section 11.2.6). The

DocType value for an EBML Document Type MUST be unique and

persistent.

An EBML Schema MUST declare exactly one EBML Element at Root Level

(referred to as the Root Element) that occurs exactly once within an

EBML Document. The Void Element MAY also occur at Root Level but is

not a Root Element (see Section 11.3.2).

¶

¶

¶

¶

¶

¶

¶

The EBML Schema MUST document all Elements of the EBML Body. The

EBML Schema does not document Global Elements that are defined by

this document (namely the Void Element and the CRC-32 Element).

The EBML Schema MUST NOT use the Element ID 0x1A45DFA3 which is

reserved for the EBML Header for resynchronization purpose.

An EBML Schema MAY constrain the use of EBML Header Elements (see

Section 11.2) by adding or constraining that Element's range

attribute. For example, an EBML Schema MAY constrain the

EBMLMaxSizeLength to a maximum value of 8 or MAY constrain the

EBMLVersion to only support a value of 1. If an EBML Schema adopts

the EBML Header Element as-is, then it is not required to document

that Element within the EBML Schema. If an EBML Schema constrains

the range of an EBML Header Element, then that Element MUST be

documented within an <element> node of the EBML Schema. This

document provides an example of an EBML Schema, see Section 11.1.1.

¶

¶

¶

11.1.1. EBML Schema Example

<?xml version="1.0" encoding="utf-8"?>

<EBMLSchema xmlns="https://ietf.org/cellar/ebml"

 docType="files-in-ebml-demo" version="1">

 <!-- constraints to the range of two EBML Header Elements -->

 <element name="EBMLReadVersion" path="1*1(\EBML\EBMLReadVersion)"

 id="0x42F7" minOccurs="1" maxOccurs="1" range="1" default="1"

 type="uinteger"/>

 <element name="EBMLMaxSizeLength"

 path="1*1(\EBML\EBMLMaxSizeLength)" id="0x42F3" minOccurs="1"

 maxOccurs="1" range="8" default="8" type="uinteger"/>

 <!-- Root Element-->

 <element name="Files" path="*1(\Files)" id="0x1946696C"

 type="master">

 <documentation lang="en" purpose="definition">Container of data and

 attributes representing one or many files.</documentation>

 </element>

 <element name="File" path="1*(\Files\File)" id="0x6146"

 type="master" minOccurs="1">

 <documentation lang="en" purpose="definition">

 An attached file.

 </documentation>

 </element>

 <element name="FileName" path="1*1(\Files\File\FileName)"

 id="0x614E" type="utf-8"

 minOccurs="1">

 <documentation lang="en" purpose="definition">

 Filename of the attached file.

 </documentation>

 </element>

 <element name="MimeType" path="1*1(\Files\File\MimeType)"

 id="0x464D" type="string"

 minOccurs="1">

 <documentation lang="en" purpose="definition">

 MIME type of the file.

 </documentation>

 </element>

 <element name="ModificationTimestamp"

 path="1*1(\Files\File\ModificationTimestamp)" id="0x4654"

 type="date" minOccurs="1">

 <documentation lang="en" purpose="definition">

 Modification timestamp of the file.

 </documentation>

 </element>

 <element name="Data" path="1*1(\Files\File\Data)" id="0x4664"

 type="binary" minOccurs="1">

 <documentation lang="en" purpose="definition">

 The data of the file.

 </documentation>

 </element>

</EBMLSchema>

¶

11.1.2. <EBMLSchema> Element

Within an EBML Schema, the XPath [W3C.REC-xpath-19991116] of

<EBMLSchema> element is /EBMLSchema.

As an XML Document, the EBML Schema MUST use <EBMLSchema> as the top

level element. The <EBMLSchema> element can contain <element> sub-

elements.

11.1.3. <EBMLSchema> Attributes

Within an EBML Schema the <EBMLSchema> element uses the following

attributes:

11.1.3.1. docType

Within an EBML Schema, the XPath of @docType attribute is /

EBMLSchema/@docType.

The docType lists the official name of the EBML Document Type that

is defined by the EBML Schema; for example, <EBMLSchema

docType="matroska">.

The docType attribute is REQUIRED within the <EBMLSchema> Element.

11.1.3.2. version

Within an EBML Schema, the XPath of @version attribute is /

EBMLSchema/@version.

The version lists a non-negative integer that specifies the version

of the docType documented by the EBML Schema. Unlike XML Schemas, an

EBML Schema documents all versions of a docType's definition rather

than using separate EBML Schemas for each version of a docType. EBML

Elements may be introduced and deprecated by using the minver and

maxver attributes of <element>.

The version attribute is REQUIRED within the <EBMLSchema> Element.

11.1.4. <element> Element

Within an EBML Schema, the XPath of <element> element is /

EBMLSchema/element.

Each <element> defines one EBML Element through the use of several

attributes that are defined in Section 11.1.3. EBML Schemas MAY

contain additional attributes to extend the semantics but MUST NOT

conflict with the definitions of the <element> attributes defined

within this document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The <element> nodes contain a description of the meaning and use of

the EBML Element stored within one or more <documentation> sub-

elements, followed by optional <implementation_note> sub-elements,

followed by zero or one <restriction> sub-element, followed by

optional <extension> sub-elements. All <element> nodes MUST be sub-

elements of the <EBMLSchema>.

11.1.5. <element> Attributes

Within an EBML Schema the <element> uses the following attributes to

define an EBML Element:

11.1.5.1. name

Within an EBML Schema, the XPath of @name attribute is /EBMLSchema/

element/@name.

The name provides the human-readable name of the EBML Element. The

value of the name MUST be in the form of characters "A" to "Z", "a"

to "z", "0" to "9", "-" and ".".

The name attribute is REQUIRED.

11.1.5.2. path

Within an EBML Schema, the XPath of @path attribute is /EBMLSchema/

element/@path.

The path defines the allowed storage locations of the EBML Element

within an EBML Document. This path MUST be defined with the full

hierarchy of EBML Elements separated with a \. The top EBML Element

in the path hierarchy being the first in the value. The syntax of

the path attribute is defined using this Augmented Backus-Naur Form

(ABNF) [RFC5234] with the case sensitive update [RFC7405] notation:

The path attribute is REQUIRED.

¶

¶

¶

¶

¶

¶

¶

¶

The *, (and) symbols are interpreted as defined in [RFC5234].

The EBMLPathAtom part of the EBMLElementPath MUST be equal to the

name attribute of the EBML Schema.

The starting PathDelimiter of the path corresponds to the root of

the EBML Document.

In some cases the EBMLLastParent part of the path is an

EBMLGlobalParent. A path with a EBMLGlobalParent defines a Section

11.3. Any path that starts with the EBMLFixedParent of the Global

Element and matches the occurrences found in the

GlobalParentOccurence is a valid path for the Global Element.

The GlobalParentOccurence part is interpreted as an ABNF Variable

Repetition. The repetition amounts correspond to the amount of

unspecified Parent Element levels there can be between the

EBMLFixedParent and the actual EBMLElementPath.

PathMinOccurrence represents the minimum number of element path

required between the EBMLFixedParent and the Global Element

EBMLElementPath. For example 0 means the EBMLElementPath can be

right after the EBMLFixedParent, 1 means there has to be at least an

element between the EBMLFixedParent and the EBMLElementPath. If

PathMinOccurrence is not present then that EBML Element has an

PathMinOccurrence value of 0.

PathMaxOccurrence represents the maximum number of element path

possible between the EBMLFixedParent and the Global Element

EBMLElementPath. It cannot have the value 0 as it would be the

Global Element can only be found right after the EBMLFixedParent, in

which case it's not a Global Element anymore. If PathMaxOccurrence

is not present then there is no upper bound for the permitted number

EBMLFullPath = [EBMLParentPath] EBMLElementPath

EBMLParentPath = EBMLFixedParent EBMLLastParent

EBMLFixedParent = *(EBMLPathAtom)

EBMLElementPath = EBMLPathAtom / EBMLPathAtomRecursive

EBMLPathAtom = PathDelimiter EBMLAtomName

EBMLPathAtomRecursive = "(1*(" EBMLPathAtom "))"

EBMLLastParent = EBMLPathAtom / EBMLGlobalParent

EBMLGlobalParent = "(" GlobalParentOccurence "\)"

EBMLAtomName = 1*(EBMLNameChar)

EBMLNameChar = ALPHA / DIGIT / "-" / "."

PathDelimiter = "\"

GlobalParentOccurence = [PathMinOccurrence] "*" [PathMaxOccurrence]

PathMinOccurrence = 1*DIGIT ; no upper limit

PathMaxOccurrence = 1*DIGIT ; no upper limit

¶

¶

¶

¶

¶

¶

¶

of occurrences of element path possible between the EBMLFixedParent

and the Global Element EBMLElementPath.

If the path contains an EBMLPathAtomRecursive part, the EBML Element

can occur within itself recursively (see Section 11.1.5.11).

As an example, a path of 1*(\Segment\Info) means the element Info is

found inside the Segment elements at least once and with no maximum

iteration. An element SeekHead with path 0*2(\Segment\SeekHead) may

not be found at all in its Segment parent, once or twice but no more

than that.

11.1.5.3. id

Within an EBML Schema, the XPath of @id attribute is /EBMLSchema/

element/@id.

The Element ID encoded as a Variable Size Integer expressed in

hexadecimal notation prefixed by a 0x that is read and stored in

big-endian order. To reduce the risk of false positives while

parsing EBML Streams, the Element IDs of the Root Element and Top-

Level Elements SHOULD be at least 4 octets in length. Element IDs

defined for use at Root Level or directly under the Root Level MAY

use shorter octet lengths to facilitate padding and optimize edits

to EBML Documents; for instance, the Void Element uses an Element ID

with a one octet length to allow its usage in more writing and

editing scenarios.

The id attribute is REQUIRED.

11.1.5.4. minOccurs

Within an EBML Schema, the XPath of @minOccurs attribute is /

EBMLSchema/element/@minOccurs.

The minOccurs is a non-negative integer expressing the minimum

permitted number of occurrences of this EBML Element within its

Parent Element.

Each instance of the Parent Element MUST contain at least this many

instances of this EBML Element. If the EBML Element has an empty

EBMLParentPath then minOccurs refers to constraints on the

occurrence of the EBML Element within the EBML Document. EBML

Elements with minOccurs set to "1" that also have a default value

(see Section 11.1.5.8) declared are not REQUIRED to be stored but

are REQUIRED to be interpreted, see Section 11.1.18.

An EBML Element defined with a minOccurs value greater than zero is

called a Mandatory EBML Element.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The minOccurs attribute is OPTIONAL. If the minOccurs attribute is

not present then that EBML Element has a minOccurs value of 0.

The semantic meaning of minOccurs within an EBML Schema is analogous

to the meaning of minOccurs within an XML Schema.

11.1.5.5. maxOccurs

Within an EBML Schema, the XPath of @maxOccurs attribute is /

EBMLSchema/element/@maxOccurs.

The maxOccurs is a non-negative integer expressing the maximum

permitted number of occurrences of this EBML Element within its

Parent Element.

Each instance of the Parent Element MUST contain at most this many

instances of this EBML Element, including the unwritten mandatory

element with a default value, see Section 11.1.18. If the EBML

Element has an empty EBMLParentPath then maxOccurs refers to

constraints on the occurrence of the EBML Element within the EBML

Document.

The maxOccurs attribute is OPTIONAL. If the maxOccurs attribute is

not present then there is no upper bound for the permitted number of

occurrences of this EBML Element within its Parent Element or within

the EBML Document depending on whether the EBMLParentPath of the

EBML Element is empty or not.

The semantic meaning of maxOccurs within an EBML Schema is analogous

to the meaning of maxOccurs within an XML Schema, when it is not

present it's similar to xml:maxOccurs="unbounded" in an XML Schema.

11.1.5.6. range

Within an EBML Schema, the XPath of @range attribute is /EBMLSchema/

element/@range.

A numerical range for EBML Elements which are of numerical types

(Unsigned Integer, Signed Integer, Float, and Date). If specified

the value of the EBML Element MUST be within the defined range. See

Section 11.1.5.6.1 for rules applied to expression of range values.

The range attribute is OPTIONAL. If the range attribute is not

present then any value legal for the type attribute is valid.

11.1.5.6.1. Expression of range

The range attribute MUST only be used with EBML Elements that are

either signed integer, unsigned integer, float, or date. The

expression defines the upper, lower, exact or excluded value of the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

EBML Element and optionally an upper boundary value combined with a

lower boundary. The range expression may contain whitespace (using

the ASCII 0x20 character) for readability but whitespace within a

range expression MUST NOT convey meaning.

To set a fixed value for the range, the value is used as the

attribute value. For example 1234 means the EBML element always has

the value 1234. The value can be prefixed with not to indicate that

the fixed value MUST NOT be used for that Element. For example not

1234 means the Element can use all values of its type except 1234.

For an exclusive lower boundary the > sign is used and the >= sign

is used for an inclusive lower boundary. For example >3 meaning the

Element value MUST be greater than 3 or >=0x1p+0 meaning the Element

value MUST be greater than or equal to the floating value 1.0, see

Section 11.1.17.

For an exclusive upper boundary the < sign is used and the <= sign

is used for an inclusive upper boundary. For example <-2 meaning the

Element value MUST be less than -2 or <=10 meaning the Element value

MUST be less than or equal to the 10.

The lower and upper bounds can be combined into an expression to

form a closed boundary. The lower boundary coming first followed by

the upper boundary, separated by a comma. For example >3,<= 20 means

the Element value MUST be greater than 3 and less than or equal to

20.

A special form of lower and upper bounds using the - separator is

possible, meaning the Element value MUST be greater than or to the

first value and MUST be less than or equal to the second value. For

example 1-10 is equivalent to >=1,<=10. If the upper boundary is

negative, only the latter form MUST be used.

11.1.5.7. length

Within an EBML Schema, the XPath of @length attribute is /

EBMLSchema/element/@length.

A value to express the valid length of the Element Data as written

measured in octets. The length provides a constraint in addition to

the Length value of the definition of the corresponding EBML Element

Type. This length MUST be expressed as either a non-negative integer

or a range (see Section 11.1.5.6.1) that consists of only non-

negative integers and valid operators.

The length attribute is OPTIONAL. If the length attribute is not

present for that EBML Element then that EBML Element is only limited

in length by the definition of the associated EBML Element Type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.1.5.8. default

Within an EBML Schema, the XPath of @default attribute is /

EBMLSchema/element/@default.

If an Element is mandatory (has a minOccurs value greater than zero)

but not written within its Parent Element or stored as an Empty

Element, then the EBML Reader of the EBML Document MUST semantically

interpret the EBML Element as present with this specified default

value for the EBML Element. An unwritten mandatory Element with a

declared default value is semantically equivalent to that Element if

written with the default value stored as the Element Data. EBML

Elements that are Master Elements MUST NOT declare a default value.

EBML Elements with a minOccurs value greater than 1 MUST NOT declare

a default value.

The default attribute is OPTIONAL.

11.1.5.9. type

Within an EBML Schema, the XPath of @type attribute is /EBMLSchema/

element/@type.

The type MUST be set to one of the following values: integer (signed

integer), uinteger (unsigned integer), float, string, date, utf-8,

master, or binary. The content of each type is defined within

Section 7.

The type attribute is REQUIRED.

11.1.5.10. unknownsizeallowed

Within an EBML Schema, the XPath of @unknownsizeallowed attribute

is /EBMLSchema/element/@unknownsizeallowed.

A boolean to express if an EBML Element is permitted to be Unknown-

Sized Element (having all VINT_DATA bits of Element Data Size set to

1). EBML Elements that are not Master Elements MUST NOT set

unknownsizeallowed to true. An EBML Element that is defined with an

unknownsizeallowed attribute set to 1 MUST also have the

unknownsizeallowed attribute of its Parent Element set to 1.

An EBML Element with the unknownsizeallowed attribute set to 1 MUST

NOT have its recursive attribute set to 1.

The unknownsizeallowed attribute is OPTIONAL. If the

unknownsizeallowed attribute is not used then that EBML Element is

not allowed to use an unknown Element Data Size.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.1.5.11. recursive

Within an EBML Schema, the XPath of @recursive attribute is /

EBMLSchema/element/@recursive.

A boolean to express if an EBML Element is permitted to be stored

recursively. In this case the EBML Element MAY be stored within

another EBML Element that has the same Element ID. Which itself can

be stored in an EBML Element that has the same Element ID, and so

on. EBML Elements that are not Master Elements MUST NOT set

recursive to true.

If the path contains an EBMLPathAtomRecursive part then the

recursive value MUST be true and false otherwise.

An EBML Element with the recursive attribute set to 1 MUST NOT have

its unknownsizeallowed attribute set to 1.

The recursive attribute is OPTIONAL. If the recursive attribute is

not present then the EBML Element MUST NOT be used recursively.

11.1.5.12. recurring

Within an EBML Schema, the XPath of @recurring attribute is /

EBMLSchema/element/@recurring.

A boolean to express if an EBML Element is defined as an Identically

Recurring Element or not.

The recurring attribute is OPTIONAL. If the recurring attribute is

not present then the EBML Element is not an Identically Recurring

Element.

11.1.5.13. minver

Within an EBML Schema, the XPath of @minver attribute is /

EBMLSchema/element/@minver.

The minver (minimum version) attribute stores a non-negative integer

that represents the first version of the docType to support the EBML

Element.

The minver attribute is OPTIONAL. If the minver attribute is not

present, then the EBML Element has a minimum version of "1".

11.1.5.14. maxver

Within an EBML Schema, the XPath of @maxver attribute is /

EBMLSchema/element/@maxver.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The maxver (maximum version) attribute stores a non-negative integer

that represents the last or most recent version of the docType to

support the element. maxver MUST be greater than or equal to minver.

The maxver attribute is OPTIONAL. If the maxver attribute is not

present then the EBML Element has a maximum version equal to the

value stored in the version attribute of <EBMLSchema>.

11.1.6. <documentation> Element

Within an EBML Schema, the XPath of <documentation> attribute is /

EBMLSchema/element/documentation.

The <documentation> element provides additional information about

the EBML Element. Within the <documentation> element the following

XHTML [W3C.SPSD-xhtml-basic-20180327] elements MAY be used: <a>,

, .

11.1.7. <documentation> Attributes

11.1.7.1. lang

Within an EBML Schema, the XPath of @lang attribute is /EBMLSchema/

element/documentation/@lang.

A lang attribute which is set to the [RFC5646] value of the language

of the element's documentation.

The lang attribute is OPTIONAL.

11.1.7.2. purpose

Within an EBML Schema, the XPath of @purpose attribute is /

EBMLSchema/element/documentation/@purpose.

A purpose attribute distinguishes the meaning of the documentation.

Values for the <documentation> sub-element's purpose attribute MUST

include one of the following: definition, rationale, usage notes,

and references.

The purpose attribute is REQUIRED.

11.1.8. <implementation_note> Element

Within an EBML Schema, the XPath of <implementation_note> attribute

is /EBMLSchema/element/implementation_note.

In some cases within an EBML Document Type, the attributes of the

<element> element are not sufficient to clearly communicate how the

defined EBML Element is intended to be implemented. For instance,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

one EBML Element might only be mandatory if another EBML Element is

present, or as another example, the default value of an EBML Element

might derive from a related Element's content. In these cases where

the Element's definition is conditional or advanced implementation

notes are needed, one or many <implementation_note> elements can be

used to store that information. The <implementation_note> refer to a

specific attribute of the parent <element> as expressed by the

note_attribute attribute Section 11.1.9.1.

11.1.9. <implementation_note> Attributes

11.1.9.1. note_attribute

Within an EBML Schema, the XPath of @note_attribute attribute is /

EBMLSchema/element/implementation_note/@note_attribute.

The note_attribute attribute references which of the <element>'s

attributes that the implementation_note is in regards to. The

note_attribute attribute MUST be set to one of the following values

(corresponding to that attribute of the parent <element>):

minOccurs, maxOccurs, range, length, default, minver, or maxver.

The <implementation_note> SHALL supersede the parent <element>'s

attribute that is named in the note_attribute attribute. An

<element> SHALL NOT have more than one <implementation_note> of the

same note_attribute.

The note_attribute attribute is REQUIRED.

11.1.9.2. <implementation_note> Example

The following fragment of an EBML Schema demonstrates how an

<implementation_note> is used. In this case an EBML Schema documents

a list of items that are described with an optional cost. The

Currency Element uses an <implementation_note> to say that the

Currency Element is REQUIRED if the Cost Element is set, otherwise

not.

¶

¶

¶

¶

¶

11.1.10. <restriction> Element

Within an EBML Schema, the XPath of <restriction> attribute is /

EBMLSchema/element/restriction.

The <restriction> element provides information about restrictions to

the allowable values for the EBML Element which are listed in <enum>

elements.

11.1.11. <enum> Element

Within an EBML Schema, the XPath of <enum> attribute is /EBMLSchema/

element/restriction/enum.

The <enum> element stores a list of values allowed for storage in

the EBML Element. The values MUST match the type of the EBML Element

(for example <enum value="Yes"> cannot be a valid value for a EBML

Element that is defined as an unsigned integer). An <enum> element

MAY also store <documentation> elements to further describe the

<enum>.

<element name="Item" path="1*1(\Items)" id="0x4025" type="master"

 minOccurs="1" maxOccurs="1">

 <documentation lang="en" purpose="definition">

 A set of items.

 </documentation>

</element>

<element name="Item" path="0*(\Items\Item)" id="0x4026"

 type="master">

 <documentation lang="en" purpose="definition">

 An item.

 </documentation>

</element>

<element name="Cost" path="0*1(\Items\Item\Cost)" id="0x4024"

 type="float" maxOccurs="1">

 <documentation lang="en" purpose="definition">

 The cost of the item, if any.

 </documentation>

</element>

<element name="Currency" path="0*1(\Items\Item\Currency)" id="0x403F"

 type="string" maxOccurs="1">

 <documentation lang="en" purpose="definition">

 The currency of the item's cost.

 </documentation>

 <implementation_note note_attribute="minOccurs">

 Currency MUST be set (minOccurs=1) if the associated Item stores

 a Cost, else Currency MAY be unset (minOccurs=0).

 </implementation_note>

</element>

¶

¶

¶

¶

¶

11.1.12. <enum> Attributes

11.1.12.1. label

Within an EBML Schema, the XPath of @label attribute is /EBMLSchema/

element/restriction/enum/@label.

The label provides a concise expression for human consumption that

describes what the value of the <enum> represents.

The label attribute is OPTIONAL.

11.1.12.2. value

Within an EBML Schema, the XPath of @value attribute is /EBMLSchema/

element/restriction/enum/@value.

The value represents data that MAY be stored within the EBML

Element.

The value attribute is REQUIRED.

11.1.13. <extension> Element

Within an EBML Schema, the XPath of <extension> attribute is /

EBMLSchema/element/extension.

The <extension> element provides an unconstrained element to contain

information about the associated EBML <element> which is undefined

by this document but MAY be defined by the associated EBML Document

Type. The <extension> element MUST contain a type attribute and also

MAY contain any other attribute or sub-element as long as the EBML

Schema remains as a well-formed XML Document. All <extension>

elements MUST be sub-elements of the <element>.

11.1.14. <extension> Attributes

11.1.14.1. type

Within an EBML Schema, the XPath of @type attribute is /EBMLSchema/

element/extension/@type.

The type attribute should reference a name or identifier of the

project or authority associated with the contents of the <extension>

element.

The type attribute is REQUIRED.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.1.15. XML Schema for EBML Schema

This following provides an XML Schema [W3C.REC-xmlschema-0-20041028]

for facilitating verification of an EBML Schema to the definition

described in Section 8.1.¶

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="https://ietf.org/cellar/ebml"

 targetNamespace="https://ietf.org/cellar/ebml"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

 elementFormDefault="qualified" version="01">

 <!-- for HTML in comments -->

 <xs:import namespace="http://www.w3.org/1999/xhtml"

 schemaLocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd"/>

 <xs:element name="EBMLSchema" type="EBMLSchemaType"/>

 <xs:complexType name="EBMLSchemaType">

 <xs:sequence>

 <xs:element name="element" type="elementType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="docType" use="required"/>

 <xs:attribute name="version" use="required" type="xs:integer"/>

 </xs:complexType>

 <xs:complexType name="elementType">

 <xs:sequence>

 <xs:element name="documentation" type="documentationType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="implementation_note" type="noteType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="restriction" type="restrictionType"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="extension" type="extensionType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9A-Za-z.-]([0-9A-Za-z.-])*"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="path" use="required">

 <!-- <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:pattern value="[0-9]**[0-9]*()"/>

 </xs:restriction>

 </xs:simpleType> -->

 </xs:attribute>

 <xs:attribute name="id" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="0x([0-9A-F][0-9A-F])+"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="minOccurs" default="0">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="maxOccurs" default="1">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="range"/>

 <xs:attribute name="length"/>

 <xs:attribute name="default"/>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="integer"/>

 <xs:enumeration value="uinteger"/>

 <xs:enumeration value="float"/>

 <xs:enumeration value="string"/>

 <xs:enumeration value="date"/>

 <xs:enumeration value="utf-8"/>

 <xs:enumeration value="master"/>

 <xs:enumeration value="binary"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="unknownsizeallowed" type="xs:boolean"/>

 <xs:attribute name="recurring" type="xs:boolean"/>

 <xs:attribute name="minver" default="1">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="maxver">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="restrictionType">

 <xs:sequence>

 <xs:element name="enum" type="enumType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="extensionType">

 <xs:sequence>

 <xs:any processContents="skip"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="type" use="required"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

 <xs:complexType name="enumType">

 <xs:sequence>

 <xs:element name="documentation" type="documentationType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="label"/>

 <xs:attribute name="value" use="required"/>

 </xs:complexType>

 <xs:complexType name="documentationType" mixed="true">

 <xs:sequence>

 <xs:element name="a" type="xhtml:xhtml.a.type"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="br" type="xhtml:xhtml.br.type"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="strong" type="xhtml:xhtml.strong.type"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="lang"/>

 <xs:attribute name="purpose" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="definition"/>

 <xs:enumeration value="rationale"/>

 <xs:enumeration value="references"/>

 <xs:enumeration value="usage notes"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="noteType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="note_attribute" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="minOccurs"/>

 <xs:enumeration value="maxOccurs"/>

 <xs:enumeration value="range"/>

 <xs:enumeration value="length"/>

 <xs:enumeration value="default"/>

 <xs:enumeration value="minver"/>

 <xs:enumeration value="maxver"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:schema>

¶

11.1.16. Identically Recurring Elements

An Identically Recurring Element is an EBML Element that MAY occur

within its Parent Element more than once but that each recurrence

within that Parent Element MUST be identical both in storage and

semantics. Identically Recurring Elements are permitted to be stored

multiple times within the same Parent Element in order to increase

data resilience and optimize the use of EBML in transmission. For

instance a pertinent Top-Level Element could be periodically resent

within a data stream so that an EBML Reader which starts reading the

stream from the middle could better interpret the contents.

Identically Recurring Elements SHOULD include a CRC-32 Element as a

Child Element; this is especially recommended when EBML is used for

long-term storage or transmission. If a Parent Element contains more

than one copy of an Identically Recurring Element which includes a

CRC-32 Element as a Child Element then the first instance of the

Identically Recurring Element with a valid CRC-32 value should be

used for interpretation. If a Parent Element contains more than one

copy of an Identically Recurring Element which does not contain a

CRC-32 Element or if CRC-32 Elements are present but none are valid

then the first instance of the Identically Recurring Element should

be used for interpretation.

11.1.17. Textual expression of floats

When a float value is represented textually in an EBML Schema, such

as within a default or range value, the float values MUST be

expressed as Hexadecimal Floating-Point Constants as defined in the

C11 standard [ISO.9899.2011] (see section 6.4.4.2 on Floating

Constants). The following table provides examples of expressions of

float ranges.

as decimal as Hexadecimal Floating-Point Constants

0.0 0x0p+1

0.0-1.0 0x0p+1-0x1p+0

1.0-256.0 0x1p+0-0x1p+8

0.857421875 0x1.b7p-1

-1.0--0.857421875 -0x1p+0--0x1.b7p-1

Table 8

Within an expression of a float range, as in an integer range, the -

(hyphen) character is the separator between the minimal and maximum

value permitted by the range. Hexadecimal Floating-Point Constants

also use a - (hyphen) when indicating a negative binary power.

Within a float range, when a - (hyphen) is immediately preceded by a

letter p, then the - (hyphen) is a part of the Hexadecimal Floating-

Point Constant which notes negative binary power. Within a float

range, when a - (hyphen) is not immediately preceded by a letter p,

¶

¶

then the - (hyphen) represents the separator between the minimal and

maximum value permitted by the range.

11.1.18. Note on the use of default attributes to define Mandatory

EBML Elements

If a Mandatory EBML Element has a default value declared by an EBML

Schema and the value of the EBML Element is equal to the declared

default value then that EBML Element is not required to be present

within the EBML Document if its Parent Element is present. In this

case, the default value of the Mandatory EBML Element MUST be read

by the EBML Reader although the EBML Element is not present within

its Parent Element.

If a Mandatory EBML Element has no default value declared by an EBML

Schema and its Parent Element is present then the EBML Element MUST

be present as well. If a Mandatory EBML Element has a default value

declared by an EBML Schema and its Parent Element is present and the

value of the EBML Element is NOT equal to the declared default value

then the EBML Element MUST be present.

This table clarifies if a Mandatory EBML Element MUST be written,

according to if the default value is declared, if the value of the

EBML Element is equal to the declared default value, and if the

Parent Element is used.

Is the default

value declared?

Is the value

equal to

default?

Is the Parent

Element

present?

Then is storing

the EBML Element

REQUIRED?

Yes Yes Yes No

Yes Yes No No

Yes No Yes Yes

Yes No No No

No n/a Yes Yes

No n/a No No

Table 9

11.2. EBML Header Elements

This document contains definitions of all EBML Elements of the EBML

Header.

11.2.1. EBML Element

name: EBML

path: 1*1(\EBML)

id: 0x1A45DFA3

¶

¶

¶

¶

¶

¶

¶

¶

minOccurs: 1

maxOccurs: 1

type: Master Element

description: Set the EBML characteristics of the data to follow.

Each EBML Document has to start with this.

11.2.2. EBMLVersion Element

name: EBMLVersion

path: 1*1(\EBML\EBMLVersion)

id 0x4286

minOccurs: 1

maxOccurs: 1

range: not 0

default: 1

type: Unsigned Integer

description: The version of EBML specifications used to create the

EBML Document. The version of EBML defined in this document is 1, so

EBMLVersion SHOULD be 1.

11.2.3. EBMLReadVersion Element

name: EBMLReadVersion

path: 1*1(\EBML\EBMLReadVersion)

id: 0x42F7

minOccurs: 1

maxOccurs: 1

range: 1

default: 1

type: Unsigned Integer

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

description: The minimum EBML version an EBML Reader has to support

to read this EBML Document. The EBMLReadVersion Element MUST be less

than or equal to EBMLVersion.

11.2.4. EBMLMaxIDLength Element

name: EBMLMaxIDLength

path: 1*1(\EBML\EBMLMaxIDLength)

id 0x42F2

minOccurs: 1

maxOccurs: 1

range: >=4

default: 4

type: Unsigned Integer

description: The EBMLMaxIDLength Element stores the maximum

permitted length in octets of the Element IDs to be found within the

EBML Body. An EBMLMaxIDLength Element value of four is RECOMMENDED,

though larger values are allowed.

11.2.5. EBMLMaxSizeLength Element

name: EBMLMaxSizeLength

path: 1*1(\EBML\EBMLMaxSizeLength)

id 0x42F3

minOccurs: 1

maxOccurs: 1

range: not 0

default: 8

type: Unsigned Integer

description: The EBMLMaxSizeLength Element stores the maximum

permitted length in octets of the expressions of all Element Data

Sizes to be found within the EBML Body. The EBMLMaxSizeLength

Element documents an upper bound for the length of all Element Data

Size expressions within the EBML Body and not an upper bound for the

value of all Element Data Size expressions within the EBML Body.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

EBML Elements that have an Element Data Size expression which is

larger in octets than what is expressed by EBMLMaxSizeLength Element

are invalid.

11.2.6. DocType Element

name: DocType

path: 1*1(\EBML\DocType)

id 0x4282

minOccurs: 1

maxOccurs: 1

length: >0

type: String

description: A string that describes and identifies the content of

the EBML Body that follows this EBML Header.

11.2.7. DocTypeVersion Element

name: DocTypeVersion

path: 1*1(\EBML\DocTypeVersion)

id 0x4287

minOccurs: 1

maxOccurs: 1

range: not 0

default: 1

type: Unsigned Integer

description: The version of DocType interpreter used to create the

EBML Document.

11.2.8. DocTypeReadVersion Element

name: DocTypeReadVersion

path: 1*1(\EBML\DocTypeReadVersion)

id 0x4285

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

minOccurs: 1

maxOccurs: 1

range: not 0

default: 1

type: Unsigned Integer

description: The minimum DocType version an EBML Reader has to

support to read this EBML Document. The value of the

DocTypeReadVersion Element MUST be less than or equal to the value

of the DocTypeVersion Element.

11.2.9. DocTypeExtension Element

name: DocTypeExtension

path: 0*(\EBML\DocTypeExtension)

id 0x4281

minOccurs: 0

type: Master Element

description: A DocTypeExtension adds extra Elements to the main

DocType+DocTypeVersion tuple it's attached to. An EBML Reader MAY

know these extra Elements and how to use them. A DocTypeExtension

MAY be used to iterate between experimental Elements before they are

integrated in a regular DocTypeVersion. Reading one DocTypeExtension

version of a DocType+DocTypeVersion tuple doesn't imply one should

be able to read upper versions of this DocTypeExtension.

11.2.10. DocTypeExtensionName Element

name: DocTypeExtensionName

path: 1*1(\EBML\DocTypeExtension\Name)

id 0x4283

minOccurs: 1

maxOccurs: 1

length: >0

type: String

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

description: The name of the DocTypeExtension to differentiate it

from other DocTypeExtension of the same DocType+DocTypeVersion

tuple. A DocTypeExtensionName value MUST be unique within the EBML

Header.

11.2.11. DocTypeExtensionVersion Element

name: DocTypeExtensionVersion

path: 1*1(\EBML\DocTypeExtension\Version)

id 0x4284

minOccurs: 1

maxOccurs: 1

range: not 0

type: Unsigned Integer

description: The version of the DocTypeExtension. Different

DocTypeExtensionVersion values of the same

DocType+DocTypeVersion+DocTypeExtensionName tuple MAY contain

completely different sets of extra Elements. An EBML Reader MAY

support multiple versions of the same DocTypeExtension, only one or

none.

11.3. Global Elements

EBML allows some special Elements to be found within more than one

parent in an EBML Document or optionally at the Root Level of an

EBML Body. These Elements are called Global Elements. There are 2

Global Elements that can be found in any EBML Document: the CRC-32

Element and the Void Element. An EBML Schema MAY add other Global

Elements to the format it defines. These extra elements apply only

to the EBML Body, not the EBML Header.

Global Elements are EBML Elements whose path have a EBMLGlobalParent

as their EBMLLastParent. Because it is the last Parent part of the

path, a Global Element might also have non-EBMLGlobalParent parts in

its path. In this case the Global Element can only be found within

this non-EBMLGlobalParent path, i.e. it's not fully "global".

A Global Element can be found in many Parent Elements, allowing the

same number of occurrences in each Parent where this Element is

found.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.3.1. CRC-32 Element

name: CRC-32

path: *1((1*\)\CRC-32)

id: 0xBF

minOccurs: 0

maxOccurs: 1

length: 4

type: Binary

description: The CRC-32 Element contains a 32-bit Cyclic Redundancy

Check value of all the Element Data of the Parent Element as stored

except for the CRC-32 Element itself. When the CRC-32 Element is

present, the CRC-32 Element MUST be the first ordered EBML Element

within its Parent Element for easier reading. All Top-Level Elements

of an EBML Document that are Master Elements SHOULD include a CRC-32

Element as a Child Element. The CRC in use is the IEEE-CRC-32

algorithm as used in the [ISO.3309.1979] standard and in section

8.1.1.6.2 of [ITU.V42.1994], with initial value of 0xFFFFFFFF. The

CRC value MUST be computed on a little endian bitstream and MUST use

little endian storage.

11.3.2. Void Element

name: Void

path: *((*\)\Void)

id: 0xEC

minOccurs: 0

type: Binary

description: Used to void data or to avoid unexpected behaviors when

using damaged data. The content is discarded. Also used to reserve

space in a sub-element for later use.

12. Considerations for Reading EBML Data

The following scenarios describe events to consider when reading

EBML Documents and the recommended design of an EBML Reader.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If a Master Element contains a CRC-32 Element that doesn't validate,

then the EBML Reader MAY ignore all contained data except for

Descendant Elements that contain their own valid CRC-32 Element.

In the following XML representation of a simple, hypothetical EBML

fragment, a Master Element called CONTACT contains two Child

Elements, NAME and ADDRESS. In this example, some data within the

NAME Element had been altered, so that the CRC-32 of the NAME

Element does not validate and thus any Ancestor Element with a

CRC-32 would therefore also no longer validate. However, even though

the CONTACT Element has a CRC-32 that does not validate (because of

the changed data within the NAME Element), the CRC-32 of the ADDRESS

Element does validate and thus the contents and semantics of the

ADDRESS Element MAY be used.

If a Master Element contains more occurrences of a Child Master

Element than permitted according to the maxOccurs and recurring

attributes of the definition of that Element then the occurrences in

addition to maxOccurs MAY be ignored.

If a Master Element contains more occurrences of a Child Element

than permitted according to the maxOccurs attribute of the

definition of that Element then all instances of that Element after

the first maxOccur occurrences from the beginning of its Parent

Element SHOULD be ignored.

13. Terminating Elements

Null Octets, which are octets with all bits set to zero, MAY follow

the value of a String Element or UTF-8 Element to serve as a

terminator. An EBML Writer MAY terminate a String Element or UTF-8

Element with Null Octets in order to overwrite a stored value with a

new value of lesser length while maintaining the same Element Data

Size (this can prevent the need to rewrite large portions of an EBML

Document); otherwise the use of Null Octets within a String Element

¶

¶

<CONTACT>

 <CRC-32>c119a69b</CRC-32><!-- does not validate -->

 <NAME>

 <CRC-32>1f59ee2b</CRC-32><!-- does not validate -->

 <FIRST-NAME>invalid data</FIRST-NAME>

 <LAST-NAME>invalid data</LAST-NAME>

 </NAME>

 <ADDRESS>

 <CRC-32>df941cc9</CRC-32><!-- validates -->

 <STREET>valid data</STREET>

 <CITY>valid data</CITY>

 </ADDRESS>

</CONTACT>

¶

¶

¶

or UTF-8 Element is NOT RECOMMENDED. An EBML Reader MUST consider

the value of the String Element or UTF-8 Element to be terminated

upon the first read Null Octet and MUST ignore any data following

the first Null Octet within that Element. A string value and a copy

of that string value terminated by one or more Null Octets are

semantically equal.

The following table shows examples of semantics and validation for

the use of Null Octets. Values to represent Stored Values and the

Semantic Meaning as represented as hexadecimal values.

Stored Value Semantic Meaning

0x65 0x62 0x6D 0x6C 0x65 0x62 0x6D 0x6C

0x65 0x62 0x00 0x6C 0x65 0x62

0x65 0x62 0x00 0x00 0x65 0x62

0x65 0x62 0x65 0x62

Table 10

14. Guidelines for Updating Elements

An EBML Document can be updated without requiring that the entire

EBML Document be rewritten. These recommendations describe

strategies to change the Element Data of a written EBML Element with

minimal disruption to the rest of the EBML Document.

14.1. Reducing a Element Data in Size

There are three methods to reduce the size of Element Data of a

written EBML Element.

14.1.1. Adding a Void Element

When an EBML Element is changed to reduce its total length by more

than one octet, an EBML Writer SHOULD fill the freed space with a

Void Element.

14.1.2. Extending the Element Data Size

The same value for Element Data Size MAY be written in variable

lengths, so for minor reductions in octet length the Element Data

Size MAY be written to a longer octet length to fill the freed

space.

For example, the first row of the following table depicts a String

Element that stores an Element ID (3 octets), Element Data Size (1

octet), and Element Data (4 octets). If the Element Data is changed

to reduce the length by one octet and if the current length of the

Element Data Size is less than its maximum permitted length, then

the Element Data Size of that Element MAY be rewritten to increase

¶

¶

¶

¶

¶

¶

its length by one octet. Thus before and after the change the EBML

Element maintains the same length of 8 octets and data around the

Element does not need to be moved.

Status Element ID Element Data Size Element Data

Before edit 0x3B4040 0x84 0x65626D6C

After edit 0x3B4040 0x4003 0x6D6B76

Table 11

This method is RECOMMENDED when the Element Data is reduced by a

single octet; for reductions by two or more octets it is RECOMMENDED

to fill the freed space with a Void Element.

Note that if the Element Data length needs to be rewritten as

shortened by one octet and the Element Data Size could be rewritten

as a shorter VINT then it is RECOMMENDED to rewrite the Element Data

Size as one octet shorter, shorten the Element Data by one octet,

and follow that Element with a Void Element. For example, the

following table depicts a String Element that stores an Element ID

(3 octets), Element Data Size (2 octets, but could be rewritten in

one octet), and Element Data (3 octets). If the Element Data is to

be rewritten to a two octet length, then another octet can be taken

from Element Data Size so that there is enough space to add a two

octet Void Element.

Status Element ID Element Data Size Element Data Void Element

Before 0x3B4040 0x4003 0x6D6B76

After 0x3B4040 0x82 0x6869 0xEC80

Table 12

14.1.3. Terminating Element Data

For String Elements and UTF-8 Elements the length of Element Data

MAY be reduced by adding Null Octets to terminate the Element Data

(see Section 13).

In the following table, a four octets long Element Data is changed

to a three octet long value followed by a Null Octet; the Element

Data Size includes any Null Octets used to terminate Element Data so

remains unchanged.

Status Element ID Element Data Size Element Data

Before edit 0x3B4040 0x84 0x65626D6C

After edit 0x3B4040 0x84 0x6D6B7600

Table 13

Note that this method is NOT RECOMMENDED. For reductions of one

octet, the method for Extending the Element Data Size SHOULD be

¶

¶

¶

¶

¶

used. For reduction by more than one octet, the method for Adding a

Void Element SHOULD be used.

14.2. Considerations when Updating Elements with Cyclic Redundancy

Check (CRC)

If the Element to be changed is a Descendant Element of any Master

Element that contains a CRC-32 Element (see Section 11.3.1) then the

CRC-32 Element MUST be verified before permitting the change.

Additionally the CRC-32 Element value MUST be subsequently updated

to reflect the changed data.

15. Backward and Forward Compatibility

Elements of an EBML format SHOULD be designed with backward and

forward compatibility in mind.

15.1. Backward Compatibility

Backward compatibility of new EBML Elements can be achieved by using

default values for mandatory elements. The default value MUST

represent the state that was assumed for previous versions of the

EBML Schema, without this new EBML Element. If such a state doesn't

make sense for previous versions, then the new EBML Element SHOULD

NOT be mandatory.

Non mandatory EBML Elements can be added in a new

EBMLDocTypeVersion. Since they are not mandatory they won't be found

in older versions of the EBMLDocTypeVersion, just as they might not

be found in newer versions. This causes no compatibility issue.

15.2. Forward Compatibility

EBML Elements MAY be marked as deprecated in a new

EBMLDocTypeVersion using the maxver attribute of the EBML Schema. If

such an Element is found in an EBML Document with newer version of

the EBMLDocTypeVersion it SHOULD be discarded.

16. Security Considerations

EBML itself does not offer any kind of security and does not provide

confidentiality. EBML does not provide any kind of authorization.

EBML only offers marginally useful and effective data integrity

options, such as CRC elements.

Even if the semantic layer offers any kind of encryption, EBML

itself could leak information at both the semantic layer (as

declared via the DocType Element) and within the EBML structure (the

presence of EBML Elements can be derived even with an unknown

¶

¶

¶

¶

¶

¶

¶

semantic layer using a heuristic approach; not without errors, of

course, but with a certain degree of confidence).

An EBML Document that has the following issues may still be handled

by the EBML Reader and the data accepted as such, depending on how

strict the EBML Reader wants to be:

Invalid Element IDs that are longer than the limit stated in the

EBMLMaxIDLength Element of the EBML Header.

Invalid Element IDs that are not encoded in the shortest-possible

way.

Invalid Element Data Size values that are longer than the limit

stated in the EBMLMaxSizeLength Element of the EBML Header.

Element IDs that are unknown to the EBML Reader MAY be accepted as

valid EBML IDs in order to skip such elements.

EBML Elements with a string type may contain extra data after the

first 0x00. These data MUST be discarded according to the Section 13

rules.

An EBML Reader may discard some or all data if the following errors

are found in the EBML Document:

Invalid Element Data Size values (e.g. extending the length of

the EBML Element beyond the scope of the Parent Element; possibly

triggering access-out-of-bounds issues).

Very high lengths in order to force out-of-memory situations

resulting in a denial of service, access-out-of-bounds issues

etc.

Missing EBML Elements that are mandatory in a Master Element and

have no declared default value, making the semantic invalid at

that Master Element level.

Usage of invalid UTF-8 encoding in EBML Elements of UTF-8 type

(e.g. in order to trigger access-out-of-bounds or buffer overflow

issues).

Usage of invalid data in EBML Elements with a date type,

triggering bogus date accesses.

Side channel attacks could exploit:

The semantic equivalence of the same string stored in a String

Element or UTF-8 Element with and without zero-bit padding,

making comparison at the semantic level invalid.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

The semantic equivalence of VINT_DATA within Element Data Size

with two different lengths due to left-padding zero bits, making

comparison at the semantic level invalid.

Data contained within a Master Element which is not itself part

of a Child Element can trigger incorrect parsing behavior in EBML

Readers.

Extraneous copies of Identically Recurring Element, making

parsing unnecessarily slow to the point of not being usable.

Copies of Identically Recurring Element within a Parent Element

that contain invalid CRC-32 Elements. EBML Readers not checking

the CRC-32 might use the version of the element with mismatching

CRC-32.

Use of Void Elements which could be used to hide content or

create bogus resynchronization points seen by some EBML Reader

and not others.

17. IANA Considerations

17.1. CELLAR EBML Element ID Registry

This document creates a new IANA Registry called "CELLAR EBML

Element ID Registry".

Element IDs are described in section Element ID. Element IDs are

encoded using the VINT mechanism described in section Section 4 can

be between one and five octets long. Five octet long Element IDs are

possible only if declared in the header.

This IANA Registry only applies to Elements that can be contained in

the EBML Header, thus including Global Elements. Elements only found

in the EBML Body have their own set of independent Element IDs and

are not part of this IANA Registry.

The VINT Data value of one-octet Element IDs MUST be between 0x01

and 0x7E. These items are valuable because they are short, and need

to be used for commonly repeated elements. Values from 1 to 126 are

to be allocated according to the "RFC Required" policy [RFC8126].

The VINT Data value of two-octet Element IDs MUST be between 0x007F

and 0x3FFE. Numbers are to be allocated within this range according

to the "Specification Required" policy [RFC8126].

The numbers 0x3FFF and 0x4000 are RESERVED.

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

The VINT Data value of three-octet Element IDs MUST be between

0x4001 and 0x1FFFFE. Numbers may be allocated within this range

according to the "First Come First Served" policy [RFC8126].

The numbers 0x1FFFFF and 0x200000 are RESERVED.

Four-octet Element IDs are numbers between 0x101FFFFF and

0x1FFFFFFE. Four-octet Element IDs are somewhat special in that they

are useful for resynchronizing to major structures in the event of

data corruption or loss. As such four-octet Element IDs are split

into two categories. Four-octet Element IDs whose lower three octets

(as encoded) would make printable 7-bit ASCII values (0x20 to 0x7E,

inclusive) MUST be allocated by the "Specification Required" policy.

Sequential allocation of values is not required: specifications

SHOULD include a specific request, and are encouraged to do early

allocations.

To be clear about the above category: four-octet Element IDs always

start with hex 0x10 to 0x1F, and that octet may be chosen so that

the entire number has some desirable property, such as a specific

CRC. The other three octets, when ALL having values between 0x21

(33, ASCII !) and 0x7E (126, ASCII ~), fall into this category.

Other four-octet Element IDs may be allocated by the "First Come

First Served" policy.

The numbers 0xFFFFFFF and 0x1000000 are RESERVED.

Five octet Element IDs (values from 0x10000001 upwards) are RESERVED

according to the "Experimental Use" policy [RFC8126]: they may be

used by anyone at any time, but there is no coordination.

ID Values found in this document are assigned as initial values as

follows:

ID Element Name Reference

0x1A45DFA3 EBML Described in Section 11.2.1

0x4286 EBMLVersion Described in Section 11.2.2

0x42F7 EBMLReadVersion Described in Section 11.2.3

0x42F2 EBMLMaxIDLength Described in Section 11.2.4

0x42F3 EBMLMaxSizeLength Described in Section 11.2.5

0x4282 DocType Described in Section 11.2.6

0x4287 DocTypeVersion Described in Section 11.2.7

0x4285 DocTypeReadVersion Described in Section 11.2.8

0x4281 DocTypeExtension Described in Section 11.2.9

0x4283 DocTypeExtensionName Described in Section 11.2.10

0x4284 DocTypeExtensionVersion Described in Section 11.2.11

0xBF CRC-32 Described in Section 11.3.1

0xEC Void Described in Section 11.3.2

¶

¶

¶

¶

¶

¶

¶

¶

[RFC3339]

[W3C.REC-xmlschema-0-20041028]

[W3C.SPSD-xhtml-basic-20180327]

[ISO.9899.2011]

[RFC8126]

[W3C.REC-xml-20081126]

Table 14

17.2. CELLAR EBML DocType Registry

This document creates a new IANA Registry called "CELLAR EBML

DocType Registry".

To register a new DocType in this registry one needs a DocType name,

a Description of the DocType, a Change Controller (IESG or email of

registrant) and an optional Reference to a document describing the

DocType.

DocType values are described in Section 11.1.3.1. DocTypes are ASCII

strings, defined in Section 7.4, which label the official name of

the EBML Document Type. The strings may be allocated according to

the "First Come First Served" policy.

The use of ASCII corresponds to the types and code already in use,

the value is not meant to be visible to the user.

DocType string values of "matroska" and "webm" are RESERVED to the

IETF for future use. These can be assigned via the "IESG Approval"

or "RFC Required" policies [RFC8126].

18. Normative References

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Fallside, D. and P. Walmsley, "XML

Schema Part 0: Primer Second Edition", World Wide Web

Consortium Recommendation REC-xmlschema-0-20041028, 28

October 2004, <http://www.w3.org/TR/2004/REC-

xmlschema-0-20041028>.

McCarron, S., "XHTML(tm) Basic 1.1 -

Second Edition", 27 March 2018.

International Organization for Standardization,

"Programming languages - C", 2011.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Bray, T., Paoli, J., Sperberg-McQueen, M.,

Maler, E., and F. Yergeau, "Extensible Markup Language

(XML) 1.0 (Fifth Edition)", World Wide Web Consortium

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc3339
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126

[IEEE.754.1985]

[RFC7405]

[RFC5646]

[RFC8174]

[RFC0020]

[RFC3629]

[ISO.3309.1979]

[RFC2119]

[ITU.V42.1994]

[RFC5234]

[W3C.REC-xpath-19991116]

Recommendation REC-xml-20081126, 26 November 2008,

<http://www.w3.org/TR/2008/REC-xml-20081126>.

Institute of Electrical and Electronics Engineers,

"Standard for Binary Floating-Point Arithmetic", August

1985.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

International Organization for Standardization,

"Data communication - High-level data link control

procedures - Frame structure", 1979.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

International Telecommunications Union, "Error-

correcting Procedures for DCEs Using Asynchronous-to-

Synchronous Conversion", 1994.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

19. Informative References

Clark, J. and S. DeRose, "XML Path Language

(XPath) Version 1.0", World Wide Web Consortium

http://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234

Recommendation REC-xpath-19991116, 16 November 1999,

<http://www.w3.org/TR/1999/REC-xpath-19991116>.

Authors' Addresses

Steve Lhomme

Email: slhomme@matroska.org

Dave Rice

Email: dave@dericed.com

Moritz Bunkus

Email: moritz@bunkus.org

http://www.w3.org/TR/1999/REC-xpath-19991116
mailto:slhomme@matroska.org
mailto:dave@dericed.com
mailto:moritz@bunkus.org

	Extensible Binary Meta Language
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation and Conventions
	3. Structure
	4. Variable Size Integer
	4.1. VINT_WIDTH
	4.2. VINT_MARKER
	4.3. VINT_DATA
	4.4. VINT Examples

	5. Element ID
	6. Element Data Size
	6.1. Data Size Format
	6.2. Unknown Data Size
	6.3. Data Size Values

	7. EBML Element Types
	7.1. Signed Integer Element
	7.2. Unsigned Integer Element
	7.3. Float Element
	7.4. String Element
	7.5. UTF-8 Element
	7.6. Date Element
	7.7. Master Element
	7.8. Binary Element

	8. EBML Document
	8.1. EBML Header
	8.2. EBML Body

	9. EBML Stream
	10. EBML Versioning
	10.1. EBML Header Version
	10.2. EBML Document Version

	11. Elements semantic
	11.1. EBML Schema
	11.1.1. EBML Schema Example
	11.1.2. <EBMLSchema> Element
	11.1.3. <EBMLSchema> Attributes
	11.1.3.1. docType
	11.1.3.2. version

	11.1.4. <element> Element
	11.1.5. <element> Attributes
	11.1.5.1. name
	11.1.5.2. path
	11.1.5.3. id
	11.1.5.4. minOccurs
	11.1.5.5. maxOccurs
	11.1.5.6. range
	11.1.5.6.1. Expression of range

	11.1.5.7. length
	11.1.5.8. default
	11.1.5.9. type
	11.1.5.10. unknownsizeallowed
	11.1.5.11. recursive
	11.1.5.12. recurring
	11.1.5.13. minver
	11.1.5.14. maxver

	11.1.6. <documentation> Element
	11.1.7. <documentation> Attributes
	11.1.7.1. lang
	11.1.7.2. purpose

	11.1.8. <implementation_note> Element
	11.1.9. <implementation_note> Attributes
	11.1.9.1. note_attribute
	11.1.9.2. <implementation_note> Example

	11.1.10. <restriction> Element
	11.1.11. <enum> Element
	11.1.12. <enum> Attributes
	11.1.12.1. label
	11.1.12.2. value

	11.1.13. <extension> Element
	11.1.14. <extension> Attributes
	11.1.14.1. type

	11.1.15. XML Schema for EBML Schema
	11.1.16. Identically Recurring Elements
	11.1.17. Textual expression of floats
	11.1.18. Note on the use of default attributes to define Mandatory EBML Elements

	11.2. EBML Header Elements
	11.2.1. EBML Element
	11.2.2. EBMLVersion Element
	11.2.3. EBMLReadVersion Element
	11.2.4. EBMLMaxIDLength Element
	11.2.5. EBMLMaxSizeLength Element
	11.2.6. DocType Element
	11.2.7. DocTypeVersion Element
	11.2.8. DocTypeReadVersion Element
	11.2.9. DocTypeExtension Element
	11.2.10. DocTypeExtensionName Element
	11.2.11. DocTypeExtensionVersion Element

	11.3. Global Elements
	11.3.1. CRC-32 Element
	11.3.2. Void Element

	12. Considerations for Reading EBML Data
	13. Terminating Elements
	14. Guidelines for Updating Elements
	14.1. Reducing a Element Data in Size
	14.1.1. Adding a Void Element
	14.1.2. Extending the Element Data Size
	14.1.3. Terminating Element Data

	14.2. Considerations when Updating Elements with Cyclic Redundancy Check (CRC)

	15. Backward and Forward Compatibility
	15.1. Backward Compatibility
	15.2. Forward Compatibility

	16. Security Considerations
	17. IANA Considerations
	17.1. CELLAR EBML Element ID Registry
	17.2. CELLAR EBML DocType Registry

	18. Normative References
	19. Informative References
	Authors' Addresses

