
Workgroup: cellar

Internet-Draft: draft-ietf-cellar-flac-02

Published: 29 October 2021

Intended Status: Informational

Expires: 2 May 2022

Authors: M. Richardson A. Weaver

Free Lossless Audio Codec

Abstract

This document defines FLAC, which stands for Free Lossless Audio

Codec, a free, open source codec for lossless audio compression and

decompression.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2. Notation and Conventions

3. Acknowledgments

4. Scope

5. Architecture

6. Definitions

7. Blocking

8. Interchannel Decorrelation

9. Prediction

10. Residual Coding

11. Format

11.1. Principles

11.2. Overview

11.3. Subset

11.4. Conventions

11.5. STREAM

11.6. METADATA_BLOCK

11.7. METADATABLOCKHEADER

11.8. BLOCK_TYPE

11.9. METADATABLOCKDATA

11.10. METADATABLOCKSTREAMINFO

11.11. METADATABLOCKPADDING

11.12. METADATABLOCKAPPLICATION

11.13. METADATABLOCKSEEKTABLE

11.14. SEEKPOINT

11.15. METADATABLOCKVORBIS_COMMENT

11.16. METADATABLOCKCUESHEET

11.17. CUESHEET_TRACK

11.18. CUESHEETTRACKINDEX

11.19. METADATABLOCKPICTURE

11.20. PICTURE_TYPE

11.21. FRAME

11.22. FRAME_HEADER

11.22.1. FRAME HEADER RESERVED

11.22.2. BLOCKING STRATEGY

11.22.3. INTERCHANNEL SAMPLE BLOCK SIZE

11.22.4. SAMPLE RATE

11.22.5. CHANNEL ASSIGNMENT

11.22.6. SAMPLE SIZE

11.22.7. FRAME HEADER RESERVED2

11.22.8. CODED NUMBER

11.22.9. BLOCK SIZE INT

11.22.10. SAMPLE RATE INT

11.22.11. FRAME CRC

11.23. FRAME_FOOTER

11.24. SUBFRAME

11.25. SUBFRAME_HEADER

11.25.1. SUBFRAME TYPE

11.25.2. WASTED BITS PER SAMPLE FLAG

11.26. SUBFRAME_CONSTANT

11.27. SUBFRAME_FIXED

11.28. SUBFRAME_LPC

11.29. SUBFRAME_VERBATIM

11.30. RESIDUAL

11.30.1. RESIDUALCODINGMETHOD

11.30.2. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB

11.30.3. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB2

11.30.4. ENCODED RESIDUAL

12. Security Considerations

13. Normative References

14. Informative References

Authors' Addresses

1. Introduction

This is a detailed description of the FLAC format. There is also a

companion document that describes FLAC-to-Ogg mapping.

For a user-oriented overview, see About the FLAC Format.

2. Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Acknowledgments

FLAC owes much to the many people who have advanced the audio

compression field so freely. For instance: - A. J. Robinson for his

work on Shorten; his paper is a good starting point on some of the

basic methods used by FLAC. FLAC trivially extends and improves the

fixed predictors, LPC coefficient quantization, and Exponential-

Golomb coding used in Shorten. - S. W. Golomb and Robert F. Rice;

their universal codes are used by FLAC's entropy coder. - N.

Levinson and J. Durbin; the reference encoder uses an algorithm

developed and refined by them for determining the LPC coefficients

from the autocorrelation coefficients. - And of course, Claude

Shannon

4. Scope

FLAC stands for Free Lossless Audio Codec: it is designed to reduce

the amount of computer storage space needed to store digital audio

signals without needing to remove information in doing so (i.e.

lossless). FLAC is free in the sense that its specification is open,

its reference implementation is open-source and it is not encumbered

by any known patent.

¶

¶

¶

¶

¶

https://xiph.org/flac/ogg_mapping.html
https://xiph.org/flac/documentation_format_overview.html
http://svr-www.eng.cam.ac.uk/~ajr/
http://svr-www.eng.cam.ac.uk/reports/abstracts/robinson_tr156.html
https://web.archive.org/web/20040215005354/http://csi.usc.edu/faculty/golomb.html
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon

FLAC is able to achieve lossless compression because samples in

audio signals tend to be highly correlated with their close

neighbors. In contrast with general purpose compressors, which often

use dictionaries, do run-length coding or exploit long-term

repetition, FLAC removes redundancy solely in the very short term,

looking back at most 32 samples.

The FLAC format is suited for pulse-code modulated (PCM) audio with

1 to 8 channels, sample rates from 1 to 1048576 Hertz and bit depths

between 4 and 32 bits. Most tools for reading and writing the FLAC

format have been optimized for CD-audio, which is PCM audio with 2

channels, a sample rate of 44.1 kHz and a bit depth of 16 bits.

Compared to other lossless (audio) coding formats, FLAC is a format

with low complexity and can be coded to and from with little

computing resources. Decoding of FLAC has seen many independent

implementations on many different platforms, and both encoding and

decoding can be implemented without needing floating-point

arithmetic.

The coding methods provided by the FLAC format works best on PCM

audio signals of which the samples have a signed representation and

are centered around zero. Audio signals in which samples have an

unsigned representation must be transformed to a signed

representation as described in this document in order to achieve

reasonable compression. The FLAC format is not suited to compress

audio that is not PCM. Pulse-density modulated audio, e.g. DSD,

cannot be compressed by FLAC.

5. Architecture

Similar to many audio coders, a FLAC encoder has the following

stages:

Blocking (see section on Blocking). The input is broken up into

many contiguous blocks. With FLAC, the blocks MAY vary in size.

The optimal size of the block is usually affected by many

factors, including the sample rate, spectral characteristics over

time, etc. Though FLAC allows the block size to vary within a

stream, the reference encoder uses a fixed block size.

Interchannel Decorrelation (see section on Interchannel

Decorrelation). In the case of stereo streams, the encoder will

create mid and side signals based on the average and difference

(respectively) of the left and right channels. The encoder will

then pass the best form of the signal to the next stage.

Prediction (see section on Prediction). The block is passed

through a prediction stage where the encoder tries to find a

mathematical description (usually an approximate one) of the

¶

¶

¶

¶

¶

*

¶

*

¶

*

signal. This description is typically much smaller than the raw

signal itself. Since the methods of prediction are known to both

the encoder and decoder, only the parameters of the predictor

need be included in the compressed stream. FLAC currently uses

four different classes of predictors, but the format has reserved

space for additional methods. FLAC allows the class of predictor

to change from block to block, or even within the channels of a

block.

Residual Coding (See section on Residual Coding). If the

predictor does not describe the signal exactly, the difference

between the original signal and the predicted signal (called the

error or residual signal) MUST be coded losslessly. If the

predictor is effective, the residual signal will require fewer

bits per sample than the original signal. FLAC currently uses

only one method for encoding the residual, but the format has

reserved space for additional methods. FLAC allows the residual

coding method to change from block to block, or even within the

channels of a block.

In addition, FLAC specifies a metadata system, which allows

arbitrary information about the stream to be included at the

beginning of the stream.

6. Definitions

Block: A (short) section of linear pulse-code modulated audio,

with one or more channels.

Subblock: All samples within a corresponding block for 1 channel.

One or more subblocks form a block, and all subblocks in a

certain block contain the same number of samples.

Frame: A frame header plus one or more subframes. It encodes the

contents of a corresponding block.

Subframe: An encoded subblock. All subframes within a frame code

for the same number of samples. A subframe MAY correspond to a

subblock, else it corresponds to either the addition or

subtraction of two subblocks, see section on interchannel

decorrelation.

Blocksize: The total number of samples contained in a block or

coded in a frame, divided by the number of channels. In other

words, the number of samples in any subblock of a block, or any

subframe of a frame. This is also called interchannel samples.

Bit depth or bits per sample: the number of bits used to contain

each sample. This MUST be the same for all subblocks in a block

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

but MAY be different for different subframes in a frame because

of interchannel decorrelation.

Predictor: a model used to predict samples in an audio signal

based on past samples. FLAC uses such predictors to remove

redundancy in a signal in order to be able to compress it.

Linear predictor: a predictor using linear prediction. This is

also called linear predictive coding (LPC). With a linear

predictor each prediction is a linear combination of past

samples, hence the name. A linear predictor has a causal

discrete-time finite impulse response.

Fixed predictor: a linear predictor in which the model parameters

are the same across all FLAC files, and thus not need to be

stored.

Predictor order: the number of past samples that a predictor

uses. For example, a 4th order predictor uses the 4 samples

directly preceding a certain sample to predict it. In FLAC,

samples used in a predictor are always consecutive, and are

always the samples directly before the sample that is being

predicted

Residual: The audio signal that remains after a predictor has

been subtracted from a subblock. If the predictor has been able

to remove redundancy from the signal, the samples of the

remaining signal (the residual samples) will have, on average, a

smaller numerical value than the original signal.

Rice code: A variable-length code which compresses data by making

use of the observation that, after using an effective predictor,

most residual samples are closer to zero than the original

samples, while still allowing for a small part of the samples to

be much larger.

7. Blocking

The size used for blocking the audio data has a direct effect on the

compression ratio. If the block size is too small, the resulting

large number of frames mean that excess bits will be wasted on frame

headers. If the block size is too large, the characteristics of the

signal MAY vary so much that the encoder will be unable to find a

good predictor. In order to simplify encoder/decoder design, FLAC

imposes a minimum block size of 16 samples, and a maximum block size

of 65535 samples. This range covers the optimal size for all of the

audio data FLAC supports.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

https://en.wikipedia.org/wiki/Linear_prediction
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Variable-length_code

Currently the reference encoder uses a fixed block size, optimized

on the sample rate of the input. Future versions MAY vary the block

size depending on the characteristics of the signal.

Blocked data is passed to the predictor stage one subblock (channel)

at a time. Each subblock is independently coded into a subframe, and

the subframes are concatenated into a frame. Because each channel is

coded separately, one channel of a stereo frame MAY be encoded as a

constant subframe, and the other an LPC subframe.

8. Interchannel Decorrelation

In many audio files, channels are correlated. The FLAC format can

exploit this correlation in stereo files by not directly coding

subblocks into subframes, but instead coding an average of all

samples in both subblocks (a mid channel) or the difference between

all samples in both subblocks (a side channel). The following

combinations are possible:

Independent. All channels are coded independently. All non-stereo

files MUST be encoded this way.

Mid-side. A left and right subblock are converted to mid and side

subframes. To calculate a sample for a mid subframe, the

corresponding left and right samples are summed and the result is

shifted right by 1 bit. To calculate a sample for a side

subframe, the corresponding right sample is subtracted from the

corresponding left sample. On decoding, the mid channel has to be

shifted left by 1 bit. Also, if the side channel is uneven, 1 has

to be added to the mid channel after the left shift. To

reconstruct the left channel, the corresponding samples in the

mid and side subframes are added and the result shifted right by

1 bit, while for the right channel the side channel has to be

subtracted from the mid channel and the result shifted right by 1

bit.

Left-side. The left subblock is coded and the left and right

subblock are used to code a side subframe. The side subframe is

constructed in the same way as for mid-side. To decode, the right

subblock is restored by subtracting the samples in the side

subframe from the corresponding samples the left subframe.

Right-side. The right subblock is coded and the left and right

subblock are used to code a side subframe. Note that the actual

coded subframe order is side-right. The side subframe is

constructed in the same way as for mid-side. To decode, the left

subblock is restored by adding the samples in the side subframe

to the corresponding samples in the left subframe.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

The side channel needs one extra bit of bit depth as the subtraction

can produce sample values twice as large as the maximum possible in

any given bit depth. The mid channel in mid-side stereo does not

need one extra bit, as it is shifted left one bit. The left shift of

the mid channel does not lead to non-lossless behavior, because an

uneven sample in the mid subframe must always be accompanied by a

corresponding uneven sample in the side subframe, which means the

lost least significant bit can be restored by taking it from the

sample in the side subframe.

9. Prediction

FLAC uses four methods for modeling the input signal:

Verbatim. This is essentially a zero-order predictor of the

signal. The predicted signal is zero, meaning the residual is

the signal itself, and the compression is zero. This is the

baseline against which the other predictors are measured. If

you feed random data to the encoder, the verbatim predictor

will probably be used for every subblock. Since the raw signal

is not actually passed through the residual coding stage (it is

added to the stream 'verbatim'), the encoding results will not

be the same as a zero-order linear predictor.

Constant. This predictor is used whenever the subblock is pure

DC ("digital silence"), i.e. a constant value throughout. The

signal is run-length encoded and added to the stream.

Fixed linear predictor. FLAC uses a class of computationally-

efficient fixed linear predictors (for a good description, see

audiopak and shorten). FLAC adds a fourth-order predictor to

the zero-to-third-order predictors used by Shorten. Since the

predictors are fixed, the predictor order is the only parameter

that needs to be stored in the compressed stream. The error

signal is then passed to the residual coder.

FIR Linear prediction. For more accurate modeling (at a cost of

slower encoding), FLAC supports up to 32nd order FIR linear

prediction (again, for information on linear prediction, see

audiopak and shorten). The reference encoder uses the Levinson-

Durbin method for calculating the LPC coefficients from the

autocorrelation coefficients, and the coefficients are

quantized before computing the residual. Whereas encoders such

as Shorten used a fixed quantization for the entire input, FLAC

allows the quantized coefficient precision to vary from

subframe to subframe. The FLAC reference encoder estimates the

optimal precision to use based on the block size and dynamic

range of the original signal.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

http://www.hpl.hp.com/techreports/1999/HPL-1999-144.pdf
http://svr-www.eng.cam.ac.uk/reports/abstracts/robinson_tr156.html
http://www.hpl.hp.com/techreports/1999/HPL-1999-144.pdf
http://svr-www.eng.cam.ac.uk/reports/abstracts/robinson_tr156.html

10. Residual Coding

FLAC uses Exponential-Golomb (a variant of Rice) coding as its

residual encoder. You can learn more about exp-golomb coding on

Wikipedia.

FLAC currently defines two similar methods for the coding of the

error signal from the prediction stage. The error signal is coded

using Exponential-Golomb codes in one of two ways:

the encoder estimates a single exp-golomb parameter based on

the variance of the residual and exp-golomb codes the entire

residual using this parameter;

the residual is partitioned into several equal-length regions

of contiguous samples, and each region is coded with its own

exp-golomb parameter based on the region's mean.

(Note that the first method is a special case of the second method

with one partition, except the exp-golomb parameter is based on the

residual variance instead of the mean.)

The FLAC format has reserved space for other coding methods. Some

possibilities for volunteers would be to explore better context-

modeling of the exp-golomb parameter, or Huffman coding. See LOCO-I

and pucrunch for descriptions of several universal codes.

11. Format

This section specifies the FLAC bitstream format.

11.1. Principles

FLAC has no format version information, but it does contain reserved

space in several places. Future versions of the format MAY use this

reserved space safely without breaking the format of older streams.

Older decoders MAY choose to abort decoding or skip data encoded

with newer methods. Apart from reserved patterns, in places the

format specifies invalid patterns, meaning that the patterns MAY

never appear in any valid bitstream, in any prior, present, or

future versions of the format. These invalid patterns are usually

used to make the synchronization mechanism more robust.

All numbers used in a FLAC bitstream MUST be integers; there are no

floating-point representations. All numbers MUST be big-endian

coded, except the length field used in Vorbis comments, which MUST

be little-endian coded. All numbers MUST be unsigned except linear

predictor coefficients, the linear prediction shift and numbers

which directly represent samples, which MUST be signed. None of

these restrictions apply to application metadata blocks.

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

https://en.wikipedia.org/wiki/Exponential-Golomb_coding
http://www.hpl.hp.com/techreports/98/HPL-98-193.html
http://web.archive.org/web/20140827133312/http://www.cs.tut.fi/~albert/Dev/pucrunch/packing.html

All samples encoded to and decoded from the FLAC format MUST be in a

signed representation.

There are several ways to convert unsigned sample representations to

signed sample representations, but the coding methods provided by

the FLAC format work best on audio signals of which the numerical

values of the samples are centered around zero, i.e. have no DC

offset. In most unsigned audio formats, signals are centered around

halfway the range of the unsigned integer type used. If that is the

case, all sample representations SHOULD be converted by first

copying the number to a signed integer with sufficient range and

then subtracting half of the range of the unsigned integer type,

which should result in a signal with samples centered around 0.

11.2. Overview

Before the formal description of the stream, an overview might be

helpful.

A FLAC bitstream consists of the "fLaC" (i.e. 0x664C6143) marker

at the beginning of the stream, followed by a mandatory metadata

block (called the STREAMINFO block), any number of other metadata

blocks, then the audio frames.

FLAC supports up to 128 kinds of metadata blocks; currently the

following are defined:

STREAMINFO: This block has information about the whole stream,

like sample rate, number of channels, total number of samples,

etc. It MUST be present as the first metadata block in the

stream. Other metadata blocks MAY follow, and ones that the

decoder doesn't understand, it will skip.

PADDING: This block allows for an arbitrary amount of padding.

The contents of a PADDING block have no meaning. This block is

useful when it is known that metadata will be edited after

encoding; the user can instruct the encoder to reserve a

PADDING block of sufficient size so that when metadata is

added, it will simply overwrite the padding (which is

relatively quick) instead of having to insert it into the

right place in the existing file (which would normally require

rewriting the entire file).

APPLICATION: This block is for use by third-party

applications. The only mandatory field is a 32-bit identifier.

This ID is granted upon request to an application by the FLAC

maintainers. The remainder is of the block is defined by the

registered application. Visit the registration page if you

would like to register an ID for your application with FLAC.

¶

¶

¶

*

¶

*

¶

-

¶

-

¶

-

¶

https://xiph.org/flac/id.html

SEEKTABLE: This is an OPTIONAL block for storing seek points.

It is possible to seek to any given sample in a FLAC stream

without a seek table, but the delay can be unpredictable since

the bitrate MAY vary widely within a stream. By adding seek

points to a stream, this delay can be significantly reduced.

Each seek point takes 18 bytes, so 1% resolution within a

stream adds less than 2K. There can be only one SEEKTABLE in a

stream, but the table can have any number of seek points.

There is also a special 'placeholder' seekpoint which will be

ignored by decoders but which can be used to reserve space for

future seek point insertion.

VORBIS_COMMENT: This block is for storing a list of human-

readable name/value pairs. Values are encoded using UTF-8. It

is an implementation of the Vorbis comment specification

(without the framing bit). This is the only officially

supported tagging mechanism in FLAC. There MUST be only zero

or one VORBIS_COMMENT blocks in a stream. In some external

documentation, Vorbis comments are called FLAC tags to lessen

confusion.

CUESHEET: This block is for storing various information that

can be used in a cue sheet. It supports track and index

points, compatible with Red Book CD digital audio discs, as

well as other CD-DA metadata such as media catalog number and

track ISRCs. The CUESHEET block is especially useful for

backing up CD-DA discs, but it can be used as a general

purpose cueing mechanism for playback.

PICTURE: This block is for storing pictures associated with

the file, most commonly cover art from CDs. There MAY be more

than one PICTURE block in a file. The picture format is

similar to the APIC frame in ID3v2. The PICTURE block has a

type, MIME type, and UTF-8 description like ID3v2, and

supports external linking via URL (though this is

discouraged). The differences are that there is no uniqueness

constraint on the description field, and the MIME type is

mandatory. The FLAC PICTURE block also includes the

resolution, color depth, and palette size so that the client

can search for a suitable picture without having to scan them

all.

The audio data is composed of one or more audio frames. Each

frame consists of a frame header, which contains a sync code,

information about the frame like the block size, sample rate,

number of channels, et cetera, and an 8-bit CRC. The frame header

also contains either the sample number of the first sample in the

frame (for variable-blocksize streams), or the frame number (for

fixed-blocksize streams). This allows for fast, sample-accurate

-

¶

-

¶

-

¶

-

¶

*

http://xiph.org/vorbis/doc/v-comment.html
http://www.id3.org/id3v2.4.0-frames

seeking to be performed. Following the frame header are encoded

subframes, one for each channel, and finally, the frame is zero-

padded to a byte boundary. Each subframe has its own header that

specifies how the subframe is encoded.

Since a decoder MAY start decoding in the middle of a stream,

there MUST be a method to determine the start of a frame. A 14-

bit sync code begins each frame. The sync code will not appear

anywhere else in the frame header. However, since it MAY appear

in the subframes, the decoder has two other ways of ensuring a

correct sync. The first is to check that the rest of the frame

header contains no invalid data. Even this is not foolproof since

valid header patterns can still occur within the subframes. The

decoder's final check is to generate an 8-bit CRC of the frame

header and compare this to the CRC stored at the end of the frame

header.

Again, since a decoder MAY start decoding at an arbitrary frame

in the stream, each frame header MUST contain some basic

information about the stream because the decoder MAY not have

access to the STREAMINFO metadata block at the start of the

stream. This information includes sample rate, bits per sample,

number of channels, etc. Since the frame header is pure overhead,

it has a direct effect on the compression ratio. To keep the

frame header as small as possible, FLAC uses lookup tables for

the most commonly used values for frame parameters. For instance,

the sample rate part of the frame header is specified using 4

bits. Eight of the bit patterns correspond to the commonly used

sample rates of 8, 16, 22.05, 24, 32, 44.1, 48 or 96 kHz.

However, odd sample rates can be specified by using one of the

'hint' bit patterns, directing the decoder to find the exact

sample rate at the end of the frame header. The same method is

used for specifying the block size and bits per sample. In this

way, the frame header size stays small for all of the most common

forms of audio data.

Individual subframes (one for each channel) are coded separately

within a frame, and appear serially in the stream. In other

words, the encoded audio data is NOT channel-interleaved. This

reduces decoder complexity at the cost of requiring larger decode

buffers. Each subframe has its own header specifying the

attributes of the subframe, like prediction method and order,

residual coding parameters, etc. The header is followed by the

encoded audio data for that channel.

11.3. Subset

FLAC specifies a subset of itself as the Subset format. The purpose

of this is to ensure that any streams encoded according to the

¶

*

¶

*

¶

*

¶

Subset are truly "streamable", meaning that a decoder that cannot

seek within the stream can still pick up in the middle of the stream

and start decoding. It also makes hardware decoder implementations

more practical by limiting the encoding parameters such that decoder

buffer sizes and other resource requirements can be easily

determined. flac generates Subset streams by default unless the "--

lax" command-line option is used. The Subset makes the following

limitations on what MAY be used in the stream:

The blocksize bits in the FRAME_HEADER (see FRAME_HEADER section)

MUST be 0b0001-0b1110. The blocksize MUST be <= 16384; if the

sample rate is <= 48000 Hz, the blocksize MUST be <= 4608 = 2^9 *

3^2.

The sample rate bits in the FRAME_HEADER MUST be 0b0001-0b1110.

The bits-per-sample bits in the FRAME_HEADER MUST be 0b001-0b111.

If the sample rate is <= 48000 Hz, the filter order in LPC

subframes (see SUBFRAME_LPC section) MUST be less than or equal

to 12, i.e. the subframe type bits in the SUBFRAME_HEADER (see

SUBFRAME_HEADER section) SHOULD NOT be 0b101100-0b111111.

The Rice partition order (see Coded residual section) MUST be

less than or equal to 8.

11.4. Conventions

The following tables constitute a formal description of the FLAC

format. Values expressed as u(n) represent unsigned big-endian

integer using n bits. n may be expressed as an equation using *

(multiplication), / (division), + (addition), or - (subtraction). An

inclusive range of the number of bits expressed may be represented

with an ellipsis, such as u(m...n). The name of a value followed by

an asterisk * indicates zero or more occurrences of the value. The

name of a value followed by a plus sign + indicates one or more

occurrences of the value.

11.5. STREAM

Data Description

u(32)

"fLaC", the FLAC stream marker in ASCII,

meaning byte 0 of the stream is 0x66,

followed by 0x4C 0x61 0x43

METADATA_BLOCK_STREAMINFO

This is the mandatory STREAMINFO metadata

block that has the basic properties of the

stream.

METADATA_BLOCK* Zero or more metadata blocks

FRAME+ One or more audio frames

¶

*

¶

* ¶

* ¶

*

¶

*

¶

¶

Table 1

11.6. METADATA_BLOCK

Data Description

METADATA_BLOCK_HEADER
A block header that specifies the type and

size of the metadata block data.

METADATA_BLOCK_DATA

Table 2

11.7. METADATABLOCKHEADER

Data Description

u(1)
Last-metadata-block flag: '1' if this block is the last

metadata block before the audio blocks, '0' otherwise.

u(7) BLOCK_TYPE

u(24)
Length (in bytes) of metadata to follow (does not include the

size of the METADATA_BLOCK_HEADER)

Table 3

11.8. BLOCK_TYPE

Value Description

0 STREAMINFO

1 PADDING

2 APPLICATION

3 SEEKTABLE

4 VORBIS_COMMENT

5 CUESHEET

6 PICTURE

7 - 126 reserved

127 invalid, to avoid confusion with a frame sync code

Table 4

11.9. METADATABLOCKDATA

Data Description

METADATA_BLOCK_STREAMINFO ||

METADATA_BLOCK_PADDING ||

METADATA_BLOCK_APPLICATION ||

METADATA_BLOCK_SEEKTABLE ||

METADATA_BLOCK_VORBIS_COMMENT ||

METADATA_BLOCK_CUESHEET || METADATA_BLOCK_PICTURE

The block data

MUST match the

block type in

the block

header.

Table 5

11.10. METADATABLOCKSTREAMINFO

Data Description

u(16) The minimum block size (in samples) used in the stream.

u(16)

The maximum block size (in samples) used in the stream.

(Minimum blocksize == maximum blocksize) implies a fixed-

blocksize stream.

u(24)
The minimum frame size (in bytes) used in the stream. A value

of 0 signifies that the value is not known.

u(24)
The maximum frame size (in bytes) used in the stream. A value

of 0 signifies that the value is not known.

u(20)

Sample rate in Hz. Though 20 bits are available, the maximum

sample rate is limited by the structure of frame headers to

655350 Hz. Also, a value of 0 is invalid.

u(3) (number of channels)-1. FLAC supports from 1 to 8 channels

u(5)

(bits per sample)-1. FLAC supports from 4 to 32 bits per

sample. Currently the reference encoder and decoders only

support up to 24 bits per sample.

u(36)

Total samples in stream. 'Samples' means inter-channel

sample, i.e. one second of 44.1 kHz audio will have 44100

samples regardless of the number of channels. A value of zero

here means the number of total samples is unknown.

u(128)

MD5 signature of the unencoded audio data. This allows the

decoder to determine if an error exists in the audio data

even when the error does not result in an invalid bitstream.

Table 6

FLAC specifies a minimum block size of 16 and a maximum block size

of 65535, meaning the bit patterns corresponding to the numbers 0-15

in the minimum blocksize and maximum blocksize fields are invalid.

The MD5 signature is made by performing an MD5 transformation on the

samples of all channels interleaved, represented in signed, little-

endian form. This interleaving is on a per-sample basis, so for a

stereo file this means first the first sample of the first channel,

then the first sample of the second channel, then the second sample

of the first channel etc. Before performing the MD5 transformation,

all samples must be byte-aligned. So, in case the bit depth is not a

whole number of bytes, additional zero bits are inserted at the

most-significant position until each sample representation is a

whole number of bytes.

11.11. METADATABLOCKPADDING

Data Description

u(n) n '0' bits (n MUST be a multiple of 8)

Table 7

¶

¶

11.12. METADATABLOCKAPPLICATION

Data Description

u(32)
Registered application ID. (Visit the registration page to

register an ID with FLAC.)

u(n) Application data (n MUST be a multiple of 8)

Table 8

11.13. METADATABLOCKSEEKTABLE

Data Description

SEEKPOINT+ One or more seek points.

Table 9

NOTE - The number of seek points is implied by the metadata header

'length' field, i.e. equal to length / 18.

11.14. SEEKPOINT

Data Description

u(64)
Sample number of first sample in the target frame, or

0xFFFFFFFFFFFFFFFF for a placeholder point.

u(64)
Offset (in bytes) from the first byte of the first frame

header to the first byte of the target frame's header.

u(16) Number of samples in the target frame.

Table 10

NOTES

For placeholder points, the second and third field values are

undefined.

Seek points within a table MUST be sorted in ascending order by

sample number.

Seek points within a table MUST be unique by sample number, with

the exception of placeholder points.

The previous two notes imply that there MAY be any number of

placeholder points, but they MUST all occur at the end of the

table.

11.15. METADATABLOCKVORBIS_COMMENT

Data Description

u(n)

Also known as FLAC tags, the contents of a vorbis comment

packet as specified here (without the framing bit). Note that

the vorbis comment spec allows for on the order of 2^64 bytes

of data where as the FLAC metadata block is limited to 2^24

¶

¶

*

¶

*

¶

*

¶

*

¶

https://xiph.org/flac/id.html
http://www.xiph.org/vorbis/doc/v-comment.html

Data Description

bytes. Given the stated purpose of vorbis comments, i.e. human-

readable textual information, this limit is unlikely to be

restrictive. Also note that the 32-bit field lengths are

little-endian coded according to the vorbis spec, as opposed to

the usual big-endian coding of fixed-length integers in the

rest of FLAC.

Table 11

11.16. METADATABLOCKCUESHEET

Data Description

u(128*8)

Media catalog number, in ASCII printable characters

0x20-0x7E. In general, the media catalog number

SHOULD be 0 to 128 bytes long; any unused characters

SHOULD be right-padded with NUL characters. For CD-

DA, this is a thirteen digit number, followed by 115

NUL bytes.

u(64)

The number of lead-in samples. This field has

meaning only for CD-DA cuesheets; for other uses it

SHOULD be 0. For CD-DA, the lead-in is the TRACK 00

area where the table of contents is stored; more

precisely, it is the number of samples from the

first sample of the media to the first sample of the

first index point of the first track. According to

the Red Book, the lead-in MUST be silence and CD

grabbing software does not usually store it;

additionally, the lead-in MUST be at least two

seconds but MAY be longer. For these reasons the

lead-in length is stored here so that the absolute

position of the first track can be computed. Note

that the lead-in stored here is the number of

samples up to the first index point of the first

track, not necessarily to INDEX 01 of the first

track; even the first track MAY have INDEX 00 data.

u(1)
1 if the CUESHEET corresponds to a Compact Disc,

else 0.

u(7+258*8) Reserved. All bits MUST be set to zero.

u(8)

The number of tracks. Must be at least 1 (because of

the requisite lead-out track). For CD-DA, this

number MUST be no more than 100 (99 regular tracks

and one lead-out track).

CUESHEET_TRACK+

One or more tracks. A CUESHEET block is REQUIRED to

have a lead-out track; it is always the last track

in the CUESHEET. For CD-DA, the lead-out track

number MUST be 170 as specified by the Red Book,

otherwise it MUST be 255.

Table 12

11.17. CUESHEET_TRACK

Data Description

u(64)

Track offset in samples, relative to the

beginning of the FLAC audio stream. It is the

offset to the first index point of the track.

(Note how this differs from CD-DA, where the

track's offset in the TOC is that of the

track's INDEX 01 even if there is an INDEX

00.) For CD-DA, the offset MUST be evenly

divisible by 588 samples (588 samples = 44100

samples/s * 1/75 s).

u(8)

Track number. A track number of 0 is not

allowed to avoid conflicting with the CD-DA

spec, which reserves this for the lead-in. For

CD-DA the number MUST be 1-99, or 170 for the

lead-out; for non-CD-DA, the track number MUST

for 255 for the lead-out. It is not REQUIRED

but encouraged to start with track 1 and

increase sequentially. Track numbers MUST be

unique within a CUESHEET.

u(12*8)

Track ISRC. This is a 12-digit alphanumeric

code; see here and here. A value of 12 ASCII

NUL characters MAY be used to denote absence

of an ISRC.

u(1)

The track type: 0 for audio, 1 for non-audio.

This corresponds to the CD-DA Q-channel

control bit 3.

u(1)

The pre-emphasis flag: 0 for no pre-emphasis,

1 for pre-emphasis. This corresponds to the

CD-DA Q-channel control bit 5; see here.

u(6+13*8) Reserved. All bits MUST be set to zero.

u(8)

The number of track index points. There MUST

be at least one index in every track in a

CUESHEET except for the lead-out track, which

MUST have zero. For CD-DA, this number SHOULD

NOT be more than 100.

CUESHEET_TRACK_INDEX+
For all tracks except the lead-out track, one

or more track index points.

Table 13

11.18. CUESHEETTRACKINDEX

Data Description

u(64)

Offset in samples, relative to the track offset, of the index

point. For CD-DA, the offset MUST be evenly divisible by 588

samples (588 samples = 44100 samples/s * 1/75 s). Note that

http://isrc.ifpi.org/
http://www.disctronics.co.uk/technology/cdaudio/cdaud_isrc.htm
http://www.chipchapin.com/CDMedia/cdda9.php3

Data Description

the offset is from the beginning of the track, not the

beginning of the audio data.

u(8)

The index point number. For CD-DA, an index number of 0

corresponds to the track pre-gap. The first index in a track

MUST have a number of 0 or 1, and subsequently, index numbers

MUST increase by 1. Index numbers MUST be unique within a

track.

u(3*8) Reserved. All bits MUST be set to zero.

Table 14

11.19. METADATABLOCKPICTURE

Data Description

u(32) The PICTURE_TYPE according to the ID3v2 APIC frame.

u(32) The length of the MIME type string in bytes.

u(n*8)

The MIME type string, in printable ASCII characters

0x20-0x7E. The MIME type MAY also be --> to signify that the

data part is a URL of the picture instead of the picture data

itself.

u(32) The length of the description string in bytes.

u(n*8) The description of the picture, in UTF-8.

u(32) The width of the picture in pixels.

u(32) The height of the picture in pixels.

u(32) The color depth of the picture in bits-per-pixel.

u(32)
For indexed-color pictures (e.g. GIF), the number of colors

used, or 0 for non-indexed pictures.

u(32) The length of the picture data in bytes.

u(n*8) The binary picture data.

Table 15

11.20. PICTURE_TYPE

Value Description

0 Other

1 32x32 pixels 'file icon' (PNG only)

2 Other file icon

3 Cover (front)

4 Cover (back)

5 Leaflet page

6 Media (e.g. label side of CD)

7 Lead artist/lead performer/soloist

8 Artist/performer

9 Conductor

10 Band/Orchestra

11 Composer

12 Lyricist/text writer

Value Description

13 Recording Location

14 During recording

15 During performance

16 Movie/video screen capture

17 A bright colored fish

18 Illustration

19 Band/artist logotype

20 Publisher/Studio logotype

Table 16

Other values are reserved and SHOULD NOT be used. There MAY only be

one each of picture type 1 and 2 in a file.

11.21. FRAME

Data Description

FRAME_HEADER

SUBFRAME+ One SUBFRAME per channel.

u(?) Zero-padding to byte alignment.

FRAME_FOOTER

Table 17

11.22. FRAME_HEADER

Data Description

u(14) Sync code '0b11111111111110'

u(1) FRAME HEADER RESERVED

u(1) BLOCKING STRATEGY

u(4) INTERCHANNEL SAMPLE BLOCK SIZE

u(4) SAMPLE RATE

u(4) CHANNEL ASSIGNMENT

u(3) SAMPLE SIZE

u(1) FRAME HEADER RESERVED2

u(?) CODED NUMBER

u(?) BLOCK SIZE INT

u(?) SAMPLE RATE INT

u(8) FRAME CRC

Table 18

11.22.1. FRAME HEADER RESERVED

Value Description

0 mandatory value

1 reserved for future use

Table 19

¶

FRAME HEADER RESERVED MUST remain reserved for 0 in order for a FLAC

frame's initial 15 bits to be distinguishable from the start of an

MPEG audio frame (see also).

11.22.2. BLOCKING STRATEGY

Value Description

0 fixed-blocksize stream; frame header encodes the frame number

1
variable-blocksize stream; frame header encodes the sample

number

Table 20

The BLOCKING STRATEGY bit MUST be the same throughout the entire

stream.

The BLOCKING STRATEGY bit determines how to calculate the sample

number of the first sample in the frame. If the bit is 0 (fixed-

blocksize), the frame header encodes the frame number as above, and

the frame's starting sample number will be the frame number times

the blocksize. If it is 1 (variable-blocksize), the frame header

encodes the frame's starting sample number itself. (In the case of a

fixed-blocksize stream, only the last block MAY be shorter than the

stream blocksize; its starting sample number will be calculated as

the frame number times the previous frame's blocksize, or zero if it

is the first frame).

11.22.3. INTERCHANNEL SAMPLE BLOCK SIZE

Value Description

0b0000 reserved

0b0001 192 samples

0b0010 -

0b0101
576 * (2^(n-2)) samples, i.e. 576, 1152, 2304 or 4608

0b0110 get 8 bit (blocksize-1) from end of header

0b0111 get 16 bit (blocksize-1) from end of header

0b1000 -

0b1111

256 * (2^(n-8)) samples, i.e. 256, 512, 1024, 2048,

4096, 8192, 16384 or 32768

Table 21

11.22.4. SAMPLE RATE

Value Description

0b0000 get from STREAMINFO metadata block

0b0001 88.2 kHz

0b0010 176.4 kHz

0b0011 192 kHz

0b0100 8 kHz

0b0101 16 kHz

¶

¶

¶

http://lists.xiph.org/pipermail/flac-dev/2008-December/002607.html

Value Description

0b0110 22.05 kHz

0b0111 24 kHz

0b1000 32 kHz

0b1001 44.1 kHz

0b1010 48 kHz

0b1011 96 kHz

0b1100 get 8 bit sample rate (in kHz) from end of header

0b1101 get 16 bit sample rate (in Hz) from end of header

0b1110 get 16 bit sample rate (in daHz) from end of header

0b1111 invalid, to prevent sync-fooling string of 1s

Table 22

11.22.5. CHANNEL ASSIGNMENT

Values 0b0000-0b0111 represent the (number of independent

channels)-1 coded independently, channel order follows SMPTE/ITU-R

recommendations. Values 0b1000-0b1010 represent 2 channel (stereo)

audio where the signal has been mapped to a different

representation, see section on Interchannel Decorrelation.

Value Description

0b0000 1 channel: mono

0b0001 2 channels: left, right

0b0010 3 channels: left, right, center

0b0011
4 channels: front left, front right, back left, back

right

0b0100
5 channels: front left, front right, front center, back/

surround left, back/surround right

0b0101
6 channels: front left, front right, front center, LFE,

back/surround left, back/surround right

0b0110
7 channels: front left, front right, front center, LFE,

back center, side left, side right

0b0111
8 channels: front left, front right, front center, LFE,

back left, back right, side left, side right

0b1000
left/side stereo: channel 0 is the left channel, channel

1 is the side(difference) channel

0b1001
right/side stereo: channel 0 is the side(difference)

channel, channel 1 is the right channel

0b1010
mid/side stereo: channel 0 is the mid(average) channel,

channel 1 is the side(difference) channel

0b1011 -

0b1111
reserved

Table 23

Please note that the actual coded subframe order for right/side

stereo is side-right.

¶

¶

11.22.6. SAMPLE SIZE

Value Description

0b000 get from STREAMINFO metadata block

0b001 8 bits per sample

0b010 12 bits per sample

0b011 reserved

0b100 16 bits per sample

0b101 20 bits per sample

0b110 24 bits per sample

0b111 reserved

Table 24

For subframes that encode a difference channel, the sample size is

one bit larger than the sample size of the frame, in order to be

able to encode the difference between extreme values.

11.22.7. FRAME HEADER RESERVED2

Value Description

0 mandatory value

1 reserved for future use

Table 25

11.22.8. CODED NUMBER

Frame/Sample numbers are encoded using the UTF-8 format, from BEFORE

it was limited to 4 bytes by RFC3629, this variant supports the

original 7 byte maximum.

Note to implementors: All Unicode compliant UTF-8 decoders and

encoders are limited to 4 bytes, it's best to just write your own

one off solution.

11.22.9. BLOCK SIZE INT

¶

¶

¶

if(variable blocksize)

 `u(8...56)`: "UTF-8" coded sample number (decoded number is 36 bits)

else

 `u(8...48)`: "UTF-8" coded frame number (decoded number is 31 bits)

¶

if(`INTERCHANNEL SAMPLE BLOCK SIZE` == 0b0110)

 8 bit (blocksize-1)

else if(`INTERCHANNEL SAMPLE BLOCK SIZE` == 0b0111)

 16 bit (blocksize-1)

¶

11.22.10. SAMPLE RATE INT

11.22.11. FRAME CRC

CRC-8 (polynomial = x^8 + x^2 + x^1 + x^0, initialized with 0) of

everything before the CRC, including the sync code

11.23. FRAME_FOOTER

Data Description

u(16)

CRC-16 (polynomial = x^16 + x^15 + x^2 + x^0, initialized with

0) of everything before the CRC, back to and including the

frame header sync code

Table 26

11.24. SUBFRAME

Data Description

SUBFRAME_HEADER

SUBFRAME_CONSTANT || SUBFRAME_FIXED ||

SUBFRAME_LPC || SUBFRAME_VERBATIM

The SUBFRAME_HEADER

specifies which one.

Table 27

11.25. SUBFRAME_HEADER

Data Description

u(1) Zero bit padding, to prevent sync-fooling string of 1s

u(6) SUBFRAME TYPE (see section on SUBFRAME TYPE)

u(1+k)
WASTED BITS PER SAMPLE FLAG (see section on WASTED BITS PER

SAMPLE FLAG)

Table 28

11.25.1. SUBFRAME TYPE

Value Description

0b000000 SUBFRAME_CONSTANT

0b000001 SUBFRAME_VERBATIM

0b00001x reserved

0b0001xx reserved

0b001xxx if(xxx <= 4) SUBFRAME_FIXED, xxx=order; else reserved

0b01xxxx reserved

0b1xxxxx SUBFRAME_LPC, xxxxx=order-1

if(`SAMPLE RATE` == 0b1100)

 8 bit sample rate (in kHz)

else if(`SAMPLE RATE` == 0b1101)

 16 bit sample rate (in Hz)

else if(`SAMPLE RATE` == 0b1110)

 16 bit sample rate (in daHz)

¶

¶

Table 29

11.25.2. WASTED BITS PER SAMPLE FLAG

Certain file formats, like AIFF, can store audio samples with a bit

depth that is not an integer number of bytes by padding them with

least significant zero bits to a bit depth that is an integer number

of bytes. For example, shifting a 14-bit sample right by 2 pads it

to a 16-bit sample, which then has two zero least-significant bits.

In this specification, these least-significant zero bits are

referred to as wasted bits-per-sample or simply wasted bits. They

are wasted in a sense that they contain no information, but are

stored anyway.

The wasted bits-per-sample flag in a subframe header is set to 1 if

a certain number of least-significant bits of all samples in the

current subframe are zero. If this is the case, the number of wasted

bits-per-sample (k) minus 1 follows the flag in an unary encoding.

For example, if k is 3, 0b001 follows. If k = 0, the wasted bits-

per-sample flag is 0 and no unary coded k follows.

In case k is not equal to 0, samples are coded ignoring k least-

significant bits. For example, if the preceding frame header

specified a sample size of 16 bits per sample and k is 3, samples in

the subframe are coded as 13 bits per sample. A decoder MUST add k

least-significant zero bits by shifting left (padding) after

decoding a subframe sample. In case the frame has left/side, right/

side or mid/side stereo, padding MUST happen to a sample before it

is used to reconstruct a left or right sample.

Besides audio files that have a certain number of wasted bits for

the whole file, there exist audio files in which the number of

wasted bits varies. There are DVD-Audio discs in which blocks of

samples have had their least-significant bits selectively zeroed, as

to slightly improve the compression of their otherwise lossless

Meridian Lossless Packing codec. There are also audio processors

like lossyWAV that enable users to improve compression of their

files by a lossless audio codec in a non-lossless way. Because of

this the number of wasted bits k MAY change between frames and MAY

differ between subframes.

11.26. SUBFRAME_CONSTANT

Data Description

u(n)
Unencoded constant value of the subblock, n = frame's bits-per-

sample.

Table 30

¶

¶

¶

¶

11.27. SUBFRAME_FIXED

Data Description

u(n)
Unencoded warm-up samples (n = frame's bits-per-sample *

predictor order).

RESIDUAL Encoded residual

Table 31

11.28. SUBFRAME_LPC

Data Description

u(n)
Unencoded warm-up samples (n = frame's bits-per-sample *

lpc order).

u(4)
(quantized linear predictor coefficients' precision in

bits)-1 (NOTE: 0b1111 is invalid).

u(5)
Quantized linear predictor coefficient shift needed in bits

(NOTE: this number is signed two's-complement).

u(n)

Unencoded predictor coefficients (n = qlp coeff precision *

lpc order) (NOTE: the coefficients are signed two's-

complement).

RESIDUAL Encoded residual

Table 32

11.29. SUBFRAME_VERBATIM

Data Description

u(n*i)
Unencoded subblock, where n is frame's bits-per-sample and i

is frame's blocksize.

Table 33

11.30. RESIDUAL

Data Description

u(2) RESIDUAL_CODING_METHOD

RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB ||

RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB2

Table 34

11.30.1. RESIDUALCODINGMETHOD

Value Description

0b00
partitioned Exp-Golomb coding with 4-bit Exp-Golomb

parameter; RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB follows

0b01
partitioned Exp-Golomb coding with 5-bit Exp-Golomb

parameter; RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB2 follows

0b10 -

0b11
reserved

Table 35

11.30.2. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB

Data Description

u(4) Partition order.

EXP_GOLOMB_PARTITION+ There will be 2^order partitions.

Table 36

11.30.2.1. EXPGOLOMBPARTITION

Data Description

u(4(+5))
EXP-GOLOMB PARTITION ENCODING PARAMETER (see section on

EXP-GOLOMB PARTITION ENCODING PARAMETER)

u(?) ENCODED RESIDUAL (see section on ENCODED RESIDUAL)

Table 37

11.30.2.2. EXP GOLOMB PARTITION ENCODING PARAMETER

Value Description

0b0000 -

0b1110
Exp-golomb parameter.

0b1111

Escape code, meaning the partition is in unencoded binary

form using n bits per sample; n follows as a 5-bit

number.

Table 38

11.30.3. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB2

Data Description

u(4) Partition order.

EXP-GOLOMB2_PARTITION+ There will be 2^order partitions.

Table 39

11.30.3.1. EXPGOLOMB2PARTITION

Data Description

u(5(+5))
EXP-GOLOMB2 PARTITION ENCODING PARAMETER (see section on

EXP-GOLOMB2 PARTITION ENCODING PARAMETER)

u(?) ENCODED RESIDUAL (see section on ENCODED RESIDUAL)

Table 40

11.30.3.2. EXP-GOLOMB2 PARTITION ENCODING PARAMETER

Value Description

0b00000 -

0b11110
Exp-golomb parameter.

0b11111

Escape code, meaning the partition is in unencoded

binary form using n bits per sample; n follows as a 5-

bit number.

[RFC2119]

Table 41

11.30.4. ENCODED RESIDUAL

The number of samples (n) in the partition is determined as follows:

if the partition order is zero, n = frame's blocksize - predictor

order

else if this is not the first partition of the subframe, n =

(frame's blocksize / (2^partition order))

else n = (frame's blocksize / (2^partition order)) - predictor

order

12. Security Considerations

Like any other codec (such as [RFC6716]), FLAC should not be used

with insecure ciphers or cipher modes that are vulnerable to known

plaintext attacks. Some of the header bits as well as the padding

are easily predictable.

Implementations of the FLAC codec need to take appropriate security

considerations into account. Those related to denial of service are

outlined in Section 2.1 of [RFC4732]. It is extremely important for

the decoder to be robust against malicious payloads. Malicious

payloads MUST NOT cause the decoder to overrun its allocated memory

or to take an excessive amount of resources to decode. An overrun in

allocated memory could lead to arbitrary code execution by an

attacker. The same applies to the encoder, even though problems in

encoders are typically rarer. Malicious audio streams MUST NOT cause

the encoder to misbehave because this would allow an attacker to

attack transcoding gateways. An example is allocating more memory

than available especially with blocksizes of more than 10000 or with

big metadata blocks, or not allocating enough memory before copying

data, which lead to execution of malicious code, crashes, freezes or

reboots on some known implementations. See the FLAC decoder

testbench for a non-exhaustive list of FLAC files with extreme

configurations which lead to crashes or reboots on some known

implementations.

None of the content carried in FLAC is intended to be executable.

13. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://wiki.hydrogenaud.io/index.php?title=FLAC_decoder_testbench
https://wiki.hydrogenaud.io/index.php?title=FLAC_decoder_testbench
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC4732]

[RFC8174]

[RFC6716]

Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet

Denial-of-Service Considerations", RFC 4732, DOI

10.17487/RFC4732, December 2006, <https://www.rfc-

editor.org/info/rfc4732>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14. Informative References

Valin, JM., Vos, K., and T. Terriberry, "Definition of

the Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,

September 2012, <https://www.rfc-editor.org/info/

rfc6716>.

Authors' Addresses

Michael Richardson

Email: mcr@sandelman.ca

Andrew Weaver

Email: theandrewjw@gmail.com

https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6716
mailto:mcr@sandelman.ca
mailto:theandrewjw@gmail.com

	Free Lossless Audio Codec
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation and Conventions
	3. Acknowledgments
	4. Scope
	5. Architecture
	6. Definitions
	7. Blocking
	8. Interchannel Decorrelation
	9. Prediction
	10. Residual Coding
	11. Format
	11.1. Principles
	11.2. Overview
	11.3. Subset
	11.4. Conventions
	11.5. STREAM
	11.6. METADATA_BLOCK
	11.7. METADATABLOCKHEADER
	11.8. BLOCK_TYPE
	11.9. METADATABLOCKDATA
	11.10. METADATABLOCKSTREAMINFO
	11.11. METADATABLOCKPADDING
	11.12. METADATABLOCKAPPLICATION
	11.13. METADATABLOCKSEEKTABLE
	11.14. SEEKPOINT
	11.15. METADATABLOCKVORBIS_COMMENT
	11.16. METADATABLOCKCUESHEET
	11.17. CUESHEET_TRACK
	11.18. CUESHEETTRACKINDEX
	11.19. METADATABLOCKPICTURE
	11.20. PICTURE_TYPE
	11.21. FRAME
	11.22. FRAME_HEADER
	11.22.1. FRAME HEADER RESERVED
	11.22.2. BLOCKING STRATEGY
	11.22.3. INTERCHANNEL SAMPLE BLOCK SIZE
	11.22.4. SAMPLE RATE
	11.22.5. CHANNEL ASSIGNMENT
	11.22.6. SAMPLE SIZE
	11.22.7. FRAME HEADER RESERVED2
	11.22.8. CODED NUMBER
	11.22.9. BLOCK SIZE INT
	11.22.10. SAMPLE RATE INT
	11.22.11. FRAME CRC

	11.23. FRAME_FOOTER
	11.24. SUBFRAME
	11.25. SUBFRAME_HEADER
	11.25.1. SUBFRAME TYPE
	11.25.2. WASTED BITS PER SAMPLE FLAG

	11.26. SUBFRAME_CONSTANT
	11.27. SUBFRAME_FIXED
	11.28. SUBFRAME_LPC
	11.29. SUBFRAME_VERBATIM
	11.30. RESIDUAL
	11.30.1. RESIDUALCODINGMETHOD
	11.30.2. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB
	11.30.2.1. EXPGOLOMBPARTITION
	11.30.2.2. EXP GOLOMB PARTITION ENCODING PARAMETER

	11.30.3. RESIDUALCODINGMETHODPARTITIONEDEXP_GOLOMB2
	11.30.3.1. EXPGOLOMB2PARTITION
	11.30.3.2. EXP-GOLOMB2 PARTITION ENCODING PARAMETER

	11.30.4. ENCODED RESIDUAL

	12. Security Considerations
	13. Normative References
	14. Informative References
	Authors' Addresses

