Abstract

This document defines the Matroska audiovisual container, including definitions of its structural elements, as well as its terminology, vocabulary, and application.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction .. 4
2. Status of this document 5
3. Security Considerations 5
4. IANA Considerations ... 6
5. Notation and Conventions 6
6. Basis in EBML .. 6
 6.1. Added Constraints on EBML 6
 6.2. Matroska Design .. 7
 6.2.1. Language Codes 7
 6.2.2. Physical Types 7
 6.2.3. Block Structure 8
 6.2.4. Lacing ... 9
7. Matroska Structure ... 14
8. Matroska Schema ... 22
 8.1. EBMLMaxIDLength Element 22
 8.2. EBMLMaxSizeLength Element 23
9. Segment Element ... 23
 9.1. SeekHead Element 24
 9.1.1. Seek Element 24
 9.2. Info Element ... 25
 9.2.1. SegmentUID Element 25
 9.2.2. SegmentFilename Element 26
 9.2.3. PrevUID Element 26
 9.2.4. PrevFilename Element 26
 9.2.5. NextUID Element 27
 9.2.6. NextFilename Element 27
 9.2.7. SegmentFamily Element 28
 9.2.8. ChapterTranslate Element 28
 9.2.9. TimestampScale Element 30
 9.2.10. Duration Element 30
 9.2.11. DateUTC Element 30
 9.2.12. Title Element 31
 9.2.13. MuxingApp Element 31
 9.2.14. WritingApp Element 31
 9.3. Cluster Element ... 32
 9.3.1. Timestamp Element 32
 9.3.2. SilentTracks Element 32
 9.3.3. Position Element 33
 9.3.4. PrevSize Element 33
 9.3.5. SimpleBlock Element 34
 9.3.6. BlockGroup Element 34
9.3.7. EncryptedBlock Element 43
9.4. Tracks Element .. 44
9.4.1. TrackEntry Element .. 44
9.5. Cues Element .. 108
9.5.1. CuePoint Element .. 109

9.6. Attachments Element ... 114
9.6.1. AttachedFile Element 114
9.7. Chapters Element ... 118
9.7.1. EditionEntry Element 118
9.8. Tags Element .. 127
9.8.1. Tag Element .. 128

10. Matroska Element Ordering 135
10.1. Top-Level Elements .. 135
10.2. CRC-32 .. 135
10.3. SeekHead .. 136
10.4. Cues (index) ... 136
10.5. Info ... 136
10.6. Chapters Element ... 136
10.7. Attachments ... 137
10.8. Tags ... 137
10.9. Optimum layout from a muxer 137
10.10. Optimum layout after editing tags 137
10.11. Optimum layout with Cues at the front 138
10.12. Cluster Timestamp ... 138

11. Chapters .. 138
11.1. EditionEntry .. 139
11.1.1. EditionFlagDefault 139
11.1.2. Default Edition ... 139
11.1.3. EditionFlagOrdered 140
11.1.4. ChapterSegmentUID 141
11.2. ChapterAtom .. 142
11.2.1. ChapterTimeStart ... 142
11.2.2. ChapterTimeEnd ... 142
11.2.3. ChapterFlagHidden .. 143
11.3. Menu features .. 143
11.4. Chapter Examples ... 144
11.4.1. Example 1 : basic chaptering 144
11.4.2. Example 2 : nested chapters 146

12. Attachments .. 149
12.1. Cover Art ... 149

13. Cues ... 150
Introduction

Matroska aims to become THE standard of multimedia container formats. It was derived from a project called [MCF], but differentiates from it significantly because it is based on EBML (Extensible Binary Meta Language) [RFC8794], a binary derivative of XML. EBML enables significant advantages in terms of future format extensibility, without breaking file support in old parsers.

First, it is essential to clarify exactly "What an Audio/Video container is", to avoid any misunderstandings:

* It is NOT a video or audio compression format (codec)

* It is an envelope for which there can be many audio, video, and subtitles streams, allowing the user to store a complete movie or CD in a single file.

Matroska is designed with the future in mind. It incorporates features like:

* Fast seeking in the file

* Chapter entries

* Full metadata (tags) support

* Selectable subtitle/audio/video streams

* Modularly expandable

* Error resilience (can recover playback even when the stream is damaged)

* Streamable over the internet and local networks (HTTP, CIFS, FTP, etc)
* Menus (like DVDs have)

Matroska is an open standards project. This means for personal use it is absolutely free to use and that the technical specifications describing the bitstream are open to everybody, even to companies that would like to support it in their products.

2. Status of this document

This document is a work-in-progress specification defining the Matroska file format as part of the IETF Cellar working group (https://datatracker.ietf.org/wg/cellar/charter/). But since it's quite complete it is used as a reference for the development of libmatroska.

Note that versions 1, 2, and 3 have been finalized. Version 4 is currently work in progress. There MAY be further additions to v4.

3. Security Considerations

Matroska inherits security considerations from EBML.

Attacks on a "Matroska Reader" could include:

* Storage of a arbitrary and potentially executable data within an "Attachment Element". "Matroska Readers" that extract or use data from Matroska Attachments SHOULD check that the data adheres to expectations.

* A "Matroska Attachment" with an inaccurate mime-type.

4. IANA Considerations

To be determined.

5. Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This document defines specific terms in order to define the format and application of "Matroska". Specific terms are defined below:

"Matroska": A multimedia container format based on EBML (Extensible Binary Meta Language).

"Matroska Reader": A data parser that interprets the semantics of a Matroska document and creates a way for programs to use "Matroska".

"Matroska Player": A "Matroska Reader" with a primary purpose of playing audiovisual files, including "Matroska" documents.

6. Basis in EBML

Matroska is a Document Type of EBML (Extensible Binary Meta Language). This specification is dependent on the EBML Specification [RFC8794]. For an understanding of Matroska's EBML Schema, see in particular the sections of the EBML Specification covering EBML Element Types (Section 7), EBML Schema (Section 11.1), and EBML Structure (Section 3).

6.1. Added Constraints on EBML

As an EBML Document Type, Matroska adds the following constraints to the EBML specification.

* The "docType" of the "EBML Header" MUST be "matroska".

* The "EBMLMaxIDLength" of the "EBML Header" MUST be "4".

* The "EBMLMaxSizeLength" of the "EBML Header" MUST be between "1" and "8" inclusive.

6.2. Matroska Design

All top-levels elements (Segment and direct sub-elements) are coded
on 4 octets -- i.e. class D elements.

6.2.1. Language Codes

Matroska from version 1 through 3 uses language codes that can be either the 3 letters bibliographic ISO-639-2 form [ISO639-2] (like "fre" for french), or such a language code followed by a dash and a country code for specialities in languages (like "fre-ca" for Canadian French). The "ISO 639-2 Language Elements" are "Language Element", "TagLanguage Element", and "ChapLanguage Element".

Starting in Matroska version 4, either [ISO639-2] or [BCP47] MAY be used, although "BCP 47" is RECOMMENDED. The "BCP 47 Language Elements" are "LanguageIETF Element", "TagLanguageIETF Element", and "ChapLanguageIETF Element". If a "BCP 47 Language Element" and an "ISO 639-2 Language Element" are used within the same "Parent Element", then the "ISO 639-2 Language Element" MUST be ignored and precedence given to the "BCP 47 Language Element".

Country codes are the same 2 octets country-codes as in Internet domains [IANADomains] based on [ISO3166-1] alpha-2 codes.

6.2.2. Physical Types

Each level can have different meanings for audio and video. The ORIGINAL_MEDIUM tag can be used to specify a string for ChapterPhysicalEquiv = 60. Here is the list of possible levels for both audio and video:
<table>
<thead>
<tr>
<th>Chapter</th>
<th>PhysicalEquiv</th>
<th>Audio</th>
<th>Video</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>SET / PACKAGE</td>
<td>SET / PACKAGE</td>
<td>the collection of different media</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>CD / 12" / 10" / TAPE / MINIDISC / DAT</td>
<td>DVD / VHS / LASERDISC</td>
<td>the physical medium like a CD or a DVD</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SIDE</td>
<td>SIDE</td>
<td>when the original medium (LP/DVD) has different sides</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>LAYER</td>
<td>another physical level on DVDs</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SESSION</td>
<td>SESSION</td>
<td>as found on CDs and DVDs</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TRACK</td>
<td>-</td>
<td>as found on audio CDs</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>INDEX</td>
<td>-</td>
<td>the first logical level of the side/medium</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

6.2.3. Block Structure

Bit 0 is the most significant bit.

Frames using references SHOULD be stored in "coding order". That means the references first, and then the frames referencing them. A consequence is that timestamps might not be consecutive. But a frame with a past timestamp MUST reference a frame already known, otherwise it's considered bad/void.
6.2.3.1. Block Header

<table>
<thead>
<tr>
<th>Offset</th>
<th>Player</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00+</td>
<td>MUST</td>
<td>Track Number (Track Entry). It is coded in EBML like form (1 octet if the value is < 0x80, 2 if < 0x4000, etc) (most significant bits set to increase the range).</td>
</tr>
<tr>
<td>0x01+</td>
<td>MUST</td>
<td>Timestamp (relative to Cluster timestamp, signed int16)</td>
</tr>
</tbody>
</table>

Table 2

6.2.3.2. Block Header Flags

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bit</th>
<th>Player</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x03+</td>
<td>0-3</td>
<td>-</td>
<td>Reserved, set to 0</td>
</tr>
<tr>
<td>0x03+</td>
<td>4</td>
<td>-</td>
<td>Invisible, the codec SHOULD decode this frame but not display it</td>
</tr>
<tr>
<td>0x03+</td>
<td>5-6</td>
<td>MUST</td>
<td>Lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 00 : no lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 01 : Xiph lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 11 : EBML lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 10 : fixed-size lacing</td>
</tr>
<tr>
<td>0x03+</td>
<td>7</td>
<td>-</td>
<td>not used</td>
</tr>
</tbody>
</table>

Table 3

6.2.4. Lacing

Lacing is a mechanism to save space when storing data. It is typically used for small blocks of data (referred to as frames in Matroska). There are 3 types of lacing:
1. Xiph, inspired by what is found in the Ogg container

2. EBML, which is the same with sizes coded differently

3. fixed-size, where the size is not coded

For example, a user wants to store 3 frames of the same track. The first frame is 800 octets long, the second is 500 octets long and the third is 1000 octets long. As these data are small, they can be stored in a lace to save space. They will then be stored in the same block as follows:

6.2.4.1. Xiph lacing

* Block head (with lacing bits set to 01)
* Lacing head: Number of frames in the lace -1 -- i.e. 2 (the 800 and 500 octets one)
* Lacing sizes: only the 2 first ones will be coded, 800 gives 255;255;255;35, 500 gives 255;245. The size of the last frame is deduced from the total size of the Block.
* Data in frame 1
* Data in frame 2
* Data in frame 3

A frame with a size multiple of 255 is coded with a 0 at the end of the size -- for example, 765 is coded 255;255;255;0.

6.2.4.2. EBML lacing

In this case, the size is not coded as blocks of 255 bytes, but as a difference with the previous size and this size is coded as in EBML. The first size in the lace is unsigned as in EBML. The others use a range shifting to get a sign on each value:
<table>
<thead>
<tr>
<th>Bit Representation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxx xxxx</td>
<td>value -(2^(6)-1) to 2^(6)-1</td>
</tr>
<tr>
<td></td>
<td>(ie 0 to 2^(7)-2 minus</td>
</tr>
<tr>
<td></td>
<td>2^(6)-1, half of the range)</td>
</tr>
<tr>
<td>01xx xxxx xxxx xxxx</td>
<td>value -(2^(13)-1) to</td>
</tr>
<tr>
<td></td>
<td>2^(13)-1</td>
</tr>
<tr>
<td>001x xxxx xxxx xxxx</td>
<td>value -(2^(20)-1) to</td>
</tr>
<tr>
<td>xxxx</td>
<td>2^(20)-1</td>
</tr>
<tr>
<td>0001 xxxx xxxx xxxx</td>
<td>value -(2^(27)-1) to</td>
</tr>
<tr>
<td>xxxx xxxx xxxx</td>
<td>2^(27)-1</td>
</tr>
<tr>
<td>0000 1xxxx xxxx xxxx</td>
<td>value -(2^(34)-1) to</td>
</tr>
<tr>
<td>xxxx xxxx xxxx xxxx</td>
<td>2^(34)-1</td>
</tr>
<tr>
<td>0000 01xx xxxx xxxx</td>
<td>value -(2^(41)-1) to</td>
</tr>
<tr>
<td>xxxx xxxx xxxx xxxx</td>
<td>2^(41)-1</td>
</tr>
<tr>
<td>0000 001x xxxx xxxx</td>
<td>value -(2^(48)-1) to</td>
</tr>
<tr>
<td>xxxx xxxx xxxx xxxx</td>
<td>2^(48)-1</td>
</tr>
</tbody>
</table>

Table 4

* Block head (with lacing bits set to 11)
6.2.4.3. Fixed-size lacing

In this case, only the number of frames in the lace is saved, the size of each frame is deduced from the total size of the Block. For example, for 3 frames of 800 octets each:

* Block head (with lacing bits set to 10)
* Lacing head: Number of frames in the lace -1 -- i.e. 2
* Data in frame 1
* Data in frame 2
* Data in frame 3

6.2.4.4. SimpleBlock Structure

The "SimpleBlock" is inspired by the Block structure; see Section 6.2.3. The main differences are the added Keyframe flag and Discardable flag. Otherwise everything is the same.

Bit 0 is the most significant bit.

Frames using references SHOULD be stored in "coding order". That
means the references first, and then the frames referencing them. A consequence is that timestamps might not be consecutive. But a frame with a past timestamp MUST reference a frame already known, otherwise it's considered bad/void.

6.2.4.4.1. SimpleBlock Header

<table>
<thead>
<tr>
<th>Offset</th>
<th>Player</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00+</td>
<td>MUST</td>
<td>Track Number (Track Entry). It is coded in EBML like form (1 octet if the value is < 0x80, 2 if < 0x4000, etc) (most significant bits set to increase the range).</td>
</tr>
<tr>
<td>0x01+</td>
<td>MUST</td>
<td>Timestamp (relative to Cluster timestamp, signed int16)</td>
</tr>
</tbody>
</table>

Table 5

6.2.4.4.2. SimpleBlock Header Flags

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bit</th>
<th>Player</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x03+</td>
<td>0</td>
<td>-</td>
<td>Keyframe, set when the Block contains only keyframes</td>
</tr>
<tr>
<td>0x03+</td>
<td>1-3</td>
<td>-</td>
<td>Reserved, set to 0</td>
</tr>
<tr>
<td>0x03+</td>
<td>4</td>
<td>-</td>
<td>Invisible, the codec SHOULD decode this frame but not display it</td>
</tr>
<tr>
<td>0x03+</td>
<td>5-6</td>
<td>MUST</td>
<td>Lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 00 : no lacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 01 : Xiph lacing</td>
</tr>
</tbody>
</table>
6.2.4.5. Laced Data

When lacing bit is set.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Player</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>MUST</td>
<td>Number of frames in the lace-1 (uint8)</td>
</tr>
<tr>
<td>0x01 /</td>
<td>MUST*</td>
<td>Lace-coded size of each frame of the lace, except for the last one (multiple uint8). *This is not used with Fixed-size lacing as it is calculated automatically from (total size of lace) / (number of frames in lace).</td>
</tr>
</tbody>
</table>

For (possibly) Laced Data

7. Matroska Structure

A Matroska file MUST be composed of at least one "EBML Document"
using the "Matroska Document Type". Each "EBML Document" MUST start
with an "EBML Header" and MUST be followed by the "EBML Root
Element", defined as "Segment" in Matroska. Matroska defines several
"Top Level Elements" which MAY occur within the "Segment".

As an example, a simple Matroska file consisting of a single "EBML
Document" could be represented like this:

* "EBML Header"
* "Segment"

A more complex Matroska file consisting of an "EBML Stream"
(consisting of two "EBML Documents") could be represented like this:

* "EBML Header"
* "Segment"
* "EBML Header"
* "Segment"

The following diagram represents a simple Matroska file, comprised of
an "EBML Document" with an "EBML Header", a "Segment Element" (the
"Root Element"), and all eight Matroska "Top Level Elements". In the
following diagrams of this section, horizontal spacing expresses a
parent-child relationship between Matroska Elements (e.g., the "Info
Element" is contained within the "Segment Element") whereas vertical
alignment represents the storage order within the file.

The "SeekHead Element" (also known as "MetaSeek") contains an index of "Top Level Elements" locations within the "Segment". Use of the "SeekHead Element" is RECOMMENDED. Without a "SeekHead Element", a Matroska parser would have to search the entire file to find all of the other "Top Level Elements". This is due to Matroska's flexible ordering requirements; for instance, it is acceptable for the "Chapters Element" to be stored after the "Cluster Elements".

```
<table>
<thead>
<tr>
<th>SeekHead</th>
<th>Seek</th>
<th>SeekID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SeekPosition</td>
</tr>
</tbody>
</table>
```

Figure 1: Representation of a "SeekHead Element".

The "Info Element" contains vital information for identifying the whole "Segment". This includes the title for the "Segment", a randomly generated unique identifier, and the unique identifier(s) of any linked "Segment Elements".
<table>
<thead>
<tr>
<th>Info</th>
<th>SegmentUID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SegmentFilename</td>
</tr>
<tr>
<td></td>
<td>PrevUID</td>
</tr>
<tr>
<td></td>
<td>PrevFilename</td>
</tr>
<tr>
<td></td>
<td>NextUID</td>
</tr>
<tr>
<td></td>
<td>NextFilename</td>
</tr>
<tr>
<td></td>
<td>SegmentFamily</td>
</tr>
<tr>
<td></td>
<td>ChapterTranslate</td>
</tr>
<tr>
<td></td>
<td>TimestampScale</td>
</tr>
<tr>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td></td>
<td>DateUTC</td>
</tr>
<tr>
<td></td>
<td>Title</td>
</tr>
<tr>
<td></td>
<td>MuxingApp</td>
</tr>
<tr>
<td></td>
<td>WritingApp</td>
</tr>
</tbody>
</table>

Figure 2: Representation of an "Info Element" and its "Child Elements".

The "Tracks Element" defines the technical details for each track and can store the name, number, unique identifier, language, and type (audio, video, subtitles, etc.) of each track. For example, the "Tracks Element" MAY store information about the resolution of a video track or sample rate of an audio track.

The "Tracks Element" MUST identify all the data needed by the codec to decode the data of the specified track. However, the data required is contingent on the codec used for the track. For example, a "Track Element" for uncompressed audio only requires the audio bit rate to be present. A codec such as AC-3 would require that the "CodecID Element" be present for all tracks, as it is the primary way to identify which codec to use to decode the track.
<table>
<thead>
<tr>
<th>Tracks</th>
<th>TrackEntry</th>
<th>TrackNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrackUID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrackType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CodecID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CodecPrivate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CodecName</td>
</tr>
<tr>
<td>Video</td>
<td>FlagInterlaced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FieldOrder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>StereoMode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlphaMode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PixelWidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PixelHeight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DisplayWidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DisplayHeight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AspectRatioType</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>SamplingFrequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channels</td>
<td></td>
</tr>
</tbody>
</table>
The "Chapters Element" lists all of the chapters. Chapters are a way to set predefined points to jump to in video or audio.

"Cluster Elements" contain the content for each track, e.g., video frames. A Matroska file SHOULD contain at least one "Cluster Element". The "Cluster Element" helps to break up "SimpleBlock" or "BlockGroup Elements" and helps with seeking and error protection. It is RECOMMENDED that the size of each individual "Cluster Element"
be limited to store no more than 5 seconds or 5 megabytes. Every "Cluster Element" MUST contain a "Timestamp Element". This SHOULD be the "Timestamp Element" used to play the first "Block" in the "Cluster Element". There SHOULD be one or more "BlockGroup" or "SimpleBlock Element" in each "Cluster Element". A "BlockGroup Element" MAY contain a "Block" of data and any information relating directly to that "Block".

Figure 5: Representation of a "Cluster Element" and its immediate "Child Elements".

<table>
<thead>
<tr>
<th>Block</th>
<th>Portion of a Block</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Header</td>
<td>TrackNumber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timestamp</td>
</tr>
</tbody>
</table>
Each "Cluster" MUST contain exactly one "Timestamp Element". The "Timestamp Element" value MUST be stored once per "Cluster". The "Timestamp Element" in the "Cluster" is relative to the entire "Segment". The "Timestamp Element" SHOULD be the first "Element" in the "Cluster".

Additionally, the "Block" contains an offset that, when added to the "Cluster"'s "Timestamp Element" value, yields the "Block"'s effective timestamp. Therefore, timestamp in the "Block" itself is relative to the "Timestamp Element" in the "Cluster". For example, if the "Timestamp Element" in the "Cluster" is set to 10 seconds and a "Block" in that "Cluster" is supposed to be played 12 seconds into the clip, the timestamp in the "Block" would be set to 2 seconds.

The "ReferenceBlock" in the "BlockGroup" is used instead of the basic "P-frame"/"B-frame" description. Instead of simply saying that this "Block" depends on the "Block" directly before, or directly afterwards, the "Timestamp" of the necessary "Block" is used. Because there can be as many "ReferenceBlock Elements" as necessary for a "Block", it allows for some extremely complex referencing.

The "Cues Element" is used to seek when playing back a file by providing a temporal index for some of the "Tracks". It is similar to the "SeekHead Element", but used for seeking to a specific time when playing back the file. It is possible to seek without this element, but it is much more difficult because a "Matroska Reader" would have to 'hunt and peck' through the file looking for the correct timestamp.
The "Cues Element" SHOULD contain at least one "CuePoint Element". Each "CuePoint Element" stores the position of the "Cluster" that contains the "BlockGroup" or "SimpleBlock Element". The timestamp is stored in the "CueTime Element" and location is stored in the "CueTrackPositions Element".

The "Cues Element" is flexible. For instance, "Cues Element" can be used to index every single timestamp of every "Block" or they can be indexed selectively. For video files, it is RECOMMENDED to index at least the keyframes of the video track.

```
+-------------------------------------+
| Cues | CuePoint | CueTime           |
|      |          |-------------------|
|      |          | CueTrackPositions |
|      |------------------------------|
|      | CuePoint | CueTime           |
|      |          |-------------------|
|      |          | CueTrackPositions |
+-------------------------------------+
```

Figure 7: Representation of a "Cues Element" and two levels of its "Descendant Elements".

The "Attachments Element" is for attaching files to a Matroska file such as pictures, webpages, programs, or even the codec needed to play back the file.

```
+------------------------------------------------+
| Attachments | AttachedFile | FileDescription   |
|             |              |-------------------|
|             |              | FileDescription   |
|             |              |-------------------|
|             |              | FileMimeType      |
|             |              |-------------------|
|             |              | FileData          |
|             |              |-------------------|
|             |              | FileUID           |
|             |              |-------------------|
|             |              | FileName          |
```

Figure 8: Representation of a "Attachments Element".

The "Tags Element" contains metadata that describes the "Segment" and potentially its "Tracks", "Chapters", and "Attachments". Each "Track" or "Chapter" that those tags applies to has its UID listed in the "Tags". The "Tags" contain all extra information about the file: scriptwriter, singer, actors, directors, titles, edition, price, dates, genre, comments, etc. Tags can contain their values in multiple languages. For example, a movie's "title" "Tag" might contain both the original English title as well as the title it was released as in Germany.
8. Matroska Schema

This specification includes an "EBML Schema", which defines the Elements and structure of Matroska as an EBML Document Type. The EBML Schema defines every valid Matroska element in a manner defined by the EBML specification.

Here the definition of each Matroska Element is provided.

8.1. EBMLMaxIDLength Element

name: EBMLMaxIDLength
path: "\EBML\EBMLMaxIDLength"
id: 0x42F2
minOccurs: 1
maxOccurs: 1
range: 4
default: 4
type: uinteger

8.2. EBMLMaxSizeLength Element

name: EBMLMaxSizeLength
path: "\EBML\EBMLMaxSizeLength"

id: 0x42F3
minOccurs: 1
maxOccurs: 1
range: 1-8
default: 8
type: uinteger

9. Segment Element

name: Segment
path: "\Segment"

id: 0x18538067
minOccurs: 1
maxOccurs: 1
type: master
unknownsizeallowed: 1

definition: The Root Element that contains all other Top-Level Elements (Elements defined only at Level 1). A Matroska file is composed of 1 Segment.
9.1. SeekHead Element

name: SeekHead

path: "\Segment\SeekHead"

id: 0x114D9B74

maxOccurs: 2

type: master

definition: Contains the Segment Position of other Top-Level Elements.

9.1.1. Seek Element

name: Seek

path: "\Segment\SeekHead\Seek"

id: 0x4DBB

minOccurs: 1

type: master

definition: Contains a single seek entry to an EBML Element.

9.1.1.1. SeekID Element

name: SeekID

path: "\Segment\SeekHead\Seek\SeekID"

id: 0x53AB

minOccurs: 1

maxOccurs: 1

type: binary
9.1.1.2. SeekPosition Element

 name: SeekPosition

 path: "\Segment\SeekHead\Seek\SeekPosition"

 id: 0x53AC

 minOccurs: 1

 maxOccurs: 1

 type: uinteger

 definition: The Segment Position of the Element.

9.2. Info Element

 name: Info

 path: "\Segment\Info"

 id: 0x1549A966

 minOccurs: 1

 maxOccurs: 1

 type: master

 recurring: 1

 definition: Contains general information about the Segment.

9.2.1. SegmentUID Element
name: SegmentUID
path: "\Segment\Info\SegmentUID"
id: 0x73A4
maxOccurs: 1
range: not 0
type: binary

definition: A randomly generated unique ID to identify the Segment amongst many others (128 bits).

usage notes: If the Segment is a part of a Linked Segment, then this Element is REQUIRED.

9.2.2. SegmentFilename Element

name: SegmentFilename
path: "\Segment\Info\SegmentFilename"
id: 0x7384
maxOccurs: 1
type: utf-8

definition: A filename corresponding to this Segment.

9.2.3. PrevUID Element

name: PrevUID
path: "\Segment\Info\PrevUID"
id: 0x3CB923
maxOccurs: 1

type: binary

definition: A unique ID to identify the previous Segment of a Linked Segment (128 bits).

usage notes: If the Segment is a part of a Linked Segment that uses Hard Linking, then either the PrevUID or the NextUID Element is REQUIRED. If a Segment contains a PrevUID but not a NextUID, then it MAY be considered as the last Segment of the Linked Segment. The PrevUID MUST NOT be equal to the SegmentUID.

9.2.4. PrevFilename Element

name: PrevFilename

path: "\Segment\Info\PrevFilename"

id: 0x3C83AB

maxOccurs: 1

type: utf-8

definition: A filename corresponding to the file of the previous Linked Segment.

usage notes: Provision of the previous filename is for display convenience, but PrevUID SHOULD be considered authoritative for identifying the previous Segment in a Linked Segment.

9.2.5. NextUID Element

name: NextUID

path: "\Segment\Info\NextUID"

id: 0x3EB923

maxOccurs: 1
type: binary

definition: A unique ID to identify the next Segment of a Linked Segment (128 bits).

usage notes: If the Segment is a part of a Linked Segment that uses Hard Linking, then either the PrevUID or the NextUID Element is REQUIRED. If a Segment contains a NextUID but not a PrevUID, then it MAY be considered as the first Segment of the Linked Segment. The NextUID MUST NOT be equal to the SegmentUID.

9.2.6. NextFilename Element

name: NextFilename

path: "\Segment\Info\NextFilename"

id: 0x3E83BB

maxOccurs: 1

type: utf-8

definition: A filename corresponding to the file of the next Linked Segment.

usage notes: Provision of the next filename is for display convenience, but NextUID SHOULD be considered authoritative for identifying the Next Segment.

9.2.7. SegmentFamily Element

name: SegmentFamily

path: "\Segment\Info\SegmentFamily"

id: 0x4444

type: binary

definition: A randomly generated unique ID that all Segments of a
Linked Segment MUST share (128 bits).

usage notes: If the Segment is a part of a Linked Segment that uses Soft Linking, then this Element is REQUIRED.

9.2.8. ChapterTranslate Element

name: ChapterTranslate

path: "\Segment\Info\ChapterTranslate"

id: 0x6924

type: master

definition: A tuple of corresponding ID used by chapter codecs to represent this Segment.

9.2.8.1. ChapterTranslateEditionUID Element

name: ChapterTranslateEditionUID

path: "\Segment\Info\ChapterTranslate\ChapterTranslateEditionUID"

id: 0x69FC

type: uinteger

definition: Specify an edition UID on which this correspondence applies. When not specified, it means for all editions found in the Segment.

9.2.8.2. ChapterTranslateCodec Element

name: ChapterTranslateCodec

path: "\Segment\Info\ChapterTranslate\ChapterTranslateCodec"

id: 0x69BF
minOccurs: 1
maxOccurs: 1
type: uinteger
definition: The chapter codec; see Section 9.7.1.4.10.1.
restrictions:

+--------+-----------------+
| value | label |
+--------+-----------------+
| 0 | Matroska Script |
+--------+-----------------+
| 1 | DVD-menu |
+--------+-----------------+

Table 9

9.2.8.3. ChapterTranslateID Element

name: ChapterTranslateID
path: "\Segment\Info\ChapterTranslate\ChapterTranslateID"

id: 0x69A5
minOccurs: 1
maxOccurs: 1
type: binary

definition: The binary value used to represent this Segment in the chapter codec data. The format depends on the ChapProcessCodecID used; see Section 9.7.1.4.10.1.
9.2.9. TimestampScale Element

name: TimestampScale

path: "\Segment\Info\TimestampScale"

id: 0x2AD7B1

minOccurs: 1

maxOccurs: 1

range: not 0

default: 1000000

type: uinteger

definition: Timestamp scale in nanoseconds (1,000,000 means all timestamps in the Segment are expressed in milliseconds).

9.2.10. Duration Element

name: Duration

path: "\Segment\Info\Duration"

id: 0x4489

maxOccurs: 1

range: > 0x0p+0

type: float

definition: Duration of the Segment in nanoseconds based on TimestampScale.

9.2.11. DateUTC Element

name: DateUTC

path: "\Segment\Info\DateUTC"

id: 0x4461

maxOccurs: 1
9.2.12. Title Element

name: Title

path: "Segment\Info\Title"

id: 0x7BA9

maxOccurs: 1

type: utf-8

definition: General name of the Segment.

9.2.13. MuxingApp Element

name: MuxingApp

path: "Segment\Info\MuxingApp"

id: 0x4D80

minOccurs: 1

maxOccurs: 1

type: utf-8

definition: Muxing application or library (example: "libmatroska-0.4.3").

usage notes: Include the full name of the application or library followed by the version number.

9.2.14. WritingApp Element

name: WritingApp
9.3. Cluster Element

name: Cluster

path: "\Segment\Cluster"

id: 0x1F43B675

type: master

unknownsizeallowed: 1

definition: The Top-Level Element containing the (monolithic) Block structure.

9.3.1. Timestamp Element

name: Timestamp

path: "\Segment\Cluster\Timestamp"

id: 0xE7

minOccurs: 1

maxOccurs: 1
type: uinteger

definition: Absolute timestamp of the cluster (based on TimestampScale).

9.3.2. SilentTracks Element

name: SilentTracks

path: "\Segment\Cluster\SilentTracks"

id: 0x5854

maxOccurs: 1

type: master

definition: The list of tracks that are not used in that part of the stream. It is useful when using overlay tracks on seeking or to decide what track to use.

9.3.2.1. SilentTrackNumber Element

name: SilentTrackNumber

path: "\Segment\Cluster\SilentTracks\SilentTrackNumber"

id: 0x58D7

type: uinteger

definition: One of the track number that are not used from now on in the stream. It could change later if not specified as silent in a further Cluster.

9.3.3. Position Element

name: Position

path: "\Segment\Cluster\Position"

id: 0xA7
maxOccurs: 1

type: uinteger

definition: The Segment Position of the Cluster in the Segment (0 in live streams). It might help to resynchronise offset on damaged streams.

9.3.4. PrevSize Element

name: PrevSize

path: "/Segment\Cluster\PrevSize"

id: 0xAB

maxOccurs: 1

type: uinteger

definition: Size of the previous Cluster, in octets. Can be useful for backward playing.

9.3.5. SimpleBlock Element

name: SimpleBlock

path: "/Segment\Cluster\SimpleBlock"

id: 0xA3

type: binary

minver: 2

definition: Similar to Block, see Section 6.2.3, but without all the extra information, mostly used to reduced overhead when no extra feature is needed; see Section 6.2.4.4 on SimpleBlock Structure.

9.3.6. BlockGroup Element
name: BlockGroup
path: "\Segment\Cluster\BlockGroup"
id: 0xA0
type: master

definition: Basic container of information containing a single Block and information specific to that Block.

9.3.6.1. Block Element

name: Block
path: "\Segment\Cluster\BlockGroup\Block"
id: 0xA1
minOccurs: 1
maxOccurs: 1
type: binary

definition: Block containing the actual data to be rendered and a timestamp relative to the Cluster Timestamp; see Section 6.2.3 on Block Structure.

9.3.6.2. BlockVirtual Element

name: BlockVirtual
path: "\Segment\Cluster\BlockGroup\BlockVirtual"
id: 0xA2
maxOccurs: 1
type: binary
A Block with no data. It MUST be stored in the stream at the place the real Block would be in display order.

9.3.6.3. BlockAdditions Element

- **name**: BlockAdditions
- **path**: ":Segment\Cluster\BlockGroup\BlockAdditions"
- **id**: 0x75A1
- **maxOccurs**: 1
- **type**: master

含 additional blocks to complete the main one. An EBML parser that has no knowledge of the Block structure could still see and use/skip these data.

9.3.6.3.1. BlockMore Element

- **name**: BlockMore
- **path**: ":Segment\Cluster\BlockGroup\BlockAdditions\BlockMore"
- **id**: 0xA6
- **minOccurs**: 1

- **type**: master

含 the BlockAdditional and some parameters.

9.3.6.3.1.1. BlockAddID Element

- **name**: BlockAddID
9.3.6.3.1.2. BlockAdditional Element

name: BlockAdditional

path: "\Segment\Cluster\BlockGroup\BlockAdditions\BlockMore\BlockAddi
tional"

id: 0xA5

minOccurs: 1

maxOccurs: 1

type: binary

definition: Interpreted by the codec as it wishes (using the BlockAddID).

9.3.6.4. BlockDuration Element
name: BlockDuration

path: "\Segment\Cluster\BlockGroup\BlockDuration"

id: 0x9B

minOccurs: see implementation notes

maxOccurs: 1

default: see implementation notes

type: uinteger

definition: The duration of the Block (based on TimestampScale).
The BlockDuration Element can be useful at the end of a Track to define the duration of the last frame (as there is no subsequent Block available), or when there is a break in a track like for subtitle tracks.

implementation notes:

<table>
<thead>
<tr>
<th>attribute</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>minOccurs</td>
<td>BlockDuration MUST be set (minOccurs=1) if the associated TrackEntry stores a DefaultDuration value.</td>
</tr>
<tr>
<td>default</td>
<td>When not written and with no DefaultDuration, the value is assumed to be the difference between the timestamp of this Block and the timestamp of the next Block in "display" order (not coding order).</td>
</tr>
</tbody>
</table>

Table 10
9.3.6.5. ReferencePriority Element

name: ReferencePriority
path: "\Segment\Cluster\BlockGroup\ReferencePriority"
id: 0xFA
minOccurs: 1
maxOccurs: 1
default: 0
type: uinteger
definition: This frame is referenced and has the specified cache priority. In cache only a frame of the same or higher priority can replace this frame. A value of 0 means the frame is not referenced.

9.3.6.6. ReferenceBlock Element

name: ReferenceBlock
path: "\Segment\Cluster\BlockGroup\ReferenceBlock"
id: 0xFB
type: integer
definition: Timestamp of another frame used as a reference (ie: B or P frame). The timestamp is relative to the block it's attached to.

9.3.6.7. ReferenceVirtual Element

name: ReferenceVirtual
path: "\Segment\Cluster\BlockGroup\ReferenceVirtual"
id: 0xFD
maxOccurs: 1
type: integer
9.3.6.8. CodecState Element

name: CodecState
path: "\Segment\Cluster\BlockGroup\CodecState"
id: 0xA4
maxOccurs: 1
type: binary
minver: 2

definition: The new codec state to use. Data interpretation is private to the codec. This information SHOULD always be referenced by a seek entry.

9.3.6.9. DiscardPadding Element

name: DiscardPadding
path: "\Segment\Cluster\BlockGroup\DiscardPadding"
id: 0x75A2
maxOccurs: 1
type: integer
minver: 4

definition: Duration in nanoseconds of the silent data added to the Block (padding at the end of the Block for positive value, at the
beginning of the Block for negative value). The duration of DiscardPadding is not calculated in the duration of the TrackEntry and SHOULD be discarded during playback.

9.3.6.10. Slices Element

name: Slices

path: "Segment\Cluster\BlockGroup\Slices"

id: 0x8E

maxOccurs: 1

type: master

definition: Contains slices description.

9.3.6.10.1. TimeSlice Element

name: TimeSlice

path: "Segment\Cluster\BlockGroup\Slices\TimeSlice"

id: 0xE8

type: master

maxver: 1

definition: Contains extra time information about the data contained in the Block. Being able to interpret this Element is not REQUIRED for playback.

9.3.6.10.1.1. LaceNumber Element

name: LaceNumber

path: "Segment\Cluster\BlockGroup\Slices\TimeSlice\LaceNumber"

id: 0xCC
maxOccurs: 1

default: 0

type: uinteger

maxver: 1

definition: The reverse number of the frame in the lace (0 is the last frame, 1 is the next to last, etc). Being able to interpret this Element is not REQUIRED for playback.

9.3.6.10.1.2. FrameNumber Element

name: FrameNumber

definition: The number of the frame to generate from this lace with this delay (allow you to generate many frames from the same Block/Frame).

9.3.6.10.1.3. BlockAdditionID Element

name: BlockAdditionID

definition: The number of the frame to generate from this lace with this delay (allow you to generate many frames from the same Block/Frame).
maxOccurs: 1

default: 0
type: uinteger
minver: 0
maxver: 0
definition: The ID of the BlockAdditional Element (0 is the main Block).

9.3.6.10.1.4. Delay Element

name: Delay

path: "\Segment\Cluster\BlockGroup\Slices\TimeSlice\Delay"
id: 0xCE

maxOccurs: 1

default: 0
type: uinteger
minver: 0
maxver: 0
definition: The (scaled) delay to apply to the Element.

9.3.6.10.1.5. SliceDuration Element

name: SliceDuration

path: "\Segment\Cluster\BlockGroup\Slices\TimeSlice\SliceDuration"
id: 0xCF
maxOccurs: 1
default: 0
type: uinteger
minver: 0
maxver: 0
definition: The (scaled) duration to apply to the Element.

9.3.6.11. ReferenceFrame Element

name: ReferenceFrame
path: "\Segment\Cluster\BlockGroup\ReferenceFrame"

id: 0xC8

maxOccurs: 1
type: master
minver: 0
maxver: 0
definition: Contains information about the last reference frame. See [DivXTrickTrack].

9.3.6.11.1. ReferenceOffset Element

name: ReferenceOffset

path: "\Segment\Cluster\BlockGroup\ReferenceFrame\ReferenceOffset"

id: 0xC9

minOccurs: 1
maxOccurs: 1
type: integer
minver: 0
maxver: 0

definition: The relative offset, in bytes, from the previous BlockGroup element for this Smooth FF/RW video track to the containing BlockGroup element. See [DivXTrickTrack].

9.3.6.11.2. ReferenceTimestamp Element

name: ReferenceTimestamp

path: "\Segment\Cluster\BlockGroup\ReferenceFrame\ReferenceTimestamp"

id: 0xCA

minOccurs: 1
maxOccurs: 1
type: integer
minver: 0
maxver: 0

definition: The timecode of the BlockGroup pointed to by ReferenceOffset. See [DivXTrickTrack].

9.3.7. EncryptedBlock Element

name: EncryptedBlock

path: "\Segment\Cluster\EncryptedBlock"

id: 0xAF
type: binary

minver: 0

maxver: 0

definition: Similar to SimpleBlock, see Section 6.2.4.4, but the data inside the Block are Transformed (encrypt and/or signed).

9.4. Tracks Element

name: Tracks

path: "\Segment\Tracks"

id: 0x1654AE6B

maxOccurs: 1

type: master

recurring: 1

definition: A Top-Level Element of information with many tracks described.

9.4.1. TrackEntry Element

name: TrackEntry

path: "\Segment\Tracks\TrackEntry"

id: 0xAE

minOccurs: 1

type: master

definition: Describes a track with all Elements.

9.4.1.1. TrackNumber Element

name: TrackNumber
path: "\Segment\Tracks\TrackEntry\TrackNumber"

id: 0xD7

minOccurs: 1

maxOccurs: 1

range: not 0

type: uinteger

definition: The track number as used in the Block Header (using more
than 127 tracks is not encouraged, though the design allows an
unlimited number).

9.4.1.2. TrackUID Element

name: TrackUID

path: "\Segment\Tracks\TrackEntry\TrackUID"

id: 0x73C5

minOccurs: 1

maxOccurs: 1

range: not 0

type: uinteger

definition: A unique ID to identify the Track. This SHOULD be kept
the same when making a direct stream copy of the Track to another
file.

9.4.1.3. TrackType Element

name: TrackType

path: "\Segment\Tracks\TrackEntry\TrackType"

id: 0x83

minOccurs: 1

maxOccurs: 1
range: 1-254

type: uinteger

definition: A set of track types coded on 8 bits.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>video</td>
</tr>
<tr>
<td>2</td>
<td>audio</td>
</tr>
<tr>
<td>3</td>
<td>complex</td>
</tr>
<tr>
<td>16</td>
<td>logo</td>
</tr>
<tr>
<td>17</td>
<td>subtitle</td>
</tr>
<tr>
<td>18</td>
<td>buttons</td>
</tr>
<tr>
<td>32</td>
<td>control</td>
</tr>
<tr>
<td>33</td>
<td>metadata</td>
</tr>
</tbody>
</table>

Table 11

9.4.1.4. FlagEnabled Element

name: FlagEnabled

path: "\Segment\Tracks\TrackEntry\FlagEnabled"

id: 0xB9

minOccurs: 1
maxOccurs: 1
range: 0-1
default: 1
type: uinteger

9.4.1.5. FlagDefault Element

name: FlagDefault
path: "\Segment\Tracks\TrackEntry\FlagDefault"

id: 0x88
minOccurs: 1
maxOccurs: 1
range: 0-1
default: 1
type: uinteger

definition: Set if that track (audio, video or subs) SHOULD be eligible for automatic selection by the player; see Section 25 for more details.

9.4.1.6. FlagForced Element

name: FlagForced
path: "\Segment\Tracks\TrackEntry\FlagForced"
9.4.1.7. FlagHearingImpaired Element

name: FlagHearingImpaired

path: "\Segment\Tracks\TrackEntry\FlagHearingImpaired"

id: 0x55AB

maxOccurs: 1

range: 0-1

type: uinteger

definition: Set to 1 if that track is suitable for users with hearing impairments, set to 0 if it is unsuitable for users with hearing impairments.

9.4.1.8. FlagVisualImpaired Element
name: FlagVisualImpaired
path: "\Segment\Tracks\TrackEntry\FlagVisualImpaired"
id: 0x55AC
maxOccurs: 1
range: 0-1
type: uinteger
definition: Set to 1 if that track is suitable for users with visual impairments, set to 0 if it is unsuitable for users with visual impairments.

9.4.1.9. FlagTextDescriptions Element

name: FlagTextDescriptions
path: "\Segment\Tracks\TrackEntry\FlagTextDescriptions"

id: 0x55AD
maxOccurs: 1
range: 0-1
type: uinteger
definition: Set to 1 if that track contains textual descriptions of video content, set to 0 if that track does not contain textual descriptions of video content.

9.4.1.10. FlagOriginal Element

name: FlagOriginal
path: "\Segment\Tracks\TrackEntry\FlagOriginal"
id: 0x55AE
maxOccurs: 1
range: 0-1
type: uinteger
definition: Set to 1 if that track is in the content's original language, set to 0 if it is a translation.

9.4.1.11. FlagCommentary Element

name: FlagCommentary
path: \Segment\Tracks\TrackEntry\FlagCommentary
id: 0x55AF
maxOccurs: 1
range: 0-1
type: uinteger
definition: Set to 1 if that track contains commentary, set to 0 if it does not contain commentary.

9.4.1.12. FlagLacing Element

name: FlagLacing
path: \Segment\Tracks\TrackEntry\FlagLacing
id: 0x9C
minOccurs: 1
maxOccurs: 1
range: 0-1

default: 1

type: uinteger

definition: Set to 1 if the track MAY contain blocks using lacing.

9.4.1.13. MinCache Element

name: MinCache

path: "\Segment\Tracks\TrackEntry\MinCache"

id: 0x6DE7

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger

definition: The minimum number of frames a player SHOULD be able to cache during playback. If set to 0, the reference pseudo-cache system is not used.

9.4.1.14. MaxCache Element

name: MaxCache

path: "\Segment\Tracks\TrackEntry\MaxCache"

id: 0x6DF8
frames in and the current frame. 0 means no cache is needed.

9.4.1.15. DefaultDuration Element

name: DefaultDuration

path: "\Segment\Tracks\TrackEntry\DefaultDuration"

id: 0x23E383

maxOccurs: 1

range: not 0

type: uinteger

definition: Number of nanoseconds (not scaled via TimestampScale) per frame (frame in the Matroska sense -- one Element put into a (Simple)Block).

9.4.1.16. DefaultDecodedFieldDuration Element

name: DefaultDecodedFieldDuration

path: "\Segment\Tracks\TrackEntry\DefaultDecodedFieldDuration"

id: 0x234E7A

maxOccurs: 1

range: not 0

type: integer

minver: 4

definition: The period in nanoseconds (not scaled by TimestampScale) between two successive fields at the output of the decoding process, see Section 17 for more information
9.4.1.17. TrackTimestampScale Element

name: TrackTimestampScale
path: "\Segment\Tracks\TrackEntry\TrackTimestampScale"

id: 0x23314F
minOccurs: 1
maxOccurs: 1
range: > 0x0p+0
default: 0x1p+0
type: float
maxver: 3

definition: DEPRECATED, DO NOT USE. The scale to apply on this track to work at normal speed in relation with other tracks (mostly used to adjust video speed when the audio length differs).

9.4.1.18. TrackOffset Element

name: TrackOffset
path: "\Segment\Tracks\TrackEntry\TrackOffset"

id: 0x537F
maxOccurs: 1
default: 0

type: integer

minver: 0
maxver: 0

definition: A value to add to the Block's Timestamp. This can be used to adjust the playback offset of a track.
9.4.1.19. MaxBlockAdditionID Element

name: MaxBlockAdditionID
path: "Segment\Tracks\TrackEntry\MaxBlockAdditionID"
id: 0x55EE
minOccurs: 1
maxOccurs: 1
default: 0
type: uinteger
definition: The maximum value of BlockAddID (Section 9.3.6.3.1.1). A value 0 means there is no BlockAdditions (Section 9.3.6.3) for this track.

9.4.1.20. BlockAdditionMapping Element

name: BlockAdditionMapping
path: "Segment\Tracks\TrackEntry\BlockAdditionMapping"
id: 0x41E4
type: master
minver: 4
definition: Contains elements that extend the track format, by adding content either to each frame, with BlockAddID (Section 9.3.6.3.1.1), or to the track as a whole with BlockAddIDExtraData.

9.4.1.20.1. BlockAddIDValue Element

name: BlockAddIDValue
path: "Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDVal
maxOccurs: 1

range: >=2
type: uinteger
minver: 4

definition: If the track format extension needs content beside frames, the value refers to the BlockAddID (Section 9.3.6.3.1.1), value being described. To keep MaxBlockAdditionID as low as possible, small values SHOULD be used.

9.4.1.20.2. BlockAddIDName Element

name: BlockAddIDName
path: "\Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDName"

id: 0x41A4
maxOccurs: 1
type: string
minver: 4
definition: A human-friendly name describing the type of BlockAdditional data, as defined by the associated Block Additional Mapping.

9.4.1.20.3. BlockAddIDType Element

name: BlockAddIDType
path: "\Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDTyp
id: 0x41ED
minOccurs: 1
maxOccurs: 1
default: 0
type: binary
minver: 4

definition: Extra binary data that the BlockAddIDType can use to interpret the BlockAdditional data. The interpretation of the binary data depends on the BlockAddIDType value and the corresponding Block Additional Mapping.

9.4.1.20.4. BlockAddIDExtraData Element

name: BlockAddIDExtraData
path: "\Segment\Tracks\TrackEntry\BlockAdditionMapping\BlockAddIDExtraData"

id: 0x41ED
maxOccurs: 1
type: binary
minver: 4

definition: Extra binary data that the BlockAddIDType can use to interpret the BlockAdditional data. The interpretation of the binary data depends on the BlockAddIDType value and the corresponding Block Additional Mapping.

9.4.1.21. Name Element

name: Name
path: "\Segment\Tracks\TrackEntry\Name"
id: 0x536E

maxOccurs: 1

type: utf-8

definition: A human-readable track name.

9.4.1.22. Language Element

name: Language

path: "\Segment\Tracks\TrackEntry\Language"

id: 0x22B59C

minOccurs: 1

maxOccurs: 1

default: eng

type: string

definition: Specifies the language of the track in the Matroska languages form; see Section 6.2.1 on language codes. This Element MUST be ignored if the LanguageIETF Element is used in the same TrackEntry.

9.4.1.23. LanguageIETF Element

name: LanguageIETF

path: "\Segment\Tracks\TrackEntry\LanguageIETF"

id: 0x22B59D

maxOccurs: 1

type: string
minver: 4

definition: Specifies the language of the track according to [BCP47] and using the IANA Language Subtag Registry [IANALangRegistry]. If this Element is used, then any Language Elements used in the same TrackEntry MUST be ignored.

9.4.1.24. CodecID Element

name: CodecID

path: "\Segment\Tracks\TrackEntry\CodecID"

id: 0x86

 minOccurs: 1

maxOccurs: 1

type: string

definition: An ID corresponding to the codec, see [I-D.ietf-cellar-codec] for more info.

9.4.1.25. CodecPrivate Element

name: CodecPrivate

path: "\Segment\Tracks\TrackEntry\CodecPrivate"

id: 0x63A2

maxOccurs: 1

type: binary

definition: Private data only known to the codec.
9.4.1.26. CodecName Element

name: CodecName
path: "\Segment\Tracks\TrackEntry\CodecName"
id: 0x258688
maxOccurs: 1
type: utf-8
definition: A human-readable string specifying the codec.

9.4.1.27. AttachmentLink Element

name: AttachmentLink
path: "\Segment\Tracks\TrackEntry\AttachmentLink"
id: 0x7446
maxOccurs: 1
range: not 0
type: uinteger
maxver: 3
definition: The UID of an attachment that is used by this codec.

9.4.1.28. CodecSettings Element

name: CodecSettings
path: "\Segment\Tracks\TrackEntry\CodecSettings"
id: 0x3A9697
maxOccurs: 1
type: utf-8
minver: 0
maxver: 0
definition: A string describing the encoding setting used.

9.4.1.29. CodecInfoURL Element

name: CodecInfoURL
path: "\Segment\Tracks\TrackEntry\CodecInfoURL"
id: 0x3B4040
type: string
minver: 0
maxver: 0
definition: A URL to find information about the codec used.

9.4.1.30. CodecDownloadURL Element

name: CodecDownloadURL
path: "\Segment\Tracks\TrackEntry\CodecDownloadURL"
id: 0x26B240
type: string
minver: 0
maxver: 0
definition: A URL to download about the codec used.

9.4.1.31. CodecDecodeAll Element

name: CodecDecodeAll
path: "\Segment\Tracks\TrackEntry\CodecDecodeAll"
id: 0xAA
minOccurs: 1
maxOccurs: 1
range: 0-1
default: 1
type: uinteger
minver: 2
definition: The codec can decode potentially damaged data.

9.4.1.32. TrackOverlay Element

name: TrackOverlay
path: "\Segment\Tracks\TrackEntry\TrackOverlay"
id: 0x6FAB
type: uinteger

definition: Specify that this track is an overlay track for the Track specified (in the u-integer). That means when this track has a gap, see Section 9.3.2 on SilentTracks, the overlay track SHOULD be used instead. The order of multiple TrackOverlay matters, the first one is the one that SHOULD be used. If not found it SHOULD be the second, etc.

9.4.1.33. CodecDelay Element

name: CodecDelay
path: "\Segment\Tracks\TrackEntry\CodecDelay"
id: 0x56AA
maxOccurs: 1

default: 0

type: uinteger

minver: 4

definition: CodecDelay is The codec-built-in delay in nanoseconds. This value MUST be subtracted from each block timestamp in order to get the actual timestamp. The value SHOULD be small so the muxing of tracks with the same actual timestamp are in the same Cluster.

9.4.1.34. SeekPreRoll Element

name: SeekPreRoll

path: "\Segment\Tracks\TrackEntry\SeekPreRoll"

id: 0x56BB

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger

minver: 4

definition: After a discontinuity, SeekPreRoll is the duration in nanoseconds of the data the decoder MUST decode before the decoded data is valid.

9.4.1.35. TrackTranslate Element

name: TrackTranslate

path: "\Segment\Tracks\TrackEntry\TrackTranslate"

id: 0x6624
9.4.1.35.1. TrackTranslateEditionUID Element

name: TrackTranslateEditionUID
path: "\Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateEditionUID"
id: 0x66FC
type: uinteger
definition: Specify an edition UID on which this translation applies. When not specified, it means for all editions found in the Segment.

9.4.1.35.2. TrackTranslateCodec Element

name: TrackTranslateCodec
path: "\Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateCodec"
id: 0x66BF
minOccurs: 1
maxOccurs: 1
type: uinteger
definition: The chapter codec; see Section 9.7.1.4.10.1.
restrictions:

+-----------------+------------------+
| value | label |
+-----------------+------------------+
Table 12

<table>
<thead>
<tr>
<th>0</th>
<th>Matroska Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DVD-menu</td>
</tr>
</tbody>
</table>

9.4.1.35.3. TrackTranslateTrackID Element

name: TrackTranslateTrackID

path: `"Segment\Tracks\TrackEntry\TrackTranslate\TrackTranslateTrackID"

id: 0x66A5

minOccurs: 1

maxOccurs: 1

type: binary

definition: The binary value used to represent this track in the chapter codec data. The format depends on the ChapProcessCodecID used; see Section 9.7.1.4.10.1.

9.4.1.36. Video Element

name: Video

path: `"Segment\Tracks\TrackEntry\Video"

id: 0xE0

maxOccurs: 1

type: master

definition: Video settings.
9.4.1.36.1. FlagInterlaced Element

name: FlagInterlaced

path: "\Segment\Tracks\TrackEntry\Video\FlagInterlaced"

id: 0x9A

minOccurs: 1

maxOccurs: 1

range: 0-2

default: 0

type: uinteger

minver: 2

definition: A flag to declare if the video is known to be progressive, or interlaced, and if applicable to declare details about the interlacement.

restrictions:

+=======+==============+
| value | label |
+=======+==============+
| 0 | undetermined |
+-------+--------------+
| 1 | interlaced |
+-------+--------------+
| 2 | progressive |
+-------+--------------+

Table 13

9.4.1.36.2. FieldOrder Element

name: FieldOrder
path: "\Segment\Tracks\TrackEntry\Video\FieldOrder"

id: 0x9D

 minOccurs: 1

maxOccurs: 1

range: 0-14

default: 2

type: uinteger

minver: 4

definition: Declare the field ordering of the video. If FlagInterlaced is not set to 1, this Element MUST be ignored.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
<th>documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>progressive</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>tff</td>
<td>Top field displayed first.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Top field stored first.</td>
</tr>
<tr>
<td>2</td>
<td>undetermined</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>bff</td>
<td>Bottom field displayed first.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom field stored first.</td>
</tr>
<tr>
<td>9</td>
<td>bff(swapped)</td>
<td>Top field displayed first.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fields are interleaved in</td>
</tr>
</tbody>
</table>
Table 14

9.4.1.36.3. StereoMode Element

name: StereoMode

path: "\Segment\Tracks\TrackEntry\Video\StereoMode"

id: 0x53B8

maxOccurs: 1

default: 0

type: uinteger

minver: 3

definition: Stereo-3D video mode. There are some more details in Section 24.10.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internet-Draft Matroska Format April 2021
0	mono
1	side by side (left eye first)
2	top - bottom (right eye is first)
3	top - bottom (left eye is first)
4	checkboard (right eye is first)
5	checkboard (left eye is first)
6	row interleaved (right eye is first)
7	row interleaved (left eye is first)
8	column interleaved (right eye is first)
9	column interleaved (left eye is first)
10	anaglyph (cyan/red)
11	side by side (right eye first)
12	anaglyph (green/magenta)
13	both eyes laced in one Block (left eye is first)
14	both eyes laced in one Block (right eye is first)

Table 15

9.4.1.36.4. AlphaMode Element

 name: AlphaMode
 path: "\Segment\Tracks\TrackEntry\Video\AlphaMode"
 id: 0x53C0

maxOccurs: 1
default: 0

type: uinteger

minver: 3

definition: Alpha Video Mode. Presence of this Element indicates that the BlockAdditional Element could contain Alpha data.

9.4.1.36.5. OldStereoMode Element

description: OldStereoMode

name: OldStereoMode

path: "\Segment\Tracks\TrackEntry\Video\OldStereoMode"

id: 0x53B9

maxOccurs: 1

type: uinteger

maxver: 0

definition: DEPRECATED, DO NOT USE. Bogus StereoMode value used in old versions of libmatroska.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>mono</td>
</tr>
<tr>
<td>1</td>
<td>right eye</td>
</tr>
<tr>
<td>2</td>
<td>left eye</td>
</tr>
<tr>
<td>3</td>
<td>both eyes</td>
</tr>
</tbody>
</table>

Table 16

9.4.1.36.6. PixelWidth Element

name: PixelWidth
path: "\Segment\Tracks\TrackEntry\Video\PixelWidth"

id: 0xB0
minOccurs: 1
maxOccurs: 1
range: not 0
type: uinteger
definition: Width of the encoded video frames in pixels.

9.4.1.36.7. PixelHeight Element

name: PixelHeight
path: "\Segment\Tracks\TrackEntry\Video\PixelHeight"

id: 0xBA
minOccur: 1
maxOccur: 1
range: not 0
type: uinteger
definition: Height of the encoded video frames in pixels.

9.4.1.36.8. PixelCropBottom Element

name: PixelCropBottom
path: "\Segment\Tracks\TrackEntry\Video\PixelCropBottom"

id: 0x54AA
maxOccur: 1
default: 0
type: uinteger
definition: The number of video pixels to remove at the bottom of the image.

9.4.1.36.9. PixelCropTop Element

name: PixelCropTop
path: \Segment\Tracks\TrackEntry\Video\PixelCropTop
id: 0x54BB
maxOccurs: 1
default: 0
type: uinteger
definition: The number of video pixels to remove at the top of the image.

9.4.1.36.10. PixelCropLeft Element

name: PixelCropLeft
path: \Segment\Tracks\TrackEntry\Video\PixelCropLeft
id: 0x54CC
maxOccurs: 1
default: 0
type: uinteger
definition: The number of video pixels to remove on the left of the image.

9.4.1.36.11. PixelCropRight Element

name: PixelCropRight
path: \Segment\Tracks\TrackEntry\Video\PixelCropRight
id: 0x54DD

maxOccurs: 1

default: 0

type: uinteger

9.4.1.36.12. DisplayWidth Element

name: DisplayWidth

path: "\Segment\Tracks\TrackEntry\Video\DisplayWidth"

id: 0x54B0

maxOccurs: 1

range: not 0

default: see implementation notes

type: uinteger

definition: Width of the video frames to display. Applies to the video frame after cropping (PixelCrop* Elements).

implementation notes:

<table>
<thead>
<tr>
<th>attribute</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>If the DisplayUnit of the same TrackEntry is 0, then the default value for DisplayWidth is equal to</td>
</tr>
<tr>
<td>PixelWidth - PixelCropLeft</td>
<td></td>
</tr>
</tbody>
</table>
9.4.1.36.13. DisplayHeight Element

name: DisplayHeight
path: "\Segment\Tracks\TrackEntry\Video\DisplayHeight"
id: 0x54BA
maxOccurs: 1

range: not 0
default: see implementation notes
type: uinteger
definition: Height of the video frames to display. Applies to the video frame after cropping (PixelCrop* Elements).

implementation notes:

<table>
<thead>
<tr>
<th>attribute</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>If the DisplayUnit of the same TrackEntry is 0, then the default value for DisplayHeight is equal to</td>
</tr>
<tr>
<td></td>
<td>PixelHeight - PixelCropTop</td>
</tr>
<tr>
<td></td>
<td>- PixelCropBottom, else</td>
</tr>
<tr>
<td></td>
<td>there is no default value.</td>
</tr>
</tbody>
</table>

Table 17

Table 18
9.4.1.36.14. DisplayUnit Element

name: DisplayUnit

path: "\Segment\Tracks\TrackEntry\Video\DisplayUnit"

id: 0x54B2

maxOccurs: 1

default: 0

type: uinteger

definition: How DisplayWidth & DisplayHeight are interpreted.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pixels</td>
</tr>
<tr>
<td>1</td>
<td>centimeters</td>
</tr>
<tr>
<td>2</td>
<td>inches</td>
</tr>
<tr>
<td>3</td>
<td>display aspect ratio</td>
</tr>
<tr>
<td>4</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Table 19

9.4.1.36.15. AspectRatioType Element
name: AspectRatioType
path: "Segment\Tracks\TrackEntry\Video\AspectRatioType"
id: 0x54B3
maxOccurs: 1
default: 0
type: uinteger
definition: Specify the possible modifications to the aspect ratio.
restrictions:

+-----+---------------------+
<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>free resizing</td>
</tr>
</tbody>
</table>
+-------+----------------------+
| 1 | keep aspect ratio |
+-------+----------------------+
| 2 | fixed |
+-------+----------------------+

Table 20

9.4.1.36.16. ColourSpace Element

name: ColourSpace
path: "Segment\Tracks\TrackEntry\Video\ColourSpace"
id: 0x2EB524
minOccurs: see implementation notes
maxOccurs: 1
type: binary

definition: Specify the pixel format used for the Track's data as a FourCC. This value is similar in scope to the biCompression value of AVI's BITMAPINFOHEADER.

implementation notes:

+-----------+--+
<table>
<thead>
<tr>
<th>attribute</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>minOccurs</td>
<td>ColourSpace MUST be set (minOccurs=1) in</td>
</tr>
<tr>
<td></td>
<td>TrackEntry, when the CodecID Element of</td>
</tr>
<tr>
<td></td>
<td>the TrackEntry is set to "V_UNCOMPRESSED".</td>
</tr>
</tbody>
</table>
|------------|--+

Table 21

9.4.1.36.17. GammaValue Element

name: GammaValue

path: "\Segment\Tracks\TrackEntry\Video\GammaValue"

id: 0x2FB523

maxOccurs: 1

range: > 0x0p+0

type: float

minver: 0

maxver: 0

9.4.1.36.18. FrameRate Element
name: FrameRate
path: "\Segment\Tracks\TrackEntry\Video\FrameRate"
id: 0x2383E3
maxOccurs: 1
range: > 0x0p+0
type: float
minver: 0
maxver: 0
definition: Number of frames per second. This value is Informational only. It is intended for constant frame rate streams, and SHOULD NOT be used for a variable frame rate TrackEntry.

9.4.1.36.19. Colour Element

name: Colour
path: "\Segment\Tracks\TrackEntry\Video\Colour"
id: 0x55B0
maxOccurs: 1
type: master
minver: 4
maxver: 0
definition: Settings describing the colour format.

9.4.1.36.19.1. MatrixCoefficients Element

name: MatrixCoefficients
path: "\Segment\Tracks\TrackEntry\Video\Colour\MatrixCoefficients"
id: 0x55B1
maxOccurs: 1

default: 2

type: uinteger

minver: 4

definition: The Matrix Coefficients of the video used to derive luma and chroma values from red, green, and blue color primaries. For clarity, the value and meanings for MatrixCoefficients are adopted from Table 4 of ISO/IEC 23001-8:2016 or ITU-T H.273.

restrictions:
Table 22

9.4.1.36.19.2. BitsPerChannel Element

| name: BitsPerChannel |

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Identity</td>
</tr>
<tr>
<td>1</td>
<td>ITU-R BT.709</td>
</tr>
<tr>
<td>2</td>
<td>unspecified</td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
<tr>
<td>4</td>
<td>US FCC 73.682</td>
</tr>
<tr>
<td>5</td>
<td>ITU-R BT.470BG</td>
</tr>
<tr>
<td>6</td>
<td>SMPTE 170M</td>
</tr>
<tr>
<td>7</td>
<td>SMPTE 240M</td>
</tr>
<tr>
<td>8</td>
<td>YCoCg</td>
</tr>
<tr>
<td>9</td>
<td>BT2020 Non-constant Luminance</td>
</tr>
<tr>
<td>10</td>
<td>BT2020 Constant Luminance</td>
</tr>
<tr>
<td>11</td>
<td>SMPTE ST 2085</td>
</tr>
<tr>
<td>12</td>
<td>Chroma-derived Non-constant Luminance</td>
</tr>
<tr>
<td>13</td>
<td>Chroma-derived Constant Luminance</td>
</tr>
<tr>
<td>14</td>
<td>ITU-R BT.2100-0</td>
</tr>
</tbody>
</table>
path: "\Segment\Tracks\TrackEntry\Video\Colour\BitsPerChannel"

id: 0x55B2

maxOccurs: 1

default: 0

type: uinteger

minver: 4

definition: Number of decoded bits per channel. A value of 0 indicates that the BitsPerChannel is unspecified.

9.4.1.36.19.3. ChromaSubsamplingHorz Element

name: ChromaSubsamplingHorz

path: "\Segment\Tracks\TrackEntry\Video\Colour\ChromaSubsamplingHorz"

id: 0x55B3

maxOccurs: 1

type: uinteger

minver: 4

definition: The amount of pixels to remove in the Cr and Cb channels for every pixel not removed horizontally. Example: For video with 4:2:0 chroma subsampling, the ChromaSubsamplingHorz SHOULD be set to 1.

9.4.1.36.19.4. ChromaSubsamplingVert Element

name: ChromaSubsamplingVert

path: "\Segment\Tracks\TrackEntry\Video\Colour\ChromaSubsamplingVert"
id: 0x55B4
maxOccurs: 1
type: uinteger
minver: 4
definition: The amount of pixels to remove in the Cr and Cb channels for every pixel not removed vertically. Example: For video with 4:2:0 chroma subsampling, the ChromaSubsamplingVert SHOULD be set to 1.

9.4.1.36.19.5. CbSubsamplingHorz Element

name: CbSubsamplingHorz
path: "\Segment\Tracks\TrackEntry\Video\Colour\CbSubsamplingHorz"
id: 0x55B5
maxOccurs: 1
type: uinteger
minver: 4
definition: The amount of pixels to remove in the Cb channel for every pixel not removed horizontally. This is additive with ChromaSubsamplingHorz. Example: For video with 4:2:1 chroma subsampling, the ChromaSubsamplingHorz SHOULD be set to 1 and CbSubsamplingHorz SHOULD be set to 1.

9.4.1.36.19.6. CbSubsamplingVert Element

name: CbSubsamplingVert
path: "\Segment\Tracks\TrackEntry\Video\Colour\CbSubsamplingVert"
id: 0x55B6
maxOccurs: 1
type: uinteger
minver: 4
definition: The amount of pixels to remove in the Cb channel for
every pixel not removed vertically. This is additive with
ChromaSubsamplingVert.

9.4.1.36.19.7. ChromaSitingHorz Element

name: ChromaSitingHorz
path: "\Segment\Tracks\TrackEntry\Video\Colour\ChromaSitingHorz"
id: 0x55B7
maxOccurs: 1
default: 0
type: uinteger
minver: 4
definition: How chroma is subsampled horizontally.
restrictions:

+-----------------+------------------+
| value | label |
+-----------------+------------------+
| 0 | unspecified |
+-----------------+------------------+
| 1 | left collocated |
+-----------------+------------------+
| 2 | half |
+-----------------+------------------+
Table 23

9.4.1.36.19.8. ChromaSitingVert Element

- **name:** ChromaSitingVert
- **path:** "\Segment\Tracks\TrackEntry\Video\Colour\ChromaSitingVert"
- **id:** 0x55B8
- **maxOccurs:** 1
- **default:** 0
- **type:** uinteger
- **minver:** 4
- **definition:** How chroma is subsampled vertically.
- **restrictions:**

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unspecified</td>
</tr>
<tr>
<td>1</td>
<td>top collocated</td>
</tr>
<tr>
<td>2</td>
<td>half</td>
</tr>
</tbody>
</table>

Table 24
9.4.1.36.19.9. Range Element

name: Range
path: "Segment\Tracks\TrackEntry\Video\Colour\Range"
id: 0x55B9
maxOccurs: 1
default: 0
type: uinteger
minver: 4
definition: Clipping of the color ranges.

restrictions:

| value | label |
|-------+---|
0	unspecified
1	broadcast range
2	full range (no clipping)
3	defined by MatrixCoefficients / TransferCharacteristics

Table 25

9.4.1.36.19.10. TransferCharacteristics Element

name: TransferCharacteristics
path: "Segment\Tracks\TrackEntry\Video\Colour\TransferCharacteristics"
id: 0x55BA
maxOccurs: 1
default: 2
type: uinteger
minver: 4

definition: The transfer characteristics of the video. For clarity, the value and meanings for TransferCharacteristics are adopted from Table 3 of ISO/IEC 23091-4 or ITU-T H.273.

restrictions:
<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>reserved</td>
</tr>
<tr>
<td>1</td>
<td>ITU-R BT.709</td>
</tr>
<tr>
<td>2</td>
<td>unspecified</td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
<tr>
<td>4</td>
<td>Gamma 2.2 curve - BT.470M</td>
</tr>
<tr>
<td>5</td>
<td>Gamma 2.8 curve - BT.470BG</td>
</tr>
<tr>
<td>6</td>
<td>SMPTE 170M</td>
</tr>
<tr>
<td>7</td>
<td>SMPTE 240M</td>
</tr>
<tr>
<td>8</td>
<td>Linear</td>
</tr>
<tr>
<td>9</td>
<td>Log</td>
</tr>
<tr>
<td>10</td>
<td>Log Sqrt</td>
</tr>
<tr>
<td>11</td>
<td>IEC 61966-2-4</td>
</tr>
<tr>
<td>12</td>
<td>ITU-R BT.1361 Extended Colour Gamut</td>
</tr>
<tr>
<td>13</td>
<td>IEC 61966-2-1</td>
</tr>
<tr>
<td>14</td>
<td>ITU-R BT.2020 10 bit</td>
</tr>
<tr>
<td>15</td>
<td>ITU-R BT.2020 12 bit</td>
</tr>
<tr>
<td>16</td>
<td>ITU-R BT.2100 Perceptual Quantization</td>
</tr>
<tr>
<td>17</td>
<td>SMPTE ST 428-1</td>
</tr>
<tr>
<td>18</td>
<td>ARIB STD-B67 (HLG)</td>
</tr>
</tbody>
</table>

Table 26

9.4.1.36.19.11. Primaries Element

name: Primaries
path: "\Segment\Tracks\TrackEntry\Video\Colour\Primaries"

id: 0x55BB

maxOccurs: 1

default: 2

type: uinteger

minver: 4

definition: The colour primaries of the video. For clarity, the value and meanings for Primaries are adopted from Table 2 of ISO/IEC 23091-4 or ITU-T H.273.

restrictions:
<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>reserved</td>
</tr>
<tr>
<td>1</td>
<td>ITU-R BT.709</td>
</tr>
<tr>
<td>2</td>
<td>unspecified</td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
<tr>
<td>4</td>
<td>ITU-R BT.470M</td>
</tr>
<tr>
<td>5</td>
<td>ITU-R BT.470BG - BT.601 625</td>
</tr>
<tr>
<td>6</td>
<td>ITU-R BT.601 525 - SMPTE 170M</td>
</tr>
<tr>
<td>7</td>
<td>SMPTE 240M</td>
</tr>
<tr>
<td>8</td>
<td>FILM</td>
</tr>
<tr>
<td>9</td>
<td>ITU-R BT.2020</td>
</tr>
<tr>
<td>10</td>
<td>SMPTE ST 428-1</td>
</tr>
<tr>
<td>11</td>
<td>SMPTE RP 432-2</td>
</tr>
<tr>
<td>12</td>
<td>SMPTE EG 432-2</td>
</tr>
<tr>
<td>22</td>
<td>EBU Tech. 3213-E - JEDEC P22 phosphors</td>
</tr>
</tbody>
</table>

Table 27

9.4.1.36.19.12. MaxCLL Element
definition: Maximum brightness of a single pixel (Maximum Content Light Level) in candelas per square meter (cd/m²).

9.4.1.36.19.13. MaxFALL Element

name: MaxFALL
path: "\Segment\Tracks\TrackEntry\Video\Colour\MaxFALL"

id: 0x55BD
maxOccurs: 1
type: uinteger
minver: 4

definition: Maximum brightness of a single full frame (Maximum Frame-Average Light Level) in candelas per square meter (cd/m²).

9.4.1.36.19.14. MasteringMetadata Element

name: MasteringMetadata
path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata"

id: 0x55D0
maxOccurs: 1

type: master

minver: 4

definition: SMPTE 2086 mastering data.

9.4.1.36.19.15. PrimaryRChromaticityX Element

name: PrimaryRChromaticityX

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryRChromaticityX"

id: 0x55D1

maxOccurs: 1

range: 0-1

type: float

minver: 4

definition: Red X chromaticity coordinate, as defined by CIE 1931.

9.4.1.36.19.16. PrimaryRChromaticityY Element

name: PrimaryRChromaticityY

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryRChromaticityY"

id: 0x55D2

maxOccurs: 1

range: 0-1
9.4.1.36.19.17. PrimaryGChromaticityX Element

- **name:** PrimaryGChromaticityX
- **path:** "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryGChromaticityX"
- **id:** 0x55D3
- **maxOccurs:** 1
- **range:** 0-1
- **type:** float
- **minver:** 4
- **definition:** Green X chromaticity coordinate, as defined by CIE 1931.

9.4.1.36.19.18. PrimaryGChromaticityY Element

- **name:** PrimaryGChromaticityY
- **path:** "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryGChromaticityY"
- **id:** 0x55D4
- **maxOccurs:** 1
- **range:** 0-1
- **type:** float
- **minver:** 4
- **definition:** Red Y chromaticity coordinate, as defined by CIE 1931.
definition: Green Y chromaticity coordinate, as defined by CIE 1931.

9.4.1.36.19.19. PrimaryBChromaticityX Element

name: PrimaryBChromaticityX

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryBChromaticityX"

id: 0x55D5

maxOccurs: 1

range: 0-1

type: float

minver: 4

definition: Blue X chromaticity coordinate, as defined by CIE 1931.

9.4.1.36.19.20. PrimaryBChromaticityY Element

name: PrimaryBChromaticityY

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\PrimaryBChromaticityY"

id: 0x55D6

maxOccurs: 1

range: 0-1

type: float

minver: 4

definition: Blue Y chromaticity coordinate, as defined by CIE 1931.
9.4.1.36.19.21. WhitePointChromaticityX Element

name: WhitePointChromaticityX

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\WhitePointChromaticityX"

id: 0x55D7

maxOccurs: 1

range: 0-1

type: float

minver: 4

definition: White X chromaticity coordinate, as defined by CIE 1931.

9.4.1.36.19.22. WhitePointChromaticityY Element

name: WhitePointChromaticityY

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\WhitePointChromaticityY"

id: 0x55D8

maxOccurs: 1

range: 0-1

type: float

minver: 4

definition: White Y chromaticity coordinate, as defined by CIE 1931.
9.4.1.36.19.23. LuminanceMax Element

name: LuminanceMax

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\LuminanceMax"

id: 0x55D9

maxOccurs: 1

range: >= 0x0p+0

type: float

minver: 4

definition: Maximum luminance. Represented in candelas per square meter (cd/m^2).

9.4.1.36.19.24. LuminanceMin Element

name: LuminanceMin

path: "\Segment\Tracks\TrackEntry\Video\Colour\MasteringMetadata\LuminanceMin"

id: 0x55DA

maxOccurs: 1

range: >= 0x0p+0

type: float

minver: 4

definition: Minimum luminance. Represented in candelas per square meter (cd/m^2).

9.4.1.36.20. Projection Element

name: Projection

path: "\Segment\Tracks\TrackEntry\Video\Projection"

id: 0x7670
maxOccurs: 1

type: master

minver: 4

definition: Describes the video projection details. Used to render spherical and VR videos.

9.4.1.36.20.1. ProjectionType Element

name: ProjectionType

path: "\Segment\Tracks\TrackEntry\Video\Projection\ProjectionType"

id: 0x7671

minOccurs: 1

maxOccurs: 1

range: 0-3

default: 0

type: uinteger

minver: 4

definition: Describes the projection used for this video track.

restrictions:

+-----------+------------------+
| value | label |
+-----------+------------------+
| 0 | rectangular |
+-----------+------------------+
| 1 | equirectangular |
+-----------+------------------+
| 2 | cubemap |
+-----------+------------------+
| 3 | mesh |
+-----------+------------------+
9.4.1.36.20.2. ProjectionPrivate Element

name: ProjectionPrivate

path: "\Segment\Tracks\TrackEntry\Video\Projection\ProjectionPrivate"

id: 0x7672

maxOccurs: 1

type: binary

minver: 4

definition: Private data that only applies to a specific projection.

* If "ProjectionType" equals 0 (Rectangular), then this element must not be present.

* If "ProjectionType" equals 1 (Equirectangular), then this element must be present and contain the same binary data that would be stored inside an ISOBMFF Equirectangular Projection Box ('equi').

* If "ProjectionType" equals 2 (Cubemap), then this element must be present and contain the same binary data that would be stored inside an ISOBMFF Cubemap Projection Box ('cbmp').

* If "ProjectionType" equals 3 (Mesh), then this element must be present and contain the same binary data that would be stored inside an ISOBMFF Mesh Projection Box ('mshp').

usage notes: ISOBMFF box size and fourcc fields are not included in the binary data, but the FullBox version and flag fields are. This is to avoid redundant framing information while preserving versioning and semantics between the two container formats.
9.4.1.36.20.3. ProjectionPoseYaw Element

name: ProjectionPoseYaw

path: "\Segment\Tracks\TrackEntry\Video\Projection\ProjectionPoseYaw"

id: 0x7673

minOccurs: 1

maxOccurs: 1

default: 0x0p+0

type: float

minver: 4

definition: Specifies a yaw rotation to the projection. Value represents a clockwise rotation, in degrees, around the up vector. This rotation must be applied before any "ProjectionPosePitch" or "ProjectionPoseRoll" rotations. The value of this field should be in the -180 to 180 degree range.

9.4.1.36.20.4. ProjectionPosePitch Element

name: ProjectionPosePitch

path: "\Segment\Tracks\TrackEntry\Video\Projection\ProjectionPosePitch"

id: 0x7674

minOccurs: 1

maxOccurs: 1

default: 0x0p+0
type: float

minver: 4

definition: Specifies a pitch rotation to the projection.

Value represents a counter-clockwise rotation, in degrees, around the right vector. This rotation must be applied after the "ProjectionPoseYaw" rotation and before the "ProjectionPoseRoll" rotation. The value of this field should be in the -90 to 90 degree range.

9.4.1.36.20.5. ProjectionPoseRoll Element

name: ProjectionPoseRoll

path: "\Segment\Tracks\TrackEntry\Video\Projection\ProjectionPoseRoll"

9.4.1.37. Audio Element

name: Audio
path: "\Segment\Tracks\TrackEntry\Audio"

id: 0xE1

maxOccurs: 1

type: master

definition: Audio settings.

9.4.1.37.1. SamplingFrequency Element

name: SamplingFrequency

path: "\Segment\Tracks\TrackEntry\Audio\SamplingFrequency"

id: 0xB5

minOccurs: 1

maxOccurs: 1

range: > 0x0p+0

default: 0x1.f4p+12

type: float

definition: Sampling frequency in Hz.

9.4.1.37.2. OutputSamplingFrequency Element

name: OutputSamplingFrequency

path: "\Segment\Tracks\TrackEntry\Audio\OutputSamplingFrequency"

id: 0x78B5

maxOccurs: 1

range: > 0x0p+0
default: see implementation notes

type: float

definition: Real output sampling frequency in Hz (used for SBR techniques).

implementation notes:

<table>
<thead>
<tr>
<th>attribute</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>The default value for OutputSamplingFrequency of the same TrackEntry is equal to the SamplingFrequency.</td>
</tr>
</tbody>
</table>

Table 29

9.4.1.37.3. Channels Element

name: Channels

path: "\Segment\Tracks\TrackEntry\Audio\Channels"

id: 0x9F

minOccurs: 1

maxOccurs: 1

range: not 0

9.4.1.37.4. ChannelPositions Element
name: ChannelPositions
path: "\Segment\Tracks\TrackEntry\Audio\ChannelPositions"
id: 0x7D7B
maxOccurs: 1
type: binary
minver: 0
maxver: 0
definition: Table of horizontal angles for each successive channel.

9.4.1.37.5. BitDepth Element

name: BitDepth
path: "\Segment\Tracks\TrackEntry\Audio\BitDepth"
id: 0x6264
maxOccurs: 1
range: not 0
type: uinteger
definition: Bits per sample, mostly used for PCM.

9.4.1.38. TrackOperation Element

name: TrackOperation
path: "\Segment\Tracks\TrackEntry\TrackOperation"
id: 0xE2
maxOccurs: 1
9.4.1.38.1. TrackCombinePlanes Element

name: TrackCombinePlanes

path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes"

id: 0xE3

maxOccurs: 1

type: master

minver: 3

definition: Contains the list of all video plane tracks that need to be combined to create this 3D track

9.4.1.38.1.1. TrackPlane Element

name: TrackPlane

path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\TrackPlane"

id: 0xE4

minOccurs: 1

type: master

minver: 3

definition: Contains a video plane track that need to be combined to create this 3D track

9.4.1.38.1.2. TrackPlaneUID Element

name: TrackPlaneUID
path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\TrackPlane\TrackPlaneUID"

id: 0xE5

minOccurs: 1

maxOccurs: 1

range: not 0

type: integer

minver: 3

definition: The trackUID number of the track representing the plane.

9.4.1.38.1.3. TrackPlaneType Element

ame: TrackPlaneType

path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackCombinePlanes\TrackPlane\TrackPlaneType"

id: 0xE6

minOccurs: 1

maxOccurs: 1

type: integer

minver: 3

definition: The kind of plane this track corresponds to.

restrictions:
+================+============+
| value | label |
+-------+----------+
| 0 | left eye |
+-------+----------+
| 1 | right eye|
+-------+----------+
| 2 | background|
+----------------+

Table 30

9.4.1.38.2. TrackJoinBlocks Element

name: TrackJoinBlocks

path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackJoinBlocks"

id: 0xE9

maxOccurs: 1

type: master

minver: 3

definition: Contains the list of all tracks whose Blocks need to be combined to create this virtual track

9.4.1.38.2.1. TrackJoinUID Element

name: TrackJoinUID

path: "\Segment\Tracks\TrackEntry\TrackOperation\TrackJoinBlocks\TrackJoinUID"

id: 0xED

minOccurs: 1
range: not 0

type: uinteger

minver: 3

definition: The trackUID number of a track whose blocks are used to create this virtual track.

9.4.1.39. TrickTrackUID Element

name: TrickTrackUID

path: "\Segment\Tracks\TrackEntry\TrickTrackUID"

id: 0xC0

maxOccurs: 1

type: uinteger

minver: 0

maxver: 0

definition: The TrackUID of the Smooth FF/RW video in the paired EBML structure corresponding to this video track. See [DivXTrickTrack].

9.4.1.40. TrickTrackSegmentUID Element

name: TrickTrackSegmentUID

path: "\Segment\Tracks\TrackEntry\TrickTrackSegmentUID"

id: 0xC1

maxOccurs: 1

type: binary
9.4.1.41. TrickTrackFlag Element

name: TrickTrackFlag

path: "\Segment\Tracks\TrackEntry\TrickTrackFlag"

id: 0xC6

maxOccurs: 1

9.4.1.42. TrickMasterTrackUID Element

name: TrickMasterTrackUID

path: "\Segment\Tracks\TrackEntry\TrickMasterTrackUID"

id: 0xC7

maxOccurs: 1
9.4.1.43. TrickMasterTrackSegmentUID Element

name: TrickMasterTrackSegmentUID

path: "\Segment\Tracks\TrackEntry\TrickMasterTrackSegmentUID"

id: 0xC4

maxOccurs: 1

type: binary

minver: 0

maxver: 0

definition: The SegmentUID of the Segment containing the track identified by MasterTrackUID. See [DivXTrickTrack].

9.4.1.44. ContentEncodings Element

name: ContentEncodings

path: "\Segment\Tracks\TrackEntry\ContentEncodings"

id: 0x6D80

maxOccurs: 1

type: master

definition: Settings for several content encoding mechanisms like
9.4.1.44.1. ContentEncoding Element

name: ContentEncoding

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding"

id: 0x6240

minOccurs: 1

type: master

definition: Settings for one content encoding like compression or encryption.

9.4.1.44.1.1. ContentEncodingOrder Element

name: ContentEncodingOrder

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncodingOrder"

id: 0x5031

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger

definition: Tells when this modification was used during encoding/muxing starting with 0 and counting upwards. The decoder/demuxer has to start with the highest order number it finds and work its way down. This value has to be unique over all ContentEncodingOrder Elements in the TrackEntry that contains this ContentEncodingOrder element.
9.4.1.44.1.2. ContentEncodingScope Element

name: ContentEncodingScope

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncodingScope"

id: 0x5032

minOccurs: 1

maxOccurs: 1

range: not 0

default: 1

type: uinteger

definition: A bit field that describes which Elements have been modified in this way. Values (big-endian) can be OR'ed.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All frame contents, excluding lacing data</td>
</tr>
<tr>
<td>2</td>
<td>The track's private data</td>
</tr>
<tr>
<td>4</td>
<td>The next ContentEncoding (next "ContentEncodingOrder". Either the data inside "ContentCompression" and/or "ContentEncryption")</td>
</tr>
</tbody>
</table>

Table 31

9.4.1.44.1.3. ContentEncodingType Element

name: ContentEncodingType
path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncodingType"

id: 0x5033

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger

definition: A value describing what kind of transformation is applied.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Compression</td>
</tr>
<tr>
<td>1</td>
<td>Encryption</td>
</tr>
</tbody>
</table>

Table 32

9.4.1.44.1.4. ContentCompression Element

name: ContentCompression

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentCompression"

id: 0x5034

maxOccurs: 1

type: master

definition: Settings describing the compression used. This Element
MUST be present if the value of ContentEncodingType is 0 and absent otherwise. Each block MUST be decompressable even if no previous block is available in order not to prevent seeking.

9.4.1.44.1.5. ContentCompAlgo Element

name: ContentCompAlgo

path: "$Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentCompression\ContentCompAlgo"

id: 0x4254

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger

definition: The compression algorithm used.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>zlib</td>
</tr>
<tr>
<td>1</td>
<td>bzlib</td>
</tr>
<tr>
<td>2</td>
<td>lzo1x</td>
</tr>
<tr>
<td>3</td>
<td>Header Stripping</td>
</tr>
</tbody>
</table>

Table 33

9.4.1.44.1.6. ContentCompSettings Element

name: ContentCompSettings

path: "$Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentCompression\ContentCompSettings"

id: 0x4255
maxOccurs: 1

type: binary

definition: Settings that might be needed by the decompressor. For Header Stripping ("ContentCompAlgo"=3), the bytes that were removed from the beginning of each frames of the track.

9.4.1.44.1.7. ContentEncryption Element

name: ContentEncryption

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption"

id: 0x5035

maxOccurs: 1

type: master

definition: Settings describing the encryption used. This Element MUST be present if the value of "ContentEncodingType" is 1 (encryption) and MUST be ignored otherwise.

9.4.1.44.1.8. ContentEncAlgo Element

name: ContentEncAlgo

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentEncAlgo"

id: 0x47E1

minOccurs: 1

maxOccurs: 1

default: 0
type: uinteger

definition: The encryption algorithm used. The value "0" means that the contents have not been encrypted but only signed.

restrictions:

| value | label |
+-------+-----------------------|
0	Not encrypted
1	DES - FIPS 46-3
2	Triple DES - RFC_1851
3	Twofish
4	Blowfish
5	AES - FIPS 187

Table 34

9.4.1.44.1.9. ContentEncKeyID Element

name: ContentEncKeyID

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentEncKeyID"

id: 0x47E2

maxOccurs: 1

type: binary

definition: For public key algorithms this is the ID of the public key the data was encrypted with.
9.4.1.44.1.10. ContentEncAESSettings Element

name: ContentEncAESSettings

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentEncAESSettings"

id: 0x47E7

maxOccurs: 1

type: master

minver: 4

definition: Settings describing the encryption algorithm used. If "ContentEncAlgo" != 5 this MUST be ignored.

9.4.1.44.1.11. AESSettingsCipherMode Element

name: AESSettingsCipherMode

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentEncAESSettings\AESSettingsCipherMode"

id: 0x47E8

minOccurs: 1

maxOccurs: 1

type: uinteger

minver: 4

definition: The AES cipher mode used in the encryption.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
</table>

Table 35

9.4.1.44.1.12. ContentSignature Element

name: ContentSignature

path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentSignature

id: 0x47E3

maxOccurs: 1

type: binary

definition: A cryptographic signature of the contents.

9.4.1.44.1.13. ContentSigKeyID Element

name: ContentSigKeyID

path: \Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentSigKeyID

id: 0x47E4

maxOccurs: 1

type: binary

definition: This is the ID of the private key the data was signed with.

9.4.1.44.1.14. ContentSigAlgo Element

name: ContentSigAlgo
ContentSigAlgo Element

name: ContentSigAlgo

definition: The algorithm used for the signature.

restrictions:

+-------+------------+
| value | label |
+-------+------------+
| 0 | Not signed |
+-------+------------+
| 1 | RSA |
+-------+------------+

Table 36

ContentSigHashAlgo Element

name: ContentSigHashAlgo

path: "\Segment\Tracks\TrackEntry\ContentEncodings\ContentEncoding\ContentEncryption\ContentSigHashAlgo"

id: 0x47E6

maxOccurs: 1

default: 0

type: uinteger

9.4.1.44.1.15. ContentSigHashAlgo Element
type: uinteger

definition: The hash algorithm used for the signature.

restrictions:

+---------+----------+
| value | label |
+---------+----------+
| 0 | Not signed |
+---------+----------+
| 1 | SHA1-160 |
+---------+----------+
| 2 | MD5 |
+---------+----------+

Table 37

9.5. Cues Element

name: Cues

path: "\Segment\Cues"

id: 0x1C53BB6B

minOccurs: see implementation notes

maxOccurs: 1

type: master

definition: A Top-Level Element to speed seeking access. All entries are local to the Segment.
9.5.1. CuePoint Element

name: CuePoint
path: "\Segment\Cues\CuePoint"
id: 0xBB
minOccurs: 1
type: master
definition: Contains all information relative to a seek point in the Segment.

9.5.1.1. CueTime Element

name: CueTime
path: "\Segment\Cues\CuePoint\CueTime"
id: 0xB3
minOccurs: 1
maxOccurs: 1
type: uinteger
definition: Absolute timestamp according to the Segment time base.

9.5.1.2. CueTrackPositions Element

name: CueTrackPositions
path: "\Segment\Cues\CuePoint\CueTrackPositions"
id: 0xB7

minOccurs: 1

type: master

definition: Contain positions for different tracks corresponding to the timestamp.

9.5.1.2.1. CueTrack Element

name: CueTrack

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueTrack"

id: 0xF7

minOccurs: 1

maxOccurs: 1

range: not 0

type: uinteger

definition: The track for which a position is given.

9.5.1.2.2. CueClusterPosition Element

name: CueClusterPosition

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueClusterPosition"

id: 0xF1

minOccurs: 1

maxOccurs: 1

type: uinteger

definition: The Segment Position of the Cluster containing the associated Block.

9.5.1.2.3. CueRelativePosition Element

name: CueRelativePosition
path: "\Segment\Cues\CuePoint\CueTrackPositions\CueRelativePosition"

id: 0xF0

maxOccurs: 1

type: uinteger

minver: 4

definition: The relative position inside the Cluster of the referenced SimpleBlock or BlockGroup with 0 being the first possible position for an Element inside that Cluster.

9.5.1.2.4. CueDuration Element

name: CueDuration

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueDuration"

id: 0xB2

maxOccurs: 1

type: uinteger

minver: 4

definition: The duration of the block according to the Segment time base. If missing the track's DefaultDuration does not apply and no duration information is available in terms of the cues.

9.5.1.2.5. CueBlockNumber Element

name: CueBlockNumber

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueBlockNumber"

id: 0x5378

maxOccurs: 1
range: not 0

default: 1

type: uinteger

definition: Number of the Block in the specified Cluster.

9.5.1.2.6. CueCodecState Element

name: CueCodecState

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueCodecState"

id: 0xEA

maxOccurs: 1

default: 0

type: uinteger

minver: 2

definition: The Segment Position of the Codec State corresponding to this Cue Element. 0 means that the data is taken from the initial Track Entry.

9.5.1.2.7. CueReference Element

name: CueReference

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueReference"

id: 0xDB

type: master

minver: 2

definition: The Clusters containing the referenced Blocks.
9.5.1.2.7.1. CueRefTime Element

name: CueRefTime

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefTime"

id: 0x96

minOccurs: 1

maxOccurs: 1

type: uinteger

minver: 2

definition: Timestamp of the referenced Block.

9.5.1.2.7.2. CueRefCluster Element

name: CueRefCluster

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefCluster"

id: 0x97

minOccurs: 1

maxOccurs: 1

type: uinteger

minver: 0

maxver: 0

definition: The Segment Position of the Cluster containing the referenced Block.
9.5.1.2.7.3. CueRefNumber Element

name: CueRefNumber

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefNumber"

id: 0x535F

maxOccurs: 1

range: not 0

default: 1

type: uinteger

minver: 0

maxver: 0

definition: Number of the referenced Block of Track X in the specified Cluster.

9.5.1.2.7.4. CueRefCodecState Element

name: CueRefCodecState

path: "\Segment\Cues\CuePoint\CueTrackPositions\CueReference\CueRefCodecState"

id: 0xEB

maxOccurs: 1

default: 0

type: uinteger

minver: 0

maxver: 0
definition: The Segment Position of the Codec State corresponding to this referenced Element. 0 means that the data is taken from the initial Track Entry.

9.6. Attachments Element

name: Attachments

path: \Segment\Attachments

id: 0x1941A469

maxOccurs: 1

type: master

definition: Contain attached files.

9.6.1. AttachedFile Element

name: AttachedFile

path: \Segment\Attachments\AttachedFile

id: 0x61A7

minOccurs: 1

type: master

definition: An attached file.

9.6.1.1. FileDescription Element

name: FileDescription

path: \Segment\Attachments\AttachedFile\FileDescription

id: 0x467E
maxOccurs: 1
type: utf-8

9.6.1.2. FileName Element

name: FileName
path: "\Segment\Attachments\AttachedFile\FileName"
id: 0x466E
minOccurs: 1
maxOccurs: 1
type: utf-8
definition: Filename of the attached file.

9.6.1.3. FileMimeType Element

name: FileMimeType
path: "\Segment\Attachments\AttachedFile\FileMimeType"
id: 0x4660
minOccurs: 1
maxOccurs: 1
type: string
definition: MIME type of the file.

9.6.1.4. FileData Element

name: FileData
9.6.1.5. FileUID Element

name: FileUID

path: "\Segment\Attachments\AttachedFile\FileUID"

id: 0x46AE

minOccurs: 1

maxOccurs: 1

range: not 0

type: uinteger

definition: Unique ID representing the file, as random as possible.

9.6.1.6. FileReferral Element

name: FileReferral

path: "\Segment\Attachments\AttachedFile\FileReferral"

id: 0x4675

maxOccurs: 1
type: binary
minver: 0
maxver: 0

definition: A binary value that a track/codec can refer to when the attachment is needed.

9.6.1.7. FileUsedStartTime Element

name: FileUsedStartTime
path: "\Segment\Attachments\AttachedFile\FileUsedStartTime"
id: 0x4661
maxOccurs: 1
type: uinteger
minver: 0
maxver: 0

definition: The timecode at which this optimized font attachment comes into context, based on the Segment TimecodeScale. This element is reserved for future use and if written must be the segment start time. See [DivXWorldFonts].

9.6.1.8. FileUsedEndTime Element

name: FileUsedEndTime
path: "\Segment\Attachments\AttachedFile\FileUsedEndTime"
id: 0x4662
maxOccurs: 1
type: uinteger
minver: 0
maxver: 0

definition: The timecode at which this optimized font attachment
goes out of context, based on the Segment TimecodeScale. This element is reserved for future use and if written must be the segment end time. See [DivXWorldFonts].

9.7. Chapters Element

name: Chapters
path: "\Segment\Chapters"

id: 0x1043A770
maxOccurs: 1

type: master
recurring: 1

definition: A system to define basic menus and partition data. For more detailed information, look at the Chapters explanation in Section 11.

9.7.1. EditionEntry Element

name: EditionEntry
path: "\Segment\Chapters\EditionEntry"

id: 0x45B9
minOccurs: 1

recurring: 1

definition: Contains all information about a Segment edition.

9.7.1.1. EditionUID Element

name: EditionUID
path: "\Segment\Chapters\EditionEntry\EditionUID"

id: 0x45BC
maxOccurs: 1
range: not 0

type: uinteger

9.7.1.2. EditionFlagDefault Element

name: EditionFlagDefault

path: "\Segment\Chapters\EditionEntry\EditionFlagDefault"

id: 0x45DB

minOccurs: 1

maxOccurs: 1

range: 0-1

default: 0

type: uinteger

definition: Set to 1 if the edition SHOULD be used as the default one.

9.7.1.3. EditionFlagOrdered Element

name: EditionFlagOrdered

path: "\Segment\Chapters\EditionEntry\EditionFlagOrdered"

id: 0x45DD

maxOccurs: 1
range: 0-1
default: 0
type: uinteger
definition: Specify if the chapters can be defined multiple times and the order to play them is enforced.

9.7.1.4. ChapterAtom Element

name: ChapterAtom
path: "\Segment\Chapters\EditionEntry\+ChapterAtom"

id: 0xB6
minOccurs: 1
type: master
recursive: 1
definition: Contains the atom information to use as the chapter atom (apply to all tracks).

9.7.1.4.1. ChapterUID Element

name: ChapterUID
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterUID"

id: 0x73C4
minOccurs: 1
maxOccurs: 1
range: not 0
type: uinteger
definition: A unique ID to identify the Chapter.

9.7.1.4.2. ChapterStringUID Element

name: ChapterStringUID
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterStringUID"

id: 0x5654
maxOccurs: 1
type: utf-8
minver: 3

definition: A unique string ID to identify the Chapter. Use for WebVTT cue identifier storage [WebVTT].

9.7.1.4.3. ChapterTimeStart Element

name: ChapterTimeStart
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTimeStart"

id: 0x91
minOccurs: 1
maxOccurs: 1
type: uinteger
definition: Timestamp of the start of Chapter (not scaled).

9.7.1.4.4. ChapterTimeEnd Element

name: ChapterTimeEnd
path: "Segment\Chapters\EditionEntry\+ChapterAtom\ChapterTimeEnd"

id: 0x92

maxOccurs: 1

type: uinteger

definition: Timestamp of the end of Chapter (timestamp excluded, not scaled). The value MUST be strictly greater than the "ChapterTimeStart" of the same "ChapterAtom".

9.7.1.4.5. ChapterFlagHidden Element

name: ChapterFlagHidden

path: "Segment\Chapters\EditionEntry\+ChapterAtom\ChapterFlagHidden"

id: 0x98

minOccurs: 1

maxOccurs: 1

range: 0-1
default: 0
type: uinteger

definition: Set to 1 if a chapter is hidden. Hidden chapters it SHOULD NOT be available to the user interface (but still to Control Tracks; see Section 11.2.3 on Chapter flags).

9.7.1.4.6. ChapterSegmentUID Element

name: ChapterSegmentUID

path: "Segment\Chapters\EditionEntry\+ChapterAtom\ChapterSegmentUID"
id: 0x6E67

minOccurs: see implementation notes

maxOccurs: 1

range: >0

type: binary

definition: The SegmentUID of another Segment to play during this chapter.

implementation notes:

+===========+===
| attribute | note |
+===========+===
| minOccurs | ChapterSegmentUID MUST be set (minOccurs=1) if ChapterSegmentEditionUID is used. |

Table 39

9.7.1.4.7. ChapterSegmentEditionUID Element

name: ChapterSegmentEditionUID

path: "Segment\Chapters\EditionEntry\+ChapterAtom\ChapterSegmentEditionUID"

definition: The EditionUID to play from the Segment linked in ChapterSegmentUID. If ChapterSegmentEditionUID is undeclared, then no Edition of the linked Segment is used.

9.7.1.4.8. ChapterPhysicalEquiv Element

name: ChapterPhysicalEquiv
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterPhysicalEquiv"

id: 0x63C3

maxOccurs: 1

type: uinteger

definition: Specify the physical equivalent of this ChapterAtom like "DVD" (60) or "SIDE" (50); see Section 6.2.2 for a complete list of values.

9.7.1.4.9. ChapterDisplay Element

name: ChapterDisplay
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay"

id: 0x80

type: master

definition: Contains all possible strings to use for the chapter display.

9.7.1.4.9.1. ChapString Element

name: ChapString

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\ChapterString"
minOccurs: 1
maxOccurs: 1
type: utf-8
definition: Contains the string to use as the chapter atom.

9.7.1.4.9.2. ChapLanguage Element

name: ChapLanguage
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\ChapLanguage"
id: 0x437C
minOccurs: 1
default: eng
type: string
definition: The languages corresponding to the string, in the bibliographic ISO-639-2 form [ISO639-2]. This Element MUST be ignored if the ChapLanguageIETF Element is used within the same ChapterDisplay Element.

9.7.1.4.9.3. ChapLanguageIETF Element

name: ChapLanguageIETF
path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\ChapLanguageIETF"
id: 0x437D
type: string
minver: 4
definition: Specifies the language used in the ChapString according to [BCP47] and using the IANA Language Subtag Registry [IANALangRegistry]. If this Element is used, then any ChapLanguage Elements used in the same ChapterDisplay MUST be ignored.
9.7.1.4.9.4. ChapCountry Element

name: ChapCountry

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapterDisplay\ChapCountry"

id: 0x437E

type: string

definition: The countries corresponding to the string, same 2 octets country-codes as in Internet domains [IANADomains] based on [ISO3166-1] alpha-2 codes. This Element MUST be ignored if the ChapLanguageIETF Element is used within the same ChapterDisplay Element.

9.7.1.4.10. ChapProcess Element

name: ChapProcess

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess"

id: 0x6944

type: master

definition: Contains all the commands associated to the Atom.

9.7.1.4.10.1. ChapProcessCodecID Element

name: ChapProcessCodecID

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapProcessCodecID"

id: 0x6955

minOccurs: 1

maxOccurs: 1

default: 0

type: uinteger
definition: Contains the type of the codec used for the processing.

A value of 0 means native Matroska processing (to be defined), a value of 1 means the DVD command set is used; see Section 11.3 on DVD menus. More codec IDs can be added later.

9.7.1.4.10.2. ChapProcessPrivate Element

name: ChapProcessPrivate

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapProcessPrivate"

id: 0x450D

maxOccurs: 1

type: binary

definition: Some optional data attached to the ChapProcessCodecID information. For ChapProcessCodecID = 1, it is the "DVD level" equivalent; see Section 11.3 on DVD menus.

9.7.1.4.10.3. ChapProcessCommand Element

name: ChapProcessCommand

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapProcessCommand"

id: 0x6911

type: master

definition: Contains all the commands associated to the Atom.

9.7.1.4.10.4. ChapProcessTime Element

name: ChapProcessTime

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapProcessChap
processCommand\ChapProcessTime"

id: 0x6922
minOccurs: 1
maxOccurs: 1
type: uinteger

definition: Defines when the process command SHOULD be handled

table:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>during the whole chapter</td>
</tr>
<tr>
<td>1</td>
<td>before starting playback</td>
</tr>
<tr>
<td>2</td>
<td>after playback of the chapter</td>
</tr>
</tbody>
</table>

Table 40

9.7.1.4.10.5. ChapProcessData Element

name: ChapProcessData

path: "\Segment\Chapters\EditionEntry\+ChapterAtom\ChapProcess\ChapPro
cessCommand\ChapProcessData"

id: 0x6933
minOccurs: 1
maxOccurs: 1
type: binary

definition: Contains the command information. The data SHOULD be
interpreted depending on the ChapProcessCodecID value. For ChapProcessCodecID = 1, the data correspond to the binary DVD cell pre/post commands; see Section 11.3 on DVD menus.

9.8. Tags Element

name: Tags
path: "\Segment\Tags"
id: 0x1254C367
type: master
definition: Element containing metadata describing Tracks, Editions, Chapters, Attachments, or the Segment as a whole. A list of valid tags can be found in [I-D.ietf-cellar-tags].

9.8.1. Tag Element

name: Tag
path: "\Segment\Tags\Tag"
id: 0x7373
minOccurs: 1
type: master
definition: A single metadata descriptor.

9.8.1.1. Targets Element

name: Targets
path: "\Segment\Tags\Tag\Targets"
id: 0x63C0
minOccurs: 1

maxOccurs: 1

type: master

definition: Specifies which other elements the metadata represented by the Tag applies to. If empty or not present, then the Tag describes everything in the Segment.

9.8.1.1.1. TargetTypeValue Element

name: TargetTypeValue

path: \\Segment\\Tags\\Tag\\Targets\\TargetTypeValue

id: 0x68CA

maxOccurs: 1

default: 50

type: uinteger

definition: A number to indicate the logical level of the target.

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
<th>documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>COLLECTION</td>
<td>The highest hierarchical level that tags can describe.</td>
</tr>
<tr>
<td>60</td>
<td>EDITION / ISSUE / VOLUME / OPUS / SEASON / SEQUEL</td>
<td>A list of lower levels grouped together.</td>
</tr>
<tr>
<td>50</td>
<td>ALBUM / OPERA / CONCERT / MOVIE / EPISODE / CONCERT</td>
<td>The most common grouping level of music and video (equals to an episode for TV series).</td>
</tr>
</tbody>
</table>
Table 41

9.8.1.1.2. TargetType Element

name: TargetType

path: "\Segment\Tags\Tag\Targets\TargetType"

id: 0x63CA

maxOccurs: 1

type: string

definition: An informational string that can be used to display the logical level of the target like "ALBUM", "TRACK", "MOVIE", "CHAPTER", etc; see Section 6.4 of [I-D.ietf-cellar-tags].

restrictions:

<table>
<thead>
<tr>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLECTION</td>
<td>COLLECTION</td>
</tr>
<tr>
<td>EDITION</td>
<td>EDITION</td>
</tr>
<tr>
<td>ISSUE</td>
<td>ISSUE</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>VOLUME</td>
<td>VOLUME</td>
</tr>
<tr>
<td>OPUS</td>
<td>OPUS</td>
</tr>
<tr>
<td>SEASON</td>
<td>SEASON</td>
</tr>
<tr>
<td>SEQUEL</td>
<td>SEQUEL</td>
</tr>
<tr>
<td>ALBUM</td>
<td>ALBUM</td>
</tr>
<tr>
<td>OPERA</td>
<td>OPERA</td>
</tr>
<tr>
<td>CONCERT</td>
<td>CONCERT</td>
</tr>
<tr>
<td>MOVIE</td>
<td>MOVIE</td>
</tr>
<tr>
<td>EPISODE</td>
<td>EPISODE</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>SESSION</td>
<td>SESSION</td>
</tr>
<tr>
<td>TRACK</td>
<td>TRACK</td>
</tr>
<tr>
<td>SONG</td>
<td>SONG</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>CHAPTER</td>
</tr>
<tr>
<td>SUBTRACK</td>
<td>SUBTRACK</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>MOVEMENT</td>
<td>MOVEMENT</td>
</tr>
<tr>
<td>SCENE</td>
<td>SCENE</td>
</tr>
<tr>
<td>SHOT</td>
<td>SHOT</td>
</tr>
</tbody>
</table>
Table 42

9.8.1.1.3. TagTrackUID Element

- **name:** TagTrackUID
- **path:** "\Segment\Tags\Tag\Targets\TagTrackUID"
- **id:** 0x63C5
- **default:** 0
- **type:** uinteger

definition: A unique ID to identify the Track(s) the tags belong to. If the value is 0 at this level, the tags apply to all tracks in the Segment.

9.8.1.1.4. TagEditionUID Element

- **name:** TagEditionUID
- **path:** "\Segment\Tags\Tag\Targets\TagEditionUID"
- **id:** 0x63C9
- **default:** 0
- **type:** uinteger

definition: A unique ID to identify the EditionEntry(s) the tags belong to. If the value is 0 at this level, the tags apply to all editions in the Segment.

9.8.1.1.5. TagChapterUID Element

- **name:** TagChapterUID
- **path:** "\Segment\Tags\Tag\Targets\TagChapterUID"
- **id:** 0x63C4
- **default:** 0
type: uinteger

definition: A unique ID to identify the Chapter(s) the tags belong to. If the value is 0 at this level, the tags apply to all chapters in the Segment.

9.8.1.1.6. TagAttachmentUID Element

name: TagAttachmentUID

path: "\Segment\Tags\Tag\Targets\TagAttachmentUID"

id: 0x63C6

default: 0

type: uinteger

definition: A unique ID to identify the Attachment(s) the tags belong to. If the value is 0 at this level, the tags apply to all the attachments in the Segment.

9.8.1.2. SimpleTag Element

name: SimpleTag

path: "\Segment\Tags\Tag\+SimpleTag"

id: 0x67C8

minOccurs: 1

type: master

recursive: 1

definition: Contains general information about the target.

9.8.1.2.1. TagName Element

name: TagName

path: "\Segment\Tags\Tag\+SimpleTag\TagName"

id: 0x45A3

minOccurs: 1
maxOccurs: 1

type: utf-8

definition: The name of the Tag that is going to be stored.

9.8.1.2.2. TagLanguage Element

name: TagLanguage

path: "\Segment\Tags\Tag\+SimpleTag\TagLanguage"

id: 0x447A

minOccurs: 1

maxOccurs: 1

default: und

type: string

definition: Specifies the language of the tag specified, in the Matroska languages form; see Section 6.2.1 on language codes. This Element MUST be ignored if the TagLanguageIETF Element is used within the same SimpleTag Element.

9.8.1.2.3. TagLanguageIETF Element

name: TagLanguageIETF

path: "\Segment\Tags\Tag\+SimpleTag\TagLanguageIETF"

id: 0x447B

maxOccurs: 1

type: string

minver: 4
definition: Specifies the language used in the TagString according to [BCP47] and using the IANA Language Subtag Registry [IANALangRegistry]. If this Element is used, then any TagLanguage Elements used in the same SimpleTag MUST be ignored.

9.8.1.2.4. TagDefault Element

name: TagDefault
path: "\Segment\Tags\Tag\+SimpleTag\TagDefault"
id: 0x4484
minOccurs: 1
maxOccurs: 1
range: 0-1
default: 1
type: uinteger
definition: A boolean value to indicate if this is the default/original language to use for the given tag.

9.8.1.2.5. TagString Element

name: TagString
path: "\Segment\Tags\Tag\+SimpleTag\TagString"
id: 0x4487
maxOccurs: 1
type: utf-8
definition: The value of the Tag.

9.8.1.2.6. TagBinary Element

- **name**: TagBinary
- **path**: "\Segment\Tags\Tag\+SimpleTag\TagBinary"
- **id**: 0x4485
- **maxOccurs**: 1
- **type**: binary

definition: The values of the Tag, if it is binary. Note that this cannot be used in the same SimpleTag as TagString.

10. Matroska Element Ordering

Except for the "EBML Header" and the "CRC-32 Element", the EBML specification does not require any particular storage order for "Elements". The Matroska specification however defines mandates and recommendations for ordering certain "Elements" in order to facilitate better playback, seeking, and editing efficiency. This section describes and offers rationale for ordering requirements and recommendations for Matroska.

10.1. Top-Level Elements

The "Info Element" is the only REQUIRED "Top-Level Element" in a Matroska file. To be playable, Matroska MUST also contain at least one "Tracks Element" and "Cluster Element". The first "Info Element" and the first "Tracks Element" MUST either be stored before the first "Cluster Element" or both SHALL be referenced by a "SeekHead Element" occurring before the first "Cluster Element".

It is possible to edit a Matroska file after it has been created. For example, chapters, tags, or attachments can be added. When new "Top-Level Elements" are added to a Matroska file, the "SeekHead" Element(s) MUST be updated so that the "SeekHead" Element(s) itemize the identity and position of all "Top-Level Elements". Editing,
removing, or adding "Elements" to a Matroska file often requires that some existing "Elements" be voided or extended; therefore, it is RECOMMENDED to use "Void Elements" as padding in between "Top-Level Elements".

10.2. CRC-32

As noted by the EBML specification, if a "CRC-32 Element" is used, then the "CRC-32 Element" MUST be the first ordered "Element" within its "Parent Element". The Matroska specification recommends that "CRC-32 Elements" SHOULD NOT be used as an immediate "Child Element" of the "Segment Element"; however all "Top-Level Elements" of an "EBML Document" SHOULD include a "CRC-32 Element" as a "Child Element".

10.3. SeekHead

If used, the first "SeekHead Element" SHOULD be the first non-"CRC-32 Child Element" of the "Segment Element". If a second "SeekHead Element" is used, then the first "SeekHead Element" MUST reference the identity and position of the second "SeekHead". Additionally, the second "SeekHead Element" MUST only reference "Cluster" Elements and not any other "Top-Level Element" already contained within the first "SeekHead Element". The second "SeekHead Element" MAY be stored in any order relative to the other "Top-Level Elements". Whether one or two "SeekHead Element(s)" are used, the "SeekHead Element(s)" MUST collectively reference the identity and position of all "Top-Level Elements" except for the first "SeekHead Element".

It is RECOMMENDED that the first "SeekHead Element" be followed by a "Void Element" to allow for the "SeekHead Element" to be expanded to cover new "Top-Level Elements" that could be added to the Matroska file, such as "Tags", "Chapters", and "Attachments" Elements.
10.4. Cues (index)

The "Cues Element" is RECOMMENDED to optimize seeking access in Matroska. It is programmatically simpler to add the "Cues Element" after all "Cluster Elements" have been written because this does not require a prediction of how much space to reserve before writing the "Cluster Elements". However, storing the "Cues Element" before the "Cluster Elements" can provide some seeking advantages. If the "Cues Element" is present, then it SHOULD either be stored before the first "Cluster Element" or be referenced by a "SeekHead Element".

10.5. Info

The first "Info Element" SHOULD occur before the first "Tracks Element" and first "Cluster Element" except when referenced by a "SeekHead Element".

10.6. Chapters Element

The "Chapters Element" SHOULD be placed before the "Cluster Element(s)". The "Chapters Element" can be used during playback even if the user does not need to seek. It immediately gives the user information about what section is being read and what other sections are available. In the case of Ordered Chapters it is RECOMMENDED to evaluate the logical linking even before playing. The "Chapters Element" SHOULD be placed before the first "Tracks Element" and after the first "Info Element".

10.7. Attachments

The "Attachments Element" is not intended to be used by default when playing the file, but could contain information relevant to the content, such as cover art or fonts. Cover art is useful even before the file is played and fonts could be needed before playback starts for initialization of subtitles. The "Attachments Element" MAY be placed before the first "Cluster Element"; however if the "Attachments Element" is likely to be edited, then it SHOULD be placed after the last "Cluster Element".

10.8. Tags
The "Tags Element" is most subject to changes after the file was originally created. For easier editing, the "Tags Element" SHOULD be placed at the end of the "Segment Element", even after the "Attachments Element". On the other hand, it is inconvenient to have to seek in the "Segment" for tags, especially for network streams. So it's better if the "Tags Element" is found early in the stream. When editing the "Tags Element", the original "Tags Element" at the beginning can be overwritten with a "Void Element" and a new "Tags Element" written at the end of the "Segment Element". The file size will only marginally change.

10.9. Optimum layout from a muxer

* SeekHead
* Info
* Tracks
* Chapters
* Attachments
* Tags
* Clusters
* Cues

10.10. Optimum layout after editing tags

* SeekHead
* Info

* Tracks
* Chapters
* Attachments
10.11. Optimum layout with Cues at the front

* SeekHead
* Info
* Tracks
* Chapters
* Attachments
* Tags
* Cues
* Clusters

10.12. Cluster Timestamp

The "Timestamp Element" MUST occur as in storage order before any "SimpleBlock", "BlockGroup", or "EncryptedBlock", within the "Cluster Element".

11. Chapters

The Matroska Chapters system can have multiple "Editions" and each "Edition" can consist of "Simple Chapters" where a chapter start time is used as marker in the timeline only. An "Edition" can be more complex with "Ordered Chapters" where a chapter end time stamp is additionally used or much more complex with "Linked Chapters". The Matroska Chapters system can also have a menu structure, borrowed from the DVD menu system, or have its own Native Matroska menu structure.
11.1. EditionEntry

The "EditionEntry" is also called an "Edition". An "Edition" contains a set of "Edition" flags and MUST contain at least one "ChapterAtom Element". Chapters are always inside an "Edition" (or a Chapter itself part of an "Edition"). Multiple Editions are allowed. Some of these Editions MAY be ordered and others not.

11.1.1. EditionFlagDefault

Only one "Edition" SHOULD have an "EditionFlagDefault" flag set to "true".

11.1.2. Default Edition

The "Default Edition" is the "Edition" that a "Matroska Player" SHOULD use for playback by default.

The first "Edition" with the "EditionFlagDefault" flag set to "true" is the "Default Edition".

When all "EditionFlagDefault" flags are set to "false", then the first "Edition" is the "Default Edition".

<table>
<thead>
<tr>
<th>Edition</th>
<th>FlagDefault</th>
<th>Default Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition 1</td>
<td>true</td>
<td>X</td>
</tr>
<tr>
<td>Edition 2</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>Edition 3</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>

Table 43: Default edition, all default

<table>
<thead>
<tr>
<th>Edition</th>
<th>FlagDefault</th>
<th>Default Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition 1</td>
<td>false</td>
<td>X</td>
</tr>
<tr>
<td>Edition 2</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>Edition 3</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Table 44: Default edition, no default
11.1.3. EditionFlagOrdered

The "EditionFlagOrdered Flag" is a significant feature as it enables an "Edition" of "Ordered Chapters" which defines and arranges a virtual timeline rather than simply labeling points within the timeline. For example, with "Editions" of "Ordered Chapters" a single "Matroska file" can present multiple edits of a film without duplicating content. Alternatively, if a videotape is digitized in full, one "Ordered Edition" could present the full content (including colorbars, countdown, slate, a feature presentation, and black frames), while another "Edition" of "Ordered Chapters" can use "Chapters" that only mark the intended presentation with the colorbars and other ancillary visual information excluded. If an "Edition" of "Ordered Chapters" is enabled, then the "Matroska Player" MUST play those Chapters in their stored order from the timestamp marked in the "ChapterTimeStart Element" to the timestamp marked in to "ChapterTimeEnd Element".

If the "EditionFlagOrdered Flag" is set to "false", "Simple Chapters" are used and only the "ChapterTimeStart" of a "Chapter" is used as chapter mark to jump to the predefined point in the timeline. With "Simple Chapters", a "Matroska Player" MUST ignore certain "Chapter Elements". All these elements are now informational only.

The following list shows the different Chapter elements only found in "Ordered Chapters".

<table>
<thead>
<tr>
<th>Edition</th>
<th>FlagDefault</th>
<th>Default Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition 1</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>Edition 2</td>
<td>true</td>
<td>X</td>
</tr>
<tr>
<td>Edition 3</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

Table 45: Default edition, with default
Furthermore there are other EBML "Elements" which could be used if the "EditionFlagOrdered" flag is set to "true".

11.1.3.1. Ordered-Edition and Matroska Segment-Linking

- **Hard Linking**: "Ordered-Chapters" supersedes the "Hard Linking".

- **Soft Linking**: In this complex system "Ordered Chapters" are REQUIRED and a "Chapter CODEC" MUST interpret the "ChapProcess" of all chapters.

- **Medium Linking**: "Ordered Chapters" are used in a normal way and can be combined with the "ChapterSegmentUID" element which establishes a link to another Segment.
See Section 23 on the Linked Segments for more information about "Hard Linking", "Soft Linking", and "Medium Linking".

11.1.4. ChapterSegmentUID

The "ChapterSegmentUID" is a binary value and the base element to set up a "Linked Chapter" in 2 variations: the Linked-Duration linking and the Linked-Edition linking. For both variations, the following 3 conditions MUST be met:

1. The "EditionFlagOrdered Flag" MUST be true.

 2. The "ChapterSegmentUID" MUST NOT be the "SegmentUID" of its own "Segment".

 3. The linked Segments MUST BE in the same folder.

11.1.4.1. Variation 1: Linked-Duration

 Two more conditions MUST be met:

 1. "ChapterTimeStart" and "ChapterTimeEnd" timestamps MUST be in the range of the linked Segment duration.

 A "Matroska Player" MUST play the content of the linked Segment from the "ChapterTimeStart" until "ChapterTimeEnd" timestamp.

11.1.4.2. Variation 2: Linked-Edition

When the "ChapterSegmentEditionUID" is set to a valid "EditionUID" from the linked Segment. A "Matroska Player" MUST play these linked "Edition".

11.2. ChapterAtom

The "ChapterAtom" is also called a "Chapter". A "Chapter" element can be used recursively. Such a child "Chapter" is called "Nested Chapter".
11.2.1. ChapterTimeStart

A not scaled timestamp of the start of "Chapter" with nanosecond accuracy. For "Simple Chapters" this is the position of the chapter markers in the timeline.

11.2.2. ChapterTimeEnd

A not scaled timestamp of the end of "Chapter" with nanosecond accuracy. The end timestamp is used when the "EditionFlagOrdered" flag of the "Edition" is set to "true". The timestamp defined by the "ChapterTimeEnd" is not part of the "Chapter". A "Matroska Player" calculates the duration of this "Chapter" using the difference between the "ChapterTimeEnd" and "ChapterTimeStart". The end timestamp MUST be greater than the start timestamp otherwise the duration would be negative which is illegal. If the duration of a "Chapter" is 0, this "Chapter" MUST be ignored.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Start timestamp</th>
<th>End timestamp</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>0</td>
<td>1000000000</td>
<td>1000000000</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>1000000000</td>
<td>5000000000</td>
<td>4000000000</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>6000000000</td>
<td>6000000000</td>
<td>0 (chapter not used)</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>9000000000</td>
<td>8000000000</td>
<td>-1000000000 (illegal)</td>
</tr>
</tbody>
</table>

Table 47

11.2.3. ChapterFlagHidden

Each Chapter "ChapterFlagHidden" flag works independently from parent chapters. A "Nested Chapter" with "ChapterFlagHidden" flag set to "false" remains visible even if the "Parent Chapter"
"ChapterFlagHidden" flag is set to "true".

| Chapter + Nested Chapter | ChapterFlagHidden | visible |
|--------------------------+-------------------+---------|
Chapter 1	false	yes
Nested Chapter 1.1	false	yes
Nested Chapter 1.2	true	no
Chapter 2	true	no
Nested Chapter 2.1	false	yes
Nested Chapter 2.2	true	no

Table 48

11.3. Menu features

The menu features are handled like a "chapter codec". That means each codec has a type, some private data and some data in the chapters.

The type of the menu system is defined by the "ChapProcessCodecID" parameter. For now, only 2 values are supported: 0 matroska script, 1 menu borrowed from the DVD. The private data depend on the type of menu system (stored in "ChapProcessPrivate"), idem for the data in the chapters (stored in "ChapProcessData").

The menu system, as well a Chapter Codecs in general, can do actions on the "Matroska Player" like jumping to another Chapter or Edition, selecting different tracks and possibly more. The scope of all the possibilities of Chapter Codecs is not covered in this document as it depends on the Chapter Codec features and its integration in a "Matroska Player".

11.4. Chapter Examples
11.4.1. Example 1: basic chaptering

In this example a movie is split in different chapters. It could also just be an audio file (album) on which each track corresponds to a chapter.

* 00000ms - 05000ms : Intro
* 05000ms - 25000ms : Before the crime
* 25000ms - 27500ms : The crime
* 27500ms - 38000ms : The killer arrested
* 38000ms - 43000ms : Credits

This would translate in the following matroska form:

```xml
<Chapters>
  <EditionEntry>
    <EditionUID>16603393396715046047</EditionUID>
    <ChapterAtom>
      <ChapterUID>1193046</ChapterUID>
      <ChapterTimeStart>0</ChapterTimeStart>
      <ChapterTimeEnd>5000000000</ChapterTimeEnd>
      <ChapterDisplay>
        <ChapString>Intro</ChapString>
        <ChapLanguage>eng</ChapLanguage>
      </ChapterDisplay>
      <ChapterFlagHidden>0</ChapterFlagHidden>
    </ChapterAtom>
    <ChapterAtom>
      <ChapterUID>2311527</ChapterUID>
      <ChapterTimeStart>5000000000</ChapterTimeStart>
      <ChapterTimeEnd>25000000000</ChapterTimeEnd>
      <ChapterDisplay>
        <ChapString>Before the crime</ChapString>
        <ChapLanguage>eng</ChapLanguage>
      </ChapterDisplay>
    </ChapterAtom>
  </EditionEntry>
</Chapters>
```
Avant le crime

Le crime

After the crime

Après le crime

Credits
11.4.2. Example 2: nested chapters

In this example an (existing) album is split into different chapters, and one of them contain another splitting.

11.4.2.1. The Micronauts "Bleep To Bleep"

* 00:00 - 12:28 : Baby Wants To Bleep/Rock
 - 00:00 - 04:38 : Baby wants to bleep (pt.1)
 - 04:38 - 07:12 : Baby wants to rock
 - 07:12 - 10:33 : Baby wants to bleep (pt.2)
 - 10:33 - 12:28 : Baby wants to bleep (pt.3)

* 12:30 - 19:38 : Bleeper_0+2

* 19:40 - 22:20 : Baby wants to bleep (pt.4)

* 22:22 - 25:18 : Bleep to bleep

* 25:20 - 33:35 : Baby wants to bleep (k)

* 33:37 - 44:28 : Bleeper
<ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.1)</ChapString>
 <ChapLanguage>eng</ChapLanguage>
</ChapterDisplay>
<ChapterFlagHidden>0</ChapterFlagHidden>
</ChapterAtom>

<ChapterAtom>
 <ChapterUID>3</ChapterUID>
 <ChapterTimeStart>278000000</ChapterTimeStart>
 <ChapterTimeEnd>432000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to rock</ChapString>
 <ChapLanguage>eng</ChapLanguage>
 </ChapterDisplay>
 <ChapterFlagHidden>0</ChapterFlagHidden>
</ChapterAtom>

<ChapterAtom>
 <ChapterUID>4</ChapterUID>
 <ChapterTimeStart>432000000</ChapterTimeStart>
 <ChapterTimeEnd>633000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.2)</ChapString>
 <ChapLanguage>eng</ChapLanguage>
 </ChapterDisplay>
 <ChapterFlagHidden>0</ChapterFlagHidden>
</ChapterAtom>

<ChapterAtom>
 <ChapterUID>5</ChapterUID>
 <ChapterTimeStart>633000000</ChapterTimeStart>
 <ChapterTimeEnd>748000000</ChapterTimeEnd>
 <ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.3)</ChapString>
 <ChapLanguage>eng</ChapLanguage>
 </ChapterDisplay>
 <ChapterFlagHidden>0</ChapterFlagHidden>
</ChapterAtom>
<ChapterUID>6</ChapterUID>
<ChapterTimeStart>750000000</ChapterTimeStart>
<ChapterTimeEnd>1178500000</ChapterTimeEnd>
<ChapterDisplay>
 <ChapString>Bleeper_O+2</ChapString>
</ChapterDisplay>

<ChapterUID>7</ChapterUID>
<ChapterTimeStart>1180500000</ChapterTimeStart>
<ChapterTimeEnd>1340000000</ChapterTimeEnd>
<ChapterDisplay>
 <ChapString>Baby wants to bleep (pt.4)</ChapString>
</ChapterDisplay>

<ChapterUID>8</ChapterUID>
<ChapterTimeStart>1342000000</ChapterTimeStart>
<ChapterTimeEnd>1518000000</ChapterTimeEnd>
<ChapterDisplay>
 <ChapString>Bleep to bleep</ChapString>
</ChapterDisplay>

<ChapterUID>9</ChapterUID>
<ChapterTimeStart>1520000000</ChapterTimeStart>
<ChapterTimeEnd>2015000000</ChapterTimeEnd>
<ChapterDisplay>
 <ChapString>Baby wants to bleep (k)</ChapString>
</ChapterDisplay>

<ChapterUID>10</ChapterUID>
12. Attachments

Matroska supports storage of related files and data in the "Attachments Element" (a "Top-Level Element"). "Attachment Elements" can be used to store related cover art, font files, transcripts, reports, error recovery files, picture, or text-based annotations, copies of specifications, or other ancillary files related to the "Segment".

"Matroska Readers" MUST NOT execute files stored as "Attachment Elements".

12.1. Cover Art

This section defines a set of guidelines for the storage of cover art in Matroska files. A "Matroska Reader" MAY use embedded cover art to display a representational still-image depiction of the multimedia contents of the Matroska file.

Only JPEG and PNG image formats SHOULD be used for cover art pictures.

There can be two different covers for a movie/album: a portrait style (e.g., a DVD case) and a landscape style (e.g., a wide banner ad).

There can be two versions of the same cover, the "normal cover" and the "small cover". The dimension of the "normal cover" SHOULD be 600 pixels on the smallest side -- for example, 960x600 for landscape, 600x800 for portrait, or 600x600 for square. The dimension of the
"small cover" SHOULD be 120 pixels on the smallest side -- for example, 192x120 or 120x160.

Versions of cover art can be differentiated by the filename, which is stored in the "FileName Element". The default filename of the "normal cover" in square or portrait mode is "cover.(jpg|png)". When stored, the "normal cover" SHOULD be the first Attachment in storage order. The "small cover" SHOULD be prefixed with "small_", such as "small_cover.(jpg|png)". The landscape variant SHOULD be suffixed with "_land", such as "cover_land.(jpg|png)". The filenames are case sensitive.

The following table provides examples of file names for cover art in Attachments.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Image Orientation</th>
<th>Pixel Length of Smallest Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>cover.jpg</td>
<td>Portrait or square</td>
<td>600</td>
</tr>
<tr>
<td>small_cover.png</td>
<td>Portrait or square</td>
<td>120</td>
</tr>
<tr>
<td>cover_land.png</td>
<td>Landscape</td>
<td>600</td>
</tr>
<tr>
<td>small_cover_land.jpg</td>
<td>Landscape</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 49

13. Cues

The "Cues Element" provides an index of certain "Cluster Elements" to allow for optimized seeking to absolute timestamps within the "Segment". The "Cues Element" contains one or many "CuePoint
Elements" which each MUST reference an absolute timestamp (via the "CueTime Element"), a "Track" (via the "CueTrack Element"), and a "Segment Position" (via the "CueClusterPosition Element"). Additional non-mandated Elements are part of the "CuePoint Element" such as "CueDuration", "CueRelativePosition", "CueCodecState" and others which provide any "Matroska Reader" with additional information to use in the optimization of seeking performance.

13.1. Recommendations

The following recommendations are provided to optimize Matroska performance.

* Unless Matroska is used as a live stream, it SHOULD contain a "Cues Element".

* For each video track, each keyframe SHOULD be referenced by a "CuePoint Element".

* It is RECOMMENDED to not reference non-keyframes of video tracks in "Cues" unless it references a "Cluster Element" which contains a "CodecState Element" but no keyframes.

* For each subtitle track present, each subtitle frame SHOULD be referenced by a "CuePoint Element" with a "CueDuration Element".

* References to audio tracks MAY be skipped in "CuePoint Elements" if a video track is present. When included the "CuePoint Elements" SHOULD reference audio keyframes at most once every 500 milliseconds.

* If the referenced frame is not stored within the first "SimpleBlock", or first "BlockGroup" within its "Cluster Element", then the "CueRelativePosition Element" SHOULD be written to reference where in the "Cluster" the reference frame is stored.

* If a "CuePoint Element" references "Cluster Element" that includes a "CodecState Element", then that "CuePoint Element" MUST use a "CueCodecState Element".

* "CuePoint Elements" SHOULD be numerically sorted in storage order.
by the value of the "CueTime Element".

14. Matroska Streaming

In Matroska, there are two kinds of streaming: file access and livestreaming.

14.1. File Access

File access can simply be reading a file located on your computer, but also includes accessing a file from an HTTP (web) server or CIFS (Windows share) server. These protocols are usually safe from reading errors and seeking in the stream is possible. However, when a file is stored far away or on a slow server, seeking can be an expensive operation and SHOULD be avoided. The following guidelines, when followed, help reduce the number of seeking operations for regular playback and also have the playback start quickly without a lot of data needed to read first (like a "Cues Element", "Attachment Element" or "SeekHead Element").

Matroska, having a small overhead, is well suited for storing music/videos on file servers without a big impact on the bandwidth used. Matroska does not require the index to be loaded before playing, which allows playback to start very quickly. The index can be loaded only when seeking is requested the first time.

14.2. Livestreaming

Livestreaming is the equivalent of television broadcasting on the internet. There are 2 families of servers for livestreaming: RTP/RTSP and HTTP. Matroska is not meant to be used over RTP. RTP already has timing and channel mechanisms that would be wasted if doubled in Matroska. Additionally, having the same information at the RTP and Matroska level would be a source of confusion if they do
not match. Livestreaming of Matroska over HTTP (or any other plain protocol based on TCP) is possible.

A live Matroska stream is different from a file because it usually has no known end (only ending when the client disconnects). For this, all bits of the "size" portion of the "Segment Element" MUST be set to 1. Another option is to concatenate "Segment Elements" with known sizes, one after the other. This solution allows a change of codec/resolution between each segment. For example, this allows for a switch between 4:3 and 16:9 in a television program.

When "Segment Elements" are continuous, certain "Elements", like "MetaSeek", "Cues", "Chapters", and "Attachments", MUST NOT be used.

It is possible for a "Matroska Player" to detect that a stream is not seekable. If the stream has neither a "MetaSeek" list or a "Cues" list at the beginning of the stream, it SHOULD be considered non-seekable. Even though it is possible to seek blindly forward in the stream, it is NOT RECOMMENDED.

In the context of live radio or web TV, it is possible to "tag" the content while it is playing. The "Tags Element" can be placed between "Clusters" each time it is necessary. In that case, the new "Tags Element" MUST reset the previously encountered "Tags Elements" and use the new values instead.

15. Unknown elements

Matroska is based upon the principle that a reading application does not have to support 100% of the specifications in order to be able to play the file. A Matroska file therefore contains version indicators that tell a reading application what to expect.

It is possible and valid to have the version fields indicate that the file contains Matroska "Elements" from a higher specification version number while signaling that a reading application MUST only support a lower version number properly in order to play it back (possibly with a reduced feature set). For example, a reading application supporting at least Matroska version "V" reading a file whose "DocTypeReadVersion" field is equal to or lower than "V" MUST skip Lhomme, et al. Expires 14 October 2021 [Page 152] Internet-Draft Matroska Format April 2021

Matroska/EBML "Elements" it encounters but does not know about if
that unknown element fits into the size constraints set by the current "Parent Element".

16. Default Values

The default value of an "Element" is assumed when not present in the data stream. It is assumed only in the scope of its "Parent Element". For example, the "Language Element" is in the scope of the "Track Element". If the "Parent Element" is not present or assumed, then the "Child Element" cannot be assumed.

17. DefaultDecodedFieldDuration

The "DefaultDecodedFieldDuration Element" can signal to the displaying application how often fields of a video sequence will be available for displaying. It can be used for both interlaced and progressive content. If the video sequence is signaled as interlaced, then the period between two successive fields at the output of the decoding process equals "DefaultDecodedFieldDuration".

For video sequences signaled as progressive, it is twice the value of "DefaultDecodedFieldDuration".

These values are valid at the end of the decoding process before post-processing (such as deinterlacing or inverse telecine) is applied.

Examples:

* Blu-ray movie: 1000000000ns/(48/1.001) = 20854167ns
* PAL broadcast/DVD: 1000000000ns/(50/1.000) = 20000000ns
* N/ATSC broadcast: 1000000000ns/(60/1.001) = 16683333ns
* hard-telecined DVD: 1000000000ns/(60/1.001) = 16683333ns (60 encoded interlaced fields per second)
* soft-telecined DVD: 1000000000ns/(60/1.001) = 16683333ns (48 encoded interlaced fields per second, with "repeat_first_field = 1")
18. Encryption

Encryption in Matroska is designed in a very generic style to allow people to implement whatever form of encryption is best for them. It is possible to use the encryption framework in Matroska as a type of DRM (Digital Rights Management).

Because encryption occurs within the "Block Element", it is possible to manipulate encrypted streams without decrypting them. The streams could potentially be copied, deleted, cut, appended, or any number of other possible editing techniques without decryption. The data can be used without having to expose it or go through the decrypting process.

Encryption can also be layered within Matroska. This means that two completely different types of encryption can be used, requiring two separate keys to be able to decrypt a stream.

Encryption information is stored in the "ContentEncodings Element" under the "ContentEncryption Element".

19. Image Presentation

19.1. Cropping

The "PixelCrop Elements" ("PixelCropTop", "PixelCropBottom", "PixelCropRight", and "PixelCropLeft") indicate when, and by how much, encoded videos frames SHOULD be cropped for display. These Elements allow edges of the frame that are not intended for display, such as the sprockets of a full-frame film scan or the VANC area of a digitized analog videotape, to be stored but hidden. "PixelCropTop" and "PixelCropBottom" store an integer of how many rows of pixels SHOULD be cropped from the top and bottom of the image (respectively). "PixelCropLeft" and "PixelCropRight" store an integer of how many columns of pixels SHOULD be cropped from the left and right of the image (respectively). For example, a pillar-boxed video that stores a 1440x1080 visual image within the center of a padded 1920x1080 encoded image MAY set both "PixelCropLeft" and "PixelCropRight" to "240", so that a "Matroska Player" SHOULD crop off 240 columns of pixels from the left and right of the encoded image to present the image with the pillar-boxes hidden.
19.2. Rotation

The ProjectionPoseRoll Element (see Section 9.4.1.36.20.5) can be used to indicate that the image from the associated video track SHOULD be rotated for presentation. For instance, the following representation of the Projection Element (Section 9.4.1.36.20) and the ProjectionPoseRoll Element represents a video track where the image SHOULD be presentation with a 90 degree counter-clockwise rotation.

```xml
<Projection>
  <ProjectionPoseRoll>90</ProjectionPoseRoll>
</Projection>
```

20. Matroska versioning

The "EBML Header" of each Matroska document informs the reading application on what version of Matroska to expect. The "Elements" within "EBML Header" with jurisdiction over this information are "DocTypeVersion" and "DocTypeReadVersion".

"DocTypeVersion" MUST be equal to or greater than the highest Matroska version number of any "Element" present in the Matroska file. For example, a file using the "SimpleBlock Element" MUST have a "DocTypeVersion" equal to or greater than 2. A file containing "CueRelativePosition" Elements MUST have a "DocTypeVersion" equal to or greater than 4.

The "DocTypeReadVersion" MUST contain the minimum version number that a reading application can minimally support in order to play the file back -- optionally with a reduced feature set. For example, if a file contains only "Elements" of version 2 or lower except for "CueRelativePosition" (which is a version 4 Matroska "Element"), then "DocTypeReadVersion" SHOULD still be set to 2 and not 4 because evaluating "CueRelativePosition" is not necessary for standard playback -- it makes seeking more precise if used.

"DocTypeVersion" MUST always be equal to or greater than "DocTypeReadVersion".
A reading application supporting Matroska version "V" MUST NOT refuse to read an application with "DocReadTypeVersion" equal to or lower than "V" even if "DocTypeVersion" is greater than "V". See also the note about Unknown Elements in Section 15.

21. MIME Types

There is no IETF endorsed MIME type for Matroska files. These definitions can be used:

* .mka : Matroska audio "audio/x-matroska"
* .mkv : Matroska video "video/x-matroska"
* .mk3d : Matroska 3D video "video/x-matroska-3d"

22. Segment Position

The "Segment Position" of an "Element" refers to the position of the first octet of the "Element ID" of that "Element", measured in octets, from the beginning of the "Element Data" section of the containing "Segment Element". In other words, the "Segment Position" of an "Element" is the distance in octets from the beginning of its containing "Segment Element" minus the size of the "Element ID" and "Element Data Size" of that "Segment Element". The "Segment Position" of the first "Child Element" of the "Segment Element" is 0. An "Element" which is not stored within a "Segment Element", such as the "Elements" of the "EBML Header", do not have a "Segment Position".

22.1. Segment Position Exception

"Elements" that are defined to store a "Segment Position" MAY define reserved values to indicate a special meaning.

22.2. Example of Segment Position

This table presents an example of "Segment Position" by showing a hexadecimal representation of a very small Matroska file with labels to show the offsets in octets. The file contains a "Segment Element" with an "Element ID" of "0x18538067" and a "MuxingApp Element" with an "Element ID" of "0x4D80".
In the above example, the "Element ID" of the "Segment Element" is stored at offset 16, the "Element Data Size" of the "Segment Element" is stored at offset 20, and the "Element Data" of the "Segment Element" is stored at offset 21.

The "MuxingApp Element" is stored at offset 26. Since the "Segment Position" of an "Element" is calculated by subtracting the position of the "Element Data" of the containing "Segment Element" from the position of that "Element", the "Segment Position" of "MuxingApp Element" in the above example is '26 - 21' or '5'.

23. Linked Segments

Matroska provides several methods to link two or many "Segment Elements" together to create a "Linked Segment". A "Linked Segment" is a set of multiple "Segments" related together into a single presentation by using Hard Linking, Medium Linking, or Soft Linking. All "Segments" within a "Linked Segment" MUST utilize the same track numbers and timescale. All "Segments" within a "Linked Segment" MUST be stored within the same directory. All "Segments" within a "Linked Segment" MUST store a "SegmentUID".

23.1. Hard Linking

Hard Linking (also called splitting) is the process of creating a "Linked Segment" by relating multiple "Segment Elements" using the "NextUID" and "PrevUID" Elements. Within a "Linked Segment", the timestamps of each "Segment" MUST follow consecutively in linking order. With Hard Linking, the chapters of any "Segment" within the "Linked Segment" MUST only reference the current "Segment". With
Hard Linking, the "NextUID" and "PrevUID" MUST reference the respective "SegmentUID" values of the next and previous "Segments". The first "Segment" of a "Linked Segment" SHOULD have a "NextUID Element" and MUST NOT have a "PrevUID Element". The last "Segment" of a "Linked Segment" SHOULD have a "PrevUID Element" and MUST NOT have a "NextUID Element". The middle "Segments" of a "Linked Segment" SHOULD have both a "NextUID Element" and a "PrevUID Element".

In a chain of "Linked Segments" the "NextUID" always takes precedence over the "PrevUID". So if SegmentA has a NextUID to SegmentB and SegmentB has a PrevUID to SegmentC, the link to use is SegmentA to SegmentB. If SegmentB has a PrevUID to SegmentA but SegmentA has no NextUID, then the Matroska Player MAY consider these two Segments linked as SegmentA followed by SegmentB.

As an example, three "Segments" can be Hard Linked as a "Linked Segment" through cross-referencing each other with "SegmentUID", "PrevUID", and "NextUID", as in this table.

<table>
<thead>
<tr>
<th>file name</th>
<th>SegmentUID</th>
<th>PrevUID</th>
<th>NextUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>start.mkv</td>
<td>71000c23cd310998</td>
<td>n/a</td>
<td>a77b3598941cb803</td>
</tr>
<tr>
<td></td>
<td>53fbc94dd984a5dd</td>
<td></td>
<td>eac0fcdafe44fac9</td>
</tr>
<tr>
<td>middle.mkv</td>
<td>a77b3598941cb803</td>
<td>71000c23cd310998</td>
<td>6c92285fa6d3e827</td>
</tr>
<tr>
<td></td>
<td>eac0fcdafe44fac9</td>
<td>53fbc94dd984a5dd</td>
<td>b198d120ea3ac674</td>
</tr>
<tr>
<td>end.mkv</td>
<td>6c92285fa6d3e827</td>
<td>a77b3598941cb803</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>b198d120ea3ac674</td>
<td>eac0fcdafe44fac9</td>
<td></td>
</tr>
</tbody>
</table>

Table 50

An other example where only the "NextUID" Element is used.
Table 51

A next example where only the "PrevUID" Element is used.

<table>
<thead>
<tr>
<th>file name</th>
<th>SegmentUID</th>
<th>PrevUID</th>
<th>NextUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>start.mkv</td>
<td>71000c23cd310998</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>53fbc94dd984a5dd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle.mkv</td>
<td>a77b3598941cb803</td>
<td>71000c23cd310998</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>eac0fcdafe44fac9</td>
<td>53fbc94dd984a5dd</td>
<td></td>
</tr>
<tr>
<td>end.mkv</td>
<td>6c92285fa6d3e827</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>b198d120ea3ac674</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 52

In this example only the "middle.mkv" is using the "PrevUID" and "NextUID" Elements.

<table>
<thead>
<tr>
<th>file name</th>
<th>SegmentUID</th>
<th>PrevUID</th>
<th>NextUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>start.mkv</td>
<td>71000c23cd310998</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>53fbc94dd984a5dd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle.mkv</td>
<td>a77b3598941cb803</td>
<td>71000c23cd310998</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>eac0fcdafe44fac9</td>
<td>53fbc94dd984a5dd</td>
<td></td>
</tr>
<tr>
<td>end.mkv</td>
<td>6c92285fa6d3e827</td>
<td>a77b3598941cb803</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>b198d120ea3ac674</td>
<td>eac0fcdafe44fac9</td>
<td></td>
</tr>
</tbody>
</table>
Medium Linking creates relationships between "Segments" using Ordered Chapters and the "ChapterSegmentUID Element". A "Segment Edition" with Ordered Chapters MAY contain Chapter elements that reference timestamp ranges from other "Segments". The "Segment" referenced by the Ordered Chapter via the "ChapterSegmentUID Element" SHOULD be played as part of a Linked Segment. The timestamps of Segment content referenced by Ordered Chapters MUST be adjusted according to the cumulative duration of the the previous Ordered Chapters.

As an example a file named "intro.mkv" could have a "SegmentUID" of "0xb16a58609fc7e60653a60c984fc11ead". Another file called "program.mkv" could use a Chapter Edition that contains two Ordered Chapters. The first chapter references the "Segment" of "intro.mkv" with the use of a "ChapterSegmentUID", "ChapterSegmentEditionUID", "ChapterTimeStart", and optionally a "ChapterTimeEnd" element. The second chapter references content within the "Segment" of "program.mkv". A "Matroska Player" SHOULD recognize the "Linked Segment" created by the use of "ChapterSegmentUID" in an enabled "Edition" and present the reference content of the two "Segments" together.

23.3. Soft Linking

Soft Linking is used by codec chapters. They can reference another "Segment" and jump to that "Segment". The way the "Segments" are
described are internal to the chapter codec and unknown to the Matroska level. But there are "Elements" within the "Info Element" (such as "ChapterTranslate") that can translate a value representing a "Segment" in the chapter codec and to the current "SegmentUID". All "Segments" that could be used in a "Linked Segment" in this way SHOULD be marked as members of the same family via the "SegmentFamily Element", so that the "Matroska Player" can quickly switch from one to the other.

24. Track Flags

24.1. Default flag

The "default track" flag is a hint for a "Matroska Player" indicating that a given track SHOULD be eligible to be automatically selected as the default track for a given language. If no tracks in a given language have the default track flag set, then all tracks in that language are eligible for automatic selection. This can be used to indicate that a track provides "regular service" suitable for users with default settings, as opposed to specialized services, such as commentary, hearing-impaired captions, or descriptive audio.

The "Matroska Player" MAY override the "default track" flag for any reason, including user preferences to prefer tracks providing accessibility services.

24.2. Forced flag

The "forced" flag tells the "Matroska Player" that it SHOULD display this subtitle track, even if user preferences usually would not call for any subtitles to be displayed alongside the current selected audio track. This can be used to indicate that a track contains translations of onscreen text, or of dialogue spoken in a different language than the track's primary one.

24.3. Hearing-impaired flag

The "hearing impaired" flag tells the "Matroska Player" that it SHOULD prefer this track when selecting a default track for a hearing-impaired user, and that it MAY prefer to select a different track when selecting a default track for a non-hearing-impaired user.
24.4. Visual-impaired flag

The "visual impaired" flag tells the "Matroska Player" that it SHOULD prefer this track when selecting a default track for a visually-impaired user, and that it MAY prefer to select a different track when selecting a default track for a non-visually-impaired user.

24.5. Descriptions flag

The "descriptions" flag tells the "Matroska Player" that this track is suitable to play via a text-to-speech system for a visually-impaired user, and that it SHOULD NOT automatically select this track when selecting a default track for a non-visually-impaired user.

24.6. Original flag

The "original" flag tells the "Matroska Player" that this track is in the original language, and that it SHOULD prefer it if configured to prefer original-language tracks of this track's type.

24.7. Commentary flag

The "commentary" flag tells the "Matroska Player" that this track contains commentary on the content.

24.8. Track Operation

"TrackOperation" allows combining multiple tracks to make a virtual one. It uses two separate system to combine tracks. One to create a 3D "composition" (left/right/background planes) and one to simplify join two tracks together to make a single track.

A track created with "TrackOperation" is a proper track with a UID and all its flags. However the codec ID is meaningless because each "sub" track needs to be decoded by its own decoder before the "operation" is applied. The "Cues Elements" corresponding to such a virtual track SHOULD be the sum of the "Cues Elements" for each of the tracks it's composed of (when the "Cues" are defined per track).

In the case of "TrackJoinBlocks", the "Block Elements" (from "BlockGroup" and "SimpleBlock") of all the tracks SHOULD be used as if they were defined for this new virtual "Track". When two "Block Elements" have overlapping start or end timestamps, it's up to the underlying system to either drop some of these frames or render them the way they overlap. This situation SHOULD be avoided when creating such tracks as you can never be sure of the end result on different platforms.
24.9. Overlay Track

Overlay tracks SHOULD be rendered in the same channel as the track it is linked to. When content is found in such a track, it SHOULD be played on the rendering channel instead of the original track.

24.10. Multi-planar and 3D videos

There are two different ways to compress 3D videos: have each eye track in a separate track and have one track have both eyes combined inside (which is more efficient, compression-wise). Matroska supports both ways.

For the single track variant, there is the "StereoMode Element", which defines how planes are assembled in the track (mono or left-right combined). Odd values of StereoMode means the left plane comes first for more convenient reading. The pixel count of the track ("PixelWidth"/"PixelHeight") is the raw amount of pixels, for example 3840x1080 for full HD side by side, and the "DisplayWidth"/"DisplayHeight" in pixels is the amount of pixels for one plane (1920x1080 for that full HD stream). Old stereo 3D were displayed using anaglyph (cyan and red colours separated). For compatibility with such movies, there is a value of the StereoMode that corresponds to AnaGlyph.

There is also a "packed" mode (values 13 and 14) which consists of packing two frames together in a "Block" using lacing. The first frame is the left eye and the other frame is the right eye (or vice versa). The frames SHOULD be decoded in that order and are possibly dependent on each other (P and B frames).

For separate tracks, Matroska needs to define exactly which track does what. "TrackOperation" with "TrackCombinePlanes" do that. For more details look at Section 24.8 on how TrackOperation works.

The 3D support is still in infancy and may evolve to support more features.

The StereoMode used to be part of Matroska v2 but it didn't meet the requirement for multiple tracks. There was also a bug in libmatroska
prior to 0.9.0 that would save/read it as 0x53B9 instead of 0x53B8. "Matroska Readers" may support these legacy files by checking Matroska v2 or 0x53B9. The older values were 0: mono, 1: right eye, 2: left eye, 3: both eyes.

25. Default track selection

This section provides some example sets of Tracks and hypothetical user settings, along with indications of which ones a similarly-configured "Matroska Player" SHOULD automatically select for playback by default in such a situation. A player MAY provide additional settings with more detailed controls for more nuanced scenarios. These examples are provided as guidelines to illustrate the intended usages of the various supported Track flags, and their expected behaviors.

Track names are shown in English for illustrative purposes; actual files may have titles in the language of each track, or provide titles in multiple languages.

25.1. Audio Selection

Example track set:

```
+--------+------------------++------------------++------------------++------------------++------------------++
|No.|Type|Lang|Layout|Original|Default|Other flags|Name       |
+--------+------------------++------------------++------------------++------------------++------------------++
|1       |Video|und |N/A   |N/A     |N/A    |None        |           |
+--------+------------------++------------------++------------------++------------------++------------------++
|2       |Audio|eng |5.1   |1       |1      |None        |           |
+--------+------------------++------------------++------------------++------------------++------------------++
|3       |Audio|eng |2.0   |1       |1      |None        |           |
+--------+------------------++------------------++------------------++------------------++------------------++
|4       |Audio|eng |2.0   |1       |0      |Visual-impaired|Descriptive audio|
+--------+------------------++------------------++------------------++------------------++------------------++
|5       |Audio|esp |5.1   |0       |1      |None        |           |
+--------+------------------++------------------++------------------++------------------++------------------++
```
Here we have a file with 7 audio tracks, of which 5 are in English and 2 are in Spanish.

The English tracks all have the Original flag, indicating that English is the original content language.

Generally the player will first consider the track languages: if the player has an option to prefer original-language audio and the user has enabled it, then it should prefer one of the Original-flagged tracks. If configured to specifically prefer audio tracks in English or Spanish, the player should select one of the tracks in the corresponding language. The player may also wish to prefer an Original-flagged track if no tracks matching any of the user's explicitly-preferred languages are available.

Two of the tracks have the Visual-impaired flag. If the player has been configured to prefer such tracks, it should select one; otherwise, it should avoid them if possible.

If selecting an English track, when other settings have left multiple possible options, it may be useful to exclude the tracks that lack the Default flag: here, one provides descriptive service for the visually impaired (which has its own flag and may be automatically selected by user configuration, but is unsuitable for users with default-configured players), one is a commentary track (which has its own flag, which the player may or may not have specialized handling for), and the last contains karaoke versions of the music that plays during the film, which is an unusual specialized audio service that Matroska has no built-in support for indicating, so it's indicated in
the track name instead. By not setting the Default flag on these specialized tracks, the file's author hints that they should not be automatically selected by a default-configured player.

Having narrowed its choices down, our example player now may have to select between tracks 2 and 3. The only difference between these tracks is their channel layouts: 2 is 5.1 surround, while 3 is stereo. If the player is aware that the output device is a pair of headphones or stereo speakers, it may wish to prefer the stereo mix automatically. On the other hand, if it knows that the device is a surround system, it may wish to prefer the surround mix.

If the player finishes analyzing all of the available audio tracks and finds that multiple seem equally and maximally preferable, it SHOULD default to the first of the group.

25.2. Subtitle selection

Example track set:

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Lang</th>
<th>Original</th>
<th>Default</th>
<th>Forced</th>
<th>Other</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Video</td>
<td>und</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Audio</td>
<td>fra</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Audio</td>
<td>por</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Subtitles</td>
<td>fra</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Subtitles</td>
<td>fra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Hearing-impaired</td>
<td>Captions for the hearing-impaired</td>
</tr>
<tr>
<td>6</td>
<td>Subtitles</td>
<td>por</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Table 55

Here we have 2 audio tracks and 5 subtitle tracks. As we can see, French is the original language.

We'll start by discussing the case where the user prefers French (or Original-language) audio (or has explicitly selected the French audio track), and also prefers French subtitles.

In this case, if the player isn't configured to display captions when the audio matches their preferred subtitle languages, the player doesn't need to select a subtitle track at all.

If the user _has_ indicated that they want captions to be displayed, the selection simply comes down to whether Hearing-impaired subtitles are preferred.

The situation for a user who prefers Portuguese subtitles starts out somewhat analogous. If they select the original French audio (either by explicit audio language preference, preference for Original-language tracks, or by explicitly selecting that track), then the selection once again comes down to the hearing-impaired preference.

However, the case where the Portuguese audio track is selected has an important catch: a Forced track in Portuguese is present. This may contain translations of onscreen text from the video track, or of portions of the audio that are not translated (music, for instance). This means that even if the user's preferences wouldn't normally call for captions here, the Forced track should be selected nonetheless, rather than selecting no track at all. On the other hand, if the user's preferences _do_ call for captions, the non-Forced tracks should be preferred, as the Forced track will not contain captioning for the dialogue.

26. Timestamps
Historically timestamps in Matroska were mistakenly called timecodes. The "Timestamp Element" was called Timecode, the "TimestampScale Element" was called TimecodeScale, the "TrackTimestampScale Element" was called TrackTimecodeScale and the "ReferenceTimestamp Element" was called ReferenceTimeCode.

26.1. Timestamp Types

* Absolute Timestamp = Block+Cluster
* Relative Timestamp = Block
* Scaled Timestamp = Block+Cluster
* Raw Timestamp = (Block+Cluster)*TimestampScale*TrackTimestampScale

26.2. Block Timestamps

The "Block Element"'s timestamp MUST be a signed integer that represents the "Raw Timestamp" relative to the "Cluster"'s "Timestamp Element", multiplied by the "TimestampScale Element". See Section 26.4 for more information.

The "Block Element"'s timestamp MUST be represented by a 16bit signed integer (sint16). The "Block"'s timestamp has a range of -32768 to +32767 units. When using the default value of the "TimestampScale Element", each integer represents 1ms. The maximum time span of "Block Elements" in a "Cluster" using the default "TimestampScale Element" of 1ms is 65536ms.

If a "Cluster"'s "Timestamp Element" is set to zero, it is possible to have "Block Elements" with a negative "Raw Timestamp". "Block Elements" with a negative "Raw Timestamp" are not valid.

26.3. Raw Timestamp

The exact time of an object SHOULD be represented in nanoseconds. To find out a "Block"'s "Raw Timestamp", you need the "Block"'s "Timestamp Element", the "Cluster"'s "Timestamp Element", and the
"TimestampScale Element".

26.4. TimestampScale

The "TimestampScale Element" is used to calculate the "Raw Timestamp" of a "Block". The timestamp is obtained by adding the "Block"'s timestamp to the "Cluster"'s "Timestamp Element", and then multiplying that result by the "TimestampScale". The result will be the "Block"'s "Raw Timestamp" in nanoseconds. The formula for this would look like:

\[(a + b) \times c\]

a = `Block`'s Timestamp
b = `Cluster`'s Timestamp
c = `TimestampScale`'s value

For example, assume a "Cluster"'s "Timestamp" has a value of 564264, the "Block" has a "Timestamp" of 1233, and the "TimestampScale Element" is the default of 1000000.

\[(1233 + 564264) \times 1000000 = 565497000000\]

So, the "Block" in this example has a specific time of 565497000000 in nanoseconds. In milliseconds this would be 565497ms.

26.5. TimestampScale Rounding

Because the default value of "TimestampScale" is 1000000, which makes each integer in the "Cluster" and "Block" "Timestamp Elements" equal 1ms, this is the most commonly used. When dealing with audio, this causes inaccuracy when seeking. When the audio is combined with video, this is not an issue. For most cases, the the synch of audio to video does not need to be more than 1ms accurate. This becomes obvious when one considers that sound will take 2-3ms to travel a single meter, so distance from your speakers will have a greater effect on audio/visual synch than this.
However, when dealing with audio-only files, seeking accuracy can become critical. For instance, when storing a whole CD in a single track, a user will want to be able to seek to the exact sample that a song begins at. If seeking a few sample ahead or behind, a crack or pop may result as a few odd samples are rendered. Also, when performing precise editing, it may be very useful to have the audio accuracy down to a single sample.

When storing timestamps for an audio stream, the "TimestampScale Element" SHOULD have an accuracy of at least that of the audio sample rate, otherwise there are rounding errors that prevent users from knowing the precise location of a sample. Here's how a program has to round each timestamp in order to be able to recreate the sample number accurately.

Let's assume that the application has an audio track with a sample rate of 44100. As written above the "TimestampScale" MUST have at least the accuracy of the sample rate itself: $1000000000 / 44100 = 22675.7369614512$. This value MUST always be truncated. Otherwise the accuracy will not suffice. So in this example the application will use 22675 for the "TimestampScale". The application could even use some lower value like 22674, which would allow it to be a little bit imprecise about the original timestamps. But more about that in a minute.

Next the application wants to write sample number 52340 and calculates the timestamp. This is easy. In order to calculate the "Raw Timestamp" in ns all it has to do is calculate "Raw Timestamp = round($1000000000 \times \text{sample_number} / \text{sample_rate}$)". Rounding at this stage is very important! The application might skip it if it choses a slightly smaller value for the "TimestampScale" factor instead of the truncated one like shown above. Otherwise it has to round or the results won't be reversible. For our example we get "Raw Timestamp = round($1000000000 \times 52340 / 44100$) = round(1186848072.56236) = 1186848073".

The next step is to calculate the "Absolute Timestamp" - that is the timestamp that will be stored in the Matroska file. Here the application has to divide the "Raw Timestamp" from the previous paragraph by the "TimestampScale" factor and round the result: "Absolute Timestamp = round(Raw Timestamp / TimestampScale_factor)", which will result in the following for our example: "Absolute Timestamp = round($1186848073 / 22675$) = round(52341.701245866) = 52342". This number is the one the application has to write to the file.
Now our file is complete, and we want to play it back with another application. Its task is to find out which sample the first application wrote into the file. So it starts reading the Matroska file and finds the "TimestampScale" factor 22675 and the audio sample rate 44100. Later it finds a data block with the "Absolute Timestamp" of 52342. But how does it get the sample number from these numbers?

First it has to calculate the "Raw Timestamp" of the block it has just read. Here's no rounding involved, just an integer multiplication: "Raw Timestamp = Absolute Timestamp * TimestampScale_factor". In our example: "Raw Timestamp = 52342 * 22675 = 1186854850".

The conversion from the "Raw Timestamp" to the sample number again requires rounding: "sample_number = round(Raw Timestamp * sample_rate / 1000000000)". In our example: "sample_number = round(1186854850 * 44100 / 1000000000) = round(52340.298885) = 52340". This is exactly the sample number that the previous program started with.

Some general notes for a program:

1. Always calculate the timestamps / sample numbers with floating point numbers of at least 64bit precision (called 'double' in most modern programming languages). If you're calculating with integers, then make sure they're 64bit long, too.

2. Always round if you divide. Always! If you don't you'll end up with situations in which you have a timestamp in the Matroska file that does not correspond to the sample number that it started with. Using a slightly lower timestamp scale factor can help here in that it removes the need for proper rounding in the conversion from sample number to "Raw Timestamp".

26.6. TrackTimestampScale

The "TrackTimestampScale Element" is used align tracks that would otherwise be played at different speeds. An example of this would be if you have a film that was originally recorded at 24fps video. When playing this back through a PAL broadcasting system, it is standard to speed up the film to 25fps to match the 25fps display speed of the PAL broadcasting standard. However, when broadcasting the video
through NTSC, it is typical to leave the film at its original speed. If you wanted to make a single file where there was one video stream, and an audio stream used from the PAL broadcast, as well as an audio stream used from the NTSC broadcast, you would have the problem that the PAL audio stream would be 1/24th faster than the NTSC audio stream, quickly leading to problems. It is possible to stretch out the PAL audio track and re-encode it at a slower speed, however when dealing with lossy audio codecs, this often results in a loss of audio quality and/or larger file sizes.

This is the type of problem that "TrackTimestampScale" was designed to fix. Using it, the video can be played back at a speed that will synch with either the NTSC or the PAL audio stream, depending on which is being used for playback. To continue the above example:

Track 1: Video
Track 2: NTSC Audio
Track 3: PAL Audio

Because the NTSC track is at the original speed, it will used as the default value of 1.0 for its "TrackTimestampScale". The video will also be aligned to the NTSC track with the default value of 1.0.

The "TrackTimestampScale" value to use for the PAL track would be calculated by determining how much faster the PAL track is than the NTSC track. In this case, because we know the video for the NTSC audio is being played back at 24fps and the video for the PAL audio is being played back at 25fps, the calculation would be:

25/24 is almost 1.0416666666666667

When writing a file that uses a non-default "TrackTimestampScale", the values of the "Block"'s timestamp are whatever they would be when normally storing the track with a default value for the "TrackTimestampScale". However, the data is interleaved a little differently. Data SHOULD be interleaved by its Raw Timestamp, see Section 26.3, in the order handed back from the encoder. The "Raw Timestamp" of a "Block" from a track using "TrackTimestampScale" is calculated using:

"(Block's Timestamp + Cluster's Timestamp) * TimestampScale *
So, a Block from the PAL track above that had a Scaled Timestamp, see Section 26.1, of 100 seconds would have a "Raw Timestamp" of 104.66666667 seconds, and so would be stored in that part of the file.

When playing back a track using the "TrackTimestampScale", if the track is being played by itself, there is no need to scale it. From the above example, when playing the Video with the NTSC Audio, neither are scaled. However, when playing back the Video with the PAL Audio, the timestamps from the PAL Audio track are scaled using the "TrackTimestampScale", resulting in the video playing back in sync with the audio.

It would be possible for a "Matroska Player" to also adjust the audio's samplerate at the same time as adjusting the timestamps if you wanted to play the two audio streams synchronously. It would also be possible to adjust the video to match the audio's speed. However, for playback, the selected track(s) timestamps SHOULD be adjusted if they need to be scaled.

While the above example deals specifically with audio tracks, this element can be used to align video, audio, subtitles, or any other type of track contained in a Matroska file.

27. Normative References

[I-D.ietf-cellar-codec] Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media Container Codec Specifications", Work in Progress,
Internet-Draft, draft-ietf-cellar-codec-05, 19 October 2020,

[I-D.ietf-cellar-tags]
Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media Container Tag Specifications",
Work in Progress, Internet-Draft, draft-ietf-cellar-tags-05, 19 October 2020,

[IANADomains]
"IANA Root Zone Database",
<https://www.iana.org/domains/root/db>.

[IANALangRegistry]
"IANA Language Subtag Registry", 28 February 2013,

Internet-Draft Matroska Format April 2021

[ISO3166-1]
International Organization for Standardization, "Codes for the representation of names of countries and their subdivisions -- Part 1: Country code",

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words",
BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,

[RFC8794] Lhomme, S., Rice, D., and M. Bunkus, "Extensible Binary

28. Informative References

[DivXTrickTrack]

[DivXWorldFonts]

[MCF]

Authors' Addresses

Steve Lhomme

Email: slhomme@matroska.org

Moritz Bunkus

Email: moritz@bunkus.org

Dave Rice

Email: dave@dericed.com