
codec T. Terriberry
Internet-Draft Mozilla Corporation
Intended status: Standards Track R. Lee
Expires: February 10, 2015 Voicetronix
 R. Giles
 Mozilla Corporation
 August 9, 2014

Ogg Encapsulation for the Opus Audio Codec
draft-ietf-codec-oggopus-04

Abstract

 This document defines the Ogg encapsulation for the Opus interactive
 speech and audio codec. This allows data encoded in the Opus format
 to be stored in an Ogg logical bitstream. Ogg encapsulation provides
 Opus with a long-term storage format supporting all of the essential
 features, including metadata, fast and accurate seeking, corruption
 detection, recapture after errors, low overhead, and the ability to
 multiplex Opus with other codecs (including video) with minimal
 buffering. It also provides a live streamable format, capable of
 delivery over a reliable stream-oriented transport, without requiring
 all the data, or even the total length of the data, up-front, in a
 form that is identical to the on-disk storage format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 10, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Terriberry, et al. Expires February 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Ogg Opus August 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Packet Organization . 3
4. Granule Position . 5
4.1. Repairing Gaps in Real-time Streams 5
4.2. Pre-skip . 7
4.3. PCM Sample Position 8
4.4. End Trimming . 8
4.5. Restrictions on the Initial Granule Position 9
4.6. Seeking and Pre-roll 10

5. Header Packets . 10
5.1. Identification Header 10
5.1.1. Channel Mapping 14

5.2. Comment Header . 20
5.2.1. Tag Definitions 22

6. Packet Size Limits . 23
7. Encoder Guidelines . 24
7.1. LPC Extrapolation . 25
7.2. Continuous Chaining 25

8. Implementation Status . 26
9. Security Considerations 26
10. Content Type . 26
11. IANA Considerations . 27
12. Acknowledgments . 27
13. Copying Conditions . 27
14. References . 27
14.1. Normative References 27
14.2. Informative References 28
14.3. URIs . 29

 Authors' Addresses . 29

1. Introduction

 The IETF Opus codec is a low-latency audio codec optimized for both
 voice and general-purpose audio. See [RFC6716] for technical

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6716

Terriberry, et al. Expires February 10, 2015 [Page 2]

Internet-Draft Ogg Opus August 2014

 details. This document defines the encapsulation of Opus in a
 continuous, logical Ogg bitstream [RFC3533].

 Ogg bitstreams are made up of a series of 'pages', each of which
 contains data from one or more 'packets'. Pages are the fundamental
 unit of multiplexing in an Ogg stream. Each page is associated with
 a particular logical stream and contains a capture pattern and
 checksum, flags to mark the beginning and end of the logical stream,
 and a 'granule position' that represents an absolute position in the
 stream, to aid seeking. A single page can contain up to 65,025
 octets of packet data from up to 255 different packets. Packets may
 be split arbitrarily across pages, and continued from one page to the
 next (allowing packets much larger than would fit on a single page).
 Each page contains 'lacing values' that indicate how the data is
 partitioned into packets, allowing a demuxer to recover the packet
 boundaries without examining the encoded data. A packet is said to
 'complete' on a page when the page contains the final lacing value
 corresponding to that packet.

 This encapsulation defines the required contents of the packet data,
 including the necessary headers, the organization of those packets
 into a logical stream, and the interpretation of the codec-specific
 granule position field. It does not attempt to describe or specify
 the existing Ogg container format. Readers unfamiliar with the basic
 concepts mentioned above are encouraged to review the details in
 [RFC3533].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Implementations that fail to satisfy one or more "MUST" requirements
 are considered non-compliant. Implementations that satisfy all
 "MUST" requirements, but fail to satisfy one or more "SHOULD"
 requirements are said to be "conditionally compliant". All other
 implementations are "unconditionally compliant".

3. Packet Organization

 An Opus stream is organized as follows.

 There are two mandatory header packets. The granule position of the
 pages on which these packets complete MUST be zero.

https://datatracker.ietf.org/doc/html/rfc3533
https://datatracker.ietf.org/doc/html/rfc3533
https://datatracker.ietf.org/doc/html/rfc2119

Terriberry, et al. Expires February 10, 2015 [Page 3]

Internet-Draft Ogg Opus August 2014

 The first packet in the logical Ogg bitstream MUST contain the
 identification (ID) header, which uniquely identifies a stream as
 Opus audio. The format of this header is defined in Section 5.1. It
 MUST be placed alone (without any other packet data) on the first
 page of the logical Ogg bitstream, and must complete on that page.
 This page MUST have its 'beginning of stream' flag set.

 The second packet in the logical Ogg bitstream MUST contain the
 comment header, which contains user-supplied metadata. The format of
 this header is defined in Section 5.2. It MAY span one or more
 pages, beginning on the second page of the logical stream. However
 many pages it spans, the comment header packet MUST finish the page
 on which it completes.

 All subsequent pages are audio data pages, and the Ogg packets they
 contain are audio data packets. Each audio data packet contains one
 Opus packet for each of N different streams, where N is typically one
 for mono or stereo, but may be greater than one for multichannel
 audio. The value N is specified in the ID header (see

Section 5.1.1), and is fixed over the entire length of the logical
 Ogg bitstream.

 The first N-1 Opus packets, if any, are packed one after another into
 the Ogg packet, using the self-delimiting framing from Appendix B of
 [RFC6716]. The remaining Opus packet is packed at the end of the Ogg
 packet using the regular, undelimited framing from Section 3 of
 [RFC6716]. All of the Opus packets in a single Ogg packet MUST be
 constrained to have the same duration. A decoder SHOULD treat any
 Opus packet whose duration is different from that of the first Opus
 packet in an Ogg packet as if it were an Opus packet with an illegal
 TOC sequence.

 The coding mode (SILK, Hybrid, or CELT), audio bandwidth, channel
 count, duration (frame size), and number of frames per packet, are
 indicated in the TOC (table of contents) in the first byte of each
 Opus packet, as described in Section 3.1 of [RFC6716]. The
 combination of mode, audio bandwidth, and frame size is referred to
 as the configuration of an Opus packet.

 The first audio data page SHOULD NOT have the 'continued packet' flag
 set (which would indicate the first audio data packet is continued
 from a previous page). Packets MUST be placed into Ogg pages in
 order until the end of stream. Audio packets MAY span page
 boundaries. A decoder MUST treat a zero-octet audio data packet as
 if it were an Opus packet with an illegal TOC sequence. The last
 page SHOULD have the 'end of stream' flag set, but implementations
 should be prepared to deal with truncated streams that do not have a
 page marked 'end of stream'. The final packet on the last page

https://datatracker.ietf.org/doc/html/rfc6716#appendix-B
https://datatracker.ietf.org/doc/html/rfc6716#appendix-B
https://datatracker.ietf.org/doc/html/rfc6716#section-3
https://datatracker.ietf.org/doc/html/rfc6716#section-3
https://datatracker.ietf.org/doc/html/rfc6716#section-3.1

Terriberry, et al. Expires February 10, 2015 [Page 4]

Internet-Draft Ogg Opus August 2014

 SHOULD NOT be a continued packet, i.e., the final lacing value should
 be less than 255. There MUST NOT be any more pages in an Opus
 logical bitstream after a page marked 'end of stream'.

4. Granule Position

 The granule position of an audio data page encodes the total number
 of PCM samples in the stream up to and including the last fully-
 decodable sample from the last packet completed on that page. A page
 that is entirely spanned by a single packet (that completes on a
 subsequent page) has no granule position, and the granule position
 field MUST be set to the special value '-1' in two's complement.

 The granule position of an audio data page is in units of PCM audio
 samples at a fixed rate of 48 kHz (per channel; a stereo stream's
 granule position does not increment at twice the speed of a mono
 stream). It is possible to run an Opus decoder at other sampling
 rates, but the value in the granule position field always counts
 samples assuming a 48 kHz decoding rate, and the rest of this
 specification makes the same assumption.

 The duration of an Opus packet may be any multiple of 2.5 ms, up to a
 maximum of 120 ms. This duration is encoded in the TOC sequence at
 the beginning of each packet. The number of samples returned by a
 decoder corresponds to this duration exactly, even for the first few
 packets. For example, a 20 ms packet fed to a decoder running at
 48 kHz will always return 960 samples. A demuxer can parse the TOC
 sequence at the beginning of each Ogg packet to work backwards or
 forwards from a packet with a known granule position (i.e., the last
 packet completed on some page) in order to assign granule positions
 to every packet, or even every individual sample. The one exception
 is the last page in the stream, as described below.

 All other pages with completed packets after the first MUST have a
 granule position equal to the number of samples contained in packets
 that complete on that page plus the granule position of the most
 recent page with completed packets. This guarantees that a demuxer
 can assign individual packets the same granule position when working
 forwards as when working backwards. For this to work, there cannot
 be any gaps.

4.1. Repairing Gaps in Real-time Streams

 In order to support capturing a real-time stream that has lost or not
 transmitted packets, a muxer SHOULD emit packets that explicitly
 request the use of Packet Loss Concealment (PLC) in place of the
 missing packets. Only gaps that are a multiple of 2.5 ms are
 repairable, as these are the only durations that can be created by

Terriberry, et al. Expires February 10, 2015 [Page 5]

Internet-Draft Ogg Opus August 2014

 packet loss or discontinuous transmission. Muxers need not handle
 other gap sizes. Creating the necessary packets involves
 synthesizing a TOC byte (defined in Section 3.1 of [RFC6716])--and
 whatever additional internal framing is needed--to indicate the
 packet duration for each stream. The actual length of each missing
 Opus frame inside the packet is zero bytes, as defined in

Section 3.2.1 of [RFC6716].

 Zero-byte frames MAY be packed into packets using any of codes 0, 1,
 2, or 3. When successive frames have the same configuration, the
 higher code packings reduce overhead. Likewise, if the TOC
 configuration matches, the muxer MAY further combine the empty frames
 with previous or subsequent non-zero-length frames (using code 2 or
 VBR code 3).

 [RFC6716] does not impose any requirements on the PLC, but this
 section outlines choices that are expected to have a positive
 influence on most PLC implementations, including the reference
 implementation. Synthesized TOC bytes SHOULD maintain the same mode,
 audio bandwidth, channel count, and frame size as the previous packet
 (if any). This is the simplest and usually the most well-tested case
 for the PLC to handle and it covers all losses that do not include a
 configuration switch, as defined in Section 4.5 of [RFC6716].

 When a previous packet is available, keeping the audio bandwidth and
 channel count the same allows the PLC to provide maximum continuity
 in the concealment data it generates. However, if the size of the
 gap is not a multiple of the most recent frame size, then the frame
 size will have to change for at least some frames. Such changes
 SHOULD be delayed as long as possible to simplify things for PLC
 implementations.

 As an example, a 95 ms gap could be encoded as nineteen 5 ms frames
 in two bytes with a single CBR code 3 packet. If the previous frame
 size was 20 ms, using four 20 ms frames followed by three 5 ms frames
 requires 4 bytes (plus an extra byte of Ogg lacing overhead), but
 allows the PLC to use its well-tested steady state behavior for as
 long as possible. The total bitrate of the latter approach,
 including Ogg overhead, is about 0.4 kbps, so the impact on file size
 is minimal.

 Changing modes is discouraged, since this causes some decoder
 implementations to reset their PLC state. However, SILK and Hybrid
 mode frames cannot fill gaps that are not a multiple of 10 ms. If
 switching to CELT mode is needed to match the gap size, a muxer
 SHOULD do so at the end of the gap to allow the PLC to function for
 as long as possible.

https://datatracker.ietf.org/doc/html/rfc6716#section-3.1
https://datatracker.ietf.org/doc/html/rfc6716#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc6716#section-4.5

Terriberry, et al. Expires February 10, 2015 [Page 6]

Internet-Draft Ogg Opus August 2014

 In the example above, if the previous frame was a 20 ms SILK mode
 frame, the better solution is to synthesize a packet describing four
 20 ms SILK frames, followed by a packet with a single 10 ms SILK
 frame, and finally a packet with a 5 ms CELT frame, to fill the 95 ms
 gap. This also requires four bytes to describe the synthesized
 packet data (two bytes for a CBR code 3 and one byte each for two
 code 0 packets) but three bytes of Ogg lacing overhead are required
 to mark the packet boundaries. At 0.6 kbps, this is still a minimal
 bitrate impact over a naive, low quality solution.

 Since medium-band audio is an option only in the SILK mode, wideband
 frames SHOULD be generated if switching from that configuration to
 CELT mode, to ensure that any PLC implementation which does try to
 migrate state between the modes will be able to preserve all of the
 available audio bandwidth.

4.2. Pre-skip

 There is some amount of latency introduced during the decoding
 process, to allow for overlap in the CELT mode, stereo mixing in the
 SILK mode, and resampling. The encoder may introduce additional
 latency through its own resampling and analysis (though the exact
 amount is not specified). Therefore, the first few samples produced
 by the decoder do not correspond to real input audio, but are instead
 composed of padding inserted by the encoder to compensate for this
 latency. These samples need to be stored and decoded, as Opus is an
 asymptotically convergent predictive codec, meaning the decoded
 contents of each frame depend on the recent history of decoder
 inputs. However, a decoder will want to skip these samples after
 decoding them.

 A 'pre-skip' field in the ID header (see Section 5.1) signals the
 number of samples which SHOULD be skipped (decoded but discarded) at
 the beginning of the stream. This amount MAY not be a multiple of
 2.5 ms, MAY be smaller than a single packet, or MAY span the contents
 of several packets. These samples are not valid audio, and should
 not be played.

 For example, if the first Opus frame uses the CELT mode, it will
 always produce 120 samples of windowed overlap-add data. However,
 the overlap data is initially all zeros (since there is no prior
 frame), meaning this cannot, in general, accurately represent the
 original audio. The SILK mode requires additional delay to account
 for its analysis and resampling latency. The encoder delays the
 original audio to avoid this problem.

 The pre-skip field MAY also be used to perform sample-accurate
 cropping of already encoded streams. In this case, a value of at

Terriberry, et al. Expires February 10, 2015 [Page 7]

Internet-Draft Ogg Opus August 2014

 least 3840 samples (80 ms) provides sufficient history to the decoder
 that it will have converged before the stream's output begins.

4.3. PCM Sample Position

 The PCM sample position is determined from the granule position using
 the formula

 'PCM sample position' = 'granule position' - 'pre-skip' .

 For example, if the granule position of the first audio data page is
 59,971, and the pre-skip is 11,971, then the PCM sample position of
 the last decoded sample from that page is 48,000.

 This can be converted into a playback time using the formula

 'PCM sample position'
 'playback time' = --------------------- .
 48000.0

 The initial PCM sample position before any samples are played is
 normally '0'. In this case, the PCM sample position of the first
 audio sample to be played starts at '1', because it marks the time on
 the clock _after_ that sample has been played, and a stream that is
 exactly one second long has a final PCM sample position of '48000',
 as in the example here.

 Vorbis streams use a granule position smaller than the number of
 audio samples contained in the first audio data page to indicate that
 some of those samples must be trimmed from the output (see
 [vorbis-trim]). However, to do so, Vorbis requires that the first
 audio data page contains exactly two packets, in order to allow the
 decoder to perform PCM position adjustments before needing to return
 any PCM data. Opus uses the pre-skip mechanism for this purpose
 instead, since the encoder may introduce more than a single packet's
 worth of latency, and since very large packets in streams with a very
 large number of channels might not fit on a single page.

4.4. End Trimming

 The page with the 'end of stream' flag set MAY have a granule
 position that indicates the page contains less audio data than would
 normally be returned by decoding up through the final packet. This
 is used to end the stream somewhere other than an even frame
 boundary. The granule position of the most recent audio data page
 with completed packets is used to make this determination, or '0' is
 used if there were no previous audio data pages with a completed
 packet. The difference between these granule positions indicates how

Terriberry, et al. Expires February 10, 2015 [Page 8]

Internet-Draft Ogg Opus August 2014

 many samples to keep after decoding the packets that completed on the
 final page. The remaining samples are discarded. The number of
 discarded samples SHOULD be no larger than the number decoded from
 the last packet.

4.5. Restrictions on the Initial Granule Position

 The granule position of the first audio data page with a completed
 packet MAY be larger than the number of samples contained in packets
 that complete on that page, however it MUST NOT be smaller, unless
 that page has the 'end of stream' flag set. Allowing a granule
 position larger than the number of samples allows the beginning of a
 stream to be cropped or a live stream to be joined without rewriting
 the granule position of all the remaining pages. This means that the
 PCM sample position just before the first sample to be played may be
 larger than '0'. Synchronization when multiplexing with other
 logical streams still uses the PCM sample position relative to '0' to
 compute sample times. This does not affect the behavior of pre-skip:
 exactly 'pre-skip' samples should be skipped from the beginning of
 the decoded output, even if the initial PCM sample position is
 greater than zero.

 On the other hand, a granule position that is smaller than the number
 of decoded samples prevents a demuxer from working backwards to
 assign each packet or each individual sample a valid granule
 position, since granule positions must be non-negative. A decoder
 MUST reject as invalid any stream where the granule position is
 smaller than the number of samples contained in packets that complete
 on the first audio data page with a completed packet, unless that
 page has the 'end of stream' flag set. It MAY defer this action
 until it decodes the last packet completed on that page.

 If that page has the 'end of stream' flag set, a demuxer MUST reject
 as invalid any stream where its granule position is smaller than the
 'pre-skip' amount. This would indicate that more samples should be
 skipped from the initial decoded output than exist in the stream. If
 the granule position is smaller than the number of decoded samples
 produced by the packets that complete on that page, then a demuxer
 MUST use an initial granule position of '0', and can work forwards
 from '0' to timestamp individual packets. If the granule position is
 larger than the number of decoded samples available, then the demuxer
 MUST still work backwards as described above, even if the 'end of
 stream' flag is set, to determine the initial granule position, and
 thus the initial PCM sample position. Both of these will be greater
 than '0' in this case.

Terriberry, et al. Expires February 10, 2015 [Page 9]

Internet-Draft Ogg Opus August 2014

4.6. Seeking and Pre-roll

 Seeking in Ogg files is best performed using a bisection search for a
 page whose granule position corresponds to a PCM position at or
 before the seek target. With appropriately weighted bisection,
 accurate seeking can be performed with just three or four bisections
 even in multi-gigabyte files. See [seeking] for general
 implementation guidance.

 When seeking within an Ogg Opus stream, the decoder SHOULD start
 decoding (and discarding the output) at least 3840 samples (80 ms)
 prior to the seek target in order to ensure that the output audio is
 correct by the time it reaches the seek target. This 'pre-roll' is
 separate from, and unrelated to, the 'pre-skip' used at the beginning
 of the stream. If the point 80 ms prior to the seek target comes
 before the initial PCM sample position, the decoder SHOULD start
 decoding from the beginning of the stream, applying pre-skip as
 normal, regardless of whether the pre-skip is larger or smaller than
 80 ms, and then continue to discard the samples required to reach the
 seek target (if any).

5. Header Packets

 An Opus stream contains exactly two mandatory header packets: an
 identification header and a comment header.

5.1. Identification Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 'O' | 'p' | 'u' | 's' |
 +-+
 | 'H' | 'e' | 'a' | 'd' |
 +-+
 | Version = 1 | Channel Count | Pre-skip |
 +-+
 | Input Sample Rate (Hz) |
 +-+
 | Output Gain (Q7.8 in dB) | Mapping Family| |
 +-+ :
 | |
 : Optional Channel Mapping Table... :
 | |
 +-+

 Figure 1: ID Header Packet

Terriberry, et al. Expires February 10, 2015 [Page 10]

Internet-Draft Ogg Opus August 2014

 The fields in the identification (ID) header have the following
 meaning:

 1. *Magic Signature*:

 This is an 8-octet (64-bit) field that allows codec
 identification and is human-readable. It contains, in order, the
 magic numbers:

 0x4F 'O'

 0x70 'p'

 0x75 'u'

 0x73 's'

 0x48 'H'

 0x65 'e'

 0x61 'a'

 0x64 'd'

 Starting with "Op" helps distinguish it from audio data packets,
 as this is an invalid TOC sequence.

 2. *Version* (8 bits, unsigned):

 The version number MUST always be '1' for this version of the
 encapsulation specification. Implementations SHOULD treat
 streams where the upper four bits of the version number match
 that of a recognized specification as backwards-compatible with
 that specification. That is, the version number can be split
 into "major" and "minor" version sub-fields, with changes to the
 "minor" sub-field (in the lower four bits) signaling compatible
 changes. For example, a decoder implementing this specification
 SHOULD accept any stream with a version number of '15' or less,
 and SHOULD assume any stream with a version number '16' or
 greater is incompatible. The initial version '1' was chosen to
 keep implementations from relying on this octet as a null
 terminator for the "OpusHead" string.

Terriberry, et al. Expires February 10, 2015 [Page 11]

Internet-Draft Ogg Opus August 2014

 3. *Output Channel Count* 'C' (8 bits, unsigned):

 This is the number of output channels. This might be different
 than the number of encoded channels, which can change on a
 packet-by-packet basis. This value MUST NOT be zero. The
 maximum allowable value depends on the channel mapping family,
 and might be as large as 255. See Section 5.1.1 for details.

 4. *Pre-skip* (16 bits, unsigned, little endian):

 This is the number of samples (at 48 kHz) to discard from the
 decoder output when starting playback, and also the number to
 subtract from a page's granule position to calculate its PCM
 sample position. When cropping the beginning of existing Ogg
 Opus streams, a pre-skip of at least 3,840 samples (80 ms) is
 RECOMMENDED to ensure complete convergence in the decoder.

 5. *Input Sample Rate* (32 bits, unsigned, little endian):

 This field is _not_ the sample rate to use for playback of the
 encoded data.

 Opus can switch between internal audio bandwidths of 4, 6, 8, 12,
 and 20 kHz. Each packet in the stream may have a different audio
 bandwidth. Regardless of the audio bandwidth, the reference
 decoder supports decoding any stream at a sample rate of 8, 12,
 16, 24, or 48 kHz. The original sample rate of the encoder input
 is not preserved by the lossy compression.

 An Ogg Opus player SHOULD select the playback sample rate
 according to the following procedure:

 1. If the hardware supports 48 kHz playback, decode at 48 kHz.

 2. Otherwise, if the hardware's highest available sample rate is
 a supported rate, decode at this sample rate.

 3. Otherwise, if the hardware's highest available sample rate is
 less than 48 kHz, decode at the next highest supported rate
 above this and resample.

 4. Otherwise, decode at 48 kHz and resample.

Terriberry, et al. Expires February 10, 2015 [Page 12]

Internet-Draft Ogg Opus August 2014

 However, the 'Input Sample Rate' field allows the encoder to pass
 the sample rate of the original input stream as metadata. This
 may be useful when the user requires the output sample rate to
 match the input sample rate. For example, a non-player decoder
 writing PCM format samples to disk might choose to resample the
 output audio back to the original input sample rate to reduce
 surprise to the user, who might reasonably expect to get back a
 file with the same sample rate as the one they fed to the
 encoder.

 A value of zero indicates 'unspecified'. Encoders SHOULD write
 the actual input sample rate or zero, but decoder implementations
 which do something with this field SHOULD take care to behave
 sanely if given crazy values (e.g., do not actually upsample the
 output to 10 MHz if requested).

 6. *Output Gain* (16 bits, signed, little endian):

 This is a gain to be applied by the decoder. It is 20*log10 of
 the factor to scale the decoder output by to achieve the desired
 playback volume, stored in a 16-bit, signed, two's complement
 fixed-point value with 8 fractional bits (i.e., Q7.8).

 To apply the gain, a decoder could use

 sample *= pow(10, output_gain/(20.0*256)) ,

 where output_gain is the raw 16-bit value from the header.

 Virtually all players and media frameworks should apply it by
 default. If a player chooses to apply any volume adjustment or
 gain modification, such as the R128_TRACK_GAIN, R128_ALBUM_GAIN
 (see Section 5.2) or a user-facing volume knob, the adjustment
 MUST be applied in addition to this output gain in order to
 achieve playback at the desired volume.

 An encoder SHOULD set this field to zero, and instead apply any
 gain prior to encoding, when this is possible and does not
 conflict with the user's wishes. The output gain should only be
 nonzero when the gain is adjusted after encoding, or when the
 user wishes to adjust the gain for playback while preserving the
 ability to recover the original signal amplitude.

 Although the output gain has enormous range (+/- 128 dB, enough
 to amplify inaudible sounds to the threshold of physical pain),
 most applications can only reasonably use a small portion of this

Terriberry, et al. Expires February 10, 2015 [Page 13]

Internet-Draft Ogg Opus August 2014

 range around zero. The large range serves in part to ensure that
 gain can always be losslessly transferred between OpusHead and
 R128 gain tags (see below) without saturating.

 7. *Channel Mapping Family* (8 bits, unsigned):

 This octet indicates the order and semantic meaning of the output
 channels.

 Each possible value of this octet indicates a mapping family,
 which defines a set of allowed channel counts, and the ordered
 set of channel names for each allowed channel count. The details
 are described in Section 5.1.1.

 8. *Channel Mapping Table*: This table defines the mapping from
 encoded streams to output channels. It is omitted when the
 channel mapping family is 0, but REQUIRED otherwise. Its
 contents are specified in Section 5.1.1.

 All fields in the ID headers are REQUIRED, except for the channel
 mapping table, which is omitted when the channel mapping family is 0.
 Implementations SHOULD reject ID headers which do not contain enough
 data for these fields, even if they contain a valid Magic Signature.
 Future versions of this specification, even backwards-compatible
 versions, might include additional fields in the ID header. If an ID
 header has a compatible major version, but a larger minor version, an
 implementation MUST NOT reject it for containing additional data not
 specified here. However, implementations MAY reject streams in which
 the ID header does not complete on the first page.

5.1.1. Channel Mapping

 An Ogg Opus stream allows mapping one number of Opus streams (N) to a
 possibly larger number of decoded channels (M+N) to yet another
 number of output channels (C), which might be larger or smaller than
 the number of decoded channels. The order and meaning of these
 channels are defined by a channel mapping, which consists of the
 'channel mapping family' octet and, for channel mapping families
 other than family 0, a channel mapping table, as illustrated in
 Figure 2.

Terriberry, et al. Expires February 10, 2015 [Page 14]

Internet-Draft Ogg Opus August 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Stream Count |
 +-+
 | Coupled Count | Channel Mapping... :
 +-+

 Figure 2: Channel Mapping Table

 The fields in the channel mapping table have the following meaning:

 1. *Stream Count* 'N' (8 bits, unsigned):

 This is the total number of streams encoded in each Ogg packet.
 This value is required to correctly parse the packed Opus packets
 inside an Ogg packet, as described in Section 3. This value MUST
 NOT be zero, as without at least one Opus packet with a valid TOC
 sequence, a demuxer cannot recover the duration of an Ogg packet.

 For channel mapping family 0, this value defaults to 1, and is
 not coded.

 2. *Coupled Stream Count* 'M' (8 bits, unsigned): This is the number
 of streams whose decoders should be configured to produce two
 channels. This MUST be no larger than the total number of
 streams, N.

 Each packet in an Opus stream has an internal channel count of 1
 or 2, which can change from packet to packet. This is selected
 by the encoder depending on the bitrate and the audio being
 encoded. The original channel count of the encoder input is not
 preserved by the lossy compression.

 Regardless of the internal channel count, any Opus stream can be
 decoded as mono (a single channel) or stereo (two channels) by
 appropriate initialization of the decoder. The 'coupled stream
 count' field indicates that the first M Opus decoders are to be
 initialized for stereo output, and the remaining N-M decoders are
 to be initialized for mono only. The total number of decoded
 channels, (M+N), MUST be no larger than 255, as there is no way
 to index more channels than that in the channel mapping.

 For channel mapping family 0, this value defaults to C-1 (i.e., 0
 for mono and 1 for stereo), and is not coded.

Terriberry, et al. Expires February 10, 2015 [Page 15]

Internet-Draft Ogg Opus August 2014

 3. *Channel Mapping* (8*C bits): This contains one octet per output
 channel, indicating which decoded channel should be used for each
 one. Let 'index' be the value of this octet for a particular
 output channel. This value MUST either be smaller than (M+N), or
 be the special value 255. If 'index' is less than 2*M, the
 output MUST be taken from decoding stream ('index'/2) as stereo
 and selecting the left channel if 'index' is even, and the right
 channel if 'index' is odd. If 'index' is 2*M or larger, but less
 than 255, the output MUST be taken from decoding stream ('index'-
 M) as mono. If 'index' is 255, the corresponding output channel
 MUST contain pure silence.

 The number of output channels, C, is not constrained to match the
 number of decoded channels (M+N). A single index value MAY
 appear multiple times, i.e., the same decoded channel might be
 mapped to multiple output channels. Some decoded channels might
 not be assigned to any output channel, as well.

 For channel mapping family 0, the first index defaults to 0, and
 if C==2, the second index defaults to 1. Neither index is coded.

 After producing the output channels, the channel mapping family
 determines the semantic meaning of each one. Currently there are
 three defined mapping families, although more may be added.

5.1.1.1. Channel Mapping Family 0

 Allowed numbers of channels: 1 or 2. RTP mapping.

 o 1 channel: monophonic (mono).

 o 2 channels: stereo (left, right).

 Special mapping: This channel mapping value also indicates that the
 contents consists of a single Opus stream that is stereo if and only
 if C==2, with stream index 0 mapped to output channel 0 (mono, or
 left channel) and stream index 1 mapped to output channel 1 (right
 channel) if stereo. When the 'channel mapping family' octet has this
 value, the channel mapping table MUST be omitted from the ID header
 packet.

5.1.1.2. Channel Mapping Family 1

 Allowed numbers of channels: 1...8. Vorbis channel order.

 Each channel is assigned to a speaker location in a conventional
 surround arrangement. Specific locations depend on the number of

Terriberry, et al. Expires February 10, 2015 [Page 16]

Internet-Draft Ogg Opus August 2014

 channels, and are given below in order of the corresponding channel
 indicies.

 o 1 channel: monophonic (mono).

 o 2 channels: stereo (left, right).

 o 3 channels: linear surround (left, center, right)

 o 4 channels: quadraphonic (front left, front right, rear left,
 rear right).

 o 5 channels: 5.0 surround (front left, front center, front right,
 rear left, rear right).

 o 6 channels: 5.1 surround (front left, front center, front right,
 rear left, rear right, LFE).

 o 7 channels: 6.1 surround (front left, front center, front right,
 side left, side right, rear center, LFE).

 o 8 channels: 7.1 surround (front left, front center, front right,
 side left, side right, rear left, rear right, LFE)

 This set of surround options and speaker location orderings is the
 same as those used by the Vorbis codec [vorbis-mapping]. The
 ordering is different from the one used by the WAVE
 [wave-multichannel] and FLAC [flac] formats, so correct ordering
 requires permutation of the output channels when decoding to or
 encoding from those formats. 'LFE' here refers to a Low Frequency
 Effects, often mapped to a subwoofer with no particular spatial
 position. Implementations SHOULD identify 'side' or 'rear' speaker
 locations with 'surround' and 'back' as appropriate when interfacing
 with audio formats or systems which prefer that terminology.

5.1.1.3. Channel Mapping Family 255

 Allowed numbers of channels: 1...255. No defined channel meaning.

 Channels are unidentified. General-purpose players SHOULD NOT
 attempt to play these streams, and offline decoders MAY deinterleave
 the output into separate PCM files, one per channel. Decoders SHOULD
 NOT produce output for channels mapped to stream index 255 (pure
 silence) unless they have no other way to indicate the index of non-
 silent channels.

Terriberry, et al. Expires February 10, 2015 [Page 17]

Internet-Draft Ogg Opus August 2014

5.1.1.4. Undefined Channel Mappings

 The remaining channel mapping families (2...254) are reserved. A
 decoder encountering a reserved channel mapping family value SHOULD
 act as though the value is 255.

5.1.1.5. Downmixing

 An Ogg Opus player MUST play any Ogg Opus stream with a channel
 mapping family of 0 or 1, even if the number of channels does not
 match the physically connected audio hardware. Players SHOULD
 perform channel mixing to increase or reduce the number of channels
 as needed.

 Implementations MAY use the following matricies to implement
 downmixing from multichannel files using Channel Mapping Family 1
 (Section 5.1.1.2), which are known to give acceptable results for
 stereo. Matricies for 3 and 4 channels are normalized so each
 coefficent row sums to 1 to avoid clipping. For 5 or more channels
 they are normalized to 2 as a compromise between clipping and dynamic
 range reduction.

 In these matricies the front left and front right channels are
 generally passed through directly. When a surround channel is split
 between both the left and right stereo channels, coefficients are
 chosen so their squares sum to 1, which helps preserve the perceived
 intensity. Rear channels are mixed more diffusely or attenuated to
 maintain focus on the front channels.

 L output = (0.585786 * left + 0.414214 * center)
 R output = (0.414214 * center + 0.585786 * right)

 Exact coefficient values are 1 and 1/sqrt(2), multiplied by 1/(1 + 1/
 sqrt(2)) for normalization.

 Figure 3: Stereo downmix matrix for the linear surround channel
 mapping

 / \ / \ / FL \
 | L output | | 0.422650 0.000000 0.366025 0.211325 | | FR |
 | R output | = | 0.000000 0.422650 0.211325 0.366025 | | RL |
 \ / \ / \ RR /

 Exact coefficient values are 1, sqrt(3)/2 and 1/2, multiplied by
 1/(1 + sqrt(3)/2 + 1/2) for normalization.

 Figure 4: Stereo downmix matrix for the quadraphonic channel mapping

Terriberry, et al. Expires February 10, 2015 [Page 18]

Internet-Draft Ogg Opus August 2014

 / FL \
 / \ / \ | FC |
 | L | | 0.650802 0.460186 0.000000 0.563611 0.325401 | | FR |
 | R | = | 0.000000 0.460186 0.650802 0.325401 0.563611 | | RL |
 \ / \ / | RR |
 \ /

 Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2,
 multiplied by 2/(1 + 1/sqrt(2) + sqrt(3)/2 + 1/2) for normalization.

 Figure 5: Stereo downmix matrix for the 5.0 surround mapping

 /FL \
 / \ / \ |FC |
 |L| | 0.529067 0.374107 0.000000 0.458186 0.264534 0.374107 | |FR |
 |R| = | 0.000000 0.374107 0.529067 0.264534 0.458186 0.374107 | |RL |
 \ / \ / |RR |
 \LFE/

 Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2,
 multiplied by 2/(1 + 1/sqrt(2) + sqrt(3)/2 + 1/2 + 1/sqrt(2)) for
 normalization.

 Figure 6: Stereo downmix matrix for the 5.1 surround mapping

 / \
 | 0.455310 0.321953 0.000000 0.394310 0.227655 0.278819 0.321953 |
 | 0.000000 0.321953 0.455310 0.227655 0.394310 0.278819 0.321953 |
 \ /

 Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2, 1/2 and
 sqrt(3)/2/sqrt(2), multiplied by 2/(1 + 1/sqrt(2) + sqrt(3)/2 + 1/2 +
 sqrt(3)/2/sqrt(2) + 1/sqrt(2)) for normalization. The coeffients are
 in the same order as in Section 5.1.1.2, and the matricies above.

 Figure 7: Stereo downmix matrix for the 6.1 surround mapping

 / \
 | .388631 .274804 .000000 .336565 .194316 .336565 .194316 .274804 |
 | .000000 .274804 .388631 .194316 .336565 .194316 .336565 .274804 |
 \ /

 Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2,
 multiplied by 2/(2 + 2/sqrt(2) + sqrt(3)) for normalization. The
 coeffients are in the same order as in Section 5.1.1.2, and the
 matricies above.

 Figure 8: Stereo downmix matrix for the 7.1 surround mapping

Terriberry, et al. Expires February 10, 2015 [Page 19]

Internet-Draft Ogg Opus August 2014

5.2. Comment Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 'O' | 'p' | 'u' | 's' |
 +-+
 | 'T' | 'a' | 'g' | 's' |
 +-+
 | Vendor String Length |
 +-+
 | |
 : Vendor String... :
 | |
 +-+
 | User Comment List Length |
 +-+
 | User Comment #0 String Length |
 +-+
 | |
 : User Comment #0 String... :
 | |
 +-+
 | User Comment #1 String Length |
 +-+
 : :

 Figure 9: Comment Header Packet

 The comment header consists of a 64-bit magic signature, followed by
 data in the same format as the [vorbis-comment] header used in Ogg
 Vorbis, except (like Ogg Theora and Speex) the final "framing bit"
 specified in the Vorbis spec is not present.

 1. *Magic Signature*:

 This is an 8-octet (64-bit) field that allows codec
 identification and is human-readable. It contains, in order, the
 magic numbers:

 0x4F 'O'

 0x70 'p'

 0x75 'u'

 0x73 's'

Terriberry, et al. Expires February 10, 2015 [Page 20]

Internet-Draft Ogg Opus August 2014

 0x54 'T'

 0x61 'a'

 0x67 'g'

 0x73 's'

 Starting with "Op" helps distinguish it from audio data packets,
 as this is an invalid TOC sequence.

 2. *Vendor String Length* (32 bits, unsigned, little endian):

 This field gives the length of the following vendor string, in
 octets. It MUST NOT indicate that the vendor string is longer
 than the rest of the packet.

 3. *Vendor String* (variable length, UTF-8 vector):

 This is a simple human-readable tag for vendor information,
 encoded as a UTF-8 string [RFC3629]. No terminating null octet
 is required.

 This tag is intended to identify the codec encoder and
 encapsulation implementations, for tracing differences in
 technical behavior. User-facing encoding applications can use
 the 'ENCODER' user comment tag to identify themselves.

 4. *User Comment List Length* (32 bits, unsigned, little endian):

 This field indicates the number of user-supplied comments. It
 MAY indicate there are zero user-supplied comments, in which case
 there are no additional fields in the packet. It MUST NOT
 indicate that there are so many comments that the comment string
 lengths would require more data than is available in the rest of
 the packet.

 5. *User Comment #i String Length* (32 bits, unsigned, little
 endian):

https://datatracker.ietf.org/doc/html/rfc3629

Terriberry, et al. Expires February 10, 2015 [Page 21]

Internet-Draft Ogg Opus August 2014

 This field gives the length of the following user comment string,
 in octets. There is one for each user comment indicated by the
 'user comment list length' field. It MUST NOT indicate that the
 string is longer than the rest of the packet.

 6. *User Comment #i String* (variable length, UTF-8 vector):

 This field contains a single user comment string. There is one
 for each user comment indicated by the 'user comment list length'
 field.

 The vendor string length and user comment list length are REQUIRED,
 and implementations SHOULD reject comment headers that do not contain
 enough data for these fields, or that do not contain enough data for
 the corresponding vendor string or user comments they describe.
 Making this check before allocating the associated memory to contain
 the data helps prevent a possible Denial-of-Service (DoS) attack from
 small comment headers that claim to contain strings longer than the
 entire packet or more user comments than than could possibly fit in
 the packet.

5.2.1. Tag Definitions

 The user comment strings follow the NAME=value format described by
 [vorbis-comment] with the same recommended tag names: ARTIST, TITLE,
 DATE, ALBUM, and so on.

 Two new comment tags are introduced here:

 An optional gain for track nomalization

 R128_TRACK_GAIN=-573

 representing the volume shift needed to normalize the track's volume
 during isolated playback, in random shuffle, and so on. The gain is
 a Q7.8 fixed point number in dB, as in the ID header's 'output gain'
 field.

 This tag is similar to the REPLAYGAIN_TRACK_GAIN tag in
 Vorbis [replay-gain], except that the normal volume reference is the
 [EBU-R128] standard.

Terriberry, et al. Expires February 10, 2015 [Page 22]

Internet-Draft Ogg Opus August 2014

 An optional gain for album nomalization

 R128_ALBUM_GAIN=111

 representing the volume shift needed to normalize the overall volume
 when played as part of a particular collection of tracks. The gain
 is also a Q7.8 fixed point number in dB, as in the ID header's
 'output gain' field.

 An Ogg Opus file MUST NOT have more than one of each tag, and if
 present their values MUST be an integer from -32768 to 32767,
 inclusive, represented in ASCII with no whitespace. If present,
 R128_TRACK_GAIN and R128_ALBUM_GAIN MUST correctly represent the R128
 normalization gain relative to the 'output gain' field specified in
 the ID header. If a player chooses to make use of the
 R128_TRACK_GAIN tag or the R128_ALBUM_GAIN tag, it MUST apply those
 gains _in addition_ to the 'output gain' value.

 If an encoder wishes to use R128 normalization, and the output gain
 is not otherwise constrained or specified, the encoder SHOULD write
 the R128 gain into the 'output gain' field and store a tag containing
 "R128_TRACK_GAIN=0". That is, it should assume that by default tools
 will respect the 'output gain' field, and not the comment tag. If a
 tool modifies the ID header's 'output gain' field, it MUST also
 update or remove the R128_TRACK_GAIN and R128_ALBUM_GAIN comment tags
 if present.

 To avoid confusion with multiple normalization schemes, an Opus
 comment header SHOULD NOT contain any of the REPLAYGAIN_TRACK_GAIN,
 REPLAYGAIN_TRACK_PEAK, REPLAYGAIN_ALBUM_GAIN, or
 REPLAYGAIN_ALBUM_PEAK tags. [EBU-R128] normalization is preferred to
 the earlier REPLAYGAIN schemes because of its clear definition and
 adoption by industry. PEAK normalizations are difficult to calculate
 reliably for lossy codecs because of variation in excursion heights
 due to decoder differences. In the authors' investigations they were
 not applied consistently or broadly enough to merit inclusion here.

6. Packet Size Limits

 Technically, valid Opus packets can be arbitrarily large due to the
 padding format, although the amount of non-padding data they can
 contain is bounded. These packets might be spread over a similarly
 enormous number of Ogg pages. Encoders SHOULD use no more padding
 than required to make a variable bitrate (VBR) stream constant
 bitrate (CBR). Decoders SHOULD avoid attempting to allocate
 excessive amounts of memory when presented with a very large packet.
 The presence of an extremely large packet in the stream could
 indicate a memory exhaustion attack or stream corruption. Decoders

Terriberry, et al. Expires February 10, 2015 [Page 23]

Internet-Draft Ogg Opus August 2014

 SHOULD reject a packet that is too large to process, and display a
 warning message.

 In an Ogg Opus stream, the largest possible valid packet that does
 not use padding has a size of (61,298*N - 2) octets, or about 60 kB
 per Opus stream. With 255 streams, this is 15,630,988 octets
 (14.9 MB) and can span up to 61,298 Ogg pages, all but one of which
 will have a granule position of -1. This is of course a very extreme
 packet, consisting of 255 streams, each containing 120 ms of audio
 encoded as 2.5 ms frames, each frame using the maximum possible
 number of octets (1275) and stored in the least efficient manner
 allowed (a VBR code 3 Opus packet). Even in such a packet, most of
 the data will be zeros as 2.5 ms frames cannot actually use all
 1275 octets. The largest packet consisting of entirely useful data
 is (15,326*N - 2) octets, or about 15 kB per stream. This
 corresponds to 120 ms of audio encoded as 10 ms frames in either SILK
 or Hybrid mode, but at a data rate of over 1 Mbps, which makes little
 sense for the quality achieved. A more reasonable limit is
 (7,664*N - 2) octets, or about 7.5 kB per stream. This corresponds
 to 120 ms of audio encoded as 20 ms stereo CELT mode frames, with a
 total bitrate just under 511 kbps (not counting the Ogg encapsulation
 overhead). With N=8, the maximum number of channels currently
 defined by mapping family 1, this gives a maximum packet size of
 61,310 octets, or just under 60 kB. This is still quite
 conservative, as it assumes each output channel is taken from one
 decoded channel of a stereo packet. An implementation could
 reasonably choose any of these numbers for its internal limits.

7. Encoder Guidelines

 When encoding Opus files, Ogg encoders should take into account the
 algorithmic delay of the Opus encoder.

 In encoders derived from the reference implementation, the number of
 samples can be queried with:

 opus_encoder_ctl(encoder_state, OPUS_GET_LOOKAHEAD, &delay_samples);

 To achieve good quality in the very first samples of a stream, the
 Ogg encoder MAY use linear predictive coding (LPC) extrapolation
 [linear-prediction] to generate at least 120 extra samples at the
 beginning to avoid the Opus encoder having to encode a discontinuous
 signal. For an input file containing 'length' samples, the Ogg
 encoder SHOULD set the pre-skip header value to
 delay_samples+extra_samples, encode at least
 length+delay_samples+extra_samples samples, and set the granulepos of
 the last page to length+delay_samples+extra_samples. This ensures
 that the encoded file has the same duration as the original, with no

Terriberry, et al. Expires February 10, 2015 [Page 24]

Internet-Draft Ogg Opus August 2014

 time offset. The best way to pad the end of the stream is to also
 use LPC extrapolation, but zero-padding is also acceptable.

7.1. LPC Extrapolation

 The first step in LPC extrapolation is to compute linear prediction
 coefficients. [lpc-sample] When extending the end of the signal,
 order-N (typically with N ranging from 8 to 40) LPC analysis is
 performed on a window near the end of the signal. The last N samples
 are used as memory to an infinite impulse response (IIR) filter.

 The filter is then applied on a zero input to extrapolate the end of
 the signal. Let a(k) be the kth LPC coefficient and x(n) be the nth
 sample of the signal, each new sample past the end of the signal is
 computed as:

 N

 x(n) = \ a(k)*x(n-k)
 /

 k=1

 The process is repeated independently for each channel. It is
 possible to extend the beginning of the signal by applying the same
 process backward in time. When extending the beginning of the
 signal, it is best to apply a "fade in" to the extrapolated signal,
 e.g. by multiplying it by a half-Hanning window [hanning].

7.2. Continuous Chaining

 In some applications, such as Internet radio, it is desirable to cut
 a long stream into smaller chains, e.g. so the comment header can be
 updated. This can be done simply by separating the input streams
 into segments and encoding each segment independently. The drawback
 of this approach is that it creates a small discontinuity at the
 boundary due to the lossy nature of Opus. An encoder MAY avoid this
 discontinuity by using the following procedure:

 1. Encode the last frame of the first segment as an independent
 frame by turning off all forms of inter-frame prediction. De-
 emphasis is allowed.

 2. Set the granulepos of the last page to a point near the end of
 the last frame.

 3. Begin the second segment with a copy of the last frame of the
 first segment.

Terriberry, et al. Expires February 10, 2015 [Page 25]

Internet-Draft Ogg Opus August 2014

 4. Set the pre-skip value of the second stream in such a way as to
 properly join the two streams.

 5. Continue the encoding process normally from there, without any
 reset to the encoder.

 In encoders derived from the reference implementation, inter-frame
 prediction can be turned off by calling:

 opus_encoder_ctl(encoder_state, OPUS_SET_PREDICTION_DISABLED, 1);

 Prediction should be enabled again before resuming normal encoding,
 even after a reset.

8. Implementation Status

 A brief summary of major implementations of this draft is available
 at [1], along with their status.

 [Note to RFC Editor: please remove this entire section before final
 publication per [RFC6982].]

9. Security Considerations

 Implementations of the Opus codec need to take appropriate security
 considerations into account, as outlined in [RFC4732]. This is just
 as much a problem for the container as it is for the codec itself.
 It is extremely important for the decoder to be robust against
 malicious payloads. Malicious payloads must not cause the decoder to
 overrun its allocated memory or to take an excessive amount of
 resources to decode. Although problems in encoders are typically
 rarer, the same applies to the encoder. Malicious audio streams must
 not cause the encoder to misbehave because this would allow an
 attacker to attack transcoding gateways.

 Like most other container formats, Ogg Opus files should not be used
 with insecure ciphers or cipher modes that are vulnerable to known-
 plaintext attacks. Elements such as the Ogg page capture pattern and
 the magic signatures in the ID header and the comment header all have
 easily predictable values, in addition to various elements of the
 codec data itself.

10. Content Type

 An "Ogg Opus file" consists of one or more sequentially multiplexed
 segments, each containing exactly one Ogg Opus stream. The
 RECOMMENDED mime-type for Ogg Opus files is "audio/ogg".

https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc4732

Terriberry, et al. Expires February 10, 2015 [Page 26]

Internet-Draft Ogg Opus August 2014

 If more specificity is desired, one MAY indicate the presence of Opus
 streams using the codecs parameter defined in [RFC6381], e.g.,

 audio/ogg; codecs=opus

 for an Ogg Opus file.

 The RECOMMENDED filename extension for Ogg Opus files is '.opus'.

 When Opus is concurrently multiplexed with other streams in an Ogg
 container, one SHOULD use one of the "audio/ogg", "video/ogg", or
 "application/ogg" mime-types, as defined in [RFC5334]. Such streams
 are not strictly "Ogg Opus files" as described above, since they
 contain more than a single Opus stream per sequentially multiplexed
 segment, e.g. video or multiple audio tracks. In such cases the the
 '.opus' filename extension is NOT RECOMMENDED.

11. IANA Considerations

 This document has no actions for IANA.

12. Acknowledgments

 Thanks to Greg Maxwell, Christopher "Monty" Montgomery, and Jean-Marc
 Valin for their valuable contributions to this document. Additional
 thanks to Andrew D'Addesio, Greg Maxwell, and Vincent Penqeurc'h for
 their feedback based on early implementations.

13. Copying Conditions

 The authors agree to grant third parties the irrevocable right to
 copy, use, and distribute the work, with or without modification, in
 any medium, without royalty, provided that, unless separate
 permission is granted, redistributed modified works do not contain
 misleading author, version, name of work, or endorsement information.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3533] Pfeiffer, S., "The Ogg Encapsulation Format Version 0",
RFC 3533, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc5334
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3533
https://datatracker.ietf.org/doc/html/rfc3629

Terriberry, et al. Expires February 10, 2015 [Page 27]

Internet-Draft Ogg Opus August 2014

 [RFC5334] Goncalves, I., Pfeiffer, S., and C. Montgomery, "Ogg Media
 Types", RFC 5334, September 2008.

 [RFC6381] Gellens, R., Singer, D., and P. Frojdh, "The 'Codecs' and
 'Profiles' Parameters for "Bucket" Media Types", RFC 6381,
 August 2011.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, September 2012.

 [EBU-R128]
 EBU Technical Committee, "Loudness Recommendation EBU
 R128", August 2011, <https://tech.ebu.ch/loudness>.

 [vorbis-comment]
 Montgomery, C., "Ogg Vorbis I Format Specification:
 Comment Field and Header Specification", July 2002,
 <https://www.xiph.org/vorbis/doc/v-comment.html>.

14.2. Informative References

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982, July
 2013.

 [flac] Coalson, J., "FLAC - Free Lossless Audio Codec Format
 Description", January 2008, <https://xiph.org/flac/

format.html>.

 [hanning] Wikipedia, "Hann window", May 2013,
 <https://en.wikipedia.org/wiki/

Hamming_function#Hann_.28Hanning.29_window>.

 [linear-prediction]
 Wikipedia, "Linear Predictive Coding", January 2014,
 <https://en.wikipedia.org/wiki/Linear_predictive_coding>.

 [lpc-sample]
 Degener, J. and C. Bormann, "Autocorrelation LPC coeff
 generation algorithm (Vorbis source code)", November 1994,
 <https://svn.xiph.org/trunk/vorbis/lib/lpc.c>.

https://datatracker.ietf.org/doc/html/rfc5334
https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6716
https://tech.ebu.ch/loudness
https://www.xiph.org/vorbis/doc/v-comment.html
https://datatracker.ietf.org/doc/html/rfc4732
https://datatracker.ietf.org/doc/html/rfc6982
https://xiph.org/flac/format.html
https://xiph.org/flac/format.html
https://en.wikipedia.org/wiki/Hamming_function#Hann_.28Hanning.29_window
https://en.wikipedia.org/wiki/Hamming_function#Hann_.28Hanning.29_window
https://en.wikipedia.org/wiki/Linear_predictive_coding
https://svn.xiph.org/trunk/vorbis/lib/lpc.c

Terriberry, et al. Expires February 10, 2015 [Page 28]

Internet-Draft Ogg Opus August 2014

 [replay-gain]
 Parker, C. and M. Leese, "VorbisComment: Replay Gain",
 June 2009, <https://wiki.xiph.org/

VorbisComment#Replay_Gain>.

 [seeking] Pfeiffer, S., Parker, C., and G. Maxwell, "Granulepos
 Encoding and How Seeking Really Works", May 2012,
 <https://wiki.xiph.org/Seeking>.

 [vorbis-mapping]
 Montgomery, C., "The Vorbis I Specification, Section 4.3.9
 Output Channel Order", January 2010,
 <https://www.xiph.org/vorbis/doc/

Vorbis_I_spec.html#x1-800004.3.9>.

 [vorbis-trim]
 Montgomery, C., "The Vorbis I Specification, Appendix A:
 Embedding Vorbis into an Ogg stream", November 2008,
 <https://xiph.org/vorbis/doc/

Vorbis_I_spec.html#x1-130000A.2>.

 [wave-multichannel]
 Microsoft Corporation, "Multiple Channel Audio Data and
 WAVE Files", March 2007, <http://msdn.microsoft.com/en-

us/windows/hardware/gg463006.aspx>.

14.3. URIs

 [1] https://wiki.xiph.org/OggOpusImplementation

Authors' Addresses

 Timothy B. Terriberry
 Mozilla Corporation
 650 Castro Street
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: tterribe@xiph.org

https://wiki.xiph.org/VorbisComment#Replay_Gain
https://wiki.xiph.org/VorbisComment#Replay_Gain
https://wiki.xiph.org/Seeking
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-800004.3.9
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-800004.3.9
https://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-130000A.2
https://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-130000A.2
http://msdn.microsoft.com/en-us/windows/hardware/gg463006.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463006.aspx
https://wiki.xiph.org/OggOpusImplementation

Terriberry, et al. Expires February 10, 2015 [Page 29]

Internet-Draft Ogg Opus August 2014

 Ron Lee
 Voicetronix
 246 Pulteney Street, Level 1
 Adelaide, SA 5000
 Australia

 Phone: +61 8 8232 9112
 Email: ron@debian.org

 Ralph Giles
 Mozilla Corporation
 163 West Hastings Street
 Vancouver, BC V6B 1H5
 Canada

 Phone: +1 778 785 1540
 Email: giles@xiph.org

Terriberry, et al. Expires February 10, 2015 [Page 30]

