
Network Working Group JM. Valin
Internet-Draft Mozilla Corporation
Updates: 6716 (if approved) K. Vos
Intended status: Standards Track vocTone
Expires: February 18, 2018 August 17, 2017

Updates to the Opus Audio Codec
draft-ietf-codec-opus-update-09

Abstract

 This document addresses minor issues that were found in the
 specification of the Opus audio codec in RFC 6716. It updates the
 nornative decoder implementation included in the appendix of RFC

6716. The changes fixes real and potential security-related issues,
 as well minor quality-related issues.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Valin & Vos Expires February 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Opus Update August 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Stereo State Reset in SILK 3
4. Parsing of the Opus Packet Padding 3
5. Resampler buffer . 4
6. Integer wrap-around in inverse gain computation 6
7. Integer wrap-around in LSF decoding 6
8. Cap on Band Energy . 7
9. Hybrid Folding . 7
10. Downmix to Mono . 9
11. New Test Vectors . 9
12. Security Considerations 10
13. IANA Considerations . 11
14. Acknowledgements . 11
15. Normative References . 11

 Authors' Addresses . 11

1. Introduction

 This document addresses minor issues that were discovered in the
 reference implementation of the Opus codec. Unlike most IETF
 specifications, Opus is defined in RFC 6716 [RFC6716] in terms of a
 normative reference decoder implementation rather than from the
 associated text description. That RFC includes the reference decoder
 implementation as Appendix A. That's why only issues affecting the
 decoder are listed here. An up-to-date implementation of the Opus
 encoder can be found at <https://opus-codec.org/>.

 Some of the changes in this document update normative behaviour in a
 way that requires new test vectors. The English text of the
 specification is unaffected, only the C implementation is. The
 updated specification remains fully compatible with the original
 specification.

 Note: due to RFC formatting conventions, lines exceeding the column
 width in the patch are split using a backslash character. The
 backslashes at the end of a line and the white space at the beginning
 of the following line are not part of the patch. A properly
 formatted patch including all changes is available at
 <https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-

update-00.patch> and has a SHA-1 hash of
 029e3aa88fc342c91e67a21e7bfbc9458661cd5f.

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://opus-codec.org/
https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-update-00.patch
https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-update-00.patch

Valin & Vos Expires February 18, 2018 [Page 2]

Internet-Draft Opus Update August 2017

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Stereo State Reset in SILK

 The reference implementation does not reinitialize the stereo state
 during a mode switch. The old stereo memory can produce a brief
 impulse (i.e. single sample) in the decoded audio. This can be fixed
 by changing silk/dec_API.c at line 72:

 <CODE BEGINS>
 for(n = 0; n < DECODER_NUM_CHANNELS; n++) {
 ret = silk_init_decoder(&channel_state[n]);
 }
 + silk_memset(&((silk_decoder *)decState)->sStereo, 0,
 + sizeof(((silk_decoder *)decState)->sStereo));
 + /* Not strictly needed, but it's cleaner that way */
 + ((silk_decoder *)decState)->prev_decode_only_middle = 0;

 return ret;
 }
 <CODE ENDS>

 This change affects the normative output of the decoder, but the
 amount of change is within the tolerance and too small to make the
 testvector check fail.

4. Parsing of the Opus Packet Padding

 It was discovered that some invalid packets of very large size could
 trigger an out-of-bounds read in the Opus packet parsing code
 responsible for padding. This is due to an integer overflow if the
 signaled padding exceeds 2^31-1 bytes (the actual packet may be
 smaller). The code can be fixed by decrementing the (signed) len
 value, instead of incrementing a separate padding counter. This is
 done by applying the following changes at line 596 of src/
 opus_decoder.c:

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Valin & Vos Expires February 18, 2018 [Page 3]

Internet-Draft Opus Update August 2017

 <CODE BEGINS>
 /* Padding flag is bit 6 */
 if (ch&0x40)
 {
 - int padding=0;
 int p;
 do {
 if (len<=0)
 return OPUS_INVALID_PACKET;
 p = *data++;
 len--;
 - padding += p==255 ? 254: p;
 + len -= p==255 ? 254: p;
 } while (p==255);
 - len -= padding;
 }
 <CODE ENDS>

 This packet parsing issue is limited to reading memory up to about 60
 kB beyond the compressed buffer. This can only be triggered by a
 compressed packet more than about 16 MB long, so it's not a problem
 for RTP. In theory, it could crash a file decoder (e.g. Opus in
 Ogg) if the memory just after the incoming packet is out-of-range,
 but our attempts to trigger such a crash in a production application
 built using an affected version of the Opus decoder failed.

5. Resampler buffer

 The SILK resampler had the following issues:

 1. The calls to memcpy() were using sizeof(opus_int32), but the type
 of the local buffer was opus_int16.

 2. Because the size was wrong, this potentially allowed the source
 and destination regions of the memcpy() to overlap on the copy
 from "buf" to "buf". We believe that nSamplesIn (number of input
 samples) is at least fs_in_khZ (sampling rate in kHz), which is
 at least 8. Since RESAMPLER_ORDER_FIR_12 is only 8, that should
 not be a problem once the type size is fixed.

 3. The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
 data stored in it was actually twice the input batch size
 (nSamplesIn<<1).

 The allocated buffers involved (buf and S->sFIR) are actually larger
 than they need to be for the batch size used, so no out-of-bounds
 read or write is possible. Therefore the bug cannot be exploited.

Valin & Vos Expires February 18, 2018 [Page 4]

Internet-Draft Opus Update August 2017

 The code can be fixed by applying the following changes to line 78 of
 silk/resampler_private_IIR_FIR.c:

 <CODE BEGINS>
)
 {
 silk_resampler_state_struct *S = \
 (silk_resampler_state_struct *)SS;
 opus_int32 nSamplesIn;
 opus_int32 max_index_Q16, index_increment_Q16;
 - opus_int16 buf[RESAMPLER_MAX_BATCH_SIZE_IN + \
 RESAMPLER_ORDER_FIR_12];
 + opus_int16 buf[2*RESAMPLER_MAX_BATCH_SIZE_IN + \
 RESAMPLER_ORDER_FIR_12];

 /* Copy buffered samples to start of buffer */
 - silk_memcpy(buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
 * sizeof(opus_int32));
 + silk_memcpy(buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
 * sizeof(opus_int16));

 /* Iterate over blocks of frameSizeIn input samples */
 index_increment_Q16 = S->invRatio_Q16;
 while(1) {
 nSamplesIn = silk_min(inLen, S->batchSize);

 /* Upsample 2x */
 silk_resampler_private_up2_HQ(S->sIIR, &buf[\
 RESAMPLER_ORDER_FIR_12], in, nSamplesIn);

 max_index_Q16 = silk_LSHIFT32(nSamplesIn, 16 + 1 \
); /* + 1 because 2x upsampling */
 out = silk_resampler_private_IIR_FIR_INTERPOL(out, \
 buf, max_index_Q16, index_increment_Q16);
 in += nSamplesIn;
 inLen -= nSamplesIn;

 if(inLen > 0) {
 /* More iterations to do; copy last part of \
 filtered signal to beginning of buffer */
 - silk_memcpy(buf, &buf[nSamplesIn << 1], \
 RESAMPLER_ORDER_FIR_12 * sizeof(opus_int32));
 + silk_memmove(buf, &buf[nSamplesIn << 1], \
 RESAMPLER_ORDER_FIR_12 * sizeof(opus_int16));
 } else {
 break;
 }
 }

Valin & Vos Expires February 18, 2018 [Page 5]

Internet-Draft Opus Update August 2017

 /* Copy last part of filtered signal to the state for \
 the next call */
 - silk_memcpy(S->sFIR, &buf[nSamplesIn << 1], \
 RESAMPLER_ORDER_FIR_12 * sizeof(opus_int32));
 + silk_memcpy(S->sFIR, &buf[nSamplesIn << 1], \
 RESAMPLER_ORDER_FIR_12 * sizeof(opus_int16));
 }
 <CODE ENDS>

6. Integer wrap-around in inverse gain computation

 It was discovered through decoder fuzzing that some bitstreams could
 produce integer values exceeding 32-bits in
 LPC_inverse_pred_gain_QA(), causing a wrap-around. Although the
 authors are not aware of any way to exploit the bug, the C standard
 considers the behavior as undefined. The following patch to line 87
 of silk/LPC_inv_pred_gain.c detects values that do not fit in a
 32-bit integer and considers the corresponding filters unstable:

 <CODE BEGINS>
 /* Update AR coefficient */
 for(n = 0; n < k; n++) {
 - tmp_QA = Aold_QA[n] - MUL32_FRAC_Q(\
 Aold_QA[k - n - 1], rc_Q31, 31);
 - Anew_QA[n] = MUL32_FRAC_Q(tmp_QA, rc_mult2 , mult2Q);
 + opus_int64 tmp64;
 + tmp_QA = silk_SUB_SAT32(Aold_QA[n], MUL32_FRAC_Q(\
 Aold_QA[k - n - 1], rc_Q31, 31));
 + tmp64 = silk_RSHIFT_ROUND64(silk_SMULL(tmp_QA, \
 rc_mult2), mult2Q);
 + if(tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN) {
 + return 0;
 + }
 + Anew_QA[n] = (opus_int32)tmp64;
 }
 <CODE ENDS>

7. Integer wrap-around in LSF decoding

 It was discovered -- also from decoder fuzzing -- that an integer
 wrap-around could occur when decoding bitstreams with extremely large
 values for the high LSF parameters. The end result of the wrap-
 around is an illegal read access on the stack, which the authors do
 not believe is exploitable but should nonetheless be fixed. The
 following patch to line 137 of silk/NLSF_stabilize.c prevents the
 problem:

Valin & Vos Expires February 18, 2018 [Page 6]

Internet-Draft Opus Update August 2017

 <CODE BEGINS>
 /* Keep delta_min distance between the NLSFs */
 for(i = 1; i < L; i++)
 - NLSF_Q15[i] = silk_max_int(NLSF_Q15[i], \
 NLSF_Q15[i-1] + NDeltaMin_Q15[i]);
 + NLSF_Q15[i] = silk_max_int(NLSF_Q15[i], \
 silk_ADD_SAT16(NLSF_Q15[i-1], NDeltaMin_Q15[i]));

 /* Last NLSF should be no higher than 1 - NDeltaMin[L] */
 <CODE ENDS>

8. Cap on Band Energy

 On extreme bit-streams, it is possible for log-domain band energy
 levels to exceed the maximum single-precision floating point value
 once converted to a linear scale. This would later cause the decoded
 values to be NaN (not a number), possibly causing problems in the
 software using the PCM values. This can be avoided with the
 following patch to line 552 of celt/quant_bands.c:

 <CODE BEGINS>
 {
 opus_val16 lg = ADD16(oldEBands[i+c*m->nbEBands],
 SHL16((opus_val16)eMeans[i],6));
 + lg = MIN32(QCONST32(32.f, 16), lg);
 eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4);
 }
 for (;i<m->nbEBands;i++)
 <CODE ENDS>

9. Hybrid Folding

 When encoding in hybrid mode at low bitrate, we sometimes only have
 enough bits to code a single CELT band (8 - 9.6 kHz). When that
 happens, the second band (CELT band 18, from 9.6 to 12 kHz) cannot
 use folding because it is wider than the amount already coded, and
 falls back to white noise. Because it can also happen on transients
 (e.g. stops), it can cause audible pre-echo.

 To address the issue, we change the folding behavior so that it is
 never forced to fall back to LCG due to the first band not containing
 enough coefficients to fold onto the second band. This is achieved
 by simply repeating part of the first band in the folding of the
 second band. This changes the code in celt/bands.c around line 1237:

Valin & Vos Expires February 18, 2018 [Page 7]

Internet-Draft Opus Update August 2017

 <CODE BEGINS>
 b = 0;
 }

 - if (resynth && M*eBands[i]-N >= M*eBands[start] && \
 (update_lowband || lowband_offset==0))
 + if (resynth && (M*eBands[i]-N >= M*eBands[start] || \
 i==start+1) && (update_lowband || lowband_offset==0))
 lowband_offset = i;

 + if (i == start+1)
 + {
 + int n1, n2;
 + int offset;
 + n1 = M*(eBands[start+1]-eBands[start]);
 + n2 = M*(eBands[start+2]-eBands[start+1]);
 + offset = M*eBands[start];
 + /* Duplicate enough of the first band folding data to \
 be able to fold the second band.
 + Copies no data for CELT-only mode. */
 + OPUS_COPY(&norm[offset+n1], &norm[offset+2*n1 - n2], n2-n1);
 + if (C==2)
 + OPUS_COPY(&norm2[offset+n1], &norm2[offset+2*n1 - n2], \
 n2-n1);
 + }
 +
 tf_change = tf_res[i];
 if (i>=m->effEBands)
 {
 <CODE ENDS>

 as well as line 1260:

 <CODE BEGINS>
 fold_start = lowband_offset;
 while(M*eBands[--fold_start] > effective_lowband);
 fold_end = lowband_offset-1;
 - while(M*eBands[++fold_end] < effective_lowband+N);
 + while(++fold_end < i && M*eBands[fold_end] < \
 effective_lowband+N);
 x_cm = y_cm = 0;
 fold_i = fold_start; do {
 x_cm |= collapse_masks[fold_i*C+0];

 <CODE ENDS>

 The fix does not impact compatibility, because the improvement does
 not depend on the encoder doing anything special. There is also no

Valin & Vos Expires February 18, 2018 [Page 8]

Internet-Draft Opus Update August 2017

 reasonable way for an encoder to use the original behavior to improve
 quality over the proposed change.

10. Downmix to Mono

 The last issue is not strictly a bug, but it is an issue that has
 been reported when downmixing an Opus decoded stream to mono, whether
 this is done inside the decoder or as a post-processing step on the
 stereo decoder output. Opus intensity stereo allows optionally
 coding the two channels 180-degrees out of phase on a per-band basis.
 This provides better stereo quality than forcing the two channels to
 be in phase, but when the output is downmixed to mono, the energy in
 the affected bands is cancelled sometimes resulting in audible
 artifacts.

 As a work-around for this issue, the decoder MAY choose not to apply
 the 180-degree phase shift. This can be useful when downmixing to
 mono inside or outside of the decoder (e.g. user-controllable).

11. New Test Vectors

 Changes in Section 9 and Section 10 have sufficient impact on the
 testvectors to make them fail. For this reason, this document also
 updates the Opus test vectors. The new test vectors now include two
 decoded outputs for the same bitstream. The outputs with suffix 'm'
 do not apply the CELT 180-degree phase shift as allowed in

Section 10, while the outputs without the suffix do. An
 implementation is compliant as long as it passes either set of
 vectors.

 Any Opus implementation that passes either the original test vectors
 from RFC 6716 [RFC6716] or one of the new sets of test vectors is
 compliant with the Opus specification. However, newer
 implementations SHOULD be based on the new test vectors rather than
 the old ones.

 The new test vectors are located at
 <https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-

newvectors-00.tar.gz>. The SHA-1 hashes of the test vectors are:

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-newvectors-00.tar.gz
https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-newvectors-00.tar.gz

Valin & Vos Expires February 18, 2018 [Page 9]

Internet-Draft Opus Update August 2017

 e49b2862ceec7324790ed8019eb9744596d5be01 testvector01.bit
 b809795ae1bcd606049d76de4ad24236257135e0 testvector02.bit
 e0c4ecaeab44d35a2f5b6575cd996848e5ee2acc testvector03.bit
 a0f870cbe14ebb71fa9066ef3ee96e59c9a75187 testvector04.bit
 9b3d92b48b965dfe9edf7b8a85edd4309f8cf7c8 testvector05.bit
 28e66769ab17e17f72875283c14b19690cbc4e57 testvector06.bit
 bacf467be3215fc7ec288f29e2477de1192947a6 testvector07.bit
 ddbe08b688bbf934071f3893cd0030ce48dba12f testvector08.bit
 3932d9d61944dab1201645b8eeaad595d5705ecb testvector09.bit
 521eb2a1e0cc9c31b8b740673307c2d3b10c1900 testvector10.bit
 6bc8f3146fcb96450c901b16c3d464ccdf4d5d96 testvector11.bit
 338c3f1b4b97226bc60bc41038becbc6de06b28f testvector12.bit
 f5ef93884da6a814d311027918e9afc6f2e5c2c8 testvector01.dec
 48ac1ff1995250a756e1e17bd32acefa8cd2b820 testvector02.dec
 d15567e919db2d0e818727092c0af8dd9df23c95 testvector03.dec
 1249dd28f5bd1e39a66fd6d99449dca7a8316342 testvector04.dec
 b85675d81deef84a112c466cdff3b7aaa1d2fc76 testvector05.dec
 55f0b191e90bfa6f98b50d01a64b44255cb4813e testvector06.dec
 61e8b357ab090b1801eeb578a28a6ae935e25b7b testvector07.dec
 a58539ee5321453b2ddf4c0f2500e856b3966862 testvector08.dec
 bb96aad2cde188555862b7bbb3af6133851ef8f4 testvector09.dec
 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a testvector10.dec
 b1fff72b74666e3027801b29dbc48b31f80dee0d testvector11.dec
 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1 testvector12.dec
 1e7d984ea3fbb16ba998aea761f4893fbdb30157 testvector01m.dec
 48ac1ff1995250a756e1e17bd32acefa8cd2b820 testvector02m.dec
 d15567e919db2d0e818727092c0af8dd9df23c95 testvector03m.dec
 1249dd28f5bd1e39a66fd6d99449dca7a8316342 testvector04m.dec
 d70b0bad431e7d463bc3da49bd2d49f1c6d0a530 testvector05m.dec
 6ac1648c3174c95fada565161a6c78bdbe59c77d testvector06m.dec
 fc5e2f709693738324fb4c8bdc0dad6dda04e713 testvector07m.dec
 aad2ba397bf1b6a18e8e09b50e4b19627d479f00 testvector08m.dec
 6feb7a7b9d7cdc1383baf8d5739e2a514bd0ba08 testvector09m.dec
 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a testvector10m.dec
 fd3d3a7b0dfbdab98d37ed9aa04b659b9fefbd18 testvector11m.dec
 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1 testvector12m.dec

 Note that the decoder input bitstream files (.bit) are unchanged.

12. Security Considerations

 This document fixes two security issues reported on Opus and that
 affect the reference implementation in RFC 6716 [RFC6716]: CVE-
 2013-0899 <https://nvd.nist.gov/vuln/detail/CVE-2013-0899> and CVE-
 2017-0381 <https://nvd.nist.gov/vuln/detail/CVE-2017-0381>. CVE-
 2013-0899 is fixed by Section 4 and could theoretically cause an
 information leak, but the leaked information would at the very least

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://nvd.nist.gov/vuln/detail/CVE-2013-0899
https://nvd.nist.gov/vuln/detail/CVE-2017-0381

Valin & Vos Expires February 18, 2018 [Page 10]

Internet-Draft Opus Update August 2017

 go through the decoder process before being accessible to the
 attacker. Also, the bug can only be triggered by Opus packets at
 least 24 MB in size. CVE-2017-0381 is fixed by Section 7 and can
 only result in a 16-bit out-of-bounds read to a fixed location 256
 bytes before a constant table. That location would normally be part
 of an executable's read-only data segment, but if that is not the
 case, the bug could at worst results in either a crash or the leakage
 of 16 bits of information from that fixed memory location (if the
 attacker has access to the decoded output). Despite the claims of
 the CVE, the bug cannot results in arbitrary code execution. Beyond
 the two fixed CVEs, this document adds no new security considerations
 on top of RFC 6716 [RFC6716].

13. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

14. Acknowledgements

 We would like to thank Juri Aedla for reporting the issue with the
 parsing of the Opus padding. Thanks to Felicia Lim for reporting the
 LSF integer overflow issue. Also, thanks to Tina le Grand, Jonathan
 Lennox, and Mark Harris for their feedback on this document.

15. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
 September 2012, <https://www.rfc-editor.org/info/rfc6716>.

Authors' Addresses

 Jean-Marc Valin
 Mozilla Corporation
 331 E. Evelyn Avenue
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: jmvalin@jmvalin.ca

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6716
https://www.rfc-editor.org/info/rfc6716

Valin & Vos Expires February 18, 2018 [Page 11]

Internet-Draft Opus Update August 2017

 Koen Vos
 vocTone

 Email: koenvos74@gmail.com

Valin & Vos Expires February 18, 2018 [Page 12]

