
Congestion Exposure (ConEx) M. Kuehlewind, Ed.
Internet-Draft ETH Zurich
Intended status: Experimental R. Scheffenegger
Expires: October 24, 2015 NetApp, Inc.
 April 22, 2015

TCP modifications for Congestion Exposure
draft-ietf-conex-tcp-modifications-08

Abstract

 Congestion Exposure (ConEx) is a mechanism by which senders inform
 the network about expected congestion based on congestion feedback
 from previous packets in the same flow. This document describes the
 necessary modifications to use ConEx with the Transmission Control
 Protocol (TCP).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 24, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP Modifications for ConEx April 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. Sender-side Modifications 3
3. Counting congestion . 4
3.1. Loss Detection . 5
3.1.1. Without SACK Support 6

3.2. ECN . 7
3.2.1. Accurate ECN feedback 9
3.2.2. Classic ECN support 9

4. Setting the ConEx Flags 10
4.1. Setting the E or the L Flag 11
4.2. Setting the Credit Flag 11

5. Loss of ConEx information 14
6. Timeliness of the ConEx Signals 14
7. Acknowledgements . 15
8. IANA Considerations . 15
9. Security Considerations 15
10. References . 16
10.1. Normative References 16
10.2. Informative References 16

Appendix A. Revision history 17
 Authors' Addresses . 18

1. Introduction

 Congestion Exposure (ConEx) is a mechanism by which senders inform
 the network about expected congestion based on congestion feedback
 from previous packets in the same flow. ConEx concepts and use cases
 are further explained in [RFC6789]. The abstract ConEx mechanism is
 explained in [draft-ietf-conex-abstract-mech]. This document
 describes the necessary modifications to use ConEx with the
 Transmission Control Protocol (TCP).

 The markings for ConEx signaling are defined in the ConEx Destination
 Option (CDO) for IPv6 [draft-ietf-conex-destopt]. Specifically, the
 use of four flags is defined: X (ConEx-capable), L (loss
 experienced), E (ECN experienced) and C (credit).

 ConEx signaling is based on loss or Explicit Congestion Notification
 (ECN) marks [RFC3168] as congestion indications. The sender collects
 this congestion information based on existing TCP feedback mechanisms
 from the receiver to the sender. No changes are needed at the
 receiver to implement ConEx signaling. Therefore no additional

https://datatracker.ietf.org/doc/html/rfc6789
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech
https://datatracker.ietf.org/doc/html/draft-ietf-conex-destopt
https://datatracker.ietf.org/doc/html/rfc3168

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 2]

Internet-Draft TCP Modifications for ConEx April 2015

 negotiation is needed to implement and use ConEx at the sender. This
 document specifies the sender's actions that are needed to provide
 meaningful ConEx information to the network.

Section 2 provides an overview of the modifications needed for TCP
 senders to implement ConEx. First congestion information has to be
 extracted from TCP's loss or ECN feedback as described in section 3.

Section 4 details how to set the CDO marking based on this congestion
 information. Section 5 discusses loss of packets carrying ConEx
 information. Section 6 discusses timeliness of the ConEx feedback
 signal, given congestion is a temporary state.

 This document describes congestion accounting for TCP with and
 without the Selective Acknowledgment (SACK) extension [RFC2018] (in

section 3.1). However, ConEx benefits from the more accurate
 information that SACK provides about the number of bytes dropped in
 the network. It is therefore preferable to use the SACK extension
 when using TCP with ConEx. The detailed mechanism to set the L flag
 in response to loss-based congestion feedback signal is given in

section 4.1.

 Whereas loss has to be minimized, ECN can provide more fine-grained
 feedback information. ConEx-based traffic measurement or management
 mechanisms could benefit from this. Unfortunately, the current ECN
 feedback mechanism does not reflect multiple congestion markings if
 they occur within the same Round-Trip Time (RTT). A more accurate
 feedback extension to ECN (AccECN) is proposed in a separate document
 [draft-kuehlewind-tcpm-accurate-ecn], as this is also useful for
 other mechanisms.

 Congestion accounting for both classic ECN feedback and AccECN
 feedback is explained in detail in section 3.2. Setting the E flag
 in response to ECN-based congestion feedback is again detailed in

section 4.1.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Sender-side Modifications

 This section gives an overview of actions that need to be taken by a
 TCP sender modified to use ConEx signaling.

 In the TCP handshake, a ConEx sender MUST negotiate for SACK and ECN
 preferably with AccECN feedback. Therefore a ConEx sender MUST also

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn
https://datatracker.ietf.org/doc/html/rfc2119

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 3]

Internet-Draft TCP Modifications for ConEx April 2015

 implement SACK and ECN. Depending on the capability of the receiver,
 the following operation modes exist:

 o SACK-accECN-ConEx (SACK and accurate ECN feedback)

 o SACK-ECN-ConEx (SACK and 'classic' instead of accurate ECN)

 o accECN-ConEx (no SACK but accurate ECN feedback)

 o ECN-ConEx (no SACK and no accurate ECN feedback but 'classic' ECN)

 o SACK-ConEx (SACK but no ECN at all)

 o Basic-ConEx (neither SACK nor ECN)

 A ConEx sender MUST expose all congestion information to the network
 according to the congestion information received by ECN or based on
 loss information provided by the TCP feedback loop. A TCP sender
 SHOULD count congestion byte-wise (rather than packet-wise; see next
 paragraph). After any congestion notification, a sender MUST mark
 subsequent packets with the appropriate ConEx flag in the IP header.
 Furthermore, a ConEx sender must send enough credit to cover all
 experienced congestion for the connection so far, as well as the risk
 of congestion for the current transmission (see Section 4.2).

 With SACK the number of lost payload bytes is known, but not the
 number of packets carrying these bytes. With classic ECN only an
 indication is given that a marking occurred but not the exact number
 of payload bytes nor packets. As network congestion is usually byte-
 congestion [RFC7141], the byte-size of a packet marked with a CDO
 flag is defined to represent that number of bytes of congestion
 signalling [draft-ietf-conex-destopt]. Therefore the exact number of
 bytes should be taken into account, if available, to make the ConEx
 signal as exact as possible.

 Detailed mechanisms for congestion counting in each operation mode
 are described in the next section.

3. Counting congestion

 A ConEx TCP sender maintains two counters: one that counts congestion
 based on the information retrieved by loss detection, and a second
 that accounts for ECN based congestion feedback. These counters hold
 the number of outstanding bytes that should be ConEx marked with
 respectively the E flag or the L flag in subsequent packets.

https://datatracker.ietf.org/doc/html/rfc7141
https://datatracker.ietf.org/doc/html/draft-ietf-conex-destopt

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 4]

Internet-Draft TCP Modifications for ConEx April 2015

 The outstanding bytes for congestion indications based on loss are
 maintained in the loss exposure gauge (LEG), as explained in

Section 3.1.

 The outstanding bytes counted based on ECN feedback information are
 maintained in the congestion exposure gauge (CEG), as explained in

Section 3.2.

 When the sender sends a ConEx capable packet with the E or L flag set
 it reduces the respective counter by the byte-size of the packet.
 This is explained for both counters in Section 4.1. Usually all
 bytes of an IP packet must be counted. Therefore the sender SHOULD
 take the payload and headers into account, up to and including the IP
 header.

 If equal-sized packets, or at least equally distributed packet sizes
 can be assumed, the sender MAY only add and subtract TCP payload
 bytes. In this case there should be about the same number of ConEx
 marked packets as the original packets that were causing the
 congestion. Thus both contain about the same number of header bytes
 so they will cancel out. This case is assumed for simplicity in the
 following sections.

 Otherwise, if a sender sends different sized packets (with unequally
 distributed packet sizes), the sender needs to memorize or estimate
 the number of lost or ECN-marked packets. A sender might be able to
 reconstruct the number of packets and thus the header bytes if the
 packet sizes of all packets that were sent during the last RTT are
 known. Otherwise, if no additional information is available, the
 worst case number of packets and thus header bytes should be
 estimated, e.g. based on the minimum packet size (of all packets sent
 in the last RTT). If the number of newly sent-out packets with the
 ConEx L or E flag set is smaller (or larger) than this estimated
 number of lost/ECN-marked packets, the additional header bytes should
 be added to (or can be subtracted from) the respective gauge.

3.1. Loss Detection

 This section applies whether or not SACK support is available. The
 following subsection in addition handles the case when SACK is not
 available.

 A TCP sender detects losses and subsequently retransmits the lost
 data. Therefore, ConEx sender can simply set the ConEx L flag on all
 retransmissions in order to at least cover the amount of bytes lost.
 If this aprroach is taken, no LEG is needed.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 5]

Internet-Draft TCP Modifications for ConEx April 2015

 However, any retransmission may be spurious. In this case more bytes
 have been marked than necessary. To compensate this effect a ConEx
 sender can maintain a local signed counter, the (LEG), that indicats
 the number of outstanding bytes to be sent with the ConEx L flag and
 also can become negative. Using the LEG, when a TCP sender decides
 that a data segment needs to be retransmitted, it will increase LEG
 by the size of the TCP payload bytes in the retransmission (assuming
 equal sized segments such that the retransmitted packet will have the
 same number of header bytes as the original ones) and reduce the LEG
 as described in section Section 4. Further to accommodate spurious
 restransmission, a ConEx sender SHOULD make use of heuristics to
 detect such spurious retransmissions (e.g. F-RTO [RFC5682], DSACK
 [RFC3708], and Eifel [RFC3522], [RFC4015]). When such a heuristic
 has determined that a certain number of packets were retransmitted
 erroneously, the ConEx sender subtracts the payload size of these TCP
 packets from LEG.

3.1.1. Without SACK Support

 If multiple losses occur within one RTT and SACK is not used, it may
 take several RTTs until all lost data is retransmitted. With the
 scheme described above, the ConEx information will be delayed
 considerably, but timeliness is important for ConEx. However, for
 ConEx it is not important to know which data got lost but only how
 much. During the first RTT after the initial loss detection, the
 amount of received data and thus also the amount of lost data can be
 estimated based on the number of received ACKs. Therefore a ConEx
 sender can use the following algorithm to estimated the number of
 lost bytes with an additional delay of one RTT using an additional
 Loss Estimation Counter (LEC):

 flight_bytes: current flight size in bytes
 retransmit_bytes: payload size of the retransmission

 At the first retransmission in a congestion event LEC is set:

 LEC = flight_bytes - 3*SMSS

 (At this point of time in the transmission, in the worst case,
 all packets in flight minus three that trigged the dupACks
 could have been lost.)

https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3708
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc4015

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 6]

Internet-Draft TCP Modifications for ConEx April 2015

 Then during the first RTT of the congestion event:

 For each retransmission:
 LEG += retransmit_bytes
 LEC -= retransmit_bytes

 For each ACK:
 LEC -= SMSS

 After one RTT:

 LEG += LEC

 (The LEC now estimates the number of outstanding bytes
 that should be ConEx L marked.)

 After the first RTT for each following retransmissions:

 if (LEC > 0): LEC -= retransmit_bytes
 else if (LEC==0): LEG += retransmit_bytes

 if (LEC < 0): LEG += -LEC

 (The LEG is not increased for those bytes that were
 already counted.)

3.2. ECN

 ECN [RFC3168] is an IP/TCP mechanism that allows network nodes to
 mark packets with the Congestion Experienced (CE) mark instead of
 dropping them when congestion occurs.

 A receiver might support 'classic' ECN, the more accurate ECN
 feedback scheme (AccECN), or neither. In the case that ECN is not
 supported for a connection, of course, no ECN marks will occur; thus
 the sender will never set the E flag. Otherwise, a ConEx sender
 needs to maintain a signed counter, the congestion exposure gauge
 (CEG), for the number of outstanding bytes that have to be ConEx
 marked with the E flag.

 The CEG is increased when ECN information is received from an ECN-
 capable receiver supporting the 'classic' ECN scheme or the accurate
 ECN feedback scheme. When the ConEx sender receives an ACK
 indicating one or more segments were received with a CE mark, CEG is
 increased by the appropriate number of bytes as described further
 below.

https://datatracker.ietf.org/doc/html/rfc3168

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 7]

Internet-Draft TCP Modifications for ConEx April 2015

 Unfortunately in case of duplicate acknowledgements the number of
 newly acknowledged bytes will be zero even though (CE marked) data
 has been received. Therefore, we increase the CEG by DeliveredData,
 as defined below:

 DeliveredData = acked_bytes + SACK_diff + (is_dup)*1SMSS -
 (is_after_dup)*num_dup*1SMSS +

 DeliveredData covers the number of bytes that has been newly
 delivered to the receiver. Therefore on each arrival of an ACK,
 DeliveredData will be increased by the newly acknowledged bytes
 (acked_bytes) as indicated by the current ACK, relative to all past
 ACKs. The formula depends on whether SACK is available: if SACK is
 not avaialble SACK_diff is always zero, whereas is ACK information is
 available is_dup and is_after_dup are always zero.

 With SACK, DeliveredData is increased by the number of bytes provided
 by (new) SACK information (SACK_diff). Note, if less unacknowledged
 bytes are announced in the new SACK information than in the previous
 ACK, SACK_diff can be negative. In this case, data is newly
 acknowledged (in acked_bytes), that has previously already been
 accumulated into DeliveredData based on SACK information.

 Otherwise without SACK, DeliveredData is increased by 1 SMSS on
 duplicate acknowledgements as duplicate acknowledgements do not
 acknowlegde any new data (and acked_bytes will be zero). For the
 subsequent partial or full ACK, acked_bytes cover all newly
 acknowledged bytes including the ones that where already accounted
 which the receiption of any duplicate acknowledgement. Therefore
 DeliveredData is reduced by one SMSS for each preceding duplicate
 ACK. Consequently, is_dup is one if the current ACK is a duplicated
 ACK without SACK, and zero otherwise. is_after_dup is only one for
 the next full or partial ACK after a number of duplicated ACKs
 without SACK and num_dup counts the number of duplicated ACKs in a
 row (which usually is 3 or more).

 With classic ECN, one congestion marked packet causes continuous
 congestion feedback for a whole round trip, thus hiding the arrival
 of any further congestion marked packets during that round trip. The
 more accurate ECN feedback scheme (AccECN) is needed to ensure that
 feedback properly reflects the extent of congestion marking. The two
 cases, with and without a receiver capable of AccECN, are discussed
 in the following sections.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 8]

Internet-Draft TCP Modifications for ConEx April 2015

3.2.1. Accurate ECN feedback

 With a more accurate ECN feedback scheme (AccECN) either the number
 of marked packets or the number of marked bytes is known. In the
 latter case the CEG can directly be increased by the number of marked
 bytes. Otherwise if D is assumed to be the number of marks, the
 gauge (CEG) will be conservatively increased by one SMSS for each
 marking or at max the number of newly acknowledged bytes:

 CEG += min(SMSS*D, DeliveredData)

3.2.2. Classic ECN support

 With classic ECN, as soon as a CE mark is seen at the receiver, it
 will feed this information back to the sender by setting the Echo
 Congestion Experienced (ECE) flag in the TCP header of subsequent
 ACKs. Once the sender receives the first ECE of a congestion
 notification, it sets the CWR flag in the TCP header once. When this
 packet with Congestion Window Reduced (CWR) flag in the TCP header
 arrives at the receiver, acknowledging its first ECE feedback, the
 receiver stops setting ECE.

 If the ConEx sender fully conforms to the semantics of ECN signaling
 as defined by [RFC3168], it will receive one full RTT of ACKs with
 the ECE flag set whenever at least one CE mark was received by the
 receiver. As the sender cannot estimate how many packets have
 actually been CE marked during this RTT, the most conservative
 assumption MAY be taken, namely assuming that all packets were
 marked. This can be achieved by increasing the CEG by DeliveredData
 for each ACK with the ECE flag:

 CEG += DeliveredData

 Optionally a ConEx sender could implement the following technique
 (that not conforms to [RFC3168]), called advanced compatibility mode,
 to considerably improve its estimate of the number of ECN-marked
 packets:

 To extract more than one ECE indication per RTT, a ConEx sender could
 set the CWR flag continuously to force the receiver to signal only
 one ECE per CE mark. Unfortunately, the use of delayed ACKs
 [RFC5681] (which is common) will prevent feedback of every CE mark;
 if a CWR confirmation is received before the ECE can be sent out on
 the next ACK, ECN feedback information could get lost (depeding on
 the actual receiver implementation). Thus a sender SHOULD set CWR
 only on those data segments that will presumably trigger a (delayed)
 ACK. The sender would need an additional control loop to estimated
 which data segments will trigger an ACK in order to extract more

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 9]

Internet-Draft TCP Modifications for ConEx April 2015

 timely congestion notifications. Still the CEG SHOULD be increased
 by DeliveredData, as one or more CE marked packets could be
 acknowledged by one delayed ACK.

 The following argument is intended to prove that suppressing
 repetitions of ECE is safe against possible congestion collapse due
 to lost congestion feedback:

 Repetition of ECE in classic ECN is intended to ensure reliable
 delivery of congestion feedback. However, with advanced
 compatibility mode, it is possible to miss congestion notifications.
 This can happen in some implementations if delayed acknowledgements
 are used, as described above. Further an ACK containing ECE can
 simply get lost. If only a few CE mark are received within one
 congestion event (e.g., only one), the loss of acknowledgements due
 to (heavy) congestion on the reverse path, can hinder that any
 congestion notification is received by the sender.

 However, if loss of feedback exacerbates congestion on the forward
 path, more forward packets will be CE marked, increasing the
 likelihood that feedback from at least one CE will get through per
 RTT. As long as one ECE reaches the sender per RTT, the sender's
 congestion response will be the same as if CWR were not continuous.
 The only way that heavy congestion on the forward path could be
 completely hidden would be if all ACKs on the reverse path were lost.
 If total ACK loss persisted, the sender would time out and do a
 congestion response anyway. Therefore, the problem seems confined to
 potential suppression of a congestion response during light
 congestion.

 Anyway, even if loss of all ECN feedback led to no congestion
 response, the worst that could happen would be loss instead of ECN-
 signalled congestion on the forward path. Given compatibility mode
 does not affect loss feedback, there would be no risk of congestion
 collapse.

4. Setting the ConEx Flags

 By setting the X flag, a packet is marked as ConEx-capable. All
 packets carrying payload MUST be marked with the X flag set,
 including retransmissions. Only if no congestion feedback
 information is (currently) available, the X flag SHOULD be zero, such
 as for control packets on a connection that has not sent any (user)
 data for some time e.g., sending only pure ACKs which are not
 carrying any payload.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 10]

Internet-Draft TCP Modifications for ConEx April 2015

4.1. Setting the E or the L Flag

 As described in section Section 3.1, the sender needs to maintain a
 CEG counter and might maintain a LEG counter. If no LEG is used, all
 retransmission will be marked with the L flag.

 Further, as long as the LEG or CEG counter is positive, the sender
 marks each ConEx-capable packet with L or E respectively, and
 decreases the LEG or CEG counter by the TCP payload bytes carried in
 the marked packet (assuming headers are not being counted because
 packet sizes are regular). No matter how small the value of LEG or
 CEG, if it is positive, the sender MUST NOT defer packet marking to
 ensure ConEx signals are timely. Therefore the value of LEG and CEG
 will commonly be negative.

 If both LEG and CEG are positive, the sender MUST mark each ConEx-
 capable packet with both L and E. If a credit signal is also pending
 (see next section), the C flag can be set as well.

4.2. Setting the Credit Flag

 The ConEx abstract mechanism [draft-ietf-conex-abstract-mech]
 requires that sufficient credit MUST be signaled in advance to cover
 the expected congestion during the feedback delay of one RTT.

 To monitor the credit state at the audit, a ConEx sender needs to
 maintain a credit state counter CSC in bytes. If congestion occurs,
 credits will be consumed and the CSC is reduced by the number of
 bytes that where lost or estimated to be ECN-marked. If the risk of
 congestion was estimated wrongly and thus too few credits were sent,
 the CSC becomes zero but cannot go negative.

 To be sure that the credit state in the audit never reaches zero, the
 number of credits should always equal the number of bytes in flight
 as all packets could potentially get lost or congestion marked. In
 this case a ConEx sender also monitors the number of bytes in flight
 F. If F ever becomes larger than CSC, the ConEx sender sets the C
 flag on each ConEx-capable packet and increase CSC by the payload
 size of each marked packet until CSC is no less than F again.
 However, a ConEx sender might also be less conservative and send
 fewer credits, if it e.g. assumes based on previous experience that
 the congestion will be low on a certain path.

 Recall that CSC will be decreased whenever congestion occurs,
 therefore CSC will need to be replenished as soon as CSC drops below
 F. Also recall that the sender can set the C flag on a ConEx-capable
 packet whether or not the E or L flags are also set.

https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 11]

Internet-Draft TCP Modifications for ConEx April 2015

 In TCP slow start, the congestion window might grow much larger than
 during the rest of the transmission. Likely, a sender could consider
 sending fewer than F credits but risking being penalized by an audit
 function. Howver, the credits should at least cover the increase in
 sending rate. Given the sending rate doubles every RTT in Slow
 Start, a ConEx sender should at least cover half the number of
 packets in flight by credits.

 Note that the number of losses or markings within one RTT does not
 solely depend on the sender's actions. In general, the behavior of
 the cross traffic, whether active queue management (AQM) is used and
 how it is parameterized influence how many packets might be dropped
 or marked. As long as any AQM encountered is not overly aggressive
 with ECN marking, sending half the flight size as credits should be
 sufficient whether congestion is signaled by loss or ECN.

 To maintain halve of the packet in flight as credits, of course halve
 of the packet of the initial window must be C marked. In Slow Start
 marking every fourth packet introduces the correct amount of credit
 as can be seen in Figure 1.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 12]

Internet-Draft TCP Modifications for ConEx April 2015

 in_flight credits
 RTT1 |------XC------>| 1 1
 |------X------->| 2 1
 |------XC------>| 3 2
 | |
 RTT2 |------X------->| 3 2
 |------X------->| 4 2
 |------X------->| 4 2
 |------XC------>| 5 3
 |------X------->| 5 3
 |------X------->| 6 3
 | |
 RTT3 |------X------->| 6 3
 |------XC------>| 7 4
 |------X------->| 7 4
 |------X------->| 8 4
 |------X------->| 8 4
 |------XC------>| 9 5
 |------X------->| 9 5
 |------X------->| 10 5
 |------X------->| 10 5
 |------XC------>| 11 6
 |------X------->| 11 6
 |------X------->| 12 6
 | . |
 | : |

 Figure 1: Credits in Slow Start (with an initial window of 3)

 It is possible that a TCP flow will encounter an audit function
 without relevant flow state, due to e.g. rerouting or memory
 limitations. Therefore, the sender needs to detect this case and
 resend credits. A ConEx sender might reset the credit counter CSC to
 zero if losses occur in subsequent RTTs (assuming that the sending
 rate was correctly reduced based on the received congestion signal
 and using a conservatively large RTT estimation).

 This section proposes concrete algorithms for determining how much
 credit to signal during congestion avoidance and slow start.
 However, experimentation in credit setting algorithms is expected and
 encouraged. The wider goal of ConEx is to reflect the 'cost' of the
 risk of causing congestion on those that contribute most to it.
 Thus, experimentation is encouraged to improve or maintain
 performance while reducing the risk of causing congestion, and
 therefore potentially reducing the need to signal so much credit.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 13]

Internet-Draft TCP Modifications for ConEx April 2015

5. Loss of ConEx information

 Packets carrying ConEx signals could be discarded themselves. This
 will be a second order problem (e.g. if the loss probability is 0.1%,
 the probability of losing a ConEx L signal will be 0.1% of 0.1% =
 0.01%). Further, the penality an audit induces should be propotional
 to the mismatch of expected ConEx marks and observed congestion,
 therefore the audit might only slightly increase the loss level of
 this flow. Therefore, an implementer MAY choose to ignore this
 problem, accepting instead the risk that an audit function might
 wrongly penalize a flow.

 Nonetheless, a ConEx sender is responsible to always signal
 sufficient congestion feedback and therefore SHOULD remember which
 packet was marked with either the L, the E or the C flag. If one of
 these packets is detected as lost, the sender SHOULD increase the
 respective gauge(s), LEG or CEG, by the number of lost payload bytes
 in addition to increasing LEG for the loss.

6. Timeliness of the ConEx Signals

 ConEx signals will only be useful to a network node within a time
 delay of about one RTT after the congestion occurred. To avoid
 further delays, a ConEx sender SHOULD send the ConEx signaling on the
 next available packet.

 Any or all of the ConEx flags can be used in the same packet, which
 allows delay to be minimised when multiple signals are pending. The
 need to set multiple ConEx flags at the same time, can occur if e.g
 an ACK is received by the sender that simultaneously indicates that
 at least one ECN mark was received, and that one or more segements
 were lost. This may e.g. happen during excessive congestion, where
 the queues overflow even though ECN was used and currently all
 forwarded packets are marked, while others have to be dropped
 nevertheless. Another case when this might happen is when ACKs are
 lost, so that a subsequent ACK carries summary information not
 previously available to the sender.

 If a flow becomes application-limited, there could be insufficient
 bytes to send to reduce the gauges to zero or below. In such cases,
 the sender cannot help but delay ConEx signals. Nonetheless, as long
 as the sender is marking all outgoing packets, an audit function is
 unlikely to penalize ConEx-marked packets. Therefore, no matter how
 long a gauge has been positive, a sender MUST NOT reduce the gauge by
 more than the ConEx marked bytes it has sent.

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 14]

Internet-Draft TCP Modifications for ConEx April 2015

 If the CEG or LEG counter is negative, the respective counter MAY be
 reset to zero within one RTT after it was decreased the last time or
 one RTT after recovery if no further congestion occurred.

7. Acknowledgements

 The authors would like to thank Bob Briscoe who contributed with this
 initial ideas [I-D.briscoe-conex-re-ecn-tcp] and valuable feedback.
 Moreover, thanks to Jana Iyengar who provided valuable feedback.

8. IANA Considerations

 This document does not have any requests to IANA.

9. Security Considerations

 General ConEx security considerations are covered extensively in the
 ConEx abstract mechanism [draft-ietf-conex-abstract-mech]. This
 section covers TCP-specific concerns.

 The ConEx modifications to TCP provide no mechanism for a receiver to
 force a sender not to use ConEx. A receiver can degrade the accuracy
 of ConEx by claiming that it does not support SACK, AccECN or ECN,
 but the sender will never have to turn ConEx off. The receiver
 cannot force the sender to have to mark ConEx more conservatively, in
 order to cover the risk of any inaccuracy. Instead the sender can
 choose to mark inaccurately, which will only increase the likelihood
 of loss at an audit function. Thus the receiver will only harm
 itself.

 Assuming the sender is limited in some way by a congestion allowance
 or quota, a receiver could spoof more loss or ECN congestion feedback
 than it actually experiences, in an attempt to make the sender draw
 down its allowance faster than necessary. However, over-declaring
 congestion simply makes the sender slow down. If the receiver is
 interested in the content it will not want to harm its own
 performance.

 However, if the receiver is solely interested in making the sender
 draw down its allowance, the net effect will depend on the sender's
 congestion control algorithm as permanetly adding more and more
 additional congestion would cause the sender to more and more reduce
 its sending rate. Therefore a receiver can only maintain a certain
 congestion level that is corresponding to a certain sending rate.
 With New Reno [RFC5681], doubling congestion feedback causes the
 sender to reduce its sending rate such that it would only to consume
 sqrt(2) = 1.4 times more congestion allowance. However, to improve
 scaling, congestion control algorithms are tending towards less

https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech
https://datatracker.ietf.org/doc/html/rfc5681

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 15]

Internet-Draft TCP Modifications for ConEx April 2015

 responsive algorithms like Cubic or Compound TCP, and ultimately to
 linear algorithms like DCTCP [DCTCP] that aim to maintain the same
 congestion level independent of the current sending rate and always
 reduce its sending window if the signaled congestion feedback is
 higher. In each case, if the receiver doubles congestion feedback,
 it causes the sender to respectively consume more allowance by a
 factor of 1.2, 1.15 or 1, where 1 implies the attack has become
 completely ineffective as no further congestion allowance is consumed
 but the flow will decrease its sending rate to a minimum instead.

10. References

10.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [draft-ietf-conex-abstract-mech]
 Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts and Abstract Mechanism", draft-ietf-conex-

abstract-mech-06 (work in progress), October 2012.

 [draft-ietf-conex-destopt]
 Krishnan, S., Kuehlewind, M., and C. Ucendo, "IPv6
 Destination Option for ConEx", draft-ietf-conex-destopt-04
 (work in progress), March 2013.

10.2. Informative References

 [DCTCP] Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel,
 P., Prabhakar, B., Sengupta, S., and M. Sridharan, "DCTCP:
 Efficient Packet Transport for the Commoditized Data
 Center", Jan 2010.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech-06
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech-06
https://datatracker.ietf.org/doc/html/draft-ietf-conex-destopt
https://datatracker.ietf.org/doc/html/draft-ietf-conex-destopt-04

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 16]

Internet-Draft TCP Modifications for ConEx April 2015

 [I-D.briscoe-conex-re-ecn-tcp]
 Briscoe, B., Jacquet, A., Moncaster, T., and A. Smith,
 "Re-ECN: Adding Accountability for Causing Congestion to
 TCP/IP", draft-briscoe-conex-re-ecn-tcp-04 (work in
 progress), July 2014.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC6789] Briscoe, B., Woundy, R., and A. Cooper, "Congestion
 Exposure (ConEx) Concepts and Use Cases", RFC 6789,
 December 2012.

 [RFC7141] Briscoe, B. and J. Manner, "Byte and Packet Congestion
 Notification", BCP 41, RFC 7141, February 2014.

 [draft-kuehlewind-tcpm-accurate-ecn]
 Kuehlewind, M. and R. Scheffenegger, "More Accurate ECN
 Feedback in TCP", draft-kuehlewind-tcpm-accurate-ecn-02
 (work in progress), Jun 2013.

Appendix A. Revision history

 RFC Editor: This section is to be removed before RFC publication.

 00 ... initial draft, early submission to meet deadline.

 01 ... refined draft, updated LEG "drain" from per-packet to RTT-
 based.

 02 ... added Section 5 and expanded discussion about ECN interaction.

 03 ... expanded the discussion around credit bits.

https://datatracker.ietf.org/doc/html/draft-briscoe-conex-re-ecn-tcp-04
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc3708
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6789
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc7141
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn-02

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 17]

Internet-Draft TCP Modifications for ConEx April 2015

 04 ... review comments of Jana addressed. (Change in full compliance
 mode.)

 05 ... changes on Loss Detection without SACK, support of classic ECN
 and credit handling.

 07 ... review feedback provided by Nandita

 08 ... based on Bob's feedback: Wording edits and structuring of a
 few paragraphs; change of SHOULD to MAY for resetting negative LEG/
 CEG; additional security considerations provided by Bob (thanks!).

Authors' Addresses

 Mirja Kuehlewind (editor)
 ETH Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna 1120
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

Kuehlewind & ScheffeneggExpires October 24, 2015 [Page 18]

