
CoRE Working Group Z. Shelby, Ed.
Internet-Draft Sensinode
Intended status: Standards Track C. Bormann
Expires: September 15, 2011 Universitaet Bremen TZI
 March 14, 2011

Blockwise transfers in CoAP
draft-ietf-core-block-02

Abstract

 CoAP is a RESTful transfer protocol for constrained nodes and
 networks. CoAP is based on datagram transport, which limits the
 maximum size of resource representations that can be transferred
 without too much fragmentation. The Block option provides a minimal
 way to transfer larger representations in a block-wise fashion.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Shelby & Bormann Expires September 15, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Blockwise transfers in CoAP March 2011

 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Block-wise transfers . 5
2.1. The Block Option . 5
2.2. Using the Block Option 7

3. Examples . 10
3.1. HTTP Mapping Considerations 15

4. IANA Considerations . 17
5. Security Considerations 18
5.1. Mitigating Resource Exhaustion Attacks 18
5.2. Mitigating Amplification Attacks 19

6. Acknowledgements . 20
7. References . 21
7.1. Normative References 21
7.2. Informative References 21

 Authors' Addresses . 22

Shelby & Bormann Expires September 15, 2011 [Page 2]

Internet-Draft Blockwise transfers in CoAP March 2011

1. Introduction

 The CoRE WG is tasked with standardizing an Application Protocol for
 Constrained Networks/Nodes, CoAP. This protocol is intended to
 provide RESTful [REST] services not unlike HTTP [RFC2616], while
 reducing the complexity of implementation as well as the size of
 packets exchanged in order to make these services useful in a highly
 constrained network of themselves highly constrained nodes.

 This objective requires restraint in a number of sometimes
 conflicting ways:

 o reducing implementation complexity in order to minimize code size,

 o reducing message sizes in order to minimize the number of
 fragments needed for each message (in turn to maximize the
 probability of delivery of the message), the amount of
 transmission power needed and the loading of the limited-bandwidth
 channel,

 o reducing requirements on the environment such as stable storage,
 good sources of randomness or user interaction capabilities.

 CoAP is based on datagram transports such as UDP, which limit the
 maximum size of resource representations that can be transferred
 without creating unreasonable levels of IP fragmentation. In
 addition, not all resource representations will fit into a single
 link layer packet of a constrained network, which may cause
 adaptation layer fragmentation even if IP layer fragmentation is not
 required. Using fragmentation (either at the adaptation layer or at
 the IP layer) to enable the transport of larger representations is
 possible up to the maximum size of the underlying datagram protocol
 (such as UDP), but the fragmentation/reassembly process loads the
 lower layers with conversation state that is better managed in the
 application layer.

 This specification defines a CoAP option to enable _block-wise_
 access to resource representations. The Block option provides a
 minimal way to transfer larger resource representations in a block-
 wise fashion. The overriding objective is to avoid creating
 conversation state at the server for block-wise GET requests. (It is
 impossible to fully avoid creating conversation state for POST/PUT,
 if the creation/replacement of resources is to be atomic; where that
 property is not needed, there is no need to create server
 conversation state in this case, either.)

 In summary, this specification adds a Block option to CoAP that can
 be used for block-wise transfers. Benefits of using this option

https://datatracker.ietf.org/doc/html/rfc2616

Shelby & Bormann Expires September 15, 2011 [Page 3]

Internet-Draft Blockwise transfers in CoAP March 2011

 include:

 o Transfers larger than can be accommodated in constrained-network
 link-layer packets can be performed in smaller blocks.

 o No hard-to-manage conversation state is created at the adaptation
 layer or IP layer for fragmentation.

 o The transfer of each block is acknowledged, enabling
 retransmission if required.

 o Both sides have a say in the block size that actually will be
 used.

 o The resulting exchanges are easy to understand using packet
 analyzer tools and thus quite accessible to debugging.

 o If needed, the Block option can also be used as is to provide
 random access to power-of-two sized blocks within a resource
 representation.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, BCP 14
 [RFC2119] and indicate requirement levels for compliant CoAP
 implementations.

 In this document, the term "byte" is used in its now customary sense
 as a synonym for "octet".

 Where bit arithmetic is explained, this document uses the notation
 familiar from the programming language C, except that the operator
 "^" stands for exponentiation.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Shelby & Bormann Expires September 15, 2011 [Page 4]

Internet-Draft Blockwise transfers in CoAP March 2011

2. Block-wise transfers

2.1. The Block Option

 +------+-----+-------+-----------+--------+---------------+
 | Type | C/E | Name | Data type | Length | Default |
 +------+-----+-------+-----------+--------+---------------+
 | 13 | C | Block | uint | 1-3 B | 0 (see below) |
 +------+-----+-------+-----------+--------+---------------+

 Implementation of the Block option is intended to be optional.
 However, when it is present in a CoAP message, it MUST be processed
 (or the message rejected); therefore it is identified as a critical
 option.

 The size of the blocks should not be fixed by the protocol. On the
 other hand, implementation should be as simple as possible. The
 Block option therefore supports a small range of power-of-two block
 sizes, from 2^4 (16) to 2^11 (2048) bytes. One of these eight values
 can be encoded in three bits (0 for 2^4 to 7 for 2^11 bytes), which
 we call the "SZX" (size exponent); the actual block size is then "1
 << (SZX + 4)".

 When a representation is larger than can be comfortably transferred
 in a single UDP datagram, the Block option can be used to indicate a
 block-wise transfer. Block is a 1-, 2- or 3-byte integer, the four
 least significant bits of which indicate the size and whether the
 current block-wise transfer is the last block being transferred (M or
 "more" bit). The option value divided by sixteen is the number of
 the block currently being transferred, starting from zero, i.e., the
 current transfer is about the "size" bytes starting at byte "block
 number << (SZX + 4)". The default value of the Block Option is zero,
 indicating that the current block is the first (block number 0) and
 only (M bit not set) block of the transfer; however, there is no
 explicit size implied by this default value.

Shelby & Bormann Expires September 15, 2011 [Page 5]

Internet-Draft Blockwise transfers in CoAP March 2011

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | NUM |M| SZX |
 +-+-+-+-+-+-+-+-+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | NUM |M| SZX |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | NUM |M| SZX |
 +-+

 Figure 1: Block option

 (Note that, as an implementation convenience, the option value with
 the last 4 bits masked out, shifted to the left by the value of SZX,
 gives the byte position of the block.)

 NUM: Block Number. The block number is a variable-size (4, 12, or
 20 bit) unsigned integer indicating the block number being
 requested or provided. Block number 0 indicates the first block
 of a representation.

 M: More Flag. This flag, if unset, indicates that this block is the
 last in a representation. When set it indicates that there are
 one or more additional blocks available. When the block option is
 used in a request to retrieve a specific block number, the M bit
 MUST be sent as zero and ignored on reception.

 SZX: Block Size. The block size is a three-bit unsigned integer
 indicating the size of a block to the power of two. Thus block
 size = 2^(SZX + 4). As there are three bits available for SZX,
 the minimum block size is 2^(0+4) = 16 and the maximum is 2^(7+4)
 = 2048.

 The Block option is used in one of three roles:

 o In the request for a GET, the Block option gives the block number
 requested and suggests a block size (block number 0) or echoes the
 block size of previous blocks received (block numbers other than
 0).

Shelby & Bormann Expires September 15, 2011 [Page 6]

Internet-Draft Blockwise transfers in CoAP March 2011

 o In the response for a GET or in the request for a PUT or POST, the
 Block option describes what block number is contained in the
 payload, and whether further blocks are required to complete the
 transfer of that body (M bit). If the M bit is set, the size of
 the payload body in bytes MUST indeed be the power of two given by
 the block size. With certain exceptions given below, all blocks
 for a REST transfer MUST use the same block size, except for the
 last block (M bit not set).

 o In the response for a PUT or POST, the Block option indicates what
 block number is being acknowledged. In this case, if the M bit is
 set it indicates that this response does not carry the final
 response to the request; this can occur when the M bit was set in
 the request and the server implements PUT/POST atomically (i.e.,
 acts only upon reception of the last block). Conversely, if the M
 bit is unset, it indicates the block-wise request was enacted now,
 and the response carries the final response to this request (and
 to any previous ones with the M bit set in this sequence of block-
 wise transfers). Finally, the block size given in such a Block
 option indicates the largest block size preferred by the server
 for transfers toward the resource that is the same or smaller than
 the one used in the initial exchange; the client SHOULD use this
 block size or a smaller one in all further PUT/POST requests in
 the transfer sequence.

2.2. Using the Block Option

 Using the Block option, a single REST operation can be split into
 multiple CoAP message exchanges. Each of these message exchanges
 uses their own CoAP Message ID.

 When a GET is answered with a response carrying a Block option with
 the M bit set, the requester may retrieve additional blocks of the
 resource representation by sending requests with a Block option
 giving the block number desired. In such a Block option, the M bit
 MUST be sent as zero and ignored on reception.

 To influence the block size used in response to a GET request, the
 requester uses the Block option, giving the desired size, a block
 number of zero and an M bit of zero. A server SHOULD use the block
 size indicated or a smaller size. Any further block-wise requests
 for blocks beyond the first one MUST indicate the same block size
 that was used by the server in the response for the first request
 that gave a desired size using a Block option.

 Once the Block option is used by the requester, all GET requests in a
 single transfer MUST ultimately use the same size, except that there
 may not be enough content to fill the last block (the one returned

Shelby & Bormann Expires September 15, 2011 [Page 7]

Internet-Draft Blockwise transfers in CoAP March 2011

 with the M bit not set). (Note that the client may start using the
 Block option in a second request after a first request without a
 Block option resulted in a Block option in the response.) The server
 SHOULD use the block size indicated in the request option or a
 smaller size, but the requester MUST take note of the actual block
 size used in the response it receives to its initial GET and proceed
 to use it in subsequent GETs; the server behavior MUST ensure that
 this client behavior results in the same block size for all responses
 in a sequence (except for the last one with the M bit not set, and
 possibly the first one if the initial request did not contain a Block
 option).

 Block-wise transfers can be used to GET resources the representations
 of which are entirely static (not changing over time at all, such as
 in a schema describing a device), or for dynamically changing
 resources. In the latter case, the Block option SHOULD be used in
 conjunction with the ETag option, to ensure that the blocks being
 reassembled are from the same version of the representation. When
 reassembling the representation from the blocks being exchanged, the
 reassembler MUST compare ETag options. If the ETag options do not
 match in a GET transfer, the requester has the option of attempting
 to retrieve fresh values for the blocks it retrieved first. To
 minimize the resulting inefficiency, the server MAY cache the current
 value of a representation for an ongoing sequence of requests, but
 there is no requirement for the server to establish any state. The
 client MAY facilitate identifying the sequence by using the Token
 option with a non-default value.

 In a PUT or POST transfer, the Block option refers to the body in the
 request, i.e., there is no way to perform a block-wise retrieval of
 the body of the response. Servers that do need to supply large
 bodies in response to PUT/POST SHOULD therefore be employing
 mechanisms such as providing a location for a resource that can be
 used in a GET to obtain that information.

 In a PUT or POST transfer response, the block size given in the Block
 option indicates the block size preference of the server for this
 resource. Obviously, at this point the first block has already been
 transferred without benefit of this knowledge. Still, the client
 SHOULD heed the preference and use the block size preferred by the
 server or a smaller one. Note that any reduction in the block size
 may mean that the second request starts with a block number larger
 than one, as the first request already transferred multiple blocks as
 counted in the smaller size.

 In a PUT or POST transfer that is intended to be implemented in an
 atomic fashion at the server, the actual creation/replacement takes
 place at the time the final block, i.e. a block with the M bit unset,

Shelby & Bormann Expires September 15, 2011 [Page 8]

Internet-Draft Blockwise transfers in CoAP March 2011

 is received. If not all previous blocks are available at the server
 at this time, the transfer fails and error code 4.08 (Request Entity
 Incomplete) MUST be returned. The error code 4.13 (Request Entity
 Too Large) can be returned at any time by a server that does not
 currently have the resources to store blocks for a block-wise PUT or
 POST transfer that it would intend to implement in an atomic fashion.

 If multiple concurrently proceeding block-wise PUT or POST operations
 are possible, the requester SHOULD use the Token option to clearly
 separate the different sequences. In this case, when reassembling
 the representation from the blocks being exchanged to enable atomic
 processing, the reassembler MUST compare any Token options present
 (and, as usual, taking an absent Token option to default to the empty
 Token). If atomic processing is not desired, there is no need to
 process the Token option (but it is still returned in the response as
 usual).

Shelby & Bormann Expires September 15, 2011 [Page 9]

Internet-Draft Blockwise transfers in CoAP March 2011

3. Examples

 This section gives a number of short examples with message flows for
 a block-wise GET, and for a PUT or POST. These examples demonstrate
 the basic operation, the operation in the presence of
 retransmissions, and examples for the operation of the block size
 negotiation.

 In all these examples, a block option is shown in a decomposed way
 separating the block number (NUM), more bit (M), and block size
 exponent (2^(SZX+4)) by slashes. E.g., a block option value of 33
 would be shown as 2/0/32, or a block option value of 59 would be
 shown as 3/1/128.

 The first example (Figure 2) shows a GET request that is split into
 three blocks. The server proposes a block size of 128, and the
 client agrees. The first two ACKs contain 128 bytes of payload each,
 and third ACK contains between 1 and 128 bytes.

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.00 OK, 0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 1/0/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.00 OK, 1/1/128 |
 | |
 | CON [MID=1236], GET, /status, 2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.00 OK, 2/0/128 |

 Figure 2: Simple blockwise GET

 In the second example (Figure 3), the client anticipates the
 blockwise transfer (e.g., because of a size indication in the link-
 format description) and sends a size proposal. All ACK messages
 except for the last carry 64 bytes of payload; the last one carries
 between 1 and 64 bytes.

Shelby & Bormann Expires September 15, 2011 [Page 10]

Internet-Draft Blockwise transfers in CoAP March 2011

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status, 0/0/64 ------> |
 | |
 | <------ ACK [MID=1234], 2.00 OK, 0/1/64 |
 | |
 | CON [MID=1235], GET, /status, 1/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.00 OK, 1/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 4/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.00 OK, 4/1/64 |
 | |
 | CON [MID=1239], GET, /status, 5/0/64 ------> |
 | |
 | <------ ACK [MID=1239], 2.00 OK, 5/0/64 |

 Figure 3: Blockwise GET with early negotiation

 In the third example (Figure 4), the client is surprised by the need
 for a blockwise transfer, and unhappy with the size chosen
 unilaterally by the server. As it did not send a size proposal
 initially, the negotiation only influences the size from the second
 message exchange. Since the client already obtained both the first
 and second 64-byte block in the first 128-byte exchange, it goes on
 requesting the third 64-byte block ("2/0/64"). None of this is (or
 needs to be) understood by the server, which simply responds to the
 requests as it best can.

Shelby & Bormann Expires September 15, 2011 [Page 11]

Internet-Draft Blockwise transfers in CoAP March 2011

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.00 OK, 0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.00 OK, 2/1/64 |
 | |
 | CON [MID=1236], GET, /status, 3/0/64 ------> |
 | |
 | <------ ACK [MID=1236], 2.00 OK, 3/1/64 |
 | |
 | CON [MID=1237], GET, /status, 4/0/64 ------> |
 | |
 | <------ ACK [MID=1237], 2.00 OK, 4/1/64 |
 | |
 | CON [MID=1238], GET, /status, 5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.00 OK, 5/0/64 |

 Figure 4: Blockwise GET with late negotiation

 In all these (and the following) cases, retransmissions are handled
 by the CoAP message exchange layer, so they don't influence the block
 operations (Figure 5, Figure 6).

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.00 OK, 0/1/128 |
 | |
 | CON [MID=1235], GE///////////////////////// |
 | |
 | (timeout) |
 | |
 | CON [MID=1235], GET, /status, 2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.00 OK, 2/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.00 OK, 5/0/64 |

Shelby & Bormann Expires September 15, 2011 [Page 12]

Internet-Draft Blockwise transfers in CoAP March 2011

 Figure 5: Blockwise GET with late negotiation and lost CON

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.00 OK, 0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2/0/64 ------> |
 | |
 | /////////////////////////////////OK, 2/1/64 |
 | |
 | (timeout) |
 | |
 | CON [MID=1235], GET, /status, 2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.00 OK, 2/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.00 OK, 5/0/64 |

 Figure 6: Blockwise GET with late negotiation and lost ACK

 The following examples demonstrate a PUT exchange; a POST exchange
 looks the same, with different requirements on atomicity/idempotence.
 To ensure that the blocks relate to the same version of the resource
 representation carried in the request, the client in Figure 7 sets
 the Token to "v17" in all requests. Note that, as with the GET, the
 responses to the requests that have a more bit in the request block
 option are provisional; only the final response tells the client that
 the PUT succeeded.

Shelby & Bormann Expires September 15, 2011 [Page 13]

Internet-Draft Blockwise transfers in CoAP March 2011

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, v17, 0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.04 Changed, 0/1/128 |
 | |
 | CON [MID=1235], PUT, /options, v17, 1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 1/1/128 |
 | |
 | CON [MID=1236], PUT, /options, v17, 2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 2/0/128 |

 Figure 7: Simple atomic blockwise PUT

 A stateless server that simply builds/updates the resource in place
 (statelessly) may indicate this by not setting the more bit in the
 response (Figure 8); in this case, the response codes are valid
 separately for each block being updated. This is of course only an
 acceptable behavior of the server if the potential inconsistency
 present during the run of the message exchange sequence does not lead
 to problems, e.g. because the resource being created or changed is
 not yet or not currently in use.

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, v17, 0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.04 Changed, 0/0/128 |
 | |
 | CON [MID=1235], PUT, /options, v17, 1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 1/0/128 |
 | |
 | CON [MID=1236], PUT, /options, v17, 2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 2/0/128 |

 Figure 8: Simple stateless blockwise PUT

 Finally, a server receiving a blockwise PUT or POST may want to
 indicate a smaller block size preference (Figure 9). In this case,
 the client SHOULD continue with a smaller block size; if it does, it
 MUST adjust the block number to properly count in that smaller size.

Shelby & Bormann Expires September 15, 2011 [Page 14]

Internet-Draft Blockwise transfers in CoAP March 2011

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, v17, 0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.04 Changed, 0/1/32 |
 | |
 | CON [MID=1235], PUT, /options, v17, 4/1/32 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 4/1/32 |
 | |
 | CON [MID=1236], PUT, /options, v17, 5/1/32 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 5/1/32 |
 | |
 | CON [MID=1237], PUT, /options, v17, 6/0/32 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 6/0/32 |

 Figure 9: Simple atomic blockwise PUT with negotiation

3.1. HTTP Mapping Considerations

 In this subsection, we give some brief examples for the influence the
 Block Option might have on intermediaries that map between CoAP and
 HTTP.

 For mapping CoAP requests to HTTP, the intermediary may want to map
 the block-wise transfer into a single HTTP transfer. E.g., for a GET
 request, the intermediary could perform the HTTP request once the
 first block has been requested and could then fulfill all further
 block requests out of its cache. A constrained implementation may
 not be able to cache the entire object and may use a combination of
 TCP flow control and (in particular if timeouts occur) HTTP range
 requests to obtain the information necessary for the next block
 transfer at the right time.

 For PUT or POST requests, there is more variation in how HTTP servers
 might implement ranges. Some WebDAV servers do, but in general the
 CoAP-to-HTTP intermediary will have to try sending the payload of all
 the blocks of a block-wise transfer within one HTTP request. If
 enough buffering is available, this request can be started when the
 last CoAP block is received. A constrained implementation may want
 to relieve its buffering by already starting to send the HTTP request
 at the time the first CoAP block is received; any HTTP 408 status
 code that indicates that the HTTP server became impatient with the
 resulting transfer can then be mapped into a CoAP 4.08 response code
 (similarly, 413 maps to 4.13).

Shelby & Bormann Expires September 15, 2011 [Page 15]

Internet-Draft Blockwise transfers in CoAP March 2011

 For mapping HTTP to CoAP, the intermediary may want to map a single
 HTTP transfer into a block-wise transfer. If the HTTP client is too
 slow delivering a request body on a PUT or POST, the CoAP server
 might time out and return a 4.08 response code, which in turn maps
 well to an HTTP 408 status code (again, 4.13 maps to 413). HTTP
 range requests received on the HTTP side may be served out of a cache
 and/or mapped to GET requests that request a sequence of blocks
 overlapping the range.

Shelby & Bormann Expires September 15, 2011 [Page 16]

Internet-Draft Blockwise transfers in CoAP March 2011

4. IANA Considerations

 This draft adds the following option number to the CoAP Option
 Numbers registry of [I-D.ietf-core-coap]:

 +--------+-------+-----------+
 | Number | Name | Reference |
 +--------+-------+-----------+
 | 13 | Block | [RFCXXXX] |
 +--------+-------+-----------+

 Table 1: CoAP Option Numbers

 This draft adds the following response code to the CoAP Response
 Codes registry of [I-D.ietf-core-coap]:

 +------+--------------------------------+-----------+
 | Code | Description | Reference |
 +------+--------------------------------+-----------+
 | 136 | 4.08 Request Entity Incomplete | [RFCXXXX] |
 +------+--------------------------------+-----------+

 Table 2: CoAP Response Codes

Shelby & Bormann Expires September 15, 2011 [Page 17]

Internet-Draft Blockwise transfers in CoAP March 2011

5. Security Considerations

 Providing access to blocks within a resource may lead to surprising
 vulnerabilities. Where requests are not implemented atomically, an
 attacker may be able to exploit a race condition or confuse a server
 by inducing it to use a partially updated resource representation.
 Partial transfers may also make certain problematic data invisible to
 intrusion detection systems; it is RECOMMENDED that an intrusion
 detection system (IDS) that analyzes resource representations
 transferred by CoAP implement the Block option to gain access to
 entire resource representations. Still, approaches such as
 transferring even-numbered blocks on one path and odd-numbered blocks
 on another path, or even transferring blocks multiple times with
 different content and obtaining a different interpretation of
 temporal order at the IDS than at the server, may prevent an IDS from
 seeing the whole picture. These kinds of attacks are well understood
 from IP fragmentation and TCP segmentation; CoAP does not add
 fundamentally new considerations.

 Where access to a resource is only granted to clients making use of a
 specific security association, all blocks of that resource MUST be
 subject to the same security checks; it MUST NOT be possible for
 unprotected exchanges to influence blocks of an otherwise protected
 resource. As a related consideration, where object security is
 employed, PUT/POST should be implemented in the atomic fashion,
 unless the object security operation is performed on each access and
 the creation of unusable resources can be tolerated.

5.1. Mitigating Resource Exhaustion Attacks

 Certain blockwise requests may induce the server to create state,
 e.g. to create a snapshot for the blockwise GET of a fast-changing
 resource to enable consistent access to the same version of a
 resource for all blocks, or to create temporary resource
 representations that are collected until pressed into service by a
 final PUT or POST with the more bit unset. All mechanisms that
 induce a server to create state that cannot simply be cleaned up
 create opportunities for denial-of-service attacks. Servers SHOULD
 avoid being subject to resource exhaustion based on state created by
 untrusted sources. But even if this is done, the mitigation may
 cause a denial-of-service to a legitimate request when it is drowned
 out by other state-creating requests. Wherever possible, servers
 should therefore minimize the opportunities to create state for
 untrusted sources, e.g. by using stateless approaches.

 Performing segmentation at the application layer is almost always
 better in this respect than at the transport layer or lower (IP
 fragmentation, adaptation layer fragmentation), e.g. because there is

Shelby & Bormann Expires September 15, 2011 [Page 18]

Internet-Draft Blockwise transfers in CoAP March 2011

 application layer semantics that can be used for mitigation or
 because lower layers provide security associations that can prevent
 attacks. However, it is less common to apply timeouts and keepalive
 mechanisms at the application layer than at lower layers. Servers
 MAY want to clean up accreted state by timing it out (cf. response
 code 4.08), and clients SHOULD be prepared to run blockwise transfers
 in an expedient way to minimize the likelihood of running into such a
 timeout.

5.2. Mitigating Amplification Attacks

 [I-D.ietf-core-coap] discusses the susceptibility of CoAP end-points
 for use in amplification attacks.

 A CoAP server can reduce the amount of amplification it provides to
 an attacker by offering large resource representations only in
 relatively small blocks. With this, e.g., for a 1000 byte resource,
 a 10-byte request might result in an 80-byte response (with a 64-byte
 block) instead of a 1016-byte response, considerably reducing the
 amplification provided.

Shelby & Bormann Expires September 15, 2011 [Page 19]

Internet-Draft Blockwise transfers in CoAP March 2011

6. Acknowledgements

 Much of the content of this draft is the result of discussions with
 the [I-D.ietf-core-coap] authors, and via many CoRE WG discussions.
 Tokens were suggested by Gilman Tolle and refined by Klaus Hartke.

Shelby & Bormann Expires September 15, 2011 [Page 20]

Internet-Draft Blockwise transfers in CoAP March 2011

7. References

7.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-05 (work in progress), March 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

7.2. Informative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Shelby & Bormann Expires September 15, 2011 [Page 21]

Internet-Draft Blockwise transfers in CoAP March 2011

Authors' Addresses

 Zach Shelby (editor)
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 Finland

 Phone: +358407796297
 Email: zach@sensinode.com

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Fax: +49-421-218-7000
 Email: cabo@tzi.org

Shelby & Bormann Expires September 15, 2011 [Page 22]

