CoRE Z. Shelby ToC

Internet-Draft Sensinode

Intended status: Standards

B. Frank
Track

Expires: December 9, 2010 SkyFoundry
D. Sturek

Pacific Gas &
Electric

June 7, 2010

Constrained Application Protocol (CoAP)
draft-ietf-core-coap-00

Abstract

This document specifies the Constrained Application Protocol (CoAP), a
specialized transfer protocol for use with constrained networks and
nodes for machine-to-machine applications such as smart energy and
building automation. These constrained nodes often have 8-bit
microcontrollers with small amounts of ROM and RAM, while networks such
as 6LoOWPAN often have high packet error rates and typical throughput of
10s of kbit/s. CoAP provides request/reply and subscribe/notify
interaction models between application end-points, supports built-in
resource discovery, and includes key web concepts such as URIs and
RESTful methods. CoOAP easily translates to HTTP for integration with
the web while meeting specialized requirements such as multicast
support, very low overhead and simplicity for constrained environments.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on December 9, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Constrained Application Protocol
2.1. Interaction Model
2.1.1. Request messages
2.1.2. Notify messages (Experimental)
2.1.3. Response message
2.1.4. Option fields
2.1.5. Transaction IDs
2.2. Methods
2.2.1. GET
2.2.2. POST
2.2.3. PUT
2.2.4. DELETE
2.2.5. SUBSCRIBE (Experimental)
2.3. URIs
2.4. COAP Codes
2.5. Content-type encoding
3. Message Formats
3.1. COAP header
3.2. Header options
3.2.1. Content-type Option
3.2.2. Uri Option
3.2.3. Max-age Option
3.2.4. Etag Option
3.2.5. Date Option
3.2.6. Subscription-lifetime Option (Experimental)
4. UDP Binding
4.1. Retransmission
4.2. Default Port
5. Caching

5.1. Cache control
5.2. Cache refresh

5.3. Proxying
Resource Discovery
6.1. Link Format
HTTP Mapping
Protocol Constants
Examples
Security Considerations
IANA Considerations
11.1. Codes
11.2. Content Types
Acknowledgments
Changelog
References
14.1. Normative References
14.2. 1Informative References
8§ Authors' Addresses

R | |[© [0 N (o)}
‘E‘?" ®|: B

[T
Nojw N

1. Introduction TOC

The use of web services on the Internet has become ubiquitous in most
applications, and depends on the fundamental Representational State
Transfer (REST) architecture of the web. The Constrained RESTful
Environments (CoRE) working group aims at realizing the REST
architecture in a suitable form for the most constrained nodes (e.g. 8-
bit microcontrollers with limited RAM and ROM) and networks (e.g.
6LOWPAN). One of the main goals of CORE is to design a generic RESTful
protocol for the special requirements of this constrained environment,
especially considering energy and building automation applications.
This document specifies the RESTful Constrained Application Protocol
(CoAP) which easily translates to HTTP for integration with the web
while meeting specialized requirements such as multicast support, very
low overhead and simplicity for constrained environments
[I-D.shelby-core-coap-req] (Shelby, Z., Stuber, M., Sturek, D., Frank,
B., and R. Kelsey, “CoAP Requirements and Features,” April 2010.). COAP
has the following main features:

*RESTful protocol design minimizing the complexity of mapping with
HTTP.

*UDP binding with multicast and retransmission support.
*Low header overhead and parsing complexity.
*URI and Content-type support.

*Built-in resource discovery.

*Simple subscription for a resource with a resulting notification
mechanism.

*Simple caching based on a relative time limit ("max-age").

The mapping of CoAP with HTTP is defined, allowing proxies to be built
providing access to COAP resources via HTTP in a uniform way.

2. Constrained Application Protocol TOC

This section specifies the basic functionality and processing rules of
COoAP.

2.1. Interaction Model TOC

The interaction model of CoAP is client/server with request or notify
messages initiating a transaction responded to with a matching response
based on a transaction ID. Machine-to-machine interactions with a
RESTful design typically result in a CoAP implementation acting in both
client and server roles (called an end-point). A CoAP request is
similar to an HTTP request, and is sent by a client to request an
action (using a method) on a resource (identified by a URI) on a
server.

In addition to this typical request/response model, CoAP also supports
an asynchronous subscribe/notify interaction model. A CoAP notify is
the inverse of a request, where a server sends a notify message to a
client about a resource on the server (identified by a URI). A notify
includes the representation, Etag and/or Date of the resource. Example
message exchanges can be found from Section 9 (Examples).

This document specifies the interaction of two COAP end-points, one of
which acting as a client, and the other acting as a server. A host may
run any number of CoOAP end-points.

2.1.1. Request messages TOC

A COAP end-point acting as a client sends a request with the following
rules. The Version field is set to 0. The Type Flag is set to O
indicating a request. The A Flag SHOULD be set requesting a response
and enabling retransmission in case of a timeout (see Section 4.1
(Retransmission)). The A Flag MAY be unset in cases when a response is
too costly (such as a multicast message) or not useful (e.g. real-time

streaming). The Method field MUST be set with a value of 0-4. A new
TRANSACTION_ID is generated, and this value is placed in the
Transaction ID Field. See Section 2.1.4 (Option fields) for options
rules. If a payload is to be included in the message, it immediately
follows the last option or the Transaction ID if none.

For each request sent with the A flag set, a CoAP end-point keeps track
of the destination IP address and Transaction ID of the request for the
purpose of matching responses. The retransmission procedure is
described in Section 4.1 (Retransmission).

Upon receiving a request, a CoAP end-point performs the following
validation and processing:

0 The Version Field MUST be 0.
0 The Type Flag MUST be 0.
0 The Method Field MUST be 0-4.

o If the Number of Options Field is > O, then each option is
validated and processed as in Section 2.1.4 (Option fields).

o The length of the Payload is calculated from the datagram length.

o The Method, URI, any options and Payload are passed on to the
corresponding application process.

o If the A bit is set, an appropriate response message MUST be sent
to the source IPv6 address and port of the request with the same
Transaction ID of the request. If the A bit is unset, a response
message MUST NOT be sent.

2.1.2. Notify messages (Experimental) TOC

The sending of a notify message is similar to sending a request
message, with the following difference: The Type Flag is set to 2. The
processing of a notify message is similar to processing a request
message.

2.1.3. Response message TOC

A response message is created with the following rules. The Version
Field is set to 0. The Type Flag is set to 1. The Code is set to one of
the supported response codes in Section 11.1 (Codes). The Transaction

ID MUST be set to that of the corresponding request. See Section 2.1.4
(Option fields) for options rules. An optional Payload may be included
as appropriate for the request.

Upon receiving a response, a CoAP end-point performs the following
validation and processing:

o The Version Field MUST be 0.
0 The Type Flag MUST be 1.
o The Code Field MUST contain a valid code.

o If the Number of Options Field is > O, then each option is
validated and processed as in Section 2.1.4 (Option fields).

o0 The length of the Payload is calculated from the datagram length.

0 The Transaction ID is used to match the response to an open
request entry, and the response code, any options and Payload are
passed on to the corresponding application process. If no match is
found, the message is silently discarded.

2.1.4. oOption fields TOC

If no options are to be included, the Option Number Field is set to 0
and the Payload (if any) immediately follows the Transaction ID. If
options are to be included, the following rules apply. The number of
options is placed in the Number of Options Field. Each option is then
placed in order of Type, immediately following the Transaction ID with
no padding. Upon reception, unknown options MUST be silently skipped.

2.1.5. Transaction IDs TOC

The Transaction ID is an unsigned integer kept by a CoOAP end-point for
all of the CoOAP request or notify messages it sends. Each CoOAP end-
point keeps a single Transaction ID variable, which is changed each
time a new request or notify message is sent regardless of the
destination address or port. The Transaction ID is used to match a
response with an outstanding request or notify, for retransmission and
to discard duplicate messages. The initial Transaction ID should be
randomized.

2.2. Methods TOC

COoAP supports the basic RESTful methods of GET, POST, PUT, DELETE,
which are easily mapped to HTTP methods. In this section each method 1is
defined along with its behavior. In addition, CoAP defines a new
SUBSCRIBE method for requesting soft-state subscriptions for resources.
As COAP methods manipulate resources, they have the same properties of
safe (only retrieval) and idempotent (you can invoke it multiple times
with the same effects) as HTTP Section 9.1 (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.) [RFC2616]. The
GET method is safe, therefore it MUST NOT take any other action on a
resource other than retrieval. The GET, PUT and DELETE methods MUST be
performed in such a way that they are idempotent.

2.2.1. GET T0C

The GET method retrieves the information of the resource identified by
the request URI. Upon success a 200 (OK) response SHOULD be sent.

The response to a GET is cacheable if it meets the requirements in
Section 5 (Caching).

2.2.2. POST TOC

The POST method is used to request the server to create a new resource
under the requested URI. If a resource has been created on the server,
the response should be 201 (Created) including the URI of the new
resource in the header and any possible status in the message body. If
the POST does not result in a new resource being created on the server,
a 200 (OK) response code is returned.

Responses to this method are not cacheable.

2.2.3. PUT T0C

The PUT method requests that the resource identified by the request URI
be updated with the enclosed message body. If a resource exists at that
URI the message body SHOULD be considered a modified version of that
resource. If no resource exists then the server MAY create a new
resource with that URI.

Responses to this method are not cacheable.

2.2.4. DELETE TOC

The DELETE method requests that the resource identified by the request
URI be deleted. The response 200 (OK) SHOULD be sent on success.
Responses to this method are not cacheable.

2.2.5. SUBSCRIBE (Experimental) TOC

COAP supports a built-in subscribe/notify push model for an end-point
to notify another end-point about a resource of interest. This push is
accomplished using the CoAP notify message type, whose URI corresponds
to the resource of interest on the end-point sending the notify
message. A notify may include the latest representation of the resource
in its payload and/or the Etag Option.

The SUBSCRIBE method allows an end-point to request notifications about
a resource. A request of this method MAY include the Subscription-
lifetime Option defined in Section 3.2.6 (Subscription-lifetime Option
(Experimental)). In the absence of this Option, its maximum lifetime is
assumed. End-points MUST NOT send notify messages without a valid
subscription. Subscriptions are soft-state, and must be refreshed by
sending a new SUBSCRIBE message before the end of its lifetime.

Servers keep track of subscriptions, and upon change a notify message
is sent to the source address and port of the original SUBSCRIBE
request with the URI of the resource in question. Notifications MAY be
sent with the A bit set, enabling a server to detect if a subscriber is
no longer valid. A subscription SHOULD be removed after MAX_RETRANSMIT
failures when the A bit is set. A server is not required to support
subscriptions for its resources (thus this feature is optional), and
MAY limit the number of simultaneous subscriptions.

2.3. URIs TOC

The Universal Resource Identifier (URI) [RFC3986] (Berners-Lee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) is an important feature of the REST
architecture, where the relative part of the URI indicates which
resource is being manipulated. CoAP supports variable-length string
URIs with the Uri Option. As this URI is used as a locator, CoAP only
supports Universal Resource Locator features of [RFC3986] (Berners-Lee,
T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) although throughout the document we
refer to URI. CoAP supports relative references in the Uri Option (e.g.

/sensors/temperature) for messages to a CoAP end-point, and absolute
URIs for use with a proxy (coap://[2001:1ba3::450a]/sensors/
temperature), and does not support "." and ".." schemes. A COAP
implementation MAY support query "?" processing if needed, however
fragment "#" processing is not supported. IRIs are not supported. All
URI strings in CoAP MUST use the US-ASCII encoding defined in [RFC3986]
(Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.). When including a
relative reference URI in the Uri Option, the leading slash MUST be
omitted. Thus the above example "/sensors/temperature" is included in
the Uri Option as "sensors/temperature".

The CoAP protocol scheme is identified in URIs with "coap://" (TODO:
IANA considerations).

2.4. COAP Codes TOC

When a response message is sent in response to a request or notify
message it MUST always include a response code in the header. Notify
messages also include a code field, which is set to "200 OK" by
default. CoAP makes use of a subset of HTTP response codes as defined
in Section 11.1 (Codes).

2.5. Content-type encoding TOC

In order to support heterogeneous uses, COAP is transparent to the use
of different application payloads. In order for the application process
receiving a packet to properly parse a payload, its content-type should
be explicitly known from the header (as e.g. with HTTP). The use of
typical binary encodings for XML is discussed in
[I-D.shelby-6lowapp-encoding] (Shelby, Z., Luimula, M., and D.
Peintner, “Efficient XML Encoding and 6LowApp,” October 2009.).

String names of Internet media types [RFC2046] (Freed, N. and N.
Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,” November 1996.) are not optimal for use in the COAP
header. Instead, COAP simply assigns identifiers to a subset of common
MIME and content transfer encoding types. The content-type identifier
is optionally included in the Content-type Option Header of messages to
indicate the type of the message body. COAP Content-type identifiers
are defined in Section 11.2 (Content Types). In the absence of the
Content-type Option the MIME type "text/plain" MUST BE assumed.

T0C

3. Message Formats

CoAP makes use of three message types - request, notify and response,
using a simple binary header format. This base header may be followed
by options in Type-Length-Value (TLV) format. CoAP is bound to UDP as
described in Section 4 (UDP Binding).

Any bytes after the headers in the packet are considered the message
payload, if any. The length of the message payload is implied by the
datagram length or the Length Field of the magic byte header if
included. When bound to UDP the entire message MUST fit within a single
datagram. When used with 6LoWPAN [RFC4944] (Montenegro, G.,
Kushalnagar, N., Hui, J., and D. Culler, “Transmission of IPv6 Packets
over IEEE 802.15.4 Networks,” September 2007.), messages SHOULD fit
into a single IEEE 802.15.4 frame to minimize fragmentation.

3.1. CoAP header TOC

This section defines the CoAP header, which is shared for all message
types.

Request: A CoAP request message is sent by a client to request a
URI on a server using one of the methods listed in Table 1
(Method codes).

Response: A COAP response message is sent in response to a COAP
request or notify when appropriate. Responses include a
Transaction ID corresponding to that of the request. A response
is always sent when the A flag is set in a request, and is never
sent when the A flag is not set. A response is always sent to the
source IP address and port of the corresponding request or
notify.

Notify: (Experimental) A CoAP notify message is sent by a server to
notify a client about a resource (identified by a URI) on the
server as a result of a valid subscription for that resource.

Template:

0 1 2 3
©12345678901234567890123456789601
+ot-t-t-t-t-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-t-t-t-t-F-F-F-+-+-+
|Ver| T | 0 | Type Specific | Transaction ID |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

| Options (if any)
+ot-t-tototototototototot-t-t-tototoFoFoFotot-t-t-t-t-F-F-F-+-+-+
| Payload (if any)
+ot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

Request (T=0):

0 1 2 3
©12345678901234567890123456789601
BT T T e s e e e e e b b et et s S R O S S S S S S S S T
|Ver |0 0] 0 |A| | Meth | Transaction ID |
B e T b ek s i s e S S S S

| Options (if any)
B e n e n e T e T e e e s th ot ke sk s =
| Payload (if any)
B e T b ek s i s e S S S S

Response (T=1):

0 1 2 3
012345678901234567890123456789601
+-t-F-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F-F-F-F-F-F-+-F-F-F-F+-F-+-+-+-+
|Ver|o 1| 0 || Code | Transaction ID |
+ot-t-t-F-t-F+-F-+-+-+

| Options (if any)
+-+-F-F-+-F-F-F-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F+-+-+-+
| Payload (if any)
+ot-t-t-F-t-t-F-t-F-+-+-+

Notify (T=2):

(C] 1 2 3
©12345678901234567890123456789601
+-+-F-+-+-F-F-F-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F+-+-+-+
|Ver|1 0] 0 |Al_] Code | Transaction ID |
+ot-t-t-F-t-t-F-t-F-+-+-+

| Options (if any)
+-t-F-F-+-F-F-F-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
| Payload (if any)

B R S s T S e T S e s STSr SPEP S S

Figure 1: CoAP header format

Header Fields:

Ver:

T:

Version. 2-bit unsigned integer. Indicates the version
of CoAP. Implementations of this specification MUST set
this field to 0. The values 1-3 are reserved for future
versions.

2-bit Message Type flag. Indicates if this message is a
COAP request (@), response (1) or notify (2) header. The
value 3 is forbidden to avoid collision with the magic byte
'rl.

4-bit Number of Options field. Indicates if there are
Option Headers following the base header. If set to 0 the
payload (if any) immediately follows the base header. If
greater than zero the field indicates the number of options
to immediately follow the header.

1-bit Acknowledgement flag. When set to 1, indicates that
the destination MUST respond with a response message
matching this request (see Section 4 (UDP Binding)). When

set to 0, the destination MUST NOT send a response to this
request.

Meth: 4-bit unsigned integer. This field indicates the CoOAP

Method of the request according to Table 1 (Method codes).
Methods are described in detail in Section 2.2 (Methods).

Code: 6-bit unsigned integer. This field indicates the code

of a response or notify message as defined in Section 11.1

(Codes).

Transaction ID: 16-bit unsigned integer. A unique Transaction

ID assigned by the source and used to match responses. The
Transaction ID MUST be changed for each new request
(regardless of the end-point) and MUST NOT be changed when
retransmitting a request.

This field is unused. It MUST be initialized to zero by
the sender and MUST be ignored by the receiver.

Method Code

GET (0]
POST 1
PUT 2
DELETE 3

SUBSCRIBE 4

Table 1: Method codes

3.2. Header options TOC

COoAP messages may also include one or more header options in TLV
format. Each option has the following format:

Template:

)
012345
Fot-t-t-+-+-+
| Type [X]
+ot-t-F-F+-+-+

Length of 0-4:

0 1 2 3
©012345678901234567890123456789601
+-+-F-F-+-F-F-F-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F+-+-+-+

| Type |@|Len| Option Value
+ot-t-t-F-t-t-F-t-F-+-+-+

Length of 5-1024:

(C] 1 2 3
0123456789061 23456789012345678901
+-t-F-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+

| Type [1] Len | Option Value
I ke R R e el R R R e e e e e Tl T ek T P SR SR SR S e e

Figure 2: Header option format

Type: b5-bit unsigned integer. The type of the option as defined in
Table 2 (Option headers), allowing for up to 32 options. Future
specifications may define new COAP option types. Option types
30-32 are reserved for experimental purposes.

X: 1-bit Extended Length Flag. When © the Length is a 2-bit
unsigned integer. When 1 the option header is extended by an
octet and Length is a 10-bit unsigned integer.

Len: Length Field. When X is 0 Length is a 2-bit unsigned integer
allowing values of 0-3 octets. When X is 1 Length is a 10-bit
unsigned integer allowing values of 0-1023 octets.

Option Value The value in the format defined for that option in
Table 2 (Option headers) with a length of Option Len octets.
Options may use variable length unsigned integer values of Len
Field octets in network byte order as shown in Figure 3 (
Variable length unsigned integer value format).

(0]

01234567
R S S R S

0-255 |

Fod o4+

0

1

0123456789012345
Fot-t-totot-tototot -ttt

0-65535

R R S s ST S s Sk JE s

Len = 1 |
Len = 2 |
Len =

Figure 3: Variable length unsigned integer value format

3 is 24 bits,

Len = 4 is 32 bits etc.

The following options are defined in this document.

Type Name

0] Content-type

1 Uri

2 Not used

3 Max-age

4 Etag

5 Date
Subscription-

6 . .
lifetime

Data type

Variable uint

String

Variable uint
Variable uint
Variable
integer

Variable uint

Length Rules
1-2 B
1-32768

Never in response

0-4 B
1-4 B

4-6 B Never in request

wWith SUBSCRIBE or its

response

Table 2: Option headers

3.2.1. Content-type Option

The Content-type Identifier Option indicates the Internet Media Type of
the message-body, see Section 11.2 (Content Types) for the encoding and
identifier tables. A Content-type Identifier Option SHOULD be included
if there is a payload included with a CoAP message, and MUST not be
included for a zero-length payload. In the absence of the Content-type
Option the MIME type "text/plain" MUST be assumed.

3.2.2. Uri oOption TOC

The Uri Option indicates the string URI of the resource that may be
included in request and notify messages. In the absence of this option,
the URI is assumed to be "/". Section 2.3 (URIs) specifies the rules
for URIs in CoAP. When including a relative reference URI in the Uri
Option, the leading slash MUST be omitted.

3.2.3. Max-age Option TOC

The Max-age Option indicates the maximum age of the resource for use in
cache control in seconds. The option is represented as a variable
length unsigned integer maximum 32-bits in length. A length of 0 is
used to indicate a Max-age of 0.

When included in a request, Max-age indicates the maximum age of a
cached representation of that resource the client will accept. When
included in a response or a notify, Max-age indicates the maximum time
the representation may be cached before it MUST be discarded.

3.2.4. Etag Option TOC

The Etag Option is a variable length unsigned integer which specifies
the version of a resource representation. An Etag may be generated for
a resource in any number of ways including a version, checksum, hash or
time. An end-point receiving an Etag MUST treat it as opaque and make
no assumptions about its format. The Etag MAY be included in a notify
message to indicate to a client if a resource has changed.

3.2.5. Date Option

The Date Option indicates the creation time and date of a given
resource representation. It MAY be used in response and notify
messages. The integer value is the number of seconds, after midnight
UTC, January 1, 1970. This time format cannot represent time values
prior to January 1, 1970. The latest UTC time value that can be
represented by a 31 bit integer value is 03:14:07 on January 19, 2038.
Time values beyond 03:14:07 on January 19, 2038, are represented by 39
bit integer values which is sufficient to represent dates that should
be enough for anyone. For applications requiring more accuracy, a 48-
bit integer MAY be included representing this value in milliseconds
instead of seconds.

3.2.6. Subscription-lifetime Option (Experimental) TOC

The Subscription-lifetime Option indicates the subscription lifetime
and is optionally included with the SUBSCRIBE method (see Section 2.2.5
(SUBSCRIBE (Experimental))). The corresponding response MUST include a
Subscription-lifetime Option confirming (or modifying) the subscription
lifetime.

The value of this option is a variable length unsigned integer up to
24-pits indicating the lifetime of the subscription in seconds with a
maximum value of 194 days. In a response the server MAY return a
different value that fits its own scheduling better. A value of all 0
in a request indicates cancellation of a subscription and in a response
indicates subscription failure or rejection.

4. UDP Binding TOC

The CoAP protocol operates by default over UDP. CoAP could be used over
other transports such as TCP or SCTP, the specification of which is out
of this document's scope.

The goal of binding CoAP to UDP is to provide the bare minimum features
for the protocol to operate over UDP, without trying to re-create the
full feature set of TCP. CoAP over UDP has the following features:

*Simple stop-and-wait retransmission reliability with exponential
back-off as described in Section 4.1 (Retransmission) when the A
Flag is set.

*Transaction ID for response matching as described in
Section 2.1.5 (Transaction IDs).

*Multicast support without retransmission. CoOAP supports the use
of multicast destination addresses when bound to UDP. Although
the A bit may be used to force a response, retransmission MUST
NOT be performed.

When a CoAP message is sent using UDP, the length of the Payload is
calculated from the datagram length. When bound to UDP the entire
message MUST fit within a single datagram of length 1024 octets. When
used with 6LOWPAN [RFC4944] (Montenegro, G., Kushalnagar, N., Hui, J.,
and D. Culler, “Transmission of IPv6 Packets over IEEE 802.15.4
Networks,” September 2007.), messages SHOULD fit into a single link-
layer frame to minimize fragmentation if possible (often on the order
of 60-90 octets).

4.1. Retransmission TOC

A CoAP end-point keeps track of open request or notify messages
expecting a response (A Flag set). Each entry includes at least the
destination address and port of the original message, the message
itself, a retransmission counter (UDP only) and a timeout. When a
request or notify message is sent with the A Flag set, an entry is made
for that message with a default initial timeout of RESPONSE_TIMEOUT and
the retransmission counter set to 0. When a matching response 1is
received for an entry, the entry is removed. When a timeout is
triggered for an entry and the retransmission counter is less than
MAX_RETRANSMIT, the original message is retransmitted to the
destination without modification, the retransmission counter 1is
incremented, and the timeout is doubled. If the retransmission counter
reaches MAX_RETRANSMIT on a timeout, then the entry is removed and the
application process informed of delivery failure.

For CoAP messages sent to IP multicast addresses, retransmission MUST
NOT be performed. Therefore MAX_RETRANSMIT is always set to @ when the
destination address is multicast.

4.2. Default Port TOC

COAP SHOULD use a default port of 61616 which is within the compressed
UDP port space defined in [RFC4944] (Montenegro, G., Kushalnagar, N.,
Hui, J., and D. Culler, “Transmission of IPv6 Packets over IEEE
802.15.4 Networks,” September 2007.). As this port is in the dynamic
port space, it however can not be reserved for CoAP use.

5. Caching TOC

CoAP end-points are by definition constrained by bandwidth and
processing power. To optimize the performance of data transfer under
these constraints, we use caching features consistent with HTTP.
Caching includes the following concepts:

*cache life of a resource is controlled via the Max-Age header
option

*cache refresh and versioning of a resource is controlled via the
Etag header option

*proxies between a client and end-point may participate in the
caching process on behalf of sleeping end-points and to avoid
unnecessary traffic on the constrained network

5.1. Cache control TOC

When an end-point publishes a resource for a GET request, it SHOULD
specify the Max-Age header option. The Max-Age specifies the cache life
of the resource in seconds. Resources which change rapidly will have a
short cache life, and resources which change infrequently should
specify a long cache life. If Max-Age is unspecified in a GET response,
then it is assumed to be 60 seconds. If an end-point wishes to disable
caching, it must explicitly specify a Max-Age of zero seconds.

When a client reads the response from a GET request, it should cache
the resource representation for the cache lifetime as specified by the
Max-Age header. During the cache lifetime, the client SHOULD use its
cached version and avoid performing additional GETs for the resource.
In general, the origin server end-point is responsible for determining
cache age. However, in some cases a client may wish to determine its
own tolerance for cache staleness. In this case, a client may specify
the Max-Age header during a GET request. If the client's Max-Age is of
a shorter duration than the age of a cached resource, then the proxy or
end-point SHOULD perform a cache refresh. If the client specifies a
Max-Age of zero seconds, then the response MUST discard the cached
representation and return a fresh representation.

T0C

5.2. Cache refresh

After the expiration of the cache lifetime, clients and proxies can
refresh their cached representation of a resource. Cache refresh is
accomplished using GET request which will return a representation of
the resource's current state.

If the end-point has the capability to version the resource, then the
end-point should include the Etag header option in the response to a
GET request. The Etag is a variable length integer which captures a
version checksum of the resource. The Etag is an opaque identifier;
clients MUST NOT infer any semantics from the Etag value.

If an end-point specifies the Etag header option, then the client
SHOULD specify a matching Etag header option in their GET request
during cache refresh. If the end-point's version of the resource is
unmodified, then it SHOULD specify a 304 response with no payload to
avoid retransmitting the resource representation.

5.3. Proxying TOC

See [I-D.frank-6lowapp-chopan] (Frank, B., “Chopan - Compressed HTTP
Over PANs,” September 2009.).
TODO:

*Are interception proxies are still required to deal with a)
sleeping nodes and b) protecting Internet HTTP traffic from
overwhelming the COAP network?

*But interception proxies breaks end-to-end IP encapsulation and
requires support at the routing level

*0ften the interception proxy is the same as the HTTP-to-CoOAP
gateway, so we need to decide how these topics dovetail

*In Chopan, the sleeping problem was tackled by having sleeping
nodes check-in with their proxies while awake, notify model might
solve this problem to some extent but still have to coordinate
the sleep/awake times

*In Chopan we actually used caching to deal with POSTs, etc
because otherwise how do you send a request to a sleeping node?
The current caching sections are to be exclusive to GETs, but we
still need to solve the problem for other types if methods.

T0C

6. Resource Discovery

The discovery of resources offered by a CoAP end-point is extremely
important in machine-to-machine applications where there are no humans
in the loop and static interfaces result in fragility. The discovery of
resources provided by an HTTP Web Server is called Web Discovery. In
this document we refer to the discovery of resources offered by a CoAP
end-point as Resource Discovery.

CoAP makes the assumption that end-points are available on the default
CoAP port, or otherwise have been configured or discovered using some
general service discovery mechanism such as
[I-D.cheshire-dnsext-multicastdns] (Cheshire, S. and M. Krochmal,
“Multicast DNS,” March 2010.). This section assumes that such a
configuration or service discovery has already been performed, if
needed.

Resource Discovery in COAP is accomplished through the use of well-
known resources which describe the links offered by that CoOAP end-
point. Well-known resources have the URI form "/.well-known/" as
specified in [RFC5785] (Nottingham, M. and E. Hammer-Lahav, “Defining
wWell-Known Uniform Resource Identifiers (URIs),” April 2010.). Every
CoAP end-point MUST support this well-known resource. The resource
representation of this is described in Section 6.1 (Link Format).

CoAP requests the following well-known URL for discovery: "/.well-
known/resources" (TODO: Formal description for use in request as per
[RFC5785] (Nottingham, M. and E. Hammer-Lahav, “Defining Well-Known
Uniform Resource Identifiers (URIs),” April 2010.)).

COAP Resource Discovery supports the following interactions:

*[request GET /.well-known/resources] returns the list of links
available from a CoAP end-point.

*A COAP end-point may notify interested clients when this
description has changed by sending [notify /.well-known/
resources]. This resource MAY support subscription.

*More capable end-points such as proxies MAY support a resource
directory by accepting [request POST /.well-known/resources]
messages from other CoAP end-points. This adds the resources of
other end-points to an agent directory in which absolute URIs are
included for the links.

End-points with a large number of resources SHOULD organize their
resource descriptions into a hierarchy of link resources. This is done
by including links in the /.well-known/resources list which point to
other resource lists, e.g. /.well-known/resources/sensors.

T0C

6.1. Link Format

CoAP resource discovery makes use of the HTTP Link Header format
specified in [I-D.nottingham-http-link-header] (Nottingham, M., “Web
Linking,” April 2010.). This specification allows for the use of this
simple link format by other protocols, thus not limiting it to the
actual HTTP Link Header. The format does not require special XML or
binary parsing, and is extensible.

CoAP defines a subset of the [I-D.nottingham-http-link-header]
(Nottingham, M., “Web Linking,” April 2010.) features and specific
parameters that have known meaning for COAP resource discovery. A COAP
end-point MAY make use of link extension parameters as needed. The COAP
link format does not start with the "Link:" text. The following formal
description is used for forming and parsing this link format:

link-value = "<" URI-Reference ">" *(";" link-param)

link-param = (("desc" "=" URI)
| ("name" "=" quoted-string)
| ("type" "=" (media-type | media-code))
| ("id" "=" integer)
| (link-extension))

link-extension = (parmname ["=" (ptoken | quoted-string)])

ptoken = 1*ptokenchar

ptokenchar S A I L S R R Y
[et /" | DIGIT
["ttt =" st "2 | "@" | ALPHA
e e I A R e I
A

media-code = see Section 11.2

media-type = type-name "/" subtype-name

The link-value is the relative URI of the resource on that end-point or
an absolute URI in the case of a directory agent. The desc parameter is
a URI that points to the definition of that resource interface, for
example in WADL. The name parameter is a descriptive or ontology name
of the resource class. This name parameter SHOULD be in an m-DNS
[I-D.cheshire-dnsext-multicastdns] (Cheshire, S. and M. Krochmal,
“Multicast DNS,” March 2010.) compatible form. The type parameter
includes Internet media type this resource returns in ascii or code
format. The id field is a unique identifier (e.g. UUID) for this
resource for use in e.g. search directories. All link parameters are
optional and custom link-extensions may be defined. An example of a
typical CoAP link description in this format would be:

</sensor/temp>; name="TemperatureC"; type=text/xml;<CR>
</sensor/light>; name="LightLux"; type=text/xml;

7. HTTP Mapping TOC
TODO
8. Protocol Constants TOC

This section defines the relevant protocol constants defined in this
document:

RESPONSE_TIMEOUT 1 second

MAX_RETRANSMIT 5

9. Examples TOC

Figure 4 (Basic request/response) shows a basic request sequence. A
client makes a GET request for the resource /temperature to the server.
The A Flag is set, requesting a response and the Transaction ID is
1234. The request includes one Uri Option "temperature" of Len = 11.
This request is a total of 17 octets long. The corresponding response
is of code 200 OK and includes a Payload of "22.3 C". The Transaction
ID is 1234, thus the transaction is successfully completed. The
response is 10 octets long.

CLIENT SERVER

0] 1 2 3
012345678901 234567890123456789601
D T e Sy

| @ | 1 |1] R |Meth=0 | TID=1234 |
+-t-t-t-t-F-t-F-t-F-t-F-F-F-t-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Type=1 |1] Len = 11 | "temperature" (11 Octets)

B T s ST e R S N A SPSE P S S

CLIENT SERVER
I I
| P 200 OK [TID=1234] --------- |
I I

0 1 2 3
012345678901 23456789012345678901
B s ST T S S e e ST U s S P S S S S S St o S
| @] 1] © | R | Code=0 | TID=1234 |
B T s T ST PR S Sy i Sy fp S

| "22.3 C" (6 Octets)
B S e s ol S S T S ST S U Sy Sy S S

Figure 4: Basic request/response

TODO: Request with multiple packed messages (magic byte example..)
TODO: Request - Response (with retransmission)

TODO: Request - Response (discovery)

TODO: Request (SUBSCRIBE) - Response ... Resulting Notify - Response

10. Security Considerations TOC

TODO: Expand this section to a full security analysis, including how to
use CoAP with various security options.

Some of the features considered in this document will need further
security considerations during a protocol design. For example the use
of string URLs may have entail security risks due to complex processing
on limited microcontroller implementations.

The CoAP protocol will be designed for use with e.g. (D)TLS, IPsec or
object security. A protocol design should consider how integration with
these security methods will be done, how to secure the CoAP header and
other implications.

11. IANA Considerations TOC

TODO (See IANA comments in the document).

11.1. Codes TOC

CoAP makes use of (a subset of) the HTTP status codes defined in
[REC2616] (Fielding, R., Gettys, J., Mogqul, J., Frystyk, H., Masinter,
L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.4,” June 1999.). The HTTP status code is encoded into a 6-bit
unsigned integer code with the mapping defined in Table 3 (CoAP Codes).
The use of these codes is defined throughout this document using the
HTTP Name.

Code HTTP Name

0] 200 OK

1 201 Created

14 304 Not Modified

20 400 Bad Request

21 401 Unauthorized

23 403 Forbidden

24 404 Not Found

25 405 Method Not Allowed
29 409 Conflict

35 415 Unsupported Media Type

40 500 Internal Server Error

43 503 Service Unavailable

44 504 Gateway Timeout

Table 3: CoAP Codes

11.2. Content Types TOC

Internet media types are identified by a string in HTTP, such as
"application/xml". This string is made up of a top-level type
"application" and a sub-type "xml" [RFC2046] (Freed, N. and N.
Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,” November 1996.). In order to minimize the overhead of
using these media types to indicate the type of message payload, COAP
defines an identifier encoding scheme for a subset of Internet media
types. It is expected that this table of identifiers will be extensible
and maintained by IANA.

The Content-type Option is formatted as a variable length unsigned
integer, thus the most common media types are encoded into an 8-bit
unsigned integer. This identifier is encoded as follows. Regardless of
the length of the integer, the most significant 3 bits indicates the
top-level media type (text, application etc.) as defined in Table 4
(Top-level type identifiers). The five initial top-level types defined
in [RFC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types,” November 1996.) are
supported. Composite high-level types (multipart and message) are not
supported. The remaining bits indicate the sub-types [RFC2046] (Freed,
N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types,” November 1996.). This allows for up to 8 high-
level types, with up to 32 sub-types for each in an 8-bit identifier
and up to 8192 sub-types in a 16-bit identifier.

For example, "application/xml" would be encoded in 8-bits as:

5 << 5] 00 = 10100000

Top-level type Identifier

text 1
image 2
audio 3
video 4

application 5

Table 4: Top-level type identifiers

Sub-type Identifier

xml 0
plain 1
csv 2
html 3

Table 5: text sub-type identifiers

Sub-type Identifier

gif 0
jpeg 1
png 2
tiff 3

Table 6: image sub-type identifiers

Sub-type Identifier

raw 0

Table 7: audio sub-type identifiers

Sub-type Identifier

raw (C]

Table 8: video sub-type identifiers

Sub-type

xml
octet-stream
rdf+xml
soap+xml
atom+xml
xmpp+xml

exi

x-bxml
fastinfoset
soap+fastinfoset

json

Identifier
0
1
2
3
4
5
6
7
8
9

10

Table 9: application sub-type identifiers

12. Acknowledgments

Thanks to Carsten Bormann, Michael Stuber, Richard Kelsey, Cullen
Jennings, Guido Moritz, Peter Van Der Stok, Adriano Pezzuto, Lisa
Dussealt, Alexey Melnikov, Gilbert Clark, Salvatore Loreto, Petri
Mutka, Szymon Sasin, Robert Quattlebaum, Robert Cragie, Angelo
Castellani, Tom Herbst and David Ryan for helpful comments and

discussions.

13. Changelog

Changes from shelby-01 to ietf-00:

TOC

TOC

0 Removed the TCP binding section, left open for the future.
0 Fixed a bug in the example.

0 Marked current Sub/Notify as (Experimental) while under WG
discussion.

0 Fixed maximum datagram size to 1280 for both IPv4 and IPv6 (for
COAP-COAP proxying to work).

0 Temporarily removed the Magic Byte header as TCP is no longer
included as a binding.

0 Removed the Uri-code Option as different URI encoding schemes are
being discussed.

0 Changed the rel= field to desc= for resource discovery.

0 Changed the maximum message size to 1024 bytes to allow for IP/UDP
headers.

0 Made the URI slash optimization and method impotence MUSTs
0 Minor editing and bug fixing.

Changes from shelby-00 to shelby-01:
0 Unified the message header and added a notify message type.
0 Renamed methods with HTTP names and removed the NOTIFY method.
0 Added a number of options field to the header.
o Combines the Option Type and Length into an 8-bit field.
o0 Added the magic byte header.
o Added new Etag option.
o0 Added new Date option.
0 Added new Subscription option.
o Completed the HTTP Code - CoAP Code mapping table appendix.
0 Completed the Content-type Identifier appendix and tables.
0 Added more simplifications for URI support.

0 Initial subscription and discovery sections.

0 A Flag requirements simplified.

14. References

T0C

14.1. Normative References

[I-
D.frank-6lowapp-
chopan]
[I-D.nottingham-
http-link-header]
[RFC2046]

[RFC2616]

[RFC3986]

[RFC4346]

[RFC4347]

[RFC5785]

TOC
Frank, B., “Chopan - Compressed HTTP Over PANs,”
draft-frank-6lowapp-chopan-00 (work in
progress), September 2009 (TXT).
Nottingham, M., “Web Linking,” draft-nottingham-
http-link-header-09 (work in progress),
April 2010 (TXT).
Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).
Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).
Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).
Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.1,” RFC 4346,
April 2006 (TXT).
Rescorla, E. and N. Modadugu, “Datagram
Transport Layer Security,” RFC 4347, April 2006
(TXT).
Nottingham, M. and E. Hammer-Lahav, “Defining
Well-Known Uniform Resource Identifiers (URIs),”
RFC 5785, April 2010 (TXT).

http://www.ietf.org/internet-drafts/draft-frank-6lowapp-chopan-00.txt
http://www.ietf.org/internet-drafts/draft-frank-6lowapp-chopan-00.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-09.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-09.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc4346
http://www.rfc-editor.org/rfc/rfc4346.txt
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc4347
http://www.rfc-editor.org/rfc/rfc4347.txt
http://tools.ietf.org/html/rfc5785
http://tools.ietf.org/html/rfc5785
http://www.rfc-editor.org/rfc/rfc5785.txt

14.2. Informative References TOC

[I-D.cheshire-
dnsext-multicastdns]

[I-D.shelby-6lowapp-

encoding]

[I-D.shelby-core-
coap-req]

[RFC4944]

Authors' Addresses

Cheshire, S. and M. Krochmal, “Multicast DNS,”
draft-cheshire-dnsext-multicastdns-11 (work in
progress), March 2010 (TXT).

Shelby, zZ., Luimula, M., and D. Peintner,
“Efficient XML Encoding and 6LowApp,” draft-
shelby-6lowapp-encoding-00 (work in progress),
October 2009 (TXT).

Shelby, z., Stuber, M., Sturek, D., Frank, B.,
and R. Kelsey, “CoAP Requirements and
Features,” draft-shelby-core-coap-req-01 (work
in progress), April 2010 (TXT).

Montenegro, G., Kushalnagar, N., Hui, J., and
D. Culler, “Transmission of IPv6 Packets over
IEEE 802.15.4 Networks,” RFC 4944,

September 2007 (TXT).

_T0C
Zach Shelby
Sensinode
Kidekuja 2
Vuokatti 88600
FINLAND

Phone: +358407796297
Email: zach@sensinode.com

Brian Frank
SkyFoundry
Richmond, VA
USA

Phone:
Email: brian@skyfoundry.com

Don Sturek

Pacific Gas & Electric
77 Beale Street

San Francisco, CA

USA

Phone: +1-619-504-3615
Email: d.sturek@att.net

http://www.ietf.org/internet-drafts/draft-cheshire-dnsext-multicastdns-11.txt
http://www.ietf.org/internet-drafts/draft-cheshire-dnsext-multicastdns-11.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc4944
http://www.rfc-editor.org/rfc/rfc4944.txt
mailto:zach@sensinode.com
mailto:brian@skyfoundry.com
mailto:d.sturek@att.net

	Constrained Application Protocol (CoAP)draft-ietf-core-coap-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Constrained Application Protocol
	2.1. Interaction Model
	2.1.1. Request messages
	2.1.2. Notify messages (Experimental)
	2.1.3. Response message
	2.1.4. Option fields
	2.1.5. Transaction IDs
	2.2. Methods
	2.2.1. GET
	2.2.2. POST
	2.2.3. PUT
	2.2.4. DELETE
	2.2.5. SUBSCRIBE (Experimental)
	2.3. URIs
	2.4. CoAP Codes
	2.5. Content-type encoding
	3. Message Formats
	3.1. CoAP header
	3.2. Header options
	3.2.1. Content-type Option
	3.2.2. Uri Option
	3.2.3. Max-age Option
	3.2.4. Etag Option
	3.2.5. Date Option
	3.2.6. Subscription-lifetime Option (Experimental)
	4. UDP Binding
	4.1. Retransmission
	4.2. Default Port
	5. Caching
	5.1. Cache control
	5.2. Cache refresh
	5.3. Proxying
	6. Resource Discovery
	6.1. Link Format
	7. HTTP Mapping
	8. Protocol Constants
	9. Examples
	10. Security Considerations
	11. IANA Considerations
	11.1. Codes
	11.2. Content Types
	12. Acknowledgments
	13. Changelog
	14. References
	14.1. Normative References
	14.2. Informative References
	Authors' Addresses

