CoRE Z. Shelby ToC

Internet-Draft Sensinode

Intended status: Standards

B. Frank
Track

Expires: March 31, 2011 SkyFoundry
D. Sturek

Pacific Gas &
Electric

September 27, 2010

Constrained Application Protocol (CoAP)
draft-ietf-core-coap-02

Abstract

This document specifies the Constrained Application Protocol (CoAP), a
specialized web transfer protocol for use with constrained networks and
nodes for machine-to-machine applications such as smart energy and
building automation. These constrained nodes often have 8-bit
microcontrollers with small amounts of ROM and RAM, while networks such
as 6LoOWPAN often have high packet error rates and a typical throughput
of 10s of kbit/s. CoAP provides a method/response interaction model
between application end-points, supports built-in resource discovery,
and includes key web concepts such as URIs and content-types. COAP
easily translates to HTTP for integration with the web while meeting
specialized requirements such as multicast support, very low overhead
and simplicity for constrained environments.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on March 31, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Constrained Application Protocol
2.1. Interaction Model
2.1.1. Synchronous response
2.1.2. Asynchronous response
2.2. Transaction messages
2.2.1. Confirmable (CON)
2.2.2. Non-Confirmable (NON)
2.2.3. Acknowledgment (ACK)
2.2.4. Reset (RST)
2.2.5. Transaction IDs
2.3. Methods
2.3.1. GET
2.3.2. POST
2.3.3. PUT
2.3.4. DELETE
2.4. Response Codes
2.5. Options
2.5.1. Option Processing
2.5.2. URIs
2.5.3. Content-type encoding
3. Message Formats
3.1. COAP header
3.2. Header options
3.2.1. Content-type Option
3.2.2. Uri-Authority Option
3.2.3. Uri-Path Option
3.2.4. Location Option
3.2.5. Max-age Option
3.2.6. Etag Option
4. UDP Binding

4.1. Multicast

4.2. Retransmission
4.3. Congestion Control
4.4. Default Port
Caching
5.1. Cache control
5.2. Cache refresh
5.3. Proxying
Resource Discovery
HTTP Mapping
Protocol Constants
Examples
Security Considerations
10.1. Securing CoAP with IPSec
10.2. Securing COAP with DTLS
10.3. Threat analysis and protocol limitations
10.3.1. Processing URIs
10. Proxying and Caching
10.3.3. Attacks on TIDs
10.3.4. Risk of amplification using multicast
10.3.5. Asynchronous responses
IANA Considerations
11.1. Codes
11.2. Content Types
Acknowledgments
Changelog
References
14.1. Normative References
14.2. 1Informative References
§ Authors' Addresses

o

=
[
w (W (W (W
N

[T
nojw N

1. Introduction TOC

The use of web services on the Internet has become ubiquitous in most
applications, and depends on the fundamental Representational State
Transfer (REST) architecture of the web.

The Constrained RESTful Environments (CoRE) working group aims at
realizing the REST architecture in a suitable form for the most
constrained nodes (e.g. 8-bit microcontrollers with limited RAM and
ROM) and networks (e.g. 6LOWPAN). Constrained networks like 6LoOWPAN
support the expensive fragmentation of IPv6 packets into small link-
layer frames. One design goal of CORE has been to keep message overhead
small, thus limiting the use of fragmentation.

One of the main goals of CoRE is to design a generic web protocol for
the special requirements of this constrained environment, especially
considering energy, building automation and other M2M applications. The

goal of COAP is not to blindly compress HTTP, but rather to realize a
subset of REST common with HTTP but optimized for M2M applications.
Although CoRE could be used for compressing simple HTTP interfaces, it
more importantly also offers features for M2M such as built-in
discovery, multicast support and asynchronous transactions.

This document specifies the Constrained Application Protocol (CoAP) ,
which easily translates to HTTP for integration with the existing web
while meeting specialized requirements such as multicast support, very
low overhead and simplicity for constrained environments and M2M
applications [I-D.shelby-core-coap-req] (Shelby, Z., Stuber, M.,
Sturek, D., Frank, B., and R. Kelsey, “CoAP Requirements and Features,”

April 2010.). CoAP has the following main features:
*Constrained web protocol fulfilling M2M requirements.
*A stateless HTTP mapping, allowing proxies to be built providing
access to COAP resources via HTTP in a uniform way or for HTTP

simple interfaces to be realized alternatively over COAP.

*UDP binding with reliable unicast and best-effort multicast
support.

*Asynchronous transaction support.

*Low header overhead and parsing complexity.
*URI and Content-type support.

*Built-in resource discovery.

*Simple proxy and caching capabilities.

2. Constrained Application Protocol TOC

This section specifies the basic functionality and processing rules of
the protocol.

2.1. Interaction Model TOC

The interaction model of COAP is similar to the client/server model of
HTTP. However, Machine-to-machine interactions typically result in a
CoAP implementation acting in both client and server roles (called an
end-point). A CoAP exchange is equivalent to that of HTTP, and is sent
by a client to request an action (using a Method Code) on a resource

(identified by a URI) on a server. A response is then sent with a
Response Code and resource representation if appropriate.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a
UDP transport with support for both unicast and multicast interactions.
This is achieved using transaction messages (Confirmable, Non-
Confirmable, Acknowledgment, Reset) supporting optional reliability
(with exponential back-off) and transaction IDs between end-points to
carry requests and responses. These transactions are transparent to the
request/response interchanges. The only difference being that responses
may arrive asynchronously.

One could think of CoOAP as using a two-layer approach, a transactional
layer used to deal with UDP and the asynchronous nature of the
interactions, and the request/response interactions using Method and
Response codes.

o e e +
Application
g +
o e e e o oooo- +

oo e e e meeeaoo-- +

o m e meem e o +
uDP

i +

Figure 1: Abstract layering of CoAP

2.1.1. Synchronous response TOC

The most basic interaction between the Req/Res and Transaction layers
works by sending a request in a confirmable CoAP message and waiting
for an acknowledgment message that also carries the response. E.g., two
possible interactions for a basic GET are shown in Figure 2 (Two basic
GET transactions, one successful, one not found).

Client Server Client Server

| CON tid=47 | | CON tid=53 |
| GET /foo | | GET /baz |
- > | - > |
I I I I
| ACK tid=47 | | ACK tid=53 |
| 200 "<temp... | | 404 "Not... |
R + R +

Figure 2: Two basic GET transactions, one successful, one not found

Note that at the transaction layer, the response is returned in an ACK
message, independent of whether the request was successful at the Req/
Res layer. In effect, the response is piggy-backed on the ACK message,
so no separate acknowledgment is required that the GET message was
received.

The relationship between the confirmable message (CON) and the
acknowledgment message (ACK) is indicated by the transaction ID, which
is echoed back by the server in the ACK. Transaction IDs are short-
lived, they only serve to couple CON and ACK messages.

The tight coupling between CON and ACK also relieves the ACK of the
need to echo back information from the request, such as the URI or a
request token supplied by the client. We say that a response carried in
an ACK pertains to the request in the corresponding CON.

2.1.2. Asynchronous response TOC

Not all interactions are as simple as the basic synchronous exchange
shown. For example, a server might need longer to obtain the
representation of the resource requested than it can wait sending back
the acknowledgment, without risking the client to repeatedly retransmit
the request. To handle this case, the response is decoupled from the
transaction layer acknowledgment. Actually, the latter does not carry
any message at all.

As the client cannot know that this will be the case, it sends exactly
the same confirmable message with the same request. The server maybe
attempts to obtain the resource (e.g., by acting as a proxy) and times
out an ACK timer, or it immediately sends an acknowledgment knowing in
advance that there will be no quick answer. The acknowledgment
effectively is a promise that the request will be acted upon, see
Figure 3 (An asynchronous GET transaction).

Client Server
I I
| CON tid=48 [
| GET http://n.. |

Time Passes

I I
| CON tid=783 |
| 200 http://n.. |
| "<html.. [
I
I
I

Figure 3: An asynchronous GET transaction

When the server finally has obtained the resource representation and is
ready to send the response, it initiates a transaction to the client.
This new transaction has its own transaction ID, so there is no
automatic coupling of the response to the request. Instead, the URI
(and possibly token) is echoed back to the client in order to associate
the response to the original request. To ensure that this message is
not lost, it is again sent as a confirmable message and answered by the
client with an ACK, citing the new TID chosen by the server.

As a special failure situation, a client may no longer be aware that it
sent a request, e.g., if it does not have stable storage and was
rebooted in the meantime. This can be indicated by a special "Reset"
message, as shown in Figure 4 (An orphaned transaction).

Client Server
Client reboots

|

| CON tid=783

| 200 http://n..
| "<html..
|

|

|

Figure 4: An orphaned transaction

2.2. Transaction messages TOC

The CoAP transactions make use of four different message types,
described in this section. These messages are transparent to the
request/response carried over them.

2.2.1. Confirmable (CON) TOC

Some messages require an acknowledgment, either just to know they did
arrive or also to deliver the reply to a request. We call these
messages "Confirmable". When no packets are lost, each Confirmable
message elicits exactly one return message of type Acknowledgment or
type Reset.

2.2.2. Non-Confirmable (NON) TOC

Some other messages do not require an acknowledgment. This is
particularly true for messages that are repeated regularly for
application requirements, such as repeated readings from a sensor where
eventual arrival is sufficient.

TOC

2.2.3. Acknowledgment (ACK)

An Acknowledgment message acknowledges that a specific Confirmable
message (identified by its Transaction ID) arrived. As with all of the
message types itself, it may carry a payload and some options to
provide more details, such as the result of a request that was carried
in the Confirmable.

2.2.4. Reset (RST) TOC

A Reset message indicates that a specific Confirmable message was
received, but some context is missing to properly process it. This
condition is usually caused when the receiving node has rebooted and
has forgotten some state that would be required to interpret the
message.

2.2.5. Transaction IDs TOC

The Transaction ID is an unsigned integer kept by a CoAP end-point for
all of the CoAP Confirmable or Non-Confirmable messages it sends. Each
CoAP end-point keeps a single Transaction ID variable, which is changed
each time a new Confirmable or Non-Confirmable message is sent
regardless of the destination address or port. The Transaction ID is
used to match an Acknowledgment with an outstanding request, for
retransmission and to discard duplicate messages. The initial
Transaction ID should be randomized. The same Transaction ID MUST NOT
be re-used within the potential retransmission window, calculated as
RESPONSE_TIMEOUT * (2 N MAX_RETRANSMIT - 1).

2.3. Methods TOC

COAP supports the basic methods of GET, POST, PUT, DELETE, which are
easily mapped to HTTP. In this section each method is defined along
with its behavior. A unicast request with an unknown or unsupported
Method Code MUST generate a message with a "405 Method Not Allowed"
Response Code.

As COAP methods manipulate resources, they have the same properties of
safe (only retrieval) and idempotent (you can invoke it multiple times
with the same effects) as HTTP Section 9.1 (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.) [RFC2616]. The

GET method is safe, therefore it MUST NOT take any other action on a
resource other than retrieval. The GET, PUT and DELETE methods MUST be
performed in such a way that they are idempotent. Unlike PUT, POST is
not idempotent because the URI in the request indicates the resource
that will handle the enclosed body. This resource indicated by the POST
may be used for data processing, a gateway to other protocols and it
may create a new resource as a result of the POST.

2.3.1. GET T0C

The GET method retrieves the information of the resource identified by
the request URI. Upon success a 200 (OK) response SHOULD be sent.

The response to a GET is cacheable if it meets the requirements in
Section 5 (Caching).

2.3.2. POST T0C

The POST method is used to request the server to create a new resource
under the requested URI. If a resource has been created on the server,
the response SHOULD be 201 (Created) including the URI of the new
resource in a Location Option with any possible status in the message
body. If the POST succeeds but does not result in a new resource being
created on the server, a 200 (OK) response code SHOULD be returned.
Responses to this method are not cacheable.

2.3.3. PUT T0C

The PUT method requests that the resource identified by the request URI
be updated or created with the enclosed message body. If a resource
exists at that URI the message body SHOULD be considered a modified
version of that resource, and a 200 (OK) response SHOULD be returned.
If no resource exists then the server MAY create a new resource with
that URI, resulting in a 201 (Created) response. If the resource could
not be created or modified, then an appropriate error response code
SHOULD be sent.

Responses to this method are not cacheable.

TOC

2.3.4. DELETE
The DELETE method requests that the resource identified by the request

URI be deleted. The response 200 (OK) SHOULD be sent on success.
Responses to this method are not cacheable.

2.4. Response Codes TOC

CoAP makes use of a subset of HTTP response codes as defined in
Section 11.1 (Codes).

2.5. Options TOC

CoAP makes use of compact, extensible Type-Length-Value (TLV) style
options. This section explains the processing of CoAP options along
with a summary of the main features implemented in options such as URIs
and Content-types.

2.5.1. Option Processing TOC

If no options are to be included, the Option Count field is set to O
below and the Payload (if any) immediately follows the Transaction ID.
If options are to be included, the following rules apply. The number of
options is placed in the Option Count field. Each option is then placed
in order of Type, immediately following the Transaction ID with no
padding. Upon reception, unknown options of class "elective" MUST be
silently skipped. Unknown options of class "critical" in a Confirmable
SHOULD cause the return of a response code "400 Bad Request" (TBD)
including a copy of the critical option number in the payload of the
response.

2.5.2. URIs TOC

The Universal Resource Identifier (URI) [RFC3986] (Berners-Lee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) is an important feature of the web
architecture, where the relative part of the URI indicates the resource
being manipulated. CoAP supports URIs similarly to HTTP, e.g. coap://
[2001:DB8::101]/s/temp. As this URI is used purely as a locator, COAP

only supports Universal Resource Locator features of [RFC3986
(Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.) although throughout
the document we refer to URI.

COAP splits the URI up into its three parts with the default coap://
scheme, Uri-Authority and Uri-Path Options. The full URI can be created
by concatenating those parts (or their defaults if not present). CoAP
does not support "." or ".." in URIs nor does it support IRIs. A COAP
implementation SHOULD support query "?" processing, however fragment
"#'" processing is not supported. All URI strings in COAP MUST use the
US-ASCII encoding defined in [RFC3986] (Berners-Lee, T., Fielding, R.,
and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.). When using the Uri-Path Option the leading slash MUST
be omitted. Thus the above example "/s/temp" is included in the Uri-
Path Option as "s/temp".

The authority part of a URI is important in determining the correct
representation to return on end-points maintaining virtual servers and
for intermediate components such as proxies. For this reason it is
important that the full URI can be reconstructed when needed. However,
at the same time, it is often advantageous for COAP to elide the Uri-
Authority when it is unknown or identical to the IPv6 destination
address for efficiency. The following rules apply to processing a COAP
request:

1. If the Uri-Authority option is absent and the remainder of the
URI uniquely identifies a resource the server MAY proceed to
execute the request.

2. If an origin server is able to determine the IP destination
address of the request, it MAY assume this as the authority of
the URI.

3. If no authority can be determined and the server requires the
authority to identify the resource it MUST reject the request
with "400 Bad Request" (TBD: 400 is already overloaded, thus a
new response code may be created for this purpose).

Application designers are encouraged to make use of short, but
descriptive URIs. For example URIs 14 or less bytes in length fit in a
more compact option header. In addition, very short URIs such as "/1"
can be assigned as an alternative short URI for a resource by the
application. The CoRE Link Format includes an attribute to indicate if
a short alternative URI of a resource is available (REF).

The CoAP protocol scheme is identified in URIs with "coap://"
[IANA_TBD_SCHEME].

T0C

2.5.3. Content-type encoding

In order to support heterogeneous uses, COAP is transparent to the use
of different application payloads. In order for the application process
receiving a packet to properly parse a payload, its content-type should
be explicitly known from the header (as e.g. with HTTP). The use of
typical binary encodings for XML is discussed in
[I-D.shelby-6lowapp-encoding] (Shelby, Z., Luimula, M., and D.
Peintner, “Efficient XML Encoding and 6LowApp,” October 2009.).

String names of Internet media types (MIME types) [RFC2046] (Freed, N.
and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types,” November 1996.) are not optimal for use in the COAP
header. Instead, COAP simply assigns identifiers to a subset of common
media and content transfer encoding types. The content-type identifier
is optionally included in the Content-type Option Header of messages to
indicate the type of the message body. CoOAP Content-type identifiers
are defined in Section 11.2 (Content Types). In the absence of the
Content-type Option the MIME type "text/plain'" MUST BE assumed.

3. Message Formats TOC

CoAP makes use of asynchronous transactions using a simple binary
header format. This base header may be followed by options in Type-
Length-value (TLV) format. CoAP is bound to UDP as described in

Section 4 (UDP Binding).

Any bytes after the headers in the packet are considered the message
payload, if any. The length of the message payload is implied by the
datagram length. See Section 4 (UDP Binding) for further message length
requirements.

3.1. CoAP header TOC

This section defines the CoAP header, which is shared for all CoAP
messages. COAP makes use of an asynchronous transaction model. These
transactions are used to carry request/response exchanges, either using
a Method Code (GET/PUT/POST/DELETE) to invoke interaction with a
resource, or a Response Code carried in an immediate or asynchronous
response.

(0]

1 2 3

012345678901 23456789012345678901
B R e ST S e T S S e R st P S S

|Ver| T

| ocC | Code | Transaction ID |

+ot-t-t-t-F-F-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-+-+-+-+
| Options (if any)
+ot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Payload (if any)
+ot-t-t-t-t-F-t-t-t-t-t-t-t-t-t-F-F-F-F-F-t-t-t-t-t-t-F-F-F-+-+-+

Figure 5: CoAP header format

Header Fields:

Ver: Version. 2-bit unsigned integer. Indicates the version

oC:

of CoAP. Implementations of this specification MUST set
this field to 1. Other values are reserved for future
versions.

2-bit unsigned integer Transaction Type field. Indicates
if this message is Confirmable (0), Non-Confirmable (1),
Acknowledgment (2) or Reset (3).

4-bit unsigned integer Option Count field. Indicates if
there are Option Headers following the base header. If set
to 0 the payload (if any) immediately follows the base
header. If greater than zero the field indicates the number
of options to immediately follow the header.

Code: 8-bit unsigned integer. This field indicates the Method

or Response Code of a message. The value 0 indicates no
code. The values 1-10 are used for Method Codes as defined
in Table 1 (Method Codes). The values 11-39 are reserved
for future use. The values 40-255 are used for Response
Codes as defined in Section 11.1 (Codes).

Transaction ID: 16-bit unsigned integer. A unique Transaction

ID assigned by the source and used to match responses. The
Transaction ID MUST be changed for each new request
(regardless of the end-point) and MUST NOT be changed when
retransmitting a request (see Section 2.2.5 (Transaction

IDs)).

Method Code

GET 1
POST 2
PUT 3
DELETE 4

Table 1: Method Codes

3.2. Header options TOC

COAP messages may also include one or more header options in TLV
format. Options MUST appear in order of option type (see Table 2
(Option headers)). A delta encoding is used between each option header,
with the Type identifier for each Option calculated as the sum of its
Option Delta field and the Type identifier of the preceding Option in
the message, if any, or zero otherwise.

Each option header includes a Length field which can be extended by an
octet for options with values longer than 14 octets. COAP options
include the concept of Critical (odd value) and Elective (even value)
options (see Section 2.5.1 (Option Processing)).

Each option has the following format:

0 1 2 3 4 5 6 7
S e S v S S

| option delta | length | for 0..14
e S e g

for 15..270:
T Epup A
| option delta | 1 1 1 1 | length - 15

T S

Figure 6: Header option format

Option delta:

4-bit unsigned integer. This field defines the difference between
the option Type of this option and the previous option (or zero
for the first option). In other words, the Type identifier is
calculated by simply summing the Option delta fields of this and
previous options before it. The Option Values 14, 28, ... are
reserved for no-op options with no value (they are ignored) and
are used for deltas larger than 14. Thus these can be used as
"fenceposts" if deltas larger than 15 would otherwise be
required.

Length: Length Field. Normally Length is a 4-bit unsigned integer
allowing values of 0-14 octets. When the length is 15 or more,
another byte is added as an 8-bit unsigned integer plus 15
allowing values of 15-270 octets.

Option Value The value in the format defined for that option in
Table 2 (Option headers) of Length octets. Options MAY use
variable length values.

The following options are defined in this document. The Default column
indicates the value to be assumed in the absence of this option (if

any).

Type E Name Data type Length Default
0 - Reserved - - -
. . . 0 (text/
1 C Content-type 8-bit unsigned integer 1B .
plain)
Variable length unsigned
2 E Max-age . 1-4 B 60 seconds
integer
3 c - Reserved - -
4 E Etag Sequence of bytes 1-4 B -
Uri- . 1-270
5 C) String "
Authority B
. . 1-270
6 E Location String B -
7 - Reserved - - -
i . 1-270
9 C Uri-Path String B "

Table 2: Option headers

3.2.1. Content-type Option TOC

The Content-type Identifier Option indicates the Internet media type
identifier of the message-body, see Section 11.2 (Content Types) for
the encoding and identifier tables. A Content-type Identifier Option
SHOULD be included if there is a payload included with a CoOAP message.
In the absence of the Content-type Option the MIME type "text/plain"
(0) MUST be assumed. This option MUST be supported by all end-points.
This option MUST NOT occur more than once in a header.

3.2.2. Uri-Authority Option TOC

The Uri-Authority Option indicates the authority (host + port) part of
a URI. Examples of this option include "[2001:DB8::101]",
"198.51.100.0:8000" and "sensor.example.com". This option is used by
servers to determine which resource to return and by intermediate
components, e.g. when accessing a resource via a proxy. Section 2.5.2
(URIs) specifies the rules for URIs in CoAP. This option SHOULD be
included in a request when the authority of the URI is known. This
option MUST be supported by an end-point implementing proxy
functionality. This option MUST NOT occur more than once in a header.

3.2.3. Uri-Path Option TOC

The Uri-Path Option indicates the absolute path part of a URI. One
example of an absolute path in his option is "s/light". In the absence
of this option, the path is assumed to be "/". Section 2.5.2 (URIS)
specifies the rules for URIs in CoAP. The leading slash is assumed and
MUST be omitted. This option MUST be supported by all end-points. This
option MUST NOT occur more than once in a header.

3.2.4. Location Option TOC

The Location Option indicates the location of a resource as an absolute
path URI and is similar to the Uri-Path Option. The Location Option MAY
be included in a response to indicate the Location of a new resource
created with POST or together with a 30x response code. The leading

slash is assumed and MUST be omitted. This option MUST NOT occur more
than once in a header.

3.2.5. Max-age Option TOC

The Max-age Option indicates the maximum age of the resource for use in
cache control in seconds. The option value is represented as a variable
length unsigned integer between 8 and 32 bits. A default value of 60
seconds is assumed in the absence of this option.

When included in a request, Max-age indicates the maximum age of a
cached representation of that resource the client will accept. When
included in a response, Max-age indicates the maximum time the
representation may be cached before it MUST be discarded. This option
MUST NOT occur more than once in a header.

3.2.6. Etag Option TOC

The Etag Option is an opaque sequence of bytes which specifies the
version of a resource representation. An Etag may be generated for a
resource in any number of ways including a version, checksum, hash or
time. An end-point receiving an Etag MUST treat it as opaque and make
no assumptions about its format. The Etag MAY be included in a response
to indicate to a client if a resource has changed. The Etag SHOULD be
included in a request used for a cache refresh to indicate the client's
current version of the resource (see Section 5.2 (Cache refresh)).

4. UDP Binding ToC

The CoAP protocol operates by default over UDP. CoAP may also be used
with Datagram Transport Layer Security (DTLS) as described in

Section 10 (Security Considerations). CoAP could also be used over
other transports such as TCP or SCTP, the specification of which is out
of this document's scope.

The goal of binding CoAP to UDP is to provide the bare minimum features
for the protocol to operate over UDP, without trying to re-create the
full feature set of a transport like TCP. COAP over UDP has the
following features:

*Simple stop-and-wait retransmission reliability with exponential
back-off as described in Section 4.2 (Retransmission) for
Confirmable messages.

*Transaction ID for response matching as described in
Section 2.2.5 (Transaction IDs).

*Multicast support as described in Section 4.1 (Multicast).

The length of the Payload in a CoAP message is calculated from the
datagram length. While specific link layers make it beneficial to keep
CoAP messages small enough to fit into their link layer packets (see
Section 1 (Introduction)), this is a matter of implementation quality.
The CoOAP specification itself provides only an upper bound to the
message size. A COAP message SHOULD fit within a single IP packet and
MUST fit within a single IP datagram. If the Path MTU is not known for
a destination, an MTU of 1280 octets SHOULD be assumed.

4.1. Multicast TOC

COAP supports the use of multicast destination addresses. Multicast
messages SHOULD be Non-Confirmable. If a Confirmable multicast message
is sent then retransmission MUST NOT be performed. Furthermore, a
destination end-point to a multicast Confirmable message MUST only send
an Acknowledgment if the response code included indicates success (Code
= 2XX) 1in order to eliminate error code response floods. Other
mechanisms for avoiding congestion from multicast requests are being
considered in [I-D.eggert-core-congestion-control] (Eggert, L.,
“Congestion Control for the Constrained Application Protocol (CoAP),”

June 2010.).

4.2. Retransmission TOC

A CoAP end-point keeps track of open Confirmable messages it sent that
are waiting for a response. Each entry includes at least the
destination IP address and port of the original message, the message
itself, a retransmission counter and a timeout. When a Confirmable is
sent, an entry is made for that message with a default initial timeout
of RESPONSE_TIMEOUT and the retransmission counter set to 0. When a
matching Acknowledgment is received for an entry, the entry is
invalidated. When a timeout is triggered for an entry and the
retransmission counter is less than MAX_RETRANSMIT, the original
message is retransmitted to the destination without modification, the
retransmission counter is incremented, and the timeout is doubled. If
the retransmission counter reaches MAX_RETRANSMIT on a timeout, then
the entry is removed and the application process informed of delivery
failure.

For COAP messages sent to IP multicast addresses, retransmission MUST
NOT be performed. Therefore MAX_RETRANSMIT is always set to @ when the
destination address is multicast.

4.3. Congestion Control TOC

In addition to the exponential back-off mechanism in Section 4.2
(Retransmission), further congestion control optimizations are being
considered and tested for CoAP. These congestion control mechanism
under consideration are described in
[I-D.eggert-core-congestion-control] (Eggert, L., “Congestion Control
for the Constrained Application Protocol (CoAP),” June 2010.).

4.4. Default Port TOC

The CoAP default port number [IANA_TBD_PORT] MUST be supported by a
server for resource discovery (see Section 6 (Resource Discovery)) and
SHOULD be supported for providing access to other resources. In
addition other end-points may be hosted in the dynamic port space.

When a CoAP server is hosted by a 6LOWPAN node, it SHOULD support a
port in the 61616-61631 compressed UDP port space defined in [RFC4944
(Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” September 2007.). The
specific port number in use will be communicated in a URI and/or by
some other discovery mechanism.

5. Caching TOC

CoAP end-points are by definition constrained by bandwidth and
processing power. To optimize the performance of data transfer under
these constraints, we use caching features consistent with HTTP.
Caching includes the following concepts:

*Cache life of a resource is controlled via the Max-Age header
option

*Cache refresh and versioning of a resource is controlled via the
Etag header option

*Proxies between a client and end-point may participate in the
caching process on behalf of sleeping end-points and to avoid
unnecessary traffic on the constrained network

5.1. Cache control TOC

When an end-point responds to a GET request by sending a representation
of the resource, it SHOULD specify the Max-Age header option. The Max-
Age specifies the cache life of the resource in seconds. Resources
which change rapidly will have a short cache life, and resources which
change infrequently should specify a long cache life. If Max-Age is
unspecified in a GET response, then it is assumed to be 60 seconds. If
an end-point wishes to disable caching, it must explicitly specify a
Max-Age of zero seconds.

When a client reads the response from a GET request, it should cache
the resource representation for the cache lifetime as specified by the
Max-Age header. During the cache lifetime, the client SHOULD use its
cached version and avoid performing additional GETs for the resource.
In general, the origin server end-point is responsible for determining
cache age. However, in some cases a client may wish to determine its
own tolerance for cache staleness. In this case, a client may specify
the Max-Age header during a GET request. If the client's Max-Age is of
a shorter duration than the age of a cached resource, then the proxy or
end-point SHOULD perform a cache refresh. If the client specifies a
Max-Age of zero seconds, then the response MUST discard the cached
representation and return a fresh representation.

5.2. Cache refresh TOC

After the expiration of the cache lifetime, clients and proxies can
refresh their cached representation of a resource. Cache refresh is
accomplished using a GET request which will return a representation of
the resource's current state.

If the end-point has the capability to version the resource, then the
end-point should include the Etag header option in the response to a
GET request. The Etag is a variable length sequence of bytes which
captures a version identifier of the resource. The Etag is an opaque
identifier; clients MUST NOT infer any semantics from the Etag value.
If an end-point specifies the Etag header option with a response, then
the client SHOULD specify a matching Etag header option in their GET
request during cache refresh. If the end-point's version of the
resource is unmodified, then the server SHOULD return a 304 response
with no payload to avoid retransmitting the resource representation.

TOC

5.3. Proxying

A proxy is defined as a CoAP end-point which services cached requests
on behalf of other COAP end-points. Any node in a COAP network may act
as a proxy, although in general the node between the constrained
network and the Internet at large SHOULD always support proxy
functionality.

Proxies should be used under the following scenarios:

*Clients external to the constrained network SHOULD always make
requests through a proxy to limit traffic on the constrained
network

*Clients internal to the constrained network MAY use a proxy based
on network topology when performance warrants

*Clients of sleeping devices MUST use a proxy to access resources
while the device is sleeping

Proxy requests are made as normal CON requests to the proxy end-point.
All proxy requests MUST use the Uri-Authority header to indicate the
origin server's IP address using the URI format defined by RFC 3986:

full uri = "coap://" + authority + path

authority = host [":" port]

host = IP-literal / IPv4address / reg-name
(as defined by RFC 3986)

port = *DIGIT

The host part is case insensitive and may be an IPv4 literal, IPv6
literal in square brackets, or a registered name. The port number 1is
optional, if omitted or zero-length it is assumed to be the default
COAP port (see Section 4.4 (Default Port)).

When a request is made to a proxy, then the following steps are taken:

1. If the authority (host and port) is recognized as identifying the
proxy end-point, then the request MUST be treated as a local request
and the path part is used as Uri-Path

2. If the proxy does not contain a fresh cached representation of
the resource, then the proxy MUST attempt to refresh its cache
according to section 5.2. The origin server's IP address and port is
determined by the authority part of the full URI. The Uri-Path
option for the refresh request is determined by the path part of the
full URI.

3. If the proxy fails to obtain a fresh cached representation, then
a 502 Bad Gateway error code MUST be returned

4. The proxy returns the cached representation on behalf of the
origin server

All CoAP options are considered end-to-end and MUST be stored as part
of the cache entry and MUST be transmitted in the proxy's response. The
Max-Age option should be adjusted by the proxy for each response using
the formula: proxy-max-age = original-max-age - cache-age. For example
if a request is made to a proxied resource that was refreshed 20sec ago
and had an original Max-Age of 60sec, then that resource's proxied Max-
Age is now 40sec.

6. Resource Discovery TOC

The discovery of resources offered by a CoAP end-point is extremely
important in machine-to-machine applications where there are no humans
in the loop and static interfaces result in fragility. A CoAP end-point
SHOULD support the CoRE Link Format of discoverable resources as
described in (REF).

7. HTTP Mapping TOC

COAP supports a limited subset of HTTP functionality, and thus a
mapping to HTTP is straightforward. There might be several reasons for
mapping between CoAP and HTTP, for example when designing a web
interface for use over either protocol or when realizing a COAP-HTTP
proxy. Likewise, COAP could equally be mapped to other protocols such
as XMPP or SIP, the definition of which is out of scope.

The mapping of CoAP to HTTP is a straightforward conversion of the CoAP
method or response code, content-type and options to the corresponding
HTTP feature. The payload is carried in an equivalent way by both
protocols. The mapping of HTTP to COAP requires checking for methods,
response codes, options and content-types that are not supported by
CoAP. A mapping SHOULD attempt to map options, response codes and
content-types to a suitable alternative if possible. Otherwise the
unsupported feature SHOULD be silently dropped if possible, or an
appropriate error code generated otherwise.

The caching and proxying of CoAP is specified in Section 5 (Caching).
In a similar manner, caching and proxying MAY be performed between CoAP
and HTTP by an intermediate node. A proxy SHOULD respond with a 502
(Bad Gateway) error to HTTP requests which can not be successfully
mapped to CoAP. COAP transaction messages are transparent to request/
response exchanges and MUST have no affect on a proxy function.

8. Protocol Constants TOC

This section defines the relevant protocol constants defined in this
document:

RESPONSE_TIMEOUT 1 second

MAX_RETRANSMIT 5

9. Examples TOC

Figure 7 (Basic request/response) shows a basic request sequence. A
client makes a Confirmable GET request for the resource /temperature to
the server with a Transaction ID of 1234. The request includes one Uri-
Path Option (delta © + 9 = 9) "temperature" of Len = 11. This request
is a total of 16 octets long. The corresponding Acknowledgment is of
Code 200 OK and includes a Payload of "22.3 C". The Transaction ID is
1234, thus the transaction is successfully completed. The response is
10 octets long and a Content-type of 0@ (text/plain) is assumed as there
is no Content-type Option.

CLIENT SERVER

0] 1 2 3
012345678901 234567890123456789601
D T e Sy

1210 1 | GET = 1 | TID=1234 |
+-t-t-t-t-F-t-F-t-F-t-F-F-F-t-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| 9 | 11 | "temperature" (11 Octets)

B T s ST e R S N A SPSE P S S

CLIENT SERVER
I I
| P ACK + 200 OK [TID=1234] --------- |
I I

0 1 2 3
012345678901 23456789012345678901
B s ST T S S e e ST U s S P S S S S S St o S
1121 0 | Code=80 | TID=1234 |
B T s T ST PR S Sy i Sy fp S

| "22.3 C" (6 Octets)
B S e s ol S S T S ST S U Sy Sy S S

Figure 7: Basic request/response

Figure 8 (Basic request/response) shows an example of a retransmission
using the previous request. The first ACK from the server is lost, and
after RESPONSE_TIMEOUT seconds the client retransmits the request.

CLIENT SERVER
I I

I
I
I
I

RESPONSE_TIMEOUT

I
| - CON + GET /temperature [TID=1234] =------ >
I
I

| Cemmee- ACK + 200 OK [TID=1234] ---------
Payload:
22.3 C

Figure 8: Basic request/response

Figure 9 (Basic request/response) shows an example of resource
discovery. Here a unicast GET request is made to the server for /.well-
known/core, which returns a list of two resource descriptions. The
client then decides to make a request for the short URI of /sensor/
light (/1). Requesting /sensors/light would result in the same
representation.

CLIENT SERVER

I I
| ----- CON + GET /.well-known/core [TID=5068] ----- > |
I I
| <---- ACK + 200 OK [TID=5068, CT=40] ------ |
Payload:
</sensor/temp>;sh="/t";ct=0,41;n="Temperature",
</sensor/light>;sh="/1";ct=41;n="Light"

I
[CON + GET /1 [TID=5069] ------ >
I

| <---- ACK + 200 OK [TID=5069, CT=41] -----
Payload:
<?xml?><Light unit="Lux">45</Light>

Figure 9: Basic request/response

Figure 10 (Basic request/response) shows an example of a multicast
request. Here a client sends a request for /.well-known/core with a
query for ?n=Light (Resource name = Light) to all-nodes link-scope
multicast. There are 3 servers on the link: A, B and C. Servers A and B
have a matching resource, therefore they send back a successful 200 OK
response with the matching resource in the payload. C does not attempt
to send a response.

CLIENT FFO2::1

I I

| -- CON + GET /.well-known/core?n=Light [TID=7000] --> |

I I

| <--=--- ACK + 200 OK [TID=7000, CT=40] ------ SERVER A
Payload:
</sensor/light>;sh="/1";ct=41;n="Light"

I I
| S ACK + 200 OK [TID=7000, CT=40] ------ SERVER B

Payload:
</light>;ct=41;n="Light"

Figure 10: Basic request/response

10. Security Considerations TOC

This section describes mechanisms that can be used to secure COAP and
analyzes the possible threats to the protocol and its limitations.
Security bootstrapping (setting up keys) in constrained environments is
considered in [I-D.oflynn-core-bootstrapping] (Sarikaya, B. and R.
Cragie, “Initial Configuration of Resource-Constrained Devices,”

July 2010.).

10.1. Securing CoAP with IPSec TOC

One mechanism to secure CoAP in constrained environments is the IPsec
Encapsulating Security Payload (ESP) [RFC2406] (Kent, S. and R.
Atkinson, “IP Encapsulating Security Payload (ESP),” November 1998.).
Using IPsec ESP with the appropriate configuration it is possible for
many constrained devices to support encryption with built-in link-layer
encryption hardware, for example most IEEE 802.15.4 radio chips are
compatible with AES-CBC (with 128-bit keys) [RFC3602] (Frankel, S.,
Glenn, R., and S. Kelly, “The AES-CBC Cipher Algorithm and Its Use with
IPsec,” September 2003.) as defined for use with IPsec in [RFC4835
(Manral, V., “Cryptographic Algorithm Implementation Requirements for
Encapsulating Security Payload (ESP) and Authentication Header (AH),”
April 2007.). When using IPsec to secure CoAP, both authentication and
confidentiality SHOULD be applied as recommended in [RFC2406] (Kent, S.
and R. Atkinson, “IP Encapsulating Security Payload (ESP),”

November 1998.). The use of IPsec between COAP end-points is
transparent to the application layer and does not require special
consideration for a CoAP implementation.

IPsec may not be appropriate for all environments. For example, IPsec
support is not available for many embedded IP stacks and even in full
PC operating systems or on backend web servers, application developers
may not have sufficient access to configure or enable IPsec or to add a
security gateway to the infrastructure. Problems with firewalls and
NATs may furthermore limit the use of IPsec.

T0C

10.2. Securing CoAP with DTLS

Just as HTTP may be secured using Transport Layer Security (TLS) over
TCP, COAP may be secured using Datagram TLS (DTLS) [RFC4347] (Rescorla,
E. and N. Modadugu, “Datagram Transport Layer Security,” April 2006.)
over UDP. This section describes how to secure CoAP with DTLS , along
with the minimal configurations appropriate for constrained
environments. DTLS is in practice TLS with added features to deal with
the unreliable nature of the UDP transport.

In some constrained nodes (limited flash and/or RAM) and networks
(limited bandwidth or high scalability requirements) DTLS may not be
applicable. The protocol is an order of magnitude more complex than
CoAP and has appreciable handshake overhead needed to maintain security
sessions. DTLS makes sense for applications where the session
maintenance makes is compatible with application flows and sufficient
resources are available on the constrained nodes and for the added
network overhead.

As with IPSec, DTLS should be configured with a cypher suite compatible
with any possible hardware engine on the node, for example AES-CBC in
the case of IEEE 802.15.4. Implementations MUST support the mandatory
to implement cipher suite TLS_RSA_WITH_AES_128_CBC_SHA as specified in
[RFEC5246] (Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,"” August 2008.).

10.3. Threat analysis and protocol limitations TOC

This section is meant to inform protocol and application developers
about the security limitations of COAP as described in this document.
As COAP realizes a subset of the features in HTTP/1.1, the security
considerations in Section 15 of [RFC2616] (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.) are also
pertinent to CoAP. This section concentrates on describing limitations
specific to CoAP and CORE.

10.3.1. Processing URIs TOC

TODO

T0C

10.3.2. Proxying and Caching

TODO
10.3.3. Attacks on TIDs TOC
TODO
10.3.4. Risk of amplification using multicast TOC
TODO
10.3.5. Asynchronous responses TOC
TODO
11. IANA Considerations TOC

[IANA_TBD_SCHEME] This document suggests the scheme coap:// to identify
this protocol in a URI. The string "coap" should similarly be used in
well-known port and service discovery registrations.

[IANA_TBD_PORT] Apply for a well-known port number in the 0-1023 space
as CoOAP end-points are usually executed by an operating system or root
process. http://www.iana.org/assignments/port-numbers

[IANA_TBD_MIME] A new registry is required for the Internet MIME type
identifier space for CoAP as described in Section 11.2 (Content Types).

11.1. Codes TOC

CoAP makes use of (a subset of) the HTTP status codes defined in
[REC2616] (Fielding, R., Gettys, J., Mogqul, J., Frystyk, H., Masinter,
L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.4,” June 1999.). The HTTP status code is encoded into an 8-bit
unsigned integer code with the mapping defined in Table 3 (CoAP Codes).
The use of these codes is defined throughout this document using the
HTTP Name.

Code HTTP Name

40 100 Continue

80 200 OK

81 201 Created

124 304 Not Modified

160 400 Bad Request

164 404 Not Found

165 405 Method Not Allowed

175 415 Unsupported Media Type

200 500 Internal Server Error
202 502 Bad Gateway

203 503 Service Unavailable
204 504 Gateway Timeout

Table 3: CoAP Codes

11.2. Content Types TOC

Internet media types are identified by a string in HTTP, such as
"application/xml". This string is made up of a top-level type
"application" and a sub-type "xml" [RFC2046] (Freed, N. and N.
Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,” November 1996.). In order to minimize the overhead of
using these media types to indicate the type of message payload, COAP
defines an identifier encoding scheme for a subset of Internet media
types. It is expected that this table of identifiers will be extensible
and maintained by IANA for values of 0-200 [IANA_TBD_MIME].

The Content-type Option is formatted as an 8-bit unsigned integer.
Initial mappings from Internet media types to a suitable identifier is
shown in Table 4 (Media type identifiers). Composite high-level types
(multipart and message) are not supported. Identifier values from
201-255 are reserved for vendor specific, application specific or
experimental use and are not maintained by IANA.

Internet media type Identifier

text/plain (UTF-8) 0
text/xml (UTF-8) 1
text/csv (UTF-8) 2
text/html (UTF-8) 3
image/gif 21
image/jpeg 22
image/png 23
image/tiff 24
audio/raw 25
video/raw 26

application/link-format [draft-shelby-core-link-format] 40

application/xml 41
application/octet-stream 42
application/rdf+xml 43
application/soap+xml 44
application/atom+xml 45
application/xmpp+xml 46
application/exi 47
application/x-bxml 48
application/fastinfoset 49
application/soap+fastinfoset 50
application/json 51

Table 4: Media type identifiers

12. Acknowledgments TOC

Special thanks to Carsten Bormann and Klaus Hartke for substantial
contributions to the ideas and text in the document (Section 2.1.1
(Synchronous response), Section 2.1.2 (Asynchronous response),
Section 2.2 (Transaction messages), Section 3.2 (Header options)),
along with countless detailed reviews and discussions.

Thanks to Michael Stuber, Richard Kelsey, Cullen Jennings, Guido
Moritz, Peter Van Der Stok, Adriano Pezzuto, Lisa Dussealt, Alexey
Melnikov, Gilbert Clark, Salvatore Loreto, Petri Mutka, Szymon Sasin,
Robert Quattlebaum, Robert Cragie, Angelo Castellani, Tom Herbst, Ed

Beroset, Gilman Tolle, Robby Simpson, Peter Bigot, Colin O'Flynn and
David Ryan for helpful comments and discussions that have shaped the
document.

13. Changelog _ToC
Changes from ietf-01 to ietf-02:

0 Sending an error on a critical option clarified (#18).

0 Clarification on behavior of PUT and idempotent operations (#19).

0 Use of Uri-Authority clarified along with server processing rules.
Uri-Scheme option removed. (#20, #23)

0 Resource discovery section removed to a separate CoRE Link Format
draft (#21)

0 Initial security section outline added.
Changes from ietf-00 to ietf-01:

0 New cleaner transaction message model and header (#5)

0 Removed subscription while being designed (#1)

0 Section 2 re-written (#3)

0 Text added about use of short URIs (#4)

o Improved header option scheme (#5, #14)

o Date option removed whiled being designed (#6)

0 New text for CoAP default port (#7)

0 Completed proxying section (#8)

o Completed resource discovery section (#9)

0 Completed HTTP mapping section (#10)

0 Several new examples added (#11)

0 URI split into 3 options (#12)

0o MIME type defined for link-format (#13, #16)

o New text on maximum message size (#15)
0 Location Option added
Changes from shelby-01 to ietf-00:
0 Removed the TCP binding section, left open for the future.
0 Fixed a bug in the example.

0o Marked current Sub/Notify as (Experimental) while under WG
discussion.

o Fixed maximum datagram size to 1280 for both IPv4 and IPv6 (for
COAP-COAP proxying to work).

0 Temporarily removed the Magic Byte header as TCP is no longer
included as a binding.

0 Removed the Uri-code Option as different URI encoding schemes are
being discussed.

0 Changed the rel= field to desc= for resource discovery.

0 Changed the maximum message size to 1024 bytes to allow for IP/UDP
headers.

0 Made the URI slash optimization and method impotence MUSTs
0 Minor editing and bug fixing.
Changes from shelby-00 to shelby-01:
0 Unified the message header and added a notify message type.
0 Renamed methods with HTTP names and removed the NOTIFY method.
0 Added a number of options field to the header.
0 Combines the Option Type and Length into an 8-bit field.
0 Added the magic byte header.
o Added new Etag option.
0 Added new Date option.
0 Added new Subscription option.

0 Completed the HTTP Code - CoOAP Code mapping table appendix.

0 Completed the Content-type Identifier appendix and tables.

0 Added more simplifications for URI support.

0 Initial subscription and discovery sections.

0 A Flag requirements simplified.

14. References

T0C

14.1. Normative References

[I-D.oflynn-
core-
bootstrapping]
[RFC2046]

[RFC2406]

[RFC2616]

[RFC3602]

[RFC3986]

[RFC4347]

[RFC4835]

[RFC5246]

TOC
Sarikaya, B. and R. Cragie, “Initial
Configuration of Resource-Constrained Devices,”
draft-oflynn-core-bootstrapping-01 (work in
progress), July 2010 (TXT).
Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).
Kent, S. and R. Atkinson, “IP Encapsulating
Security Payload (ESP),” RFC 2406, November 1998
(TXT, HTML, XML).
Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).
Frankel, S., Glenn, R., and S. Kelly, “The AES-
CBC Cipher Algorithm and Its Use with IPsec,”
RFC 3602, September 2003 (TXT).
Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).
Rescorla, E. and N. Modadugu, “Datagram Transport

Layer Security,” RFC 4347, April 2006 (TXT).
Manral, V., “Cryptographic Algorithm
Implementation Requirements for Encapsulating
Security Payload (ESP) and Authentication Header
(AH),” RFC 4835, April 2007 (TXT).

Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

http://www.ietf.org/internet-drafts/draft-oflynn-core-bootstrapping-01.txt
http://www.ietf.org/internet-drafts/draft-oflynn-core-bootstrapping-01.txt
http://www.ietf.org/internet-drafts/draft-oflynn-core-bootstrapping-01.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:kent@bbn.com
mailto:rja@corp.home.net
http://tools.ietf.org/html/rfc2406
http://tools.ietf.org/html/rfc2406
http://www.rfc-editor.org/rfc/rfc2406.txt
http://xml.resource.org/public/rfc/html/rfc2406.html
http://xml.resource.org/public/rfc/xml/rfc2406.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc3602
http://tools.ietf.org/html/rfc3602
http://www.rfc-editor.org/rfc/rfc3602.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc4347
http://www.rfc-editor.org/rfc/rfc4347.txt
http://tools.ietf.org/html/rfc4835
http://tools.ietf.org/html/rfc4835
http://tools.ietf.org/html/rfc4835
http://tools.ietf.org/html/rfc4835
http://www.rfc-editor.org/rfc/rfc4835.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt

14.2. Informative References

[I-D.eggert-core-
congestion-control]

[I-D.shelby-6lowapp-

encoding]

[I-D.shelby-core-

coap-req]

[RFC4944]

Authors'

Addresses

TOC

Eggert, L., “Congestion Control for the
Constrained Application Protocol (CoAP),”

draft-eggert-core-congestion-control-00 (work
in progress), June 2010 (TXT).

Shelby, z., Luimula, M., and D. Peintner,
“Efficient XML Encoding and 6LowApp,” draft-
shelby-6lowapp-encoding-00 (work in
progress), October 2009 (TXT).

Shelby, zZ., Stuber, M., Sturek, D., Frank,
B., and R. Kelsey, “CoAP Requirements and

Features,” draft-shelby-core-coap-req-01

(work in progress), April 2010 (TXT).
Montenegro, G., Kushalnagar, N., Hui, J., and
D. Culler, “Transmission of IPv6 Packets over
IEEE 802.15.4 Networks,” RFC 4944,

September 2007 (TXT).

_T0C
Zach Shelby
Sensinode
Kidekuja 2
Vuokatti 88600
FINLAND

Phone: +358407796297
Email: zach@sensinode.com

Brian Frank
SkyFoundry
Richmond, VA
USA

Phone:
Email: brian@skyfoundry.com

Don Sturek

Pacific Gas & Electric
77 Beale Street

San Francisco, CA

USA

Phone: +1-619-504-3615
Email: d.sturek@att.net

http://www.ietf.org/internet-drafts/draft-eggert-core-congestion-control-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-core-congestion-control-00.txt
http://www.ietf.org/internet-drafts/draft-eggert-core-congestion-control-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://www.ietf.org/internet-drafts/draft-shelby-core-coap-req-01.txt
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc4944
http://www.rfc-editor.org/rfc/rfc4944.txt
mailto:zach@sensinode.com
mailto:brian@skyfoundry.com
mailto:d.sturek@att.net

	Constrained Application Protocol (CoAP)draft-ietf-core-coap-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Constrained Application Protocol
	2.1. Interaction Model
	2.1.1. Synchronous response
	2.1.2. Asynchronous response
	2.2. Transaction messages
	2.2.1. Confirmable (CON)
	2.2.2. Non-Confirmable (NON)
	2.2.3. Acknowledgment (ACK)
	2.2.4. Reset (RST)
	2.2.5. Transaction IDs
	2.3. Methods
	2.3.1. GET
	2.3.2. POST
	2.3.3. PUT
	2.3.4. DELETE
	2.4. Response Codes
	2.5. Options
	2.5.1. Option Processing
	2.5.2. URIs
	2.5.3. Content-type encoding
	3. Message Formats
	3.1. CoAP header
	3.2. Header options
	3.2.1. Content-type Option
	3.2.2. Uri-Authority Option
	3.2.3. Uri-Path Option
	3.2.4. Location Option
	3.2.5. Max-age Option
	3.2.6. Etag Option
	4. UDP Binding
	4.1. Multicast
	4.2. Retransmission
	4.3. Congestion Control
	4.4. Default Port
	5. Caching
	5.1. Cache control
	5.2. Cache refresh
	5.3. Proxying
	6. Resource Discovery
	7. HTTP Mapping
	8. Protocol Constants
	9. Examples
	10. Security Considerations
	10.1. Securing CoAP with IPSec
	10.2. Securing CoAP with DTLS
	10.3. Threat analysis and protocol limitations
	10.3.1. Processing URIs
	10.3.2. Proxying and Caching
	10.3.3. Attacks on TIDs
	10.3.4. Risk of amplification using multicast
	10.3.5. Asynchronous responses
	11. IANA Considerations
	11.1. Codes
	11.2. Content Types
	12. Acknowledgments
	13. Changelog
	14. References
	14.1. Normative References
	14.2. Informative References
	Authors' Addresses

