
CoRE Working Group Z. Shelby
Internet-Draft Sensinode
Intended status: Standards Track K. Hartke
Expires: September 15, 2011 C. Bormann
 Universitaet Bremen TZI
 B. Frank
 SkyFoundry
 March 14, 2011

Constrained Application Protocol (CoAP)
draft-ietf-core-coap-05

Abstract

 This document specifies the Constrained Application Protocol (CoAP),
 a specialized web transfer protocol for use with constrained networks
 and nodes for machine-to-machine applications such as smart energy
 and building automation. These constrained nodes often have 8-bit
 microcontrollers with small amounts of ROM and RAM, while networks
 such as 6LoWPAN often have high packet error rates and a typical
 throughput of 10s of kbit/s. CoAP provides a method/response
 interaction model between application end-points, supports built-in
 resource discovery, and includes key web concepts such as URIs and
 content-types. CoAP easily translates to HTTP for integration with
 the web while meeting specialized requirements such as multicast
 support, very low overhead and simplicity for constrained
 environments.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Shelby, et al. Expires September 15, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Features . 5
1.2. Terminology . 6

2. Constrained Application Protocol 7
2.1. Messaging Model . 8
2.2. Request/Response Model 9
2.3. Intermediaries and Caching 11
2.4. Resource Discovery . 11

3. Message Syntax . 12
3.1. Message Format . 12
3.1.1. Message Size Implementation Considerations 13

3.2. Option Format . 14
4. Message Semantics . 15
4.1. Reliable Messages . 16
4.2. Unreliable Messages 17
4.3. Message Types . 17
4.3.1. Confirmable (CON) 18
4.3.2. Non-Confirmable (NON) 18
4.3.3. Acknowledgement (ACK) 18
4.3.4. Reset (RST) . 18

4.4. Multicast . 19
4.5. Congestion Control . 19

5. Request/Response Semantics 19
5.1. Requests . 19
5.2. Responses . 20
5.2.1. Piggy-backed . 21
5.2.2. Separate . 21
5.2.3. Non-Confirmable 22

5.3. Request/Response Matching 22
5.4. Options . 23
5.4.1. Critical/Elective 23
5.4.2. Length . 24

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Shelby, et al. Expires September 15, 2011 [Page 2]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.4.3. Default Values . 24
5.4.4. Repeating Options 24
5.4.5. Option Numbers . 24

5.5. Payload . 25
5.6. Caching . 25
5.6.1. Freshness Model 26
5.6.2. Validation Model 26

5.7. Proxying . 27
5.8. Method Definitions . 28
5.8.1. GET . 28
5.8.2. POST . 28
5.8.3. PUT . 29
5.8.4. DELETE . 29

5.9. Response Code Definitions 30
5.9.1. Success 2.xx . 30
5.9.2. Client Error 4.xx 31
5.9.3. Server Error 5.xx 32

5.10. Option Definitions . 33
5.10.1. Token . 33
5.10.2. Uri-Host, Uri-Port, Uri-Path and Uri-Query 34
5.10.3. Proxy-Uri . 35
5.10.4. Content-Type . 35
5.10.5. Max-Age . 35
5.10.6. ETag . 36
5.10.7. Location-Path and Location-Query 36

6. CoAP URIs . 36
6.1. URI Scheme Syntax . 37
6.2. Normalization and Comparison Rules 37
6.3. Parsing URIs . 38
6.4. Constructing URIs . 39

7. Finding and Addressing CoAP End-Points 40
7.1. Resource Discovery . 40
7.2. Default Port . 40
7.3. Multiplexing DTLS and CoAP 41
7.3.1. Future-Proofing the Multiplexing 41

8. HTTP Mapping . 42
8.1. CoAP-HTTP Mapping . 43
8.2. HTTP-CoAP Mapping . 47

9. Protocol Constants . 49
10. Security Considerations 49
10.1. Securing CoAP with IPsec 50
10.2. Securing CoAP with DTLS 51
10.2.1. SharedKey and MultiKey Modes 52
10.2.2. Certificate Mode 52

10.3. Threat analysis and protocol limitations 53
10.3.1. Protocol Parsing, Processing URIs 53
10.3.2. Proxying and Caching 53
10.3.3. Risk of amplification 54

Shelby, et al. Expires September 15, 2011 [Page 3]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

10.3.4. Cross-Protocol Attacks 55
11. IANA Considerations . 56
11.1. CoAP Code Registry . 57
11.1.1. Method Codes . 57
11.1.2. Response Codes . 58

11.2. Option Number Registry 59
11.3. Media Type Registry 60
11.4. URI Scheme Registration 62
11.5. Service Name and Port Number Registration 63

12. Acknowledgements . 63
13. References . 64
13.1. Normative References 64
13.2. Informative References 66

Appendix A. Integer Option Value Format 67
Appendix B. Examples . 68
Appendix C. URI Examples . 74
Appendix D. Changelog . 76

 Authors' Addresses . 80

Shelby, et al. Expires September 15, 2011 [Page 4]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

1. Introduction

 The use of web services on the Internet has become ubiquitous in most
 applications, and depends on the fundamental Representational State
 Transfer (REST) architecture of the web.

 The Constrained RESTful Environments (CoRE) working group aims at
 realizing the REST architecture in a suitable form for the most
 constrained nodes (e.g. 8-bit microcontrollers with limited RAM and
 ROM) and networks (e.g. 6LoWPAN). Constrained networks like 6LoWPAN
 support the expensive fragmentation of IPv6 packets into small link-
 layer frames. One design goal of CoAP has been to keep message
 overhead small, thus limiting the use of fragmentation.

 One of the main goals of CoAP is to design a generic web protocol for
 the special requirements of this constrained environment, especially
 considering energy, building automation and other M2M applications.
 The goal of CoAP is not to blindly compress HTTP [RFC2616], but
 rather to realize a subset of REST common with HTTP but optimized for
 M2M applications. Although CoAP could be used for compressing simple
 HTTP interfaces, it more importantly also offers features for M2M
 such as built-in discovery, multicast support and asynchronous
 message exchanges.

 This document specifies the Constrained Application Protocol (CoAP),
 which easily translates to HTTP for integration with the existing web
 while meeting specialized requirements such as multicast support,
 very low overhead and simplicity for constrained environments and M2M
 applications.

1.1. Features

 CoAP has the following main features:

 o Constrained web protocol fulfilling M2M requirements.

 o A stateless HTTP mapping, allowing proxies to be built providing
 access to CoAP resources via HTTP in a uniform way or for HTTP
 simple interfaces to be realized alternatively over CoAP.

 o UDP binding with reliable unicast and best-effort multicast
 support.

 o Asynchronous message exchanges.

 o Low header overhead and parsing complexity.

https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 5]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o URI and Content-type support.

 o Simple proxy and caching capabilities.

 o Optional resource discovery.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC2616]. In addition, this
 specification defines the following terminology:

 Piggy-backed Response
 A Piggy-backed Response is included right in a CoAP
 Acknowledgement (ACK) message that is sent to acknowledge receipt
 of the Request for this Response (Section 5.2.1).

 Separate Response
 When a Confirmable message carrying a Request is acknowledged with
 an empty message (e.g., because the server doesn't have the answer
 right away), a Separate Response is sent in a separate message
 exchange (Section 5.2.2).

 Critical Option
 An option that would need to be understood by the end-point
 receiving the message in order to properly process the message
 (Section 5.4.1). Note that the implementation of critical options
 is, as the name "Option" implies, generally optional: unsupported
 critical options lead to rejection of the message.

 Elective Option
 An option that is intended be ignored by an end-point that does
 not understand it, which nonetheless still can correctly process
 the message (Section 5.4.1).

 Resource Discovery
 The process where a CoAP client queries a server for its list of
 hosted resources (i.e., links, Section 7.1).

 Intermediary
 There are two common forms of intermediary: proxy and reverse
 proxy. In some cases, a single intermediary might act as an
 origin server, proxy, or reverse proxy, switching behavior based
 on the nature of each request.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 6]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Proxy
 A "proxy" is an end-point selected by a client, usually via local
 configuration rules, to perform requests on behalf of the client,
 doing any necessary translations. Some translations are minimal,
 such as for proxy requests for "coap" URIs, whereas other requests
 might require translation to and from entirely different
 application-layer protocols.

 Reverse Proxy
 A "reverse proxy" is an end-point that acts as a layer above some
 other server(s) and satisfies requests on behalf of these, doing
 any necessary translations. Unlike a proxy, a reverse proxy
 receives requests as if it was the origin server for the target
 resource; the requesting client will not be aware that it is
 communicating with a reverse proxy.

 In this specification, the term "byte" is used in its now customary
 sense as a synonym for "octet".

 In this specification, the operator "^" stands for exponentiation.

2. Constrained Application Protocol

 The interaction model of CoAP is similar to the client/server model
 of HTTP. However, machine-to-machine interactions typically result
 in a CoAP implementation acting in both client and server roles
 (called an end-point). A CoAP request is equivalent to that of HTTP,
 and is sent by a client to request an action (using a method code) on
 a resource (identified by a URI) on a server. The server then sends
 a response with a response code; this response may include a resource
 representation.

 Unlike HTTP, CoAP deals with these interchanges asynchronously over a
 datagram-oriented transport such as UDP. This is done using a layer
 of messages that supports optional reliability (with exponential
 back-off). CoAP defines four types of messages: Confirmable, Non-
 Confirmable, Acknowledgement, Reset; method codes and response codes
 included in some of these messages make them carry requests or
 responses. The basic exchanges of the four types of messages are
 transparent to the request/response interactions.

 One could think of CoAP as using a two-layer approach, a CoAP
 messaging layer used to deal with UDP and the asynchronous nature of
 the interactions, and the request/response interactions using Method
 and Response codes (see Figure 1).

Shelby, et al. Expires September 15, 2011 [Page 7]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 +----------------------+
 | Application |
 +----------------------+
 +----------------------+
 | Requests/Responses |
 |----------------------| CoAP
 | Messages |
 +----------------------+
 +----------------------+
 | UDP |
 +----------------------+

 Figure 1: Abstract layering of CoAP

2.1. Messaging Model

 The CoAP messaging model is based on the exchange of messages over
 UDP between end-points.

 CoAP uses a short fixed-length binary header (4 bytes) that may be
 followed by compact binary options and a payload. This message
 format is shared by requests and responses. The CoAP message format
 is specified in Section 3. Each message contains a Message ID used
 to detect duplicates and for optional reliability.

 Reliability is provided by marking a message as Confirmable (CON). A
 Confirmable message is retransmitted using a default timeout and
 exponential back-off between retransmissions, until the recipient
 sends an Acknowledgement message (ACK) with the same Message ID (for
 example, 0x7d34); see Figure 2. When a recipient is not able to
 process a Confirmable message, it replies with a Reset message (RST)
 instead of an Acknowledgement (ACK).

 Client Server
 | |
 | CON [0x7d34] |
 +----------------->|
 | |
 | ACK [0x7d34] |
 |<-----------------+
 | |

 Figure 2: Reliable message delivery

 A message that does not require reliable delivery, for example each
 single measurement out of a stream of sensor data, can be sent as a
 Non-confirmable message (NON). These are not acknowledged, but still
 have a Message ID for duplicate detection (Figure 3).

Shelby, et al. Expires September 15, 2011 [Page 8]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server
 | |
 | NON [0x01a0] |
 +----------------->|
 | |

 Figure 3: Unreliable message delivery

 See Section 4 for details of CoAP messages.

 As CoAP is based on UDP, it also supports the use of multicast IP
 destination addresses, enabling multicast CoAP requests. Section 4.4
 discusses the proper use of CoAP messages with multicast addresses
 and precautions for avoiding response congestion.

 Several security modes are defined for CoAP in Section 10 ranging
 from no security to certificate based security. The use of IPsec
 along with a binding to DTLS are specified for securing the protocol.

2.2. Request/Response Model

 CoAP request and response semantics are carried in CoAP messages,
 which include either a method code or response code, respectively.
 Optional (or default) request and response information, such as the
 URI and payload content-type are carried as CoAP options. A Token
 Option is used to match responses to requests independently from the
 underlying messages (Section 5.3).

 A request is carried in a Confirmable (CON) or Non-confirmable (NON)
 message, and if immediately available, the response to a request
 carried in a Confirmable message is carried in the resulting
 Acknowledgement (ACK) message. This is called a piggy-backed
 response, detailed in Section 5.2.1. Two examples for a basic GET
 request with piggy-backed response are shown in Figure 4.

Shelby, et al. Expires September 15, 2011 [Page 9]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|
 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

 Figure 4: Two GET requests with piggy-backed responses, one
 successful, one not found

 If the server is not able to respond immediately to a request carried
 in a Confirmable message, it simply responds with an empty
 Acknowledgement message so that the client can stop retransmitting
 the request. When the response is ready, the server sends it in a
 new Confirmable message (which then in turn needs to be acknowledged
 by the client). This is called a separate response, as illustrated
 in Figure 5 and described in more detail in Section 5.2.2.

 Client Server
 | |
 | CON [0x7a10] |
 | GET /temperature |
 | (Token 0x73) |
 +----------------->|
 | |
 | ACK [0x7a10] |
 |<-----------------+
 | |
 ... Time Passes ...
 | |
 | CON [0x23bb] |
 | 2.05 Content |
 | (Token 0x73) |
 | "22.5 C" |
 |<-----------------+
 | |
 | ACK [0x23bb] |
 +----------------->|
 | |

 Figure 5: A GET request with a separate response

Shelby, et al. Expires September 15, 2011 [Page 10]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 CoAP makes use of GET, PUT, POST and DELETE methods in a similar
 manner to HTTP, with the semantics specified in Section 5.8. (Note
 that the detailed semantics of CoAP methods are "almost, but not
 entirely unlike" those of HTTP methods: Intuition taken from HTTP
 experience generally does apply well, but there are enough
 differences that make it worthwhile to actually read the present
 specification.)

 URI support in a server is simplified as the client already parses
 the URI and splits it into host, port, path and query components,
 making use of default values for efficiency. Response codes
 correspond to a small subset of HTTP response codes with a few CoAP
 specific codes added, as defined in Section 5.9.

2.3. Intermediaries and Caching

 The protocol supports the caching of responses in order to
 efficiently fulfill requests. Simple caching is enabled using
 freshness and validity information carried with CoAP responses. A
 cache could be located in an end-point or an intermediary. Caching
 functionality is specified in Section 5.6.

 Proxying is useful in constrained networks for several reasons,
 including network traffic limiting, to improve performance, to access
 resources of sleeping devices or for security reasons. The proxying
 of requests on behalf of another CoAP end-point is supported in the
 protocol. The URI of the resource to request is included in the
 request, while the destination IP address is set to the proxy. See

Section 5.7 for more information on proxy functionality.

 As CoAP was designed according to the REST architecture and thus
 exhibits functionality similar to that of the HTTP protocol, it is
 quite straightforward to map between HTTP-CoAP or CoAP-HTTP. Such a
 mapping may be used to realize an HTTP REST interface using CoAP, or
 for converting between HTTP and CoAP. This conversion can be carried
 out by a proxy, which converts the method or response code, content-
 type and options to the corresponding HTTP feature. Section 8
 provides more detail about HTTP mapping.

2.4. Resource Discovery

 Resource discovery is important for machine-to-machine interactions,
 and is supported using the CoRE Link Format
 [I-D.ietf-core-link-format] as discussed in Section 7.1.

Shelby, et al. Expires September 15, 2011 [Page 11]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

3. Message Syntax

 CoAP is based on the exchange of short messages which, by default,
 are transported over UDP (i.e. each CoAP message occupies the data
 section of one UDP datagram). CoAP may be used with Datagram
 Transport Layer Security (DTLS) (see Section 10.2). It could also be
 used over other transports such as TCP or SCTP, the specification of
 which is out of this document's scope.

3.1. Message Format

 CoAP messages are encoded in a simple binary format. A message
 consists of a fixed-sized CoAP Header followed by options in Type-
 Length-Value (TLV) format and a payload. The number of options is
 determined by the header. The payload is made up of the bytes after
 the options, if any; its length is calculated from the datagram
 length.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | OC | Code | Message ID |
 +-+
 | Options (if any) ...
 +-+
 | Payload (if any) ...
 +-+

 Figure 6: Message Format

 The fields in the header are defined as follows:

 Version (Ver): 2-bit unsigned integer. Indicates the CoAP version
 number. Implementations of this specification MUST set this field
 to 1. Other values are reserved for future versions (see also

Section 7.3.1).

 Type (T): 2-bit unsigned integer. Indicates if this message is of
 type Confirmable (0), Non-Confirmable (1), Acknowledgement (2) or
 Reset (3). See Section 4 for the semantics of these message
 types.

 Option Count (OC): 4-bit unsigned integer. Indicates the number of
 options after the header. If set to 0, there are no options and
 the payload (if any) immediately follows the header. The format
 of options is defined below.

Shelby, et al. Expires September 15, 2011 [Page 12]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Code: 8-bit unsigned integer. Indicates if the message carries a
 request (1-31) or a response (64-191), or is empty (0). (All
 other code values are reserved.) In case of a request, the Code
 field indicates the Request Method; in case of a response a
 Response Code. Possible values are maintained in the CoAP Code
 Registry (Section 11.1). See Section 5 for the semantics of
 requests and responses.

 Message ID: 16-bit unsigned integer. Used for the detection of
 message duplication, and to match messages of type
 Acknowledgement/Reset and messages of type Confirmable. See

Section 4 for Message ID generation rules and how messages are
 matched.

 While specific link layers make it beneficial to keep CoAP messages
 small enough to fit into their link layer packets (see Section 1),
 this is a matter of implementation quality. The CoAP specification
 itself provides only an upper bound to the message size. Messages
 larger than an IP fragment result in undesired packet fragmentation.
 A CoAP message, appropriately encapsulated, SHOULD fit within a
 single IP packet (i.e., avoid IP fragmentation) and MUST fit within a
 single IP datagram. If the Path MTU is not known for a destination,
 an IP MTU of 1280 bytes SHOULD be assumed; if nothing is known about
 the size of the headers, good upper bounds are 1152 bytes for the
 message size and 1024 bytes for the payload size.

3.1.1. Message Size Implementation Considerations

 Note that CoAP's choice of message size parameters works well with
 IPv6 and with most of today's IPv4 paths. (However, with IPv4, it is
 harder to absolutely ensure that there is no IP fragmentation. If
 IPv4 support on unusual networks is a consideration, implementations
 may want to limit themselves to more conservative IPv4 datagram sizes
 such as 576 bytes; worse, the absolute minimum value of the IP MTU
 for IPv4 is as low as 68 bytes, which would leave only 40 bytes minus
 security overhead for a UDP payload. Implementations extremely
 focused on this problem set might also set the IPv4 DF bit and
 perform some form of path MTU discovery; this should generally be
 unnecessary in most realistic use cases for CoAP, however.) A more
 important kind of fragmentation in many constrained networks is that
 on the adaptation layer (e.g., 6LoWPAN L2 packets are limited to 127
 bytes including various overheads); this may motivate implementations
 to be frugal in their packet sizes and to move to block-wise
 transfers [I-D.ietf-core-block] when approaching three-digit message
 sizes.

 Note that message sizes are also of considerable importance to
 implementations on constrained nodes. Many implementations will need

Shelby, et al. Expires September 15, 2011 [Page 13]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 to allocate a buffer for incoming messages. If an implementation is
 too constrained to allow for allocating the above-mentioned upper
 bound, it could apply the following implementation strategy:
 Implementations receiving a datagram into a buffer that is too small
 are usually able to determine if the trailing portion of a datagram
 was discarded and to retrieve the initial portion. So, if not all of
 the payload, at least the CoAP header and options are likely to fit
 within the buffer. A server can thus fully interpret a request and
 return a 4.13 (Request Entity Too Large) response code if the payload
 was truncated. A client sending an idempotent request and receiving
 a response larger than would fit in the buffer can repeat the request
 with a suitable value for the Block Option [I-D.ietf-core-block].

3.2. Option Format

 Options MUST appear in order of their Option Number (see
Section 5.4.5). A delta encoding is used between options, with the

 Option Number for each Option calculated as the sum of its Option
 Delta field and the Option Number of the preceding Option in the
 message, if any, or zero otherwise. Multiple options with the same
 Option Number can be included by using an Option Delta of zero.
 Following the Option Delta, each option has a Length field which
 specifies the length of the Option Value, in bytes. The Length field
 can be extended by one byte for options with values longer than 14
 bytes. The Option Value immediately follows the Length field.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Option Delta | Length | for 0..14
 +---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+
 for 15..270:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | Length - 15 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 7: Option Format

 The fields in an option are defined as follows:

 Option Delta: 4-bit unsigned integer. Indicates the difference
 between the Option Number of this option and the previous option
 (or zero for the first option). In other words, the Option Number
 is calculated by simply summing the Option Delta fields of this
 and previous options before it. The Option Numbers 14, 28, 42,

Shelby, et al. Expires September 15, 2011 [Page 14]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 ... are reserved for no-op options when they are sent with an
 empty value (they are ignored) and can be used as "fenceposts" if
 deltas larger than 15 would otherwise be required.

 Length: Indicates the length of the Option Value, in bytes.
 Normally Length is a 4-bit unsigned integer allowing value lengths
 of 0-14 bytes. When the Length field is set to 15, another byte
 is added as an 8-bit unsigned integer whose value is added to the
 15, allowing option value lengths of 15-270 bytes.

 The length and format of the Option Value depends on the respective
 option, which MAY define variable length values. Options defined in
 this document make use of the following formats for option values:

 uint: A non-negative integer which is represented in network byte
 order using a variable number of bytes (see Appendix A).

 string: A Unicode string which is encoded using UTF-8 [RFC3629] in
 Net-Unicode form [RFC5198].

 opaque: An opaque sequence of bytes.

 Option Numbers are maintained in the CoAP Option Number Registry
 (Section 11.2). See Section 5.10 for the semantics of the options
 defined in this document.

4. Message Semantics

 CoAP messages are exchanged asynchronously between CoAP end-points.
 They are used to transport CoAP requests and responses, the semantics
 of which are defined in Section 5.

 As CoAP is bound to non-reliable transports such as UDP, CoAP
 messages may arrive out of order, appear duplicated, or go missing
 without notice. For this reason, CoAP implements a lightweight
 reliability mechanism, without trying to re-create the full feature
 set of a transport like TCP. It has the following features:

 o Simple stop-and-wait retransmission reliability with exponential
 back-off for "confirmable" messages.

 o Duplicate detection for both "confirmable" and "non-confirmable"
 messages.

 o Multicast support.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Shelby, et al. Expires September 15, 2011 [Page 15]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

4.1. Reliable Messages

 The reliable transmission of a message is initiated by marking the
 message as "confirmable" in the CoAP header. A recipient MUST
 acknowledge such a message with an acknowledgement message (or, if it
 lacks context to process the message properly, MUST reject it with a
 reset message). The sender retransmits the confirmable message at
 exponentially increasing intervals, until it receives an
 acknowledgement (or reset message), or runs out of attempts.

 Retransmission is controlled by two things that a CoAP end-point MUST
 keep track of for each confirmable message it sends while waiting for
 an acknowledgement (or reset): a timeout and a retransmission
 counter. For a new confirmable message, the initial timeout is set
 to RESPONSE_TIMEOUT and the retransmission counter is set to 0. When
 the timeout is triggered and the retransmission counter is less than
 MAX_RETRANSMIT, the message is retransmitted, the retransmission
 counter is incremented, and the timeout is doubled. If the
 retransmission counter reaches MAX_RETRANSMIT on a timeout, or if the
 end-point receives a reset message, then the attempt to transmit the
 message is cancelled and the application process informed of failure.
 On the other hand, if the end-point receives an acknowledgement
 message in time, transmission is considered successful.

 An acknowledgement or reset message is related to a confirmable
 message by means of a Message ID. The Message ID is a 16-bit
 unsigned integer that is generated by the sender of a confirmable
 message and included in the CoAP header. The Message ID MUST be
 echoed in the acknowledgement or reset message by the recipient. A
 CoAP end-point generates Message IDs by keeping a single Message ID
 variable, which is changed each time a new confirmable message is
 sent regardless of the destination address or port. The initial
 variable value SHOULD be randomized. The same Message ID MUST NOT be
 re-used within the potential retransmission window, calculated as
 RESPONSE_TIMEOUT * (2 ^ MAX_RETRANSMIT - 1) plus the expected maximum
 round trip time.

 A recipient MUST be prepared to receive the same confirmable message
 (as indicated by the Message ID) multiple times, for example, when
 its acknowledgement went missing or didn't reach the original sender
 before the first timeout. The recipient SHOULD acknowledge each
 duplicate copy of a confirmable message using the same
 acknowledgement or reset message, but SHOULD process any request or
 response in the message only once. This rule MAY be relaxed in case
 the confirmable message transports a request that is idempotent (see

Section 5.1). Examples for relaxed message deduplication:

Shelby, et al. Expires September 15, 2011 [Page 16]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o A server MAY relax the requirement to answer all retransmissions
 of an idempotent request with the same response (Section 4.1), so
 that it does not have to maintain state for Message IDs. For
 example, an implementation might want to process duplicate
 transmissions of a GET, PUT or DELETE request as separate requests
 if the effort incurred by duplicate processing is less expensive
 than keeping track of previous responses would be.

 o (As an implementation consideration, a constrained server MAY even
 want to relax this requirement for certain non-idempotent requests
 if the application semantics make this trade-off favorable. For
 example, if the result of a POST request is just the creation of
 some short-lived state at the server, it may be less expensive to
 incur this effort multiple times for a request than keeping track
 of whether a previous transmission of the same request already was
 processed.)

4.2. Unreliable Messages

 As a more lightweight alternative, a message can be transmitted less
 reliably by marking the message as "non-confirmable". A non-
 confirmable message MUST NOT be acknowledged or be rejected by the
 recipient. If a recipient lacks context to process the message
 properly, the message MUST be silently ignored.

 There is no way to detect if a non-confirmable message was received
 or not at the CoAP-level. A sender MAY choose to transmit a non-
 confirmable message multiple times which, for this purpose, specifies
 a Message ID as well. The same rules for generating the Message ID
 apply.

 A recipient MUST be prepared to receive the same non-confirmable
 message (as indicated by the Message ID) multiple times. As a
 general rule that may be relaxed based on the specific semantics of a
 message, the recipient SHOULD silently ignore any duplicated non-
 confirmable message, and SHOULD process any request or response in
 the message only once.

4.3. Message Types

 The different types of messages are summarized below. The type of a
 message is specified by the T field of the CoAP header.

 Separate from the message type, a message may carry a request, a
 response, or be empty. This is signalled by the Code field in the
 CoAP header and is relevant to the request/response model. Possible
 values for the Code field are maintained by the CoAP Code Registry
 (Section 11.1).

Shelby, et al. Expires September 15, 2011 [Page 17]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 An empty message has the Code field set to 0. The OC field SHOULD be
 set to 0 and no bytes SHOULD be present after the Message ID field.
 The OC field and any those bytes MUST be ignored by any recipient.

4.3.1. Confirmable (CON)

 Some messages require an acknowledgement. These messages are called
 "Confirmable". When no packets are lost, each confirmable message
 elicits exactly one return message of type Acknowledgement or type
 Reset.

 A confirmable message always carries either a request or response and
 MUST NOT be empty.

4.3.2. Non-Confirmable (NON)

 Some other messages do not require an acknowledgement. This is
 particularly true for messages that are repeated regularly for
 application requirements, such as repeated readings from a sensor
 where eventual arrival is sufficient.

 A non-confirmable message always carries either a request or
 response, as well, and MUST NOT be empty.

4.3.3. Acknowledgement (ACK)

 An Acknowledgement message acknowledges that a specific confirmable
 message (identified by its Message ID) arrived. It does not indicate
 success or failure of any encapsulated request.

 The acknowledgement message MUST echo the Message ID of the
 confirmable message, and MUST carry a response or be empty (see

Section 5.2.1 and Section 5.2.2).

4.3.4. Reset (RST)

 A Reset message indicates that a specific confirmable message was
 received, but some context is missing to properly process it. This
 condition is usually caused when the receiving node has rebooted and
 has forgotten some state that would be required to interpret the
 message.

 A reset message MUST echo the Message ID of the confirmable message,
 and MUST be empty.

Shelby, et al. Expires September 15, 2011 [Page 18]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

4.4. Multicast

 CoAP supports sending messages to multicast destination addresses.
 Such multicast messages MUST be Non-Confirmable. Mechanisms for
 avoiding congestion from multicast requests are being considered in
 [I-D.eggert-core-congestion-control].

4.5. Congestion Control

 Basic congestion control for CoAP is provided by the exponential
 back-off mechanism in Section 4.1. Further congestion control
 optimizations are being considered and tested for CoAP
 [I-D.eggert-core-congestion-control].

5. Request/Response Semantics

 CoAP operates under a similar request/response model as HTTP: a CoAP
 end-point in the role of a "client" sends one or more CoAP requests
 to a "server", which services the requests by sending CoAP responses.
 Unlike HTTP, requests and responses are not sent over a previously
 established connection, but exchanged asynchronously over CoAP
 messages.

5.1. Requests

 A CoAP request consists of the method to be applied to the resource,
 the identifier of the resource, a payload and Internet media type (if
 any), and optional meta-data about the request.

 CoAP supports the basic methods of GET, POST, PUT, DELETE, which are
 easily mapped to HTTP. They have the same properties of safe (only
 retrieval) and idempotent (you can invoke it multiple times with the
 same effects) as HTTP (see Section 9.1 of [RFC2616]). The GET method
 is safe, therefore it MUST NOT take any other action on a resource
 other than retrieval. The GET, PUT and DELETE methods MUST be
 performed in such a way that they are idempotent. POST is not
 idempotent, because its effect is determined by the origin server and
 dependent on the target resource; it usually results in a new
 resource being created or the target resource being updated.

 A request is initiated by setting the Code field in the CoAP header
 of a confirmable or a non-confirmable message to a Method Code and
 including request information.

 The methods used in requests are described in detail in Section 5.8.

https://datatracker.ietf.org/doc/html/rfc2616#section-9.1

Shelby, et al. Expires September 15, 2011 [Page 19]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.2. Responses

 After receiving and interpreting a request, a server responds with a
 CoAP response, which can be matched to the request by means of a
 client-generated token.

 A response is identified by the Code field in the CoAP header being
 set to a Response Code. Similar to the HTTP Status Code, the CoAP
 Response Code indicates the result of the attempt to understand and
 satisfy the request. These codes are fully defined in Section 5.9.
 The Response Code numbers to be set in the Code field of the CoAP
 header are maintained in the CoAP Response Code Registry
 (Section 11.1.2).

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |class| detail |
 +-+-+-+-+-+-+-+-+

 Figure 8: Structure of a Response Code

 The upper three bits of the 8-bit Response Code number define the
 class of response. The lower five bits do not have any
 categorization role; they give additional detail to the overall class
 (Figure 8). There are 3 classes:

 2 - Success: The request was successfully received, understood, and
 accepted.

 4 - Client Error: The request contains bad syntax or cannot be
 fulfilled.

 5 - Server Error: The server failed to fulfill an apparently valid
 request.

 The response codes are designed to be extensible: Response Codes in
 the Client Error and Server Error class that are unrecognized by an
 end-point MUST be treated as being equivalent to the generic Response
 Code of that class. However, there is no generic Response Code
 indicating success, so a Response Code in the Success class that is
 unrecognized by an end-point can only be used to determine that the
 request was successful without any further details.

 As a human readable notation for specifications and protocol
 diagnostics, the numeric value of a response code is indicated by
 giving the upper three bits in decimal, followed by a dot and then
 the lower five bits in a two-digit decimal. E.g., "Not Found" is

Shelby, et al. Expires September 15, 2011 [Page 20]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 written as 4.04 -- indicating a value of hexadecimal 0x84 or decimal
 132. In other words, the dot "." functions as a short-cut for
 "*32+".

 The possible response codes are described in detail in Section 5.9.

 Responses can be sent in multiple ways, which are defined below.

5.2.1. Piggy-backed

 In the most basic case, the response is carried directly in the
 acknowledgement message that acknowledges the request (which requires
 that the request was carried in a confirmable message). This is
 called a "Piggy-backed" Response.

 The response is returned in the acknowledgement message independent
 of whether the response indicates success or failure. In effect, the
 response is piggy-backed on the acknowledgement message, so no
 separate message is required to both acknowledge that the request was
 received and return the response.

5.2.2. Separate

 It may not be possible to return a piggy-backed response in all
 cases. For example, a server might need longer to obtain the
 representation of the resource requested than it can wait sending
 back the acknowledgement message, without risking the client to
 repeatedly retransmit the request message.

 The server maybe initiates the attempt to obtain the resource
 representation and times out an acknowledgement timer, or it
 immediately sends an acknowledgement knowing in advance that there
 will be no piggy-backed response. The acknowledgement effectively is
 a promise that the request will be acted upon.

 When the server finally has obtained the resource representation, it
 sends the response. To ensure that this message is not lost, it is
 again sent as a confirmable message and answered by the client with
 an acknowledgement, echoing the new Message ID chosen by the server.

 (Note that, as the underlying datagram transport may not be sequence-
 preserving, the confirmable message carrying the response may
 actually arrive before or after the acknowledgement message for the
 request.)

 For a separate exchange, both the acknowledgement to the confirmable
 request and the acknowledgement to the confirmable response MUST be
 an empty message, i.e. one that carries neither a request nor a

Shelby, et al. Expires September 15, 2011 [Page 21]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 response.

5.2.3. Non-Confirmable

 If the request message is non-confirmable, then the response SHOULD
 be returned in a non-confirmable message as well. However, an end-
 point MUST be prepared to receive a non-confirmable response
 (preceded or followed an empty acknowledgement message) in reply to a
 confirmable request, or a confirmable response in reply to a non-
 confirmable request.

5.3. Request/Response Matching

 Regardless of how a response is sent, it is matched to the request by
 means of a token that is included by the client in the request as one
 of the options. The token MUST be echoed by the server in any
 resulting response without modification.

 The exact rules for matching a response to a request are as follows:

 1. For requests sent in a unicast message, the source of the
 response MUST match the destination of the original request. How
 this is determined depends on the security mode used (see

Section 10): With NoSec, the IP address and port number of the
 request destination and response source must match. With other
 security modes, in addition to the IP address and UDP port
 matching, the request and response MUST have the same security
 context.

 2. In a piggy-backed response, both the Message ID of the
 confirmable request and the acknowledgement, and the token of the
 response and original request MUST match. In a separate
 response, just the token of the response and original request
 MUST match.

 The client SHOULD generate tokens in a way that tokens currently in
 use for a given source/destination pair are unique. (Note that a
 client can use the same token for any request if it uses a different
 source port number each time.)

 An end-point receiving a token MUST treat it as opaque and make no
 assumptions about its format. (Note that there is a default value
 for the Token Option, so every message carries a token, even if it is
 not explicitly expressed in a CoAP option.)

 In case a confirmable message carrying a response is unexpected (i.e.
 the client is not waiting for a response with the specified address
 and/or token), the confirmable response SHOULD be rejected with a

Shelby, et al. Expires September 15, 2011 [Page 22]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 reset message and MUST NOT be acknowledged.

5.4. Options

 Both requests and responses may include a list of one or more
 options. For example, the URI in a request is transported in several
 options, and meta-data that would be carried in an HTTP header in
 HTTP is supplied as options as well.

 CoAP defines a single set of options that are used in both requests
 and responses:

 o Content-Type

 o ETag

 o Location-Path

 o Location-Query

 o Max-Age

 o Proxy-Uri

 o Token

 o Uri-Host

 o Uri-Path

 o Uri-Port

 o Uri-Query

 The semantics of these options along with their properties are
 defined in detail in Section 5.10.

 Not all options have meaning with all methods and response codes.
 The possible options for methods and response codes are defined in

Section 5.8 and Section 5.9 respectively. In case an option has no
 meaning, it SHOULD NOT be included by the sender and MUST be ignored
 by the recipient.

5.4.1. Critical/Elective

 Options fall into one of two classes: "critical" or "elective". The
 difference between these is how an option unrecognized by an end-
 point is handled:

Shelby, et al. Expires September 15, 2011 [Page 23]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o Upon reception, unrecognized options of class "elective" MUST be
 silently ignored.

 o Unrecognized options of class "critical" that occur in a
 confirmable request MUST cause the return of a 4.02 (Bad Option)
 response. This response SHOULD include a human-readable error
 message describing the unrecognized option(s) (see Section 5.5).

 o Unrecognized options of class "critical" that occur in a
 confirmable response SHOULD cause the response to be rejected with
 a reset message.

 o Unrecognized options of class "critical" that occur in a non-
 confirmable message MUST cause the message be silently ignored.

 Note that, whether critical or elective, an option is never
 "mandatory" (it is always optional): These rules are defined in order
 to enable implementations to reject options they do not understand or
 implement.

5.4.2. Length

 Option values are defined to have a specific length, often in the
 form of an upper and lower bound. If the length of an option value
 in a request is outside the defined range, that option MUST be
 treated like an unrecognized option (see Section 5.4.1).

5.4.3. Default Values

 Options may be defined to have a default value. If the value of
 option is intended to be this default value, the option SHOULD NOT be
 included in the message. If the option is not present, the default
 value MUST be assumed.

5.4.4. Repeating Options

 Each definition of an option specifies whether it is defined to occur
 only at most once or whether it can occur multiple times. If a
 message includes an option with more instances than the option is
 defined for, the additional option instances MUST be treated like an
 unrecognized option (see Section 5.4.1).

5.4.5. Option Numbers

 Options are identified by an option number. Odd numbers indicate a
 critical option, while even numbers indicate an elective option.
 (Note that this is not just a convention, it is a feature of the
 protocol: Whether an option is elective or critical is entirely

Shelby, et al. Expires September 15, 2011 [Page 24]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 determined by whether its option number is even or odd.)

 The numbers 14, 28, 42, ... are reserved for "fenceposting", as
 described in Section 3.2. As these option numbers are even, they
 stand for elective options, and unless assigned a meaning, these MUST
 be silently ignored.

 The option numbers for the options defined in this document are
 listed in the CoAP Option Number Registry (Section 11.2).

5.5. Payload

 Both requests and responses may include payload, depending on the
 method or response code respectively. Methods with payload are PUT
 and POST, and the response codes with payload are 2.05 (Content) and
 the error codes.

 The payload of PUT, POST and 2.05 (Content) is typically a resource
 representation. Its format is specified by the Internet media type
 given by the Content-Type Option. A default value of "text/plain;
 charset=utf-8" is assumed in the absence of this option.

 A response with a code indicating a Client or Server Error SHOULD
 include a brief human-readable diagnostic message as payload,
 explaining the error situation. This diagnostic message MUST be
 encoded using UTF-8 [RFC3629], more specifically using Net-Unicode
 form [RFC5198]. The Content-Type Option has no meaning and SHOULD
 NOT be included. (Similar to what one would find as a Reason-Phrase
 on an HTTP status line, the message is not intended for end-users but
 for software engineers that during debugging need to interpret it in
 the context of the present, English-language specification; therefore
 no language tagging is foreseen.)

 If a method or response code is not defined to have a payload, then
 the sender SHOULD NOT include one, and the recipient MUST ignore it.

5.6. Caching

 CoAP end-points MAY cache responses in order to reduce the response
 time and network bandwidth consumption on future, equivalent
 requests.

 The goal of caching in CoAP is to reuse a prior response message to
 satisfy a current request. In some cases, a stored response can be
 reused without the need for a network request, reducing latency and
 network round-trips; a "freshness" mechanism is used for this purpose
 (see Section 5.6.1). Even when a new request is required, it is
 often possible to reuse the payload of a prior response to satisfy

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Shelby, et al. Expires September 15, 2011 [Page 25]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 the request, thereby reducing network bandwidth usage; a "validation"
 mechanism is used for this purpose (see Section 5.6.2).

 Unlike HTTP, the cacheability of CoAP responses does not depend on
 the request method, but the Response Code. The cacheability of each
 Response Code is defined along the Response Code definitions in

Section 5.9. Response Codes that indicate success and are
 unrecognized by an end-point MUST NOT be cached.

 For a presented request, a CoAP end-point MUST NOT use a stored
 response, unless:

 o the presented request method and that used to obtain the stored
 response match,

 o all options match between those in the presented request and those
 of the request used to obtain the stored response (which includes
 the request URI), except that there is no need for a match of the
 Token, Max-Age, or ETag request option(s), and

 o the stored response is either fresh or successfully validated as
 defined below.

5.6.1. Freshness Model

 When a response is "fresh" in the cache, it can be used to satisfy
 subsequent requests without contacting the origin server, thereby
 improving efficiency.

 The mechanism for determining freshness is for an origin server to
 provide an explicit expiration time in the future, using the Max-Age
 Option (see Section 5.10.5). The Max-Age Option indicates that the
 response is to be considered not fresh after its age is greater than
 the specified number of seconds.

 As the Max-Age Option defaults to a value of 60, if it is not present
 in a cacheable response, then the response is considered not fresh
 after its age is greater than 60 seconds. If an origin server wishes
 to prevent caching, it MUST explicitly include a Max-Age Option with
 a value of zero seconds.

5.6.2. Validation Model

 When an end-point has one or more stored responses for a GET request,
 but cannot use any of them (e.g., because they are not fresh), it can
 use the ETag Option in the GET request to give the origin server an
 opportunity to both select a stored response to be used, and to
 update its freshness. This process is known as "validating" or

Shelby, et al. Expires September 15, 2011 [Page 26]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 "revalidating" the stored response.

 When sending such a request, the end-point SHOULD add an ETag Option
 specifying the entity-tag of each stored response that is applicable.

 A 2.03 (Valid) response indicates the stored response identified by
 the entity-tag given in the response's ETag Option can be reused,
 after updating its freshness with the value of the Max-Age Option
 that is included with the response (see Section 5.9.1.3).

 Any other response code indicates that none of the stored responses
 nominated in the request is suitable. Instead, the response SHOULD
 be used to satisfy the request and MAY replace the stored response.

5.7. Proxying

 CoAP distinguishes between requests to an origin server and a request
 made through a proxy. A proxy is a CoAP end-point that can be tasked
 by CoAP clients to perform requests on their behalf. This may be
 useful, for example, when the request could otherwise not be made, or
 to service the response from a cache in order to reduce response time
 and network bandwidth or energy consumption.

 CoAP requests to a proxy are made as normal confirmable or non-
 confirmable requests to the proxy end-point, but specify the request
 URI in a different way: The request URI in a proxy request is
 specified as a string in the Proxy-Uri Option (see Section 5.10.3),
 while the request URI in a request to an origin server is split into
 the Uri-Host, Uri-Port, Uri-Path and Uri-Query Options (see

Section 5.10.2).

 When a proxy request is made to an end-point and the end-point is
 unwilling or unable to act as proxy for the request URI, it MUST
 return a 5.05 (Proxying Not Supported) response. If the authority
 (host and port) is recognized as identifying the proxy end-point,
 then the request MUST be treated as a local request.

 Unless a proxy is configured to forward the proxy request to another
 proxy, it MUST translate the request as follows: The origin server's
 IP address and port are determined by the authority component of the
 request URI, and the request URI is decoded and split into the Uri-
 Host, Uri-Port, Uri-Path and Uri-Query Options.

 All options present in a proxy request MUST be processed at the
 proxy. Critical options in a request that are not recognized by the
 proxy MUST lead to a 4.02 (Bad Option) response being returned by the
 proxy. Elective options not recognized by the proxy MUST NOT be
 forwarded to the origin server. Similarly, critical options in a

Shelby, et al. Expires September 15, 2011 [Page 27]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 response that are not recognized by the proxy server MUST lead to a
 5.02 (Bad Gateway) response. Again, elective options that are not
 recognized MUST NOT be forwarded.

 If the proxy does not employ a cache, then it simply forwards the
 translated request to the determined destination. Otherwise, if it
 does employ a cache but does not have a stored response that matches
 the translated request and is considered fresh, then it needs to
 refresh its cache according to Section 5.6.

 If the request to the destination times out, then a 5.04 (Gateway
 Timeout) response MUST be returned. If the request to the
 destination returns an response that cannot be processed by the
 proxy, then a 5.02 (Bad Gateway) response MUST be returned.
 Otherwise, the proxy returns the response to the client.

 If a response is generated out of a cache, it MUST be generated with
 a max-age option that does not extend the max-age originally set by
 the server, considering the time the resource representation spent in
 the cache. E.g., the Max-Age option could be adjusted by the proxy
 for each response using the formula: proxy-max-age = original-max-age
 - cache-age. For example if a request is made to a proxied resource
 that was refreshed 20 seconds ago and had an original Max-Age of 60
 seconds, then that resource's proxied Max-Age is now 40 seconds.

5.8. Method Definitions

 In this section each method is defined along with its behavior. A
 request with an unrecognized or unsupported Method Code MUST generate
 a 4.05 (Method Not Allowed) response.

5.8.1. GET

 The GET method retrieves a representation for the information that
 currently corresponds to the resource identified by the request URI.
 If the request includes an ETag Option, the GET method requests that
 ETag be validated and that the representation be transferred only if
 validation failed. Upon success a 2.05 (Content) or 2.03 (Valid)
 response SHOULD be sent.

 The GET method is safe and idempotent.

5.8.2. POST

 The POST method requests that the representation enclosed in the
 request be processed. The actual function performed by the POST
 method is determined by the origin server and dependent on the target
 resource. It usually results in a new resource being created or the

Shelby, et al. Expires September 15, 2011 [Page 28]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 target resource being updated.

 If a resource has been created on the server, a 2.01 (Created)
 response that includes the URI of the new resource in a sequence of
 one or more Location-Path Options and/or a Location-Query Option
 SHOULD be returned. If the POST succeeds but does not result in a
 new resource being created on the server, a 2.04 (Changed) response
 SHOULD be returned. If the POST succeeds and results in the target
 resource being deleted, a 2.02 (Deleted) response SHOULD be returned.

 If the request passes through a cache that has one or more stored
 responses for the request URI, those stored responses SHOULD be
 marked as stale.

 POST is neither safe nor idempotent.

5.8.3. PUT

 The PUT method requests that the resource identified by the request
 URI be updated or created with the enclosed representation. The
 representation format is specified by the media type given in the
 Content-Type Option.

 If a resource exists at the request URI the enclosed representation
 SHOULD be considered a modified version of that resource, and a 2.04
 (Changed) response SHOULD be returned. If no resource exists then
 the server MAY create a new resource with that URI, resulting in a
 2.01 (Created) response. If the resource could not be created or
 modified, then an appropriate error response code SHOULD be sent.

 If the request passes through a cache that has one or more stored
 responses for the request URI, those stored responses SHOULD be
 marked as stale.

 PUT is not safe, but idempotent.

5.8.4. DELETE

 The DELETE method requests that the resource identified by the
 request URI be deleted. A 2.02 (Deleted) response SHOULD be sent on
 success or in case the resource did not exist before the request.

 If the request passes through a cache and the request URI identifies
 one or more currently stored responses, those entries SHOULD be
 marked as stale.

 DELETE is not safe, but idempotent.

Shelby, et al. Expires September 15, 2011 [Page 29]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.9. Response Code Definitions

 Each response code is described below, including any options required
 in the response. Where appropriate, some of the codes will be
 specified in regards to related response codes in HTTP [RFC2616];
 this does not mean that any such relationship modifies the HTTP
 mapping specified in Section 8.

5.9.1. Success 2.xx

 This class of status code indicates that the clients request was
 successfully received, understood, and accepted.

5.9.1.1. 2.01 Created

 Like HTTP 201 "Created", but only used in response to POST and PUT
 requests.

 If the response includes one or more Location-Path Options and/or a
 Location-Query Option, the values of these options specify the
 location at which the resource was created. Otherwise, the resource
 was created at the request URI. A cache SHOULD mark any stored
 response for the location as not fresh.

 This response is not cacheable.

5.9.1.2. 2.02 Deleted

 Like HTTP 204 "No Content", but only used in response to DELETE
 requests.

 This response is not cacheable.

5.9.1.3. 2.03 Valid

 Related to HTTP 304 "Not Modified", but only used to indicate that
 the response identified by the entity-tag identified by the included
 ETag Option is valid. Accordingly, the response MUST include an ETag
 Option.

 When a cache receives a 2.03 (Valid) response, it needs to update the
 stored response with the value of the Max-Age Option included in the
 response (see Section 5.6.2).

5.9.1.4. 2.04 Changed

 Like HTTP 204 "No Content", but only used in response to POST and PUT
 requests.

https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 30]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 This response is not cacheable.

5.9.1.5. 2.05 Content

 Like HTTP 200 "OK", but only used in response to GET requests.

 The payload returned with the response is a representation of the
 target resource. The representation format is specified by the media
 type given in the Content-Type Option.

 This response is cacheable: Caches can use the Max-Age Option to
 determine freshness (see Section 5.6.1) and (if present) the ETag
 Option for validation (see Section 5.6.2).

5.9.2. Client Error 4.xx

 This class of response code is intended for cases in which the client
 seems to have erred. These response codes are applicable to any
 request method.

 The server SHOULD include a brief human-readable message as payload,
 as detailed in Section 5.5.

 Responses of this class are cacheable: Caches can use the Max-Age
 Option to determine freshness (see Section 5.6.1). They cannot be
 validated.

5.9.2.1. 4.00 Bad Request

 Like HTTP 400 "Bad Request".

5.9.2.2. 4.01 Unauthorized

 The client is not authorized to perform the requested action. The
 client SHOULD NOT repeat the request without previously improving its
 authentication status to the server. Which specific mechanism can be
 used for this is outside this document's scope; see also Section 10.

5.9.2.3. 4.02 Bad Option

 The request could not be understood by the server due to one or more
 unrecognized or malformed critical options. The client SHOULD NOT
 repeat the request without modification.

5.9.2.4. 4.03 Forbidden

 Like HTTP 403 "Forbidden".

Shelby, et al. Expires September 15, 2011 [Page 31]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.9.2.5. 4.04 Not Found

 Like HTTP 404 "Not Found".

5.9.2.6. 4.05 Method Not Allowed

 Like HTTP 405 "Method Not Allowed", but with no parallel to the
 "Accept" header field.

5.9.2.7. 4.13 Request Entity Too Large

 Like HTTP 413 "Request Entity Too Large".

5.9.2.8. 4.15 Unsupported Media Type

 Like HTTP 415 "Unsupported Media Type".

5.9.3. Server Error 5.xx

 This class of response code indicates cases in which the server is
 aware that it has erred or is incapable of performing the request.
 These response codes are applicable to any request method.

 The server SHOULD include a human-readable message as payload, as
 detailed in Section 5.5.

 Responses of this class are cacheable: Caches can use the Max-Age
 Option to determine freshness (see Section 5.6.1). They cannot be
 validated.

5.9.3.1. 5.00 Internal Server Error

 Like HTTP 500 "Internal Server Error".

5.9.3.2. 5.01 Not Implemented

 Like HTTP 501 "Not Implemented".

5.9.3.3. 5.02 Bad Gateway

 Like HTTP 502 "Bad Gateway".

5.9.3.4. 5.03 Service Unavailable

 Like HTTP 503 "Service Unavailable", but using the Max-Age Option in
 place of the "Retry-After" header field.

Shelby, et al. Expires September 15, 2011 [Page 32]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.9.3.5. 5.04 Gateway Timeout

 Like HTTP 504 "Gateway Timeout".

5.9.3.6. 5.05 Proxying Not Supported

 The server is unable or unwilling to act as a proxy for the URI
 specified in the Proxy-Uri Option (see Section 5.10.3).

5.10. Option Definitions

 The individual CoAP options are summarized in Table 1 and explained
 below.

 +-----+----------+----------------+--------+---------+-------------+
 | No. | C/E | Name | Format | Length | Default |
 +-----+----------+----------------+--------+---------+-------------+
1	Critical	Content-Type	uint	1-2 B	0
2	Elective	Max-Age	uint	0-4 B	60
3	Critical	Proxy-Uri	string	1-270 B	(none)
4	Elective	ETag	opaque	1-8 B	(none)
5	Critical	Uri-Host	string	1-270 B	(see below)
6	Elective	Location-Path	string	1-270 B	(none)
7	Critical	Uri-Port	uint	0-2 B	(see below)
8	Elective	Location-Query	string	1-270 B	(none)
9	Critical	Uri-Path	string	1-270 B	(none)
11	Critical	Token	opaque	1-8 B	(empty)
15	Critical	Uri-Query	string	1-270 B	(none)
 +-----+----------+----------------+--------+---------+-------------+

 Table 1: Options

5.10.1. Token

 The Token Option is used to match a response with a request. Every
 request has a client-generated token which the server MUST echo in
 any response.

 A token is intended for use as a client-local identifier for
 differentiating between concurrent requests. A client SHOULD
 generate tokens in a way that tokens currently in use for a given
 source/destination pair are unique. An end-point receiving a token
 MUST treat it as opaque and make no assumptions about its format.

 A default value of a zero-length token is assumed in the absence of
 the option.

 This option is "critical". It MUST NOT occur more than once.

Shelby, et al. Expires September 15, 2011 [Page 33]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.10.2. Uri-Host, Uri-Port, Uri-Path and Uri-Query

 The Uri-Host, Uri-Port, Uri-Path and Uri-Query Options are used to
 specify the target resource of a request to a CoAP origin server.
 The options encode the different components of the request URI in a
 way that no percent-encoding is visible in the option values (except
 for Uri-Query) and that the full URI can be reconstructed at any
 involved end-point. The syntax of CoAP URIs is defined in Section 6.

 The steps for parsing URIs into options is defined in Section 6.3.
 These steps result in zero or more Uri-Host, Uri-Port, Uri-Path and
 Uri-Query Options being included in a request, where each option
 holds the following values:

 o the Uri-Host Option specifies the Internet host of the resource
 being requested,

 o the Uri-Port Option specifies the port number of the resource,

 o each Uri-Path Option specifies one segment of the absolute path to
 the resource, and

 o the Uri-Query Option specifies the query.

 Note: Fragments ([RFC3986], Section 3.5) are not part of the request
 URI and thus will not be transmitted in a CoAP request.

 The default value of the Uri-Host Option is the IP literal
 representing the destination IP address of the request message.
 Likewise, the default value of the Uri-Port Option is the destination
 UDP port.

 The Uri-Path Option can contain any character sequence. No percent-
 encoding is performed. The value MUST NOT be "." or ".." (as the
 request URI must be resolved before parsing it into options).

 The steps for constructing the request URI from the options are
 defined in Section 6.4. Note that an implementation does not
 necessarily have to construct the URI; it can simply look up the
 target resource by looking at the individual options.

 Examples can be found in Appendix C.

 All of the options are "critical". Uri-Host, Uri-Port and Uri-Query
 MUST NOT occur more than once; Uri-Path MAY occur one or more times.

https://datatracker.ietf.org/doc/html/rfc3986#section-3.5

Shelby, et al. Expires September 15, 2011 [Page 34]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.10.3. Proxy-Uri

 The Proxy-Uri Option is used to make a request to a proxy (see
Section 5.7). The proxy is requested to forward the request or

 service it from a valid cache, and return the response.

 The option value is an absolute-URI ([RFC3986], Section 4.3). In
 case the absolute-URI doesn't fit within a single option, the Proxy-
 Uri Option MAY be included multiple times in a request such that the
 concatenation of the values results in the single absolute-URI.

 All but the last instance of the Proxy-Uri Option MUST have a value
 with a length of 270 bytes, and the last instance MUST NOT be empty.

 Note that the proxy MAY forward the request on to another proxy or
 directly to the server specified by the absolute-URI. In order to
 avoid request loops, a proxy MUST be able to recognize all of its
 server names, including any aliases, local variations, and the
 numeric IP addresses.

 An end-point receiving a request with a Proxy-Uri Option that is
 unable or unwilling to act as a proxy for the request MUST cause the
 return of a 5.05 (Proxying Not Supported) response.

 This option is "critical". It MAY occur one or more times and MUST
 take precedence over any of the Uri-Host, Uri-Port, Uri-Path or Uri-
 Query options (which MUST NOT be included at the same time).

5.10.4. Content-Type

 The Content-Type Option indicates the representation format of the
 message payload. The representation format is given as a numeric
 media type identifier that is defined in the CoAP Media Type registry
 (Section 11.3). A default value of 0 (meaning "text/plain;
 charset=utf-8") is assumed in the absence of the option.

 This option is "critical". It MUST NOT occur more than once.

5.10.5. Max-Age

 The Max-Age Option indicates the maximum time a response may be
 cached before it MUST be considered not fresh (see Section 5.6.1).

 The option value is an integer number of seconds between 0 and 2^32-1
 inclusive (about 136.1 years). A default value of 60 seconds is
 assumed in the absence of the option in a response.

 This option is "elective". It MUST NOT occur more than once.

https://datatracker.ietf.org/doc/html/rfc3986#section-4.3

Shelby, et al. Expires September 15, 2011 [Page 35]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

5.10.6. ETag

 The ETag Option in a response provides the current value of the
 entity-tag for the enclosed representation of the target resource.

 An entity-tag is intended for use as a resource-local identifier for
 differentiating between representations of the same resource that
 vary over time. It may be generated in any number of ways including
 a version, checksum, hash or time. An end-point receiving an entity-
 tag MUST treat it as opaque and make no assumptions about its format.
 (End-points generating an entity-tag are encouraged to use the most
 compact representation possible, in particular in regards to clients
 and intermediaries that may want to store multiple ETag values.)

 An end-point that has one or more representations previously obtained
 from the resource can specify the ETag Option in a request for each
 stored response to determine if any of those representations is
 current (see Section 5.6.2).

 This option is "elective". It MUST NOT occur more than once in a
 response, and MAY occur one or more times in a request.

5.10.7. Location-Path and Location-Query

 The Location-Path and Location-Query Options indicates the location
 of a resource as an absolute path URI. The Location-Path Option is
 similar to the Uri-Path Option, and the Location-Query Option similar
 to the Uri-Query Option.

 The two options MAY be included in a response to indicate the
 location of a new resource created with POST.

 If a response with a Location-Path and/or Location-Query Option
 passes through a cache and the implied URI identifies one or more
 currently stored responses, those entries SHOULD be treated as stale.

 Both options are "elective". Location-Path MAY occur one or more
 times. Location-Query MUST NOT occur more than once.

6. CoAP URIs

 CoAP uses the "coap" URI scheme for identifying CoAP resources and
 providing a means of locating the resource. Resources are organized
 hierarchically and governed by a potential CoAP origin server
 listening for CoAP requests on a given UDP port. The CoAP server is
 identified via the generic syntax's authority component, which
 includes a host identifier and optional UDP port number. The

Shelby, et al. Expires September 15, 2011 [Page 36]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 remainder of the URI is considered to be identifying a resource which
 can be operated on by the methods defined by the CoAP protocol. CoAP
 URIs can thus be compared to the "http" URI scheme.

6.1. URI Scheme Syntax

 The syntax of the "coap" URI scheme is specified below in Augmented
 Backus-Naur Form (ABNF) [RFC5234]. The definitions of "host",
 "port", "path-abempty", and "query", "segment", "IP-literal",
 "IPv4address" and "reg-name" are adopted from [RFC3986].

 coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

 If host is provided as an IP-literal or IPv4address, then the CoAP
 server is located at that IP address. If host is a registered name,
 then that name is considered an indirect identifier and the end-point
 might use a name resolution service, such as DNS, to find the address
 of that host. The host MUST NOT be empty. The port subcomponent
 indicates the UDP port at which the CoAP server is located. If it is
 empty or not given, then the default port [IANA_TBD_PORT] is assumed.

 The path identifies a resource within the scope of the host and port.
 It consists of a sequence of path segments separated by a slash ("/")
 character. The query serves to further parametrize the resource,
 often in the form of "key=value" pairs.

 The "coap" URI scheme supports the path prefix "/.well-known/"
 defined by [RFC5785] for "well-known locations" in the name-space of
 a host. This enables discovery of policy or other information about
 a host ("site-wide metadata"), such as hosted resources (see

Section 7.1).

 Application designers are encouraged to make use of short, but
 descriptive URIs. As the environments that CoAP is used in are
 usually constrained for bandwidth and energy, the trade-off between
 these two qualities should lean towards the shortness, without
 ignoring descriptiveness.

6.2. Normalization and Comparison Rules

 Since the "coap" scheme conforms to the URI generic syntax, URIs of
 this scheme are normalized and compared according to the algorithm
 defined in [RFC3986], Section 6.

 If the port is equal to the default port [IANA_TBD_PORT], the normal
 form is to elide the port component. Likewise, an empty path
 component is equivalent to an absolute path of "/", so the normal
 form is to provide a path of "/" instead. The scheme and host are

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc3986#section-6

Shelby, et al. Expires September 15, 2011 [Page 37]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 case-insensitive and normally provided in lowercase; IP-literals are
 in recommended form [RFC5952]; all other components are compared in a
 case-sensitive manner. Characters other than those in the "reserved"
 set are equivalent to their percent-encoded octets (see [RFC3986],
 Section 2.1): the normal form is to not encode them.

 For example, the following three URIs are equivalent, and cause the
 same options and option values to appear in the CoAP messages:

 coap://example.com:[IANA_TBD_PORT]/~sensors/temp.xml

 coap://EXAMPLE.com/%7Esensors/temp.xml

 coap://EXAMPLE.com:/%7esensors/temp.xml

6.3. Parsing URIs

 The steps to parse a request's options from a string /url/ are as
 follows. These steps either result in zero or more of the Uri-Host,
 Uri-Port, Uri-Path and Uri-Query Options being included in the
 request, or they fail.

 1. If the /url/ string is not an absolute URI ([RFC3986]), then fail
 this algorithm.

 2. Resolve the /url/ string using the process of reference
 resolution defined by [RFC3986], with the URL character encoding
 set to UTF-8 [RFC3629].

 NOTE: It doesn't matter what it is resolved relative to, since we
 already know it is an absolute URL at this point.

 3. If /url/ does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is "coap", then fail this
 algorithm.

 4. If /url/ has a <fragment> component, then fail this algorithm.

 5. If the <host> component of /url/ does not represent the request's
 destination IP address as an IP-literal or IPv4address, include a
 Uri-Host Option and let that option's value be the value of the
 <host> component of /url/, converted to ASCII lowercase, and then
 converting each percent-encoding ("%" followed by two hexadecimal
 digits) to the corresponding byte.

 NOTE: In the usual case where the request's destination IP
 address is derived from the host part, this ensures that Uri-Host
 Options are only used for host parts of the form reg-name.

https://datatracker.ietf.org/doc/html/rfc5952
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3629

Shelby, et al. Expires September 15, 2011 [Page 38]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 6. If /url/ has a <port> component, then let /port/ be that
 component's value interpreted as a decimal integer; otherwise,
 let /port/ be the default port [IANA_TBD_PORT].

 7. If /port/ does not equal the request's destination UDP port,
 include a Uri-Port Option and let that option's value be /port/.

 8. If the value of the <path> component of /url/ is empty or
 consists of a single slash character (U+002F SOLIDUS "/"), then
 move to the next step.

 Otherwise, for each segment in the <path> component, include a
 Uri-Path Option and let that option's value be the segment (not
 including the delimiting slash characters) after converting each
 percent-encoding ("%" followed by two hexadecimal digits) to the
 corresponding byte.

 9. If /url/ has a <query> component, then include a Uri-Query Option
 and let that option's value be the value of the <query> component
 (not including the delimiting question mark). (Note that, in
 contrast to the other components, percent-encodings stay intact
 in the Uri-Query option.)

 Note that these rules completely resolve any percent-encoding except
 in a reg-name and in a query.

6.4. Constructing URIs

 The steps to construct a URI from a request's options are as follows.
 These steps either result in a URI, or they fail. In these steps,
 percent-encoding a character means replacing each of its (UTF-8
 encoded) bytes by a "%" character followed by two hexadecimal digits
 representing the byte, where the digits A-F are in upper case (as
 defined in [RFC3986] Section 2.1; to reduce variability, the
 hexadecimal notation in CoAP URIs MUST use uppercase letters).

 1. Let /url/ be the string "coap://".

 2. If the request includes a Uri-Host Option, let /host/ be that
 option's value, where any non-ASCII characters are replaced by
 their corresponding percent-encoding. If /host/ is not a valid
 reg-name or IP-literal or IPv4address, fail the algorithm.
 Otherwise, let /host/ be the IP-literal (making use of the
 conventions of [RFC5952]) or IPv4address representing the
 request's destination IP address.

 3. Append /host/ to /url/.

https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc5952

Shelby, et al. Expires September 15, 2011 [Page 39]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 4. If the request includes a Uri-Port Option, let /port/ be that
 option's value. Otherwise, let /port/ be the request's
 destination UDP port.

 5. If /port/ is not the default port [IANA_TBD_PORT], then append a
 single U+003A COLON character (:) followed by the decimal
 representation of /port/ to /url/.

 6. Let /resource name/ be the empty string. For each Uri-Path
 Option in the request, append a single character U+002F SOLIDUS
 (/) followed by the option's value to /resource name/, after
 converting any character that is not either in the "unreserved"
 set, "sub-delims" set, a U+003A COLON character (:) or U+0040
 COMMERCIAL AT (@), to its percent-encoded form.

 7. If /resource name/ is the empty string, set it to a single
 character U+002F SOLIDUS (/).

 8. Append /resource name/ to /url/.

 9. If the request includes a Uri-Query Option, append a single
 U+003F QUESTION MARK character (?) to /url/, followed by the
 option's value.

 10. Return /url/.

 Note that these steps have been designed to lead to a URI in normal
 form (see Section 6.2).

7. Finding and Addressing CoAP End-Points

7.1. Resource Discovery

 The discovery of resources offered by a CoAP end-point is extremely
 important in machine-to-machine applications where there are no
 humans in the loop and static interfaces result in fragility. A CoAP
 end-point SHOULD support the CoRE Link Format of discoverable
 resources as described in [I-D.ietf-core-link-format].

7.2. Default Port

 The CoAP default port number [IANA_TBD_PORT] MUST be supported by a
 server for resource discovery and SHOULD be supported for providing
 access to other resources. In addition other end-points may be
 hosted in the dynamic port space.

 When a CoAP server is hosted by a 6LoWPAN node, it SHOULD also

Shelby, et al. Expires September 15, 2011 [Page 40]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 support a port in the 61616-61631 compressed UDP port space defined
 in [RFC4944].

7.3. Multiplexing DTLS and CoAP

 The CoAP encoding has been chosen to enable demultiplexing of two
 kinds of packets that arrive on a single UDP port:

 o CoAP messages directly sent within UDP

 o DTLS 1.1 or 1.2 messages (which might contain CoAP messages) on
 UDP

 Possibly less importantly, a distinction can also be made between
 these two and:

 o STUN messages on UDP

 This demultiplexing is possible because DTLS 1.1 or 1.2 UDP payloads
 begin with a byte out of:

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 Figure 9: TLS ContentType

 i.e. 0x14 to 0x17 hex [RFC4347]. In a CoAP message, such an initial
 byte would be decoded as a CoAP version 0, which is not in use.

7.3.1. Future-Proofing the Multiplexing

 To maintain this property, future versions of CoAP will not use
 version number 0. Note that future versions of DTLS might
 theoretically start to use "ContentType" values that fall into the
 range of 64 to 127; CoAP implementations would then not be able to
 reliably multiplex these new kinds of DTLS datagrams with CoAP
 datagrams on the same UDP port. To maintain transparency for this
 case, an initial byte of 0x11 (17 decimal) is inserted on
 transmission and discarded upon reception; the rest of the datagram
 is interpreted as the DTLS message. 0x11 MUST NOT be followed by 0x14
 to 0x17 hex, i.e. the DTLS messages defined by DTLS 1.1 and 1.2 are
 always sent unescaped. Datagrams starting with 0x11 and then 0x14 to
 0x17 MUST be discarded.

 Similarly, STUN messages begin with 00mmmmmc binary (MSBs) [RFC5389]
 and so far happen to use an encoding for mmmmmc that also enables

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5389

Shelby, et al. Expires September 15, 2011 [Page 41]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 this initial byte to be distinguished from valid DTLS messages.
 Again, future versions of CoAP will need to avoid using version
 number 0. STUN messages are most likely to begin with 0x00 and 0x01.
 All other STUN messages MUST be escaped with an initial 0x10 byte (16
 decimal). 0x10 MUST NOT be followed by 0x00 or 0x01 hex, i.e. the
 more likely STUN messages are always sent unescaped.

 Future versions of CoAP could potentially make changes to the CoAP
 header structure that are not backwards compatible to the current
 version. In order to allow demultiplexing those packets that adhere
 to the present version of CoAP from those using the future version,
 the new version may want to increase the CoAP version number in the
 header (fixed at "1" in the present specification) and/or make other
 changes in the initial byte and/or the escaping rules. Whatever
 these changes may be, their objective will be to enable seamless
 interworking of existing and new protocol implementations to enable
 an orderly transition to the new version.

 Note that the escaping rules defined in this section are insurance
 for the future; they need no additional code in implementations that
 do not implement STUN or DTLS or implement only the versions current
 at the time of writing. For easy reference, Table 2 summarizes the
 rules upon reception.

 +--------------+-------------+----------------+
 | initial byte | disposition | interpretation |
 +--------------+-------------+----------------+
 | 0x00 or 0x01 | keep | STUN |
 | 0x10 | remove | STUN |
 | 0x11 | remove | DTLS |
 | 0x14 to 0x17 | keep | DTLS |
 | 0x40 to 0x7F | keep | CoAP |
 | all others | | (invalid) |
 +--------------+-------------+----------------+

 Table 2: Interpretation of initial byte when multiplexing

8. HTTP Mapping

 CoAP supports a limited subset of HTTP functionality, and thus a
 mapping to HTTP is straightforward. There might be several reasons
 for mapping between CoAP and HTTP, for example when designing a web
 interface for use over either protocol or when realizing a CoAP-HTTP
 proxy. Likewise, CoAP could equally be mapped to other protocols
 such as XMPP [RFC3920] or SIP [RFC3264], the definition of these
 mappings is out of scope of this specification.

https://datatracker.ietf.org/doc/html/rfc3920
https://datatracker.ietf.org/doc/html/rfc3264

Shelby, et al. Expires September 15, 2011 [Page 42]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 This section discusses two ways of mapping:

 CoAP-HTTP Mapping: Enables CoAP clients to access resources on HTTP
 servers through an intermediary. This is initiated by including
 the Proxy-Uri Option with an "http" URI in a CoAP request to a
 CoAP-HTTP proxy, or by sending a CoAP request to a reverse proxy
 that maps CoAP to HTTP.

 HTTP-CoAP Mapping: Enables HTTP clients to access resources on CoAP
 servers through an intermediary. This is initiated by specifying
 a "coap" URI in the Request-Line of an HTTP request to an HTTP-
 CoAP proxy, or by sending an HTTP request to a reverse proxy that
 maps HTTP to CoAP.

 Either way, only the Request/Response model of CoAP is mapped to
 HTTP. The underlying model of confirmable or non-confirmable
 messages, etc., is invisible and MUST have no effect on a proxy
 function.

8.1. CoAP-HTTP Mapping

 The mapping of CoAP to HTTP is a relatively straightforward
 conversion of the CoAP method or response code, content-type and
 options to the corresponding HTTP feature. The payload is carried in
 an equivalent way by both protocols.

 In a similar manner to CoAP-CoAP proxying, the CoAP-HTTP proxy MAY
 perform caching of HTTP responses. If no caching is performed, a
 CoAP GET request that specifies an entity-tag in an ETag Option
 SHOULD be mapped to a conditional HTTP request that includes the
 entity-tag in the "If-None-Match" request-header field. If the
 entity-tag matches the entity-tag of the representation, the HTTP
 server responds with an HTTP 304 (Not Modified) response which SHOULD
 be mapped to a CoAP 2.03 (Valid) response with the ETag Option
 reflecting the response's "ETag" response-header field. The mapping
 of max-age is straightforward.

 HTTP entity-tags consist of characters in a subset of the US-ASCII
 character set, which can be carried directly in a CoAP ETag Option.
 Weak entity-tags are not supported by this mapping. However, an
 entity-tag may not fit within the CoAP ETag Option. In this case,
 the proxy MAY map the entity-tag to a shorter unique byte sequence
 and keep state, or MAY silently ignore the "ETag" response-header
 when mapping an HTTP response to CoAP (so the CoAP client will never
 send a CoAP GET request with an ETag Option).

 Provisional responses (HTTP Status Codes 1xx), and responses
 indicating that further action needs to be taken (HTTP Status Codes

Shelby, et al. Expires September 15, 2011 [Page 43]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 3xx), SHOULD cause the proxy to complete the request, e.g., by
 following the redirects. If the proxy is unable to complete the
 request, it SHOULD respond with a CoAP 5.02 (Bad Gateway) error.

 HTTP responses are mapped to CoAP responses as follows:

Shelby, et al. Expires September 15, 2011 [Page 44]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 +-------------------------------+---------------------------+-------+
 | HTTP Status Code | CoAP Response Code | Notes |
 +-------------------------------+---------------------------+-------+
100 Continue		2
101 Switching Protocols		2
200 OK		3
201 Created	2.01 Created	
202 Accepted		4
203 Non-Authoritative		4
Information		
204 No Content		6
205 Reset Content		4
206 Partial Content		2
300 Multiple Choices		2
301 Moved Permanently		2
302 Found		2
303 See Other		2
304 Not Modified	2.03 Valid	7
305 Use Proxy		2
306 (Unused)	5.02 Bad Gateway	1
307 Temporary Redirect		2
400 Bad Request	4.00 Bad Request	
401 Unauthorized	4.01 Unauthorized	5
402 Payment Required	4.00 Bad Request	1
403 Forbidden	4.03 Forbidden	
404 Not Found	4.04 Not Found	
405 Method Not Allowed	4.05 Method Not Allowed	8
406 Not Acceptable	4.00 Bad Request	1
407 Proxy Authentication	4.00 Bad Request	1
Required		
408 Request Timeout	4.00 Bad Request	1
409 Conflict	4.00 Bad Request	1
410 Gone	4.00 Bad Request	1
411 Length Required	4.00 Bad Request	1
412 Precondition Failed	4.00 Bad Request	1
413 Request Entity Too Large	4.13 Request Entity Too	
	Large	
414 URI Too Long	4.00 Bad Request	1
415 Unsupported Media Type	4.15 Unsupported Media	
	Type	
416 Requested Range Not	4.00 Bad Request	1
Satisfiable		
417 Expectation Failed	4.00 Bad Request	1
500 Internal Server Error	5.00 Internal Server	
	Error	
501 Not Implemented	5.01 Not Implemented	
502 Bad Gateway	5.02 Bad Gateway	
503 Service Unavailable	5.03 Service Unavailable	9

Shelby, et al. Expires September 15, 2011 [Page 45]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

504 Gateway Timeout	5.04 Gateway Timeout	
505 HTTP Version Not		2
Supported		
 +-------------------------------+---------------------------+-------+

 Table 3: CoAP-HTTP Mapping

 Notes:

 1. There is no equivalent CoAP response.

 2. The proxy should perform the action implied by the response code
 (e.g., by following redirects); i.e. this response is never
 forwarded to the CoAP client. If the proxy is unable or
 unwilling to perform this function, the CoAP response code 5.02
 (Bad Gateway) can be returned.

 3. The CoAP response code depends on the request method. For a GET
 request, the response code SHOULD be 2.05 (Content). For a POST,
 PUT or DELETE request, the mapping is only partial: response
 entities are ignored, and the response code depends on the method
 as defined in Section 5.8.

 4. (The mapping for these rarely-used status codes is not defined in
 this specification.)

 5. The HTTP "WWW-Authenticate" response-header field has no
 equivalent option in CoAP and is either processed by the proxy by
 performing an additional request or silently dropped.

 6. The CoAP response code depends on the request method. For a POST
 or PUT request, the response code SHOULD be 2.04 (Changed); for a
 DELETE request, 2.02 (Deleted).

 7. Since a CoAP request with ETag Option is mapped to a conditional
 HTTP GET request with a "If-None-Match" request-header field, any
 HTTP 304 (Not Modified) response will confirm that the ETag is
 valid. Except for the max-age directive of the Cache-Control
 header field, any additional headers in the HTTP Not Modified
 response are not carried through to the CoAP client, though.

 8. The HTTP "Accept" response-header field has no equivalent option
 in CoAP and is silently dropped.

 9. The HTTP "Retry-After" response-header field has no equivalent
 option in CoAP, although it may be used to find a value for the
 Max-Age Option.

Shelby, et al. Expires September 15, 2011 [Page 46]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

8.2. HTTP-CoAP Mapping

 The mapping of HTTP to CoAP requires checking for methods, response
 codes and options that are not supported by CoAP. A proxy SHOULD
 attempt to map options, response codes and content-types to a
 suitable alternative if possible. Otherwise the unsupported feature
 SHOULD be silently dropped if possible, or an appropriate error code
 generated otherwise.

 Mapping MAY include performing payload conversion (e.g., from EXI to
 XML), the definition of which is out of this document's scope.

 Only those Conditional HTTP requests can be mapped to CoAP requests
 that have method GET and include a "If-None-Match" request-header
 field. The "If-Match", "If-Modified-Since" and "If-Unmodified-Since"
 request-header fields are not supported on the CoAP side, but could
 be implemented locally by a caching proxy. A HTTP-CoAP proxy SHOULD
 map ETags generated by a CoAP server to HTTP-friendly ETags by using
 Base64 [RFC4648].

 A proxy SHOULD respond with a HTTP 502 (Bad Gateway) error to HTTP
 requests which can not be successfully mapped to CoAP.

 A proxy SHOULD employ a cache to limit traffic on the constrained
 network.

 CoAP responses are mapped to HTTP responses as follows:

https://datatracker.ietf.org/doc/html/rfc4648

Shelby, et al. Expires September 15, 2011 [Page 47]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 +-----------------------------+-----------------------------+-------+
 | CoAP Response Code | HTTP Status Code | Notes |
 +-----------------------------+-----------------------------+-------+
2.01 Created	201 Created	
2.02 Deleted	204 No Content	
2.03 Valid	304 Not Modified	1
2.04 Changed	204 No Content	
2.05 Content	200 OK	
4.00 Bad Request	400 Bad Request	
4.01 Unauthorized	400 Bad Request	2
4.02 Bad Option	400 Bad Request	
4.03 Forbidden	403 Forbidden	
4.04 Not Found	404 Not Found	
4.05 Method Not Allowed	405 Method Not Allowed	3
4.13 Request Entity Too	413 Request Entity Too	
Large	Large	
4.15 Unsupported Media Type	415 Unsupported Media Type	
5.00 Internal Server Error	500 Internal Server Error	
5.01 Not Implemented	501 Not Implemented	
5.02 Bad Gateway	502 Bad Gateway	
5.03 Service Unavailable	503 Service Unavailable	4
5.04 Gateway Timeout	504 Gateway Timeout	
5.05 Proxying Not Supported	502 Bad Gateway	
 +-----------------------------+-----------------------------+-------+

 Table 4: HTTP-CoAP Mapping

 Notes:

 1. A CoAP 2.03 (Valid) response only (1) confirms that the request
 ETag is valid and (2) provides a new Max-Age value. HTTP 304
 (Not Modified) also updates some header fields of a stored
 response. A non-caching proxy may not have enough information to
 fill in the required values in the HTTP 304 (Not Modified)
 response, so it may not be advisable to provoke the 2.03 (Valid)
 response by forwarding an ETag. A caching proxy will fill the
 information out of the cache.

 2. There is no equivalent HTTP status code.

 3. CoAP does not provide enough information to compute a value for
 the required "Allow" response-header field. If this violation of
 [RFC2616] cannot be tolerated, the proxy should instead send a
 4.00 (Bad Request) response.

 4. The value of the "Retry-After" response-header field is the value
 of the Max-Age Option.

https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 48]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

9. Protocol Constants

 This section defines the relevant protocol constants defined in this
 document:

 RESPONSE_TIMEOUT 2 seconds

 MAX_RETRANSMIT 4

10. Security Considerations

 This section describes mechanisms that can be used to secure CoAP and
 analyzes the possible threats to the protocol and its limitations.
 Security bootstrapping (authenticating nodes and setting up keys) in
 constrained environments is considered in
 [I-D.oflynn-core-bootstrapping].

 During the bootstrap and enrollment phases, a CoAP device is provided
 with the security information that it needs, including keying
 materials. How this is done is out of scope for this specification
 but a couple of ways of doing this are described in
 [I-D.oflynn-core-bootstrapping]. At the end of the enrollment and
 bootstrap, the device will be in one of four security modes with the
 following information for the given mode:

 NoSec: There is no protocol level security.

 SharedKey: There is one shared key between all the nodes that this
 CoAP node needs to communicate with.

 MultiKey: There is a list of shared keys and each key includes a
 list of which nodes it can be used to communicate with. At the
 extreme there may be one key for each node this CoAP node needs to
 communicate with.

 Certificate: The device has an asymmetric key pair with a X.509
 [RFC5280] certificate that binds it to its Authority Name and is
 signed by a some common trust root. The device also has a list of
 root trust anchors that can be used for validating a certificate.
 There may be an optional shared key that all the nodes that
 communicate have access to.

 The Authority Name in the certificate is the name that would be used
 in the Authority part of a CoAP URI. It is worth noting that this
 would typically not be either an IP address or DNS name but would
 instead be a long term unique identifier for the device such as the
 EUI-64 [EUI64]. The discovery process used in the system would build

https://datatracker.ietf.org/doc/html/rfc5280

Shelby, et al. Expires September 15, 2011 [Page 49]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 up the mapping between IP addresses of the given devices and the
 Authority Name for each device. Some devices could have more than
 one Authority and would need more than a single certificate.

 In the "NoSec" mode, the system simply sends the packets over normal
 UDP over IP. The system is secured only by keeping attackers from
 being able to send or receive packets from the network with the CoAP
 nodes; see Section 10.3.4 for an additional complication with this
 approach. The other three security modes can be achieved with IPsec
 or DTLS. The result is a security association that can be used to
 authenticate (within the limits of the security model) and, based on
 this authentication, authorize the communication partner. CoAP
 itself does not provide protocol primitives for authentication or
 authorization; where this is required, it can either be provided by
 communication security (i.e., IPsec or DTLS) or by object security
 (within the payload). Devices that require authorization for certain
 operations are expected to require one of these two forms of
 security. Necessarily, where an intermediary is involved,
 communication security only works when that intermediary is part of
 the trust relationships; CoAP does not provide a way to forward
 different levels of authorization that clients may have with an
 intermediary to further intermediaries or origin servers -- it
 therefore may be required to perform all authorization at the first
 intermediary.

10.1. Securing CoAP with IPsec

 One mechanism to secure CoAP in constrained environments is the IPsec
 Encapsulating Security Payload (ESP) [RFC4303]. Using IPsec ESP with
 the appropriate configuration, it is possible for many constrained
 devices to support encryption with built-in link-layer encryption
 hardware. For example, some IEEE 802.15.4 radio chips are compatible
 with AES-CBC (with 128-bit keys) [RFC3602] as defined for use with
 IPsec in [RFC4835]. Alternatively, particularly on more common IEEE
 802.15.4 hardware that supports AES encryption but not decryption,
 and to avoid the need for padding, nodes could directly use the more
 widely supported AES-CCM as defined for use with IPsec in [RFC4309],
 if the security considerations in section 9 of that specification can
 be fulfilled. Necessarily for AES-CCM, but much preferably also for
 AES-CBC, static keying should be avoided and the initial keying
 material be derived into transient session keys, e.g. using a low-
 overhead mode of IKEv2 [RFC5996]; such a protocol for managing keys
 and sequence numbers is also the only way to achieve anti-replay
 capabilities. However, no recommendation can be made at this point
 on how to manage group keys (i.e., for multicast) in a constrained
 environment. Once any initial setup is completed, IPsec ESP adds a
 limited per-packet overhead of approximately 10 bytes, not including
 initialization vectors, integrity check values and padding required

https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc4835
https://datatracker.ietf.org/doc/html/rfc4309
https://datatracker.ietf.org/doc/html/rfc5996

Shelby, et al. Expires September 15, 2011 [Page 50]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 by the cipher suite.

 When using IPsec to secure CoAP, both authentication and
 confidentiality SHOULD be applied as recommended in [RFC4303]. The
 use of IPsec between CoAP end-points is transparent to the
 application layer and does not require special consideration for a
 CoAP implementation.

 IPsec may not be appropriate for all environments. For example,
 IPsec support is not available for many embedded IP stacks and even
 in full PC operating systems or on back-end web servers, application
 developers may not have sufficient access to configure or enable
 IPsec or to add a security gateway to the infrastructure. Problems
 with firewalls and NATs may furthermore limit the use of IPsec.

10.2. Securing CoAP with DTLS

 Just as HTTP may be secured using Transport Layer Security (TLS) over
 TCP, CoAP may be secured using Datagram TLS (DTLS) [RFC4347] over
 UDP. This section gives a quick overview of how to secure CoAP with
 DTLS, along with the minimal configurations appropriate for
 constrained environments. DTLS is in practice TLS with added
 features to deal with the unreliable nature of the UDP transport.

 In some constrained nodes (limited flash and/or RAM) and networks
 (limited bandwidth or high scalability requirements), and depending
 on the specific cipher suites in use, DTLS may not be applicable.
 Some of DTLS' cipher suites can add significant implementation
 complexity as well as some initial handshake overhead needed when
 setting up the security association. Once the initial handshake is
 completed, DTLS adds a limited per-datagram overhead of approximately
 13 bytes, not including any initialization vectors (which are
 generally implicitly derived with DTLS), integrity check values
 (e.g., 8 bytes with the proposed TLS_PSK_WITH_AES_128_CCM_8
 [I-D.mcgrew-tls-aes-ccm]) and padding required by the cipher suite.
 Whether and which mode of using DTLS is applicable for a CoAP-based
 application should be carefully weighed considering the specific
 cipher suites that may be applicable, and whether the session
 maintenance makes it compatible with application flows and sufficient
 resources are available on the constrained nodes and for the added
 network overhead. DTLS is not applicable to group keying (multicast
 communication); however, it may be a component in a future group key
 management protocol.

 Devices SHOULD support the Server Name Indication (SNI) to indicate
 their Authority Name in the SNI HostName field as defined in Section

3 of [RFC6066]. This is needed so that when a host that acts as a
 virtual server for multiple Authorities receives a new DTLS

https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://datatracker.ietf.org/doc/html/rfc6066#section-3

Shelby, et al. Expires September 15, 2011 [Page 51]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 connection, it knows which keys to use for the DTLS session.

 DTLS connections with certificates are set up using mutual
 authentication so they can remain up and be reused for future message
 exchanges in either direction. Devices can close a DTLS connection
 when they need to recover resources but in general they should keep
 the connection up for as long as possible. Closing the DTLS
 connection after every CoAP message exchange is very inefficient.

10.2.1. SharedKey and MultiKey Modes

 When forming a connection to a new node, the system selects an
 appropriate key based on which nodes it is trying to reach then forms
 a DTLS session using a PSK (Pre-Shared Key) mode of DTLS.
 Implementations SHOULD support the mandatory to implement cipher
 suite TLS_PSK_WITH_AES_128_CBC_SHA as specified in [RFC4279]; once
 TLS_PSK_WITH_AES_128_CCM_8 as specified in [I-D.mcgrew-tls-aes-ccm]
 (or related cipher suites specified in [I-D.mcgrew-tls-aes-ccm-ecc])
 in conjunction with [I-D.ietf-tls-rfc4347-bis] becomes available,
 this may be easier to implement on certain contemporary chipsets.

 The security considerations of [RFC4279] (Section 7) apply. In
 particular, applications should carefully weigh whether they need
 Perfect Forward Secrecy (PFS) or not and select an appropriate cipher
 suite (7.1). The entropy of the PSK must be sufficient to mitigate
 against brute-force and (where the PSK is not chosen randomly but by
 a human) dictionary attacks (7.2). The cleartext communication of
 client identities may leak data or compromise privacy (7.3).

10.2.2. Certificate Mode

 As with IPsec, DTLS should be configured with a cipher suite
 compatible with any possible hardware engine on the node, for example
 AES-CBC in the case of IEEE 802.15.4. Implementations SHOULD support
 the mandatory to implement cipher suite TLS_RSA_WITH_AES_128_CBC_SHA
 as specified in [RFC5246].

 When a new connection is formed, the certificate from the remote
 device needs to be verified. If the CoAP node has a source of
 absolute time, then the node SHOULD check the validity dates are of
 the certificate are within range. The certificate MUST also be
 signed by an appropriate chain of trust. If the certificate contains
 a SubjectAltName, then the Authority Name MUST match at least one of
 the authority names of any CoAP URI found in a URI type fields in the
 SubjectAltName set. If there is no SubjectAltName in the
 certificate, then the Authoritative Name must match the CN found in
 the certificate using the matching rules defined in [RFC2818] with
 the exception that certificates with wildcards are not allowed.

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Shelby, et al. Expires September 15, 2011 [Page 52]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 If the system has a shared key in addition to the certificate, then a
 cipher suite that includes the shared key such as
 TLS_RSA_PSK_WITH_AES_128_CBC_SHA SHOULD be used.

10.3. Threat analysis and protocol limitations

 This section is meant to inform protocol and application developers
 about the security limitations of CoAP as described in this document.
 As CoAP realizes a subset of the features in HTTP/1.1, the security
 considerations in Section 15 of [RFC2616] are also pertinent to CoAP.
 This section concentrates on describing limitations specific to CoAP.

10.3.1. Protocol Parsing, Processing URIs

 A network-facing application can exhibit vulnerabilities in its
 processing logic for incoming packets. Complex parsers are well-
 known as a likely source of such vulnerabilities, such as the ability
 to remotely crash a node, or even remotely execute arbitrary code on
 it. CoAP attempts to narrow the opportunities for introducing such
 vulnerabilities by reducing parser complexity, by giving the entire
 range of encodable values a meaning where possible, and by
 aggressively reducing complexity that is often caused by unnecessary
 choice between multiple representations that mean the same thing.
 Much of the URI processing has been moved to the clients, further
 reducing the opportunities for introducing vulnerabilities into the
 servers. Even so, the URI processing code in CoAP implementations is
 likely to be a large source of remaining vulnerabilities and should
 be implemented with special care. The most complex parser remaining
 could be the one for the link-format, although this also has been
 designed with a goal of reduced implementation complexity
 [I-D.ietf-core-link-format]. (See also section 15.2 of [RFC2616].)

10.3.2. Proxying and Caching

 As mentioned in 15.2 of [RFC2616], which see, proxies are by their
 very nature men-in-the-middle, breaking any IPsec or DTLS protection
 that a direct CoAP message exchange might have. They are therefore
 interesting targets for breaking confidentiality or integrity of CoAP
 message exchanges. As noted in [RFC2616], they are also interesting
 targets for breaking availability.

 The threat to confidentiality and integrity of request/response data
 is amplified where proxies also cache. Note that CoAP does not
 define any of the cache-suppressing Cache-Control options that
 HTTP/1.1 provides to better protect sensitive data.

 Finally, a proxy that fans out Separate Responses (as opposed to
 Piggy-backed Responses) to multiple original requesters may provide

https://datatracker.ietf.org/doc/html/rfc2616#section-15
https://datatracker.ietf.org/doc/html/rfc2616#section-15.2
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 53]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 additional amplification (see below).

10.3.3. Risk of amplification

 CoAP servers generally reply to a request packet with a response
 packet. This response packet may be significantly larger than the
 request packet. An attacker might use CoAP nodes to turn a small
 attack packet into a larger attack packet, an approach known as
 amplification. There is therefore a danger that CoAP nodes could
 become implicated in denial of service (DoS) attacks by using the
 amplifying properties of the protocol: An attacker that is attempting
 to overload a victim but is limited in the amount of traffic it can
 generate, can use amplification to generate a larger amount of
 traffic.

 This is particularly a problem in nodes that enable NoSec access and
 that are accessible from an attacker and can access potential victims
 (e.g. on the general Internet), as the UDP protocol provides no way
 to verify the source address given in the request packet. An
 attacker need only place the IP address of the victim in the source
 address of a suitable request packet to generate a larger packet
 directed at the victim.

 As a mitigating factor, many constrained network will only be able to
 generate a small amount of traffic, which may make CoAP nodes less
 attractive for this attack. However, the limited capacity of the
 constrained network makes the network itself a likely victim of an
 amplification attack.

 A CoAP server can reduce the amount of amplification it provides to
 an attacker by using slicing/blocking modes of CoAP
 [I-D.ietf-core-block] and offering large resource representations
 only in relatively small slices. E.g., for a 1000 byte resource, a
 10-byte request might result in an 80-byte response (with a 64-byte
 block) instead of a 1016-byte response, considerably reducing the
 amplification provided.

 CoAP also supports the use of multicast IP addresses in requests, an
 important requirement for M2M. Multicast CoAP requests may be the
 source of accidental or deliberate denial of service attacks,
 especially over constrained networks. This specification attempts to
 reduce the amplification effects of multicast requests by limiting
 when a response is returned. To limit the possibility of malicious
 use, CoAP servers SHOULD NOT accept multicast requests that can not
 be authenticated. If possible a CoAP server SHOULD limit the support
 for multicast requests to specific resources where the feature is
 required.

Shelby, et al. Expires September 15, 2011 [Page 54]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 On some general purpose operating systems providing a Posix-style
 API, it is not straightforward to find out whether a packet received
 was addressed to a multicast address. While many implementations
 will know whether they have joined a multicast group, this creates a
 problem for packets addressed to multicast addresses of the form
 FF0x::1, which are received by every IPv6 node. Implementations
 SHOULD make use of modern APIs such as IPV6_RECVPKTINFO [RFC3542], if
 available, to make this determination.

10.3.4. Cross-Protocol Attacks

 The ability to incite a CoAP end-point to send packets to a fake
 source address can be used not only for amplification, but also for
 cross-protocol attacks:

 o the attacker sends a message to a CoAP end point with a fake
 source address,

 o the CoAP end point replies with a message to the given source
 address,

 o the victim at the given source address receives a UDP packet that
 it interprets according to the rules of a different protocol.

 This may be used to circumvent firewall rules that prevent direct
 communication from the attacker to the victim, but happen to allow
 communication from the CoAP end-point (which may also host a valid
 role in the other protocol) to the victim.

 Also, CoAP end-points may be the victim of a cross-protocol attack
 generated through an endpoint of another UDP-based protocol such as
 DNS. In both cases, attacks are possible if the security properties
 of the end-points rely on checking IP addresses (and firewalling off
 direct attacks sent from outside using fake IP addresses). In
 general, because of their lack of context, UDP-based protocols are
 relatively easy targets for cross-protocol attacks.

 Finally, CoAP URIs transported by other means could be used to incite
 clients to send messages to end-points of other protocols.

 One mitigation against cross-protocol attacks is strict checking of
 the syntax of packets received, combined with sufficient difference
 in syntax. As an example, it might help if it were difficult to
 incite a DNS server to send a DNS response that would pass the checks
 of a CoAP endpoint. Unfortunately, the first two bytes of a DNS
 reply are an ID that can be chosen by the attacker, which map into
 the interesting part of the CoAP header, and the next two bytes are
 then interpreted as CoAP's Message ID (i.e., any value is

https://datatracker.ietf.org/doc/html/rfc3542

Shelby, et al. Expires September 15, 2011 [Page 55]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 acceptable). The DNS count words may be interpreted as multiple
 instances of a (non-existent, but elective) CoAP option 0. The
 echoed query finally may be manufactured by the attacker to achieve a
 desired effect on the CoAP endpoint; the response added by the server
 (if any) might then just be interpreted as added payload.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID | T, OC, code
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE | message id
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Figure 10: DNS Header vs. CoAP Message

 In general, for any pair of protocols, one of the protocols can very
 well have been designed in a way that enables an attacker to cause
 the generation of replies that look like messages of the other
 protocol. It is often much harder to ensure or prove the absence of
 viable attacks than to generate examples that may not yet completely
 enable an attack but might be further developed by more creative
 minds. Cross-protocol attacks can therefore only be completely
 mitigated if end-points don't authorize actions desired by an
 attacker just based on trusting the source IP address of a packet.
 Conversely, a NoSec environment that completely relies on a firewall
 for CoAP security not only needs to firewall off the CoAP end-points
 but also all other end-points that might be incited to send UDP
 messages to CoAP end-points using some other UDP-based protocol.

 In addition to the considerations above, the security considerations
 for DTLS with respect to cross-protocol attacks apply. E.g., if the
 same DTLS security association ("connection") is used to carry data
 of multiple protocols, DTLS no longer provides protection against
 cross-protocol attacks between these protocols.

11. IANA Considerations

Shelby, et al. Expires September 15, 2011 [Page 56]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

11.1. CoAP Code Registry

 This document defines a registry for the values of the Code field in
 the CoAP header. The name of the registry is "CoAP Codes".

 All values are assigned by sub-registries according to the following
 ranges:

 0 Indicates an empty message (see Section 4.3).

 1-31 Indicates a request. Values in this range are assigned by
 the "CoAP Method Codes" sub-registry (see Section 11.1.1).

 32-63 Reserved

 64-191 Indicates a response. Values in this range are assigned by
 the "CoAP Response Codes" sub-registry (see

Section 11.1.2).

 192-255 Reserved

11.1.1. Method Codes

 The name of the sub-registry is "CoAP Method Codes".

 Each entry in the sub-registry must include the Method Code in the
 range 1-31, the name of the method, and a reference to the method's
 documentation.

 Initial entries in this sub-registry are as follows:

 +------+--------+-----------+
 | Code | Name | Reference |
 +------+--------+-----------+
 | 1 | GET | [RFCXXXX] |
 | 2 | POST | [RFCXXXX] |
 | 3 | PUT | [RFCXXXX] |
 | 4 | DELETE | [RFCXXXX] |
 +------+--------+-----------+

 Table 5: CoAP Method Codes

 All other Method Codes are Unassigned.

 The IANA policy for future additions to this registry is "IETF
 Review" as described in [RFC5226].

 The documentation of a method code should specify the semantics of a

https://datatracker.ietf.org/doc/html/rfc5226

Shelby, et al. Expires September 15, 2011 [Page 57]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 request with that code, including the following properties:

 o The response codes the method returns in the success case.

 o Whether the method is idempotent, safe, or both.

 o Whether the request causes a cache to mark responses stored for
 the request URI as stale.

11.1.2. Response Codes

 The name of the sub-registry is "CoAP Response Codes".

 Each entry in the sub-registry must include the Response Code in the
 range 64-191, a description of the Response Code, and a reference to
 the Response Code's documentation.

 Initial entries in this sub-registry are as follows:

 +------+-------------------------------+-----------+
 | Code | Description | Reference |
 +------+-------------------------------+-----------+
 | 65 | 2.01 Created | [RFCXXXX] |
 | 66 | 2.02 Deleted | [RFCXXXX] |
 | 67 | 2.03 Valid | [RFCXXXX] |
 | 68 | 2.04 Changed | [RFCXXXX] |
 | 69 | 2.05 Content | [RFCXXXX] |
 | 128 | 4.00 Bad Request | [RFCXXXX] |
 | 129 | 4.01 Unauthorized | [RFCXXXX] |
 | 130 | 4.02 Bad Option | [RFCXXXX] |
 | 131 | 4.03 Forbidden | [RFCXXXX] |
 | 132 | 4.04 Not Found | [RFCXXXX] |
 | 133 | 4.05 Method Not Allowed | [RFCXXXX] |
 | 141 | 4.13 Request Entity Too Large | [RFCXXXX] |
 | 143 | 4.15 Unsupported Media Type | [RFCXXXX] |
 | 160 | 5.00 Internal Server Error | [RFCXXXX] |
 | 161 | 5.01 Not Implemented | [RFCXXXX] |
 | 162 | 5.02 Bad Gateway | [RFCXXXX] |
 | 163 | 5.03 Service Unavailable | [RFCXXXX] |
 | 164 | 5.04 Gateway Timeout | [RFCXXXX] |
 | 165 | 5.05 Proxying Not Supported | [RFCXXXX] |
 +------+-------------------------------+-----------+

 Table 6: CoAP Response Codes

 The Response Codes 96-127 are Reserved for future use. All other
 Response Codes are Unassigned.

Shelby, et al. Expires September 15, 2011 [Page 58]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 The IANA policy for future additions to this registry is "IETF
 Review" as described in [RFC5226].

 The documentation of a response code should specify the semantics of
 a response with that code, including the following properties:

 o The methods the response code applies to.

 o Whether payload is required, optional or not allowed.

 o The semantics of the payload. For example, the payload of a 2.05
 (Content) response is a representation of the target resource; the
 payload in an error response is a human-readable diagnostic
 message.

 o The format of the payload. For example, the format in a 2.05
 (Content) response is indicated by the Content-Type option; the
 format of the payload in an error response is always Net-Unicode
 text.

 o Whether the response is cacheable according to the freshness
 model.

 o Whether the response is validatable according to the validation
 model.

 o Whether the response causes a cache to mark responses stored for
 the request URI as stale.

11.2. Option Number Registry

 This document defines a registry for the option numbers used in CoAP
 options. The name of the registry is "CoAP Option Numbers".

 Each entry in the registry must include the Option Number, the name
 of the option and a reference to the option's documentation.

 Initial entries in this registry are as follows:

https://datatracker.ietf.org/doc/html/rfc5226

Shelby, et al. Expires September 15, 2011 [Page 59]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 +--------+----------------+-----------+
 | Number | Name | Reference |
 +--------+----------------+-----------+
 | 1 | Content-Type | [RFCXXXX] |
 | 2 | Max-Age | [RFCXXXX] |
 | 3 | Proxy-Uri | [RFCXXXX] |
 | 4 | ETag | [RFCXXXX] |
 | 5 | Uri-Host | [RFCXXXX] |
 | 6 | Location-Path | [RFCXXXX] |
 | 7 | Uri-Port | [RFCXXXX] |
 | 8 | Location-Query | [RFCXXXX] |
 | 9 | Uri-Path | [RFCXXXX] |
 | 11 | Token | [RFCXXXX] |
 | 15 | Uri-Query | [RFCXXXX] |
 +--------+----------------+-----------+

 Table 7: CoAP Option Numbers

 The Option Number 0 is Reserved for future use. The Option Numbers
 14, 28, 42, ... are Reserved for "fenceposting" (see Section 3.2).
 All other Option Numbers are Unassigned.

 The IANA policy for future additions to this registry is "IETF
 Review" as described in [RFC5226].

 The documentation of an option number should specify the semantics of
 an option with that number, including the following properties:

 o The meaning of the option in a request.

 o The meaning of the option in a response.

 o Whether the option is critical of elective, as determined by the
 option number.

 o The format and length of the option's value.

 o Whether the option must occur at most once or whether it can occur
 multiple times.

 o The default value, if any.

11.3. Media Type Registry

 Media types are identified by a string, such as "application/xml"
 [RFC2046]. In order to minimize the overhead of using these media
 types to indicate the format of payloads, this document defines a
 registry for a subset of Internet media types to be used in CoAP and

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2046

Shelby, et al. Expires September 15, 2011 [Page 60]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 assigns each a numeric identifier. The name of the registry is "CoAP
 Media Types".

 Each entry in the registry must include the media type registered
 with IANA, the numeric identifier in the range 0-65535 to be used for
 that media type in CoAP, and a reference to a document describing
 what payload with that media types means semantically.

 Initial entries in this registry are as follows:

 +------------------------------+-----+-----------------------------+
 | Media type | Id. | Reference |
 +------------------------------+-----+-----------------------------+
text/plain; charset=utf-8	0	
text/xml; charset=utf-8	1	
text/csv; charset=utf-8	2	
text/html; charset=utf-8	3	
application/link-format	40	[I-D.ietf-core-link-format]
application/xml	41	
application/octet-stream	42	
application/rdf+xml	43	
application/soap+xml	44	
application/atom+xml	45	
application/xmpp+xml	46	
application/exi	47	[EXIMIME]
application/fastinfoset	48	
application/soap+fastinfoset	49	
application/json	50	
application/x-obix-binary	51	[OBIX1.1]
 +------------------------------+-----+-----------------------------+

 Table 8: CoAP Media Types

 The identifiers between 201 and 255 inclusive are reserved for
 Private Use. The identifiers between 256 and 65535 inclusive are
 Reserved for future use. All other identifiers are Unassigned.

 Because the name space is so small, the IANA policy for future
 additions to this registry is "Expert Review" as described in
 [RFC5226].

 In machine to machine applications, it is not expected that generic
 Internet media types such as text/plain, application/xml or
 application/octet-stream are useful for real applications. It is
 recommended that M2M applications making use of CoAP will request new
 Internet media types from IANA indicating semantic information about
 how to create or parse a payload. Correct examples from Table 8
 include application/link-format, application/atom+xml and

https://datatracker.ietf.org/doc/html/rfc5226

Shelby, et al. Expires September 15, 2011 [Page 61]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 application/x-obix-binary. For example, a Smart Energy application
 payload carried as XML would request a more specific type like
 application/se+xml or application/se+exi.

11.4. URI Scheme Registration

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap". The registration request complies
 with [RFC4395].

 URI scheme name.
 coap

 Status.
 Permanent.

 URI scheme syntax.
 Defined in Section 6.1 of [RFCXXXX].

 URI scheme semantics.
 The "coap" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP). The resources can be located by contacting the
 governing CoAP server and operated on by sending CoAP requests to
 the server. This scheme can thus be compared to the "http" URI
 scheme [RFC2616]. See Section 6 of [RFCXXXX] for the details of
 operation.

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e. internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP end-points to access CoAP resources.

 Interoperability considerations.
 None.

 Security considerations.
 See Section 10.3.1 of [RFCXXXX].

 Contact.
 IETF Chair <chair@ietf.org>

https://datatracker.ietf.org/doc/html/rfc4395
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986

Shelby, et al. Expires September 15, 2011 [Page 62]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 [RFCXXXX]

11.5. Service Name and Port Number Registration

 One of the functions of CoAP is resource discovery: a CoAP client can
 ask a CoAP server about the resources offered by it (see

Section 7.1). To enable resource discovery just based on the
 knowledge of an IP address, the CoAP port for resource discovery
 needs to be standardized.

 This document requests the assignment of the port number 5683 and the
 service name "coap", in accordance with [I-D.ietf-tsvwg-iana-ports].

 Besides unicast, CoAP can be used with both multicast and anycast.

 Service Name.
 coap

 Transport Protocol.
 UDP

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

 Reference.
 [RFCXXXX]

 Port Number.
 5683

12. Acknowledgements

 Special thanks to Peter Bigot and Cullen Jennings for substantial
 contributions to the ideas and text in the document, along with
 countless detailed reviews and discussions.

 Thanks to Michael Stuber, Richard Kelsey, Guido Moritz, Peter Van Der

Shelby, et al. Expires September 15, 2011 [Page 63]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Stok, Adriano Pezzuto, Lisa Dussealt, Alexey Melnikov, Gilbert Clark,
 Salvatore Loreto, Petri Mutka, Szymon Sasin, Robert Quattlebaum,
 Robert Cragie, Angelo Castellani, Tom Herbst, Ed Beroset, Gilman
 Tolle, Robby Simpson, Colin O'Flynn, Eric Rescorla, Matthieu Vial,
 Linyi Tian, Kerry Lynn, Dale Seed, Akbar Rahman and David Ryan for
 helpful comments and discussions that have shaped the document.

 Some of the text has been lifted from the working documents of the
 IETF httpbis working group.

13. References

13.1. Normative References

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
 Algorithm and Its Use with IPsec", RFC 3602,
 September 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

 [RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM
 Mode with IPsec Encapsulating Security Payload (ESP)",

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4303

Shelby, et al. Expires September 15, 2011 [Page 64]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

RFC 4309, December 2005.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35,

RFC 4395, February 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4835] Manral, V., "Cryptographic Algorithm Implementation
 Requirements for Encapsulating Security Payload (ESP) and
 Authentication Header (AH)", RFC 4835, April 2007.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, September 2010.

https://datatracker.ietf.org/doc/html/rfc4309
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc4395
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4835
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5952
https://datatracker.ietf.org/doc/html/rfc5996

Shelby, et al. Expires September 15, 2011 [Page 65]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

13.2. Informative References

 [EUI64] "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64)
 REGISTRATION AUTHORITY", April 2010, <http://

standards.ieee.org/regauth/oui/tutorials/EUI64.html>.

 [EXIMIME] "Efficient XML Interchange (EXI) Format 1.0",
 December 2009, <http://www.w3.org/TR/2009/

CR-exi-20091208/#mediaTypeRegistration>.

 [I-D.eggert-core-congestion-control]
 Eggert, L., "Congestion Control for the Constrained
 Application Protocol (CoAP)",

draft-eggert-core-congestion-control-01 (work in
 progress), January 2011.

 [I-D.ietf-core-block]
 Shelby, Z. and C. Bormann, "Blockwise transfers in CoAP",

draft-ietf-core-block-01 (work in progress), January 2011.

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",

draft-ietf-core-link-format-02 (work in progress),
 December 2010.

 [I-D.ietf-tls-rfc4347-bis]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security version 1.2", draft-ietf-tls-rfc4347-bis-04 (work
 in progress), July 2010.

 [I-D.ietf-tsvwg-iana-ports]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry",

draft-ietf-tsvwg-iana-ports-10 (work in progress),
 February 2011.

 [I-D.mcgrew-tls-aes-ccm]
 McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS",

draft-mcgrew-tls-aes-ccm-01 (work in progress),
 March 2011.

 [I-D.mcgrew-tls-aes-ccm-ecc]
 McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-

https://datatracker.ietf.org/doc/html/rfc6066
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://www.w3.org/TR/2009/CR-exi-20091208/#mediaTypeRegistration
http://www.w3.org/TR/2009/CR-exi-20091208/#mediaTypeRegistration
https://datatracker.ietf.org/doc/html/draft-eggert-core-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-link-format-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4347-bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-iana-ports-10
https://datatracker.ietf.org/doc/html/draft-mcgrew-tls-aes-ccm-01

Shelby, et al. Expires September 15, 2011 [Page 66]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 CCM ECC Cipher Suites for TLS",
draft-mcgrew-tls-aes-ccm-ecc-01 (work in progress),

 January 2011.

 [I-D.oflynn-core-bootstrapping]
 Sarikaya, B., Ohba, Y., Cao, Z., and R. Cragie, "Security
 Bootstrapping of Resource-Constrained Devices",

draft-oflynn-core-bootstrapping-03 (work in progress),
 November 2010.

 [OBIX1.1] "OBIX Version 1.1", June 2010, <http://www.oasis-open.org/
committees/download.php/38212/oBIX-1-1-spec-wd06.pdf>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, May 2003.

 [RFC3920] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

Appendix A. Integer Option Value Format

 Options of type uint contain a non-negative integer that is
 represented in network byte order using a variable number of bytes,
 as shown in Figure 11.

https://datatracker.ietf.org/doc/html/draft-mcgrew-tls-aes-ccm-ecc-01
https://datatracker.ietf.org/doc/html/draft-oflynn-core-bootstrapping-03
http://www.oasis-open.org/committees/download.php/38212/oBIX-1-1-spec-wd06.pdf
http://www.oasis-open.org/committees/download.php/38212/oBIX-1-1-spec-wd06.pdf
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3920
https://datatracker.ietf.org/doc/html/rfc4944

Shelby, et al. Expires September 15, 2011 [Page 67]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Length = 0 (implies value of 0)

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 Length = 1 | 0-255 |
 +-+-+-+-+-+-+-+-+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Length = 2 | 0-65535 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Length = 3 is 24 bits, Length = 4 is 32 bits etc.

 Figure 11: Variable-length unsigned integer format

Appendix B. Examples

 This section gives a number of short examples with message flows for
 GET requests. These examples demonstrate the basic operation, the
 operation in the presence of retransmissions, and multicast.

 Figure 12 shows a basic GET request causing a piggy-backed response:
 The client sends a Confirmable GET request for the resource
 coap://server/temperature to the server with a Message ID of 0x7d34.
 The request includes one Uri-Path Option (Delta 0 + 9 = 9, Length 11,
 Value "temperature"); the Token is left at its default value (empty).
 This request is a total of 16 bytes long. A 2.05 (Content) response
 is returned in the Acknowledgement message that acknowledges the
 Confirmable request, echoing both the Message ID 0x7d34 and the
 (implicitly empty) Token value. The response includes a Payload of
 "22.3 C" and is 10 bytes long.

Shelby, et al. Expires September 15, 2011 [Page 68]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d34)
 | GET | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d34)
 | 2.05 | Payload: "22.3 C"
 | |

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 0 | 1 | GET=1 | MID=0x7d34 |
 +-+
 | 9 | 11 | "temperature" (11 B) ...
 +-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 2 | 0 | 2.05=69 | MID=0x7d34 |
 +-+
 | "22.3 C" (6 B) ...
 +-+

 Figure 12: Confirmable request; piggy-backed response

 Figure 13 shows a similar example, but with the inclusion of an
 explicit Token option (Delta 9 + 2 = 11, Length 1, Value 0x20) in the
 request and (Delta 11 + 0 = 11) in the response, increasing the sizes
 to 18 and 12 bytes, respectively.

Shelby, et al. Expires September 15, 2011 [Page 69]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d35)
 | GET | Token: 0x20
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d35)
 | 2.05 | Token: 0x20
 | | Payload: "22.3 C"
 | |

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 0 | 2 | GET=1 | MID=0x7d34 |
 +-+
 | 9 | 11 | "temperature" (11 B) ...
 +-+
 | 2 | 1 | 0x20 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 2 | 1 | 2.05=69 | MID=0x7d34 |
 +-+
 | 11 | 1 | 0x20 | "22.3 C" (6 B) ...
 +-+

 Figure 13: Confirmable request; piggy-backed response

 In Figure 14, the Confirmable GET request is lost. After
 RESPONSE_TIMEOUT seconds, the client retransmits the request,
 resulting in a piggy-backed response as in the previous example.

Shelby, et al. Expires September 15, 2011 [Page 70]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server
 | |
 | |
 +----X | Header: GET (T=CON, Code=1, MID=0x7d36)
 | GET | Token: 0x31
 | | Uri-Path: "temperature"
 TIMEOUT |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d36)
 | GET | Token: 0x31
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d36)
 | 2.05 | Token: 0x31
 | | Payload: "22.3 C"
 | |

 Figure 14: Confirmable request (retransmitted); piggy-backed response

 In Figure 15, the first Acknowledgement message from the server to
 the client is lost. After RESPONSE_TIMEOUT seconds, the client
 retransmits the request.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d37)
 | GET | Token: 0x42
 | | Uri-Path: "temperature"
 | |
 | |
 | X----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d37)
 | 2.05 | Token: 0x42
 | | Payload: "22.3 C"
 TIMEOUT |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d37)
 | GET | Token: 0x42
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d37)
 | 2.05 | Token: 0x42
 | | Payload: "22.3 C"
 | |

 Figure 15: Confirmable request; piggy-backed response (retransmitted)

Shelby, et al. Expires September 15, 2011 [Page 71]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 In Figure 16, the server acknowledges the Confirmable request and
 sends a 2.05 (Content) response separately in a Confirmable message.
 Note that the Acknowledgement message and the Confirmable response do
 not necessarily arrive in the same order as they were sent. The
 client acknowledges the Confirmable response.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d38)
 | GET | Token: 0x53
 | | Uri-Path: "temperature"
 | |
 | |
 |<- - -+ Header: (T=ACK, Code=0, MID=0x7d38)
 | |
 | |
 |<-----+ Header: 2.05 Content (T=CON, Code=69, MID=0xad7b)
 | 2.05 | Token: 0x53
 | | Payload: "22.3 C"
 | |
 | |
 +- - ->| Header: (T=ACK, Code=0, MID=0xad7b)
 | |

 Figure 16: Confirmable request; separate response

 Figure 17 shows an example where the client loses its state (e.g.,
 crashes and is rebooted) right after sending a Confirmable request,
 so the separate response arriving some time later comes unexpected.
 In this case, the client rejects the Confirmable response with a
 Reset message. Note that the unexpected ACK is silently ignored.

Shelby, et al. Expires September 15, 2011 [Page 72]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x7d39)
 | GET | Token: 0x64
 | | Uri-Path: "temperature"
 CRASH |
 | |
 |<- - -+ Header: (T=ACK, Code=0, MID=0x7d39)
 | |
 | |
 |<-----+ Header: 2.05 Content (T=CON, Code=69, MID=0xad7c)
 | 2.05 | Token: 0x64
 | | Payload: "22.3 C"
 | |
 | |
 +- - ->| Header: (T=RST, Code=0, MID=0xad7c)
 | |

 Figure 17: Confirmable request; separate response (unexpected)

 Figure 18 shows a basic GET request where the request and the
 response are non-confirmable, so both may be lost without notice.

 Client Server
 | |
 | |
 +----->| Header: GET (T=NON, Code=1, MID=0x7d40)
 | GET | Token: 0x75
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=NON, Code=69, MID=0xad7d)
 | 2.05 | Token: 0x75
 | | Payload: "22.3 C"
 | |

 Figure 18: Non-confirmable request; Non-confirmable response

 In Figure 19, the client sends a Non-confirmable GET request to a
 multicast address: all nodes in link-local scope. There are 3
 servers on the link: A, B and C. Servers A and B have a matching
 resource, therefore they send back a Non-confirmable 2.05 (Content)
 response. The response sent by B is lost. C does not have matching
 response, therefore it sends a Non-confirmable 4.04 (Not Found)
 response.

Shelby, et al. Expires September 15, 2011 [Page 73]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Client ff02::1 A B C
 | | | | |
 | | | | |
 +------>| | | | Header: GET (T=NON, Code=1, MID=0x7d41)
 | GET | | | | Token: 0x86
 | | | | Uri-Path: "temperature"
 | | | |
 | | | |
 |<------------+ | | Header: 2.05 (T=NON, Code=69, MID=0x60b1)
 | 2.05 | | | Token: 0x86
 | | | | Payload: "22.3 C"
 | | | |
 | | | |
 | X------------+ | Header: 2.05 (T=NON, Code=69, MID=0x01a0)
 | 2.05 | | | Token: 0x86
 | | | | Payload: "20.9 C"
 | | | |
 | | | |
 |<------------------+ Header: 4.04 (T=NON, Code=132, MID=0x952a)
 | 4.04 | | | Token: 0x86
 | | | |

 Figure 19: Non-confirmable request (multicast); Non-confirmable
 response

Appendix C. URI Examples

 The following examples demonstrate different sets of Uri options, and
 the result after constructing an URI from them.

 o coap://[2001:db8::2:1]/

 Destination IP Address = [2001:db8::2:1]

 Destination UDP Port = [IANA_TBD_PORT]

 o coap://example.net/

 Destination IP Address = [2001:db8::2:1]

 Destination UDP Port = [IANA_TBD_PORT]

 Uri-Host = "example.net"

 o coap://example.net/.well-known/core

Shelby, et al. Expires September 15, 2011 [Page 74]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Destination IP Address = [2001:db8::2:1]

 Destination UDP Port = [IANA_TBD_PORT]

 Uri-Host = "example.net"

 Uri-Path = ".well-known"

 Uri-Path = "core"

 o coap://
 xn--18j4d.example/%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF

 Destination IP Address = [2001:db8::2:1]

 Destination UDP Port = [IANA_TBD_PORT]

 Uri-Host = "xn--18j4d.example"

 Uri-Path = the string composed of the Unicode characters U+3053
 U+3093 U+306b U+3061 U+306f, usually represented in UTF-8 as
 E38193E38293E381ABE381A1E381AF hexadecimal

 o coap://198.51.100.1:61616//%2F//?%2F%2F

 Destination IP Address = 198.51.100.1

 Destination UDP Port = 61616

 Uri-Path = ""

 Uri-Path = "/"

 Uri-Path = ""

 Uri-Path = ""

 Uri-Query = "%2F%2F"

 o coap://[2001:db8::2:1]/sensors/temp

 Destination IP Address = [::1]

 Destination UDP Port = 61616

 Uri-Host = "[2001:db8::2:1]"

Shelby, et al. Expires September 15, 2011 [Page 75]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Uri-Port = [IANA_TBD_PORT]

 Uri-Path = "sensors"

 Uri-Path = "temp"

Appendix D. Changelog

 Changed from ietf-04 to ietf-05:

 o Renamed Immediate into Piggy-backed and Deferred into Separate --
 should finally end the confusion on what this is about.

 o GET requests now return a 2.05 (Content) response instead of 2.00
 (OK) response (#104).

 o Added text to allow 2.02 (Deleted) responses in reply to POST
 requests (#105).

 o Improved message deduplication rules (#106).

 o Section added on message size implementation considerations
 (#103).

 o Clarification made on human readable error payloads (#109).

 o Definition of CoAP methods improved (#108).

 o Max-Age removed from requests (#107).

 o Clarified uniqueness of tokens (#112).

 o Location-Query Option added (#113).

 o ETag length set to 1-8 bytes (#123).

 o Clarified relation between elective/critical and option numbers
 (#110).

 o Defined when to update Version header field (#111).

 o URI scheme registration improved (#102).

 o Added review guidelines for new CoAP codes and numbers.

 Changes from ietf-03 to ietf-04:

Shelby, et al. Expires September 15, 2011 [Page 76]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o Major document reorganization (#51, #63, #71, #81).

 o Max-age length set to 0-4 bytes (#30).

 o Added variable unsigned integer definition (#31).

 o Clarification made on human readable error payloads (#50).

 o Definition of POST improved (#52).

 o Token length changed to 0-8 bytes (#53).

 o Section added on multiplexing CoAP, DTLS and STUN (#56).

 o Added cross-protocol attack considerations (#61).

 o Used new Immediate/Deferred response definitions (#73).

 o Improved request/response matching rules (#74).

 o Removed unnecessary media types and added recommendations for
 their use in M2M (#76).

 o Response codes changed to base 32 coding, new Y.XX naming (#77).

 o References updated as per AD review (#79).

 o IANA section completed (#80).

 o Proxy-Uri option added to diambiguate between proxy and non-proxy
 requests (#82).

 o Added text on critical options in cached states (#83).

 o HTTP mapping sections improved (#88).

 o Added text on reverse proxies (#72).

 o Some security text on multicast added (#54).

 o Trust model text added to introduction (#58, #60).

 o AES-CCM vs. AES-CCB text added (#55).

 o Text added about device capabilities (#59).

 o DTLS section improvements (#87).

Shelby, et al. Expires September 15, 2011 [Page 77]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o Caching semantics aligned with RFC2616 (#78).

 o Uri-Path option split into multiple path segments.

 o MAX_RETRANSMIT changed to 4 to adjust for RESPONSE_TIME = 2.

 Changes from ietf-02 to ietf-03:

 o Token Option and related use in asynchronous requests added (#25).

 o CoAP specific error codes added (#26).

 o Erroring out on unknown critical options changed to a MUST (#27).

 o Uri-Query option added.

 o Terminology and definitions of URIs improved.

 o Security section completed (#22).

 Changes from ietf-01 to ietf-02:

 o Sending an error on a critical option clarified (#18).

 o Clarification on behavior of PUT and idempotent operations (#19).

 o Use of Uri-Authority clarified along with server processing rules;
 Uri-Scheme option removed (#20, #23).

 o Resource discovery section removed to a separate CoRE Link Format
 draft (#21).

 o Initial security section outline added.

 Changes from ietf-00 to ietf-01:

 o New cleaner transaction message model and header (#5).

 o Removed subscription while being designed (#1).

 o Section 2 re-written (#3).

 o Text added about use of short URIs (#4).

 o Improved header option scheme (#5, #14).

 o Date option removed whiled being designed (#6).

https://datatracker.ietf.org/doc/html/rfc2616

Shelby, et al. Expires September 15, 2011 [Page 78]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o New text for CoAP default port (#7).

 o Completed proxying section (#8).

 o Completed resource discovery section (#9).

 o Completed HTTP mapping section (#10).

 o Several new examples added (#11).

 o URI split into 3 options (#12).

 o MIME type defined for link-format (#13, #16).

 o New text on maximum message size (#15).

 o Location Option added.

 Changes from shelby-01 to ietf-00:

 o Removed the TCP binding section, left open for the future.

 o Fixed a bug in the example.

 o Marked current Sub/Notify as (Experimental) while under WG
 discussion.

 o Fixed maximum datagram size to 1280 for both IPv4 and IPv6 (for
 CoAP-CoAP proxying to work).

 o Temporarily removed the Magic Byte header as TCP is no longer
 included as a binding.

 o Removed the Uri-code Option as different URI encoding schemes are
 being discussed.

 o Changed the rel= field to desc= for resource discovery.

 o Changed the maximum message size to 1024 bytes to allow for IP/UDP
 headers.

 o Made the URI slash optimization and method impotence MUSTs

 o Minor editing and bug fixing.

 Changes from shelby-00 to shelby-01:

Shelby, et al. Expires September 15, 2011 [Page 79]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 o Unified the message header and added a notify message type.

 o Renamed methods with HTTP names and removed the NOTIFY method.

 o Added a number of options field to the header.

 o Combines the Option Type and Length into an 8-bit field.

 o Added the magic byte header.

 o Added new ETag option.

 o Added new Date option.

 o Added new Subscription option.

 o Completed the HTTP Code - CoAP Code mapping table appendix.

 o Completed the Content-type Identifier appendix and tables.

 o Added more simplifications for URI support.

 o Initial subscription and discovery sections.

 o A Flag requirements simplified.

Authors' Addresses

 Zach Shelby
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 Finland

 Phone: +358407796297
 Email: zach@sensinode.com

Shelby, et al. Expires September 15, 2011 [Page 80]

Internet-Draft Constrained Application Protocol (CoAP) March 2011

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Fax: +49-421-218-7000
 Email: hartke@tzi.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Fax: +49-421-218-7000
 Email: cabo@tzi.org

 Brian Frank
 SkyFoundry
 Richmond, VA
 USA

 Phone:
 Email: brian@skyfoundry.com

Shelby, et al. Expires September 15, 2011 [Page 81]

