
Network Working Group M. Koster
Internet-Draft SmartThings
Intended status: Standards Track A. Keranen
Expires: April 2, 2020 J. Jimenez
 Ericsson
 September 30, 2019

Publish-Subscribe Broker for the Constrained Application Protocol (CoAP)
draft-ietf-core-coap-pubsub-09

Abstract

 The Constrained Application Protocol (CoAP), and related extensions
 are intended to support machine-to-machine communication in systems
 where one or more nodes are resource constrained, in particular for
 low power wireless sensor networks. This document defines a publish-
 subscribe Broker for CoAP that extends the capabilities of CoAP for
 supporting nodes with long breaks in connectivity and/or up-time.

 There is work in progress to resolve some of the transfer layer
 issues by using a more RESTful approach.

 Please see https://github.com/core-wg/pubsub/blob/master/proposal.txt

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Koster, et al. Expires April 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://github.com/core-wg/pubsub/blob/master/proposal.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Architecture . 4
3.1. CoAP Pub/sub Architecture 4
3.2. CoAP Pub/sub Broker 5
3.3. CoAP Pub/sub Client 5
3.4. CoAP Pub/sub Topic 5
3.5. Brokerless Pub/sub 6

4. CoAP Pub/sub REST API . 7
4.1. DISCOVERY . 7
4.2. CREATE . 9
4.3. PUBLISH . 11
4.4. SUBSCRIBE . 14
4.5. UNSUBSCRIBE . 16
4.6. READ . 17
4.7. REMOVE . 19

5. CoAP Pub/sub Operation with Resource Directory 20
6. Sleep-Wake Operation . 21
7. Simple Flow Control . 21
8. Security Considerations 21
9. IANA Considerations . 23
9.1. Resource Type value 'core.ps' 23
9.2. Resource Type value 'core.ps.discover' 23

10. Acknowledgements . 23
11. References . 23
11.1. Normative References 23
11.2. Informative References 24

 Authors' Addresses . 25

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] supports
 machine-to-machine communication across networks of constrained
 devices. CoAP uses a request/response model where clients make
 requests to servers in order to request actions on resources.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7252

Koster, et al. Expires April 2, 2020 [Page 2]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Depending on the situation the same device may act either as a
 server, a client, or both.

 One important class of constrained devices includes devices that are
 intended to run for years from a small battery, or by scavenging
 energy from their environment. These devices have limited
 reachability because they spend most of their time in a sleeping
 state with no network connectivity. Devices may also have limited
 reachability due to certain middle-boxes, such as Network Address
 Translators (NATs) or firewalls. Such middle-boxes often prevent
 connecting to a device from the Internet unless the connection was
 initiated by the device.

 For some applications the client/server and request/response
 communication model is not optimal but publish-subscribe
 communication with potentially many senders and/or receivers and
 communication via topics rather than directly with endpoints may fit
 better.

 This document specifies simple extensions to CoAP for enabling
 publish-subscribe communication using a Broker node that enables
 store-and-forward messaging between two or more nodes. This model
 facilitates communication of nodes with limited reachability, enables
 simple many-to-many communication, and eases integration with other
 publish-subscribe systems.

2. Terminology

 {::boilerplate bcp14}

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988] and [RFC6690]. Readers
 should also be familiar with the terms and concepts discussed in
 [RFC7252] and [I-D.ietf-core-resource-directory]. The URI template
 format [RFC6570] is used to describe the REST API defined in this
 specification.

 This specification makes use of the following additional terminology:

 Publish-Subscribe (pub/sub): A messaging paradigm where messages are
 published to a Broker and potential receivers can subscribe to the
 Broker to receive messages. The publishers do not (need to) know
 where the message will be eventually sent: the publications and
 subscriptions are matched by a Broker and publications are
 delivered by the Broker to subscribed receivers.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6570

Koster, et al. Expires April 2, 2020 [Page 3]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 CoAP pub/sub service: A group of REST resources, as defined in this
 document, which together implement the required features of this
 specification.

 CoAP pub/sub Broker: A server node capable of receiving messages
 (publications) from and sending messages to other nodes, and able
 to match subscriptions and publications in order to route messages
 to the right destinations. The Broker can also temporarily store
 publications to satisfy future subscriptions and pending
 notifications.

 CoAP pub/sub Client: A CoAP client which is capable of publish or
 subscribe operations as defined in this specification.

 Topic: A unique identifier for a particular item being published
 and/or subscribed to. A Broker uses the topics to match
 subscriptions to publications. A reference to a Topic on a Broker
 is a valid CoAP URI as defined in [RFC7252]

3. Architecture

3.1. CoAP Pub/sub Architecture

 Figure 1 shows the architecture of a CoAP pub/sub service. CoAP pub/
 sub Clients interact with a CoAP pub/sub Broker through the CoAP pub/
 sub REST API which is hosted by the Broker. State information is
 updated between the Clients and the Broker. The CoAP pub/sub Broker
 performs a store-and-forward of state update representations between
 certain CoAP pub/sub Clients. Clients Subscribe to topics upon which
 representations are Published by other Clients, which are forwarded
 by the Broker to the subscribing clients. A CoAP pub/sub Broker may
 be used as a REST resource proxy, retaining the last published
 representation to supply in response to Read requests from Clients.

https://datatracker.ietf.org/doc/html/rfc7252

Koster, et al. Expires April 2, 2020 [Page 4]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Clients pub/sub Broker
 +-------+ |
 | CoAP | |
 |pub/sub|---------|------+
 |Client | | | +-------+
 +-------+ | +----| CoAP |
 | |pub/sub|
 +-------+ | +----|Broker |
 | CoAP | | | +-------+
 |pub/sub|---------|------+
 |Client | |
 +-------+ |

 Figure 1: CoAP pub/sub Architecture

3.2. CoAP Pub/sub Broker

 A CoAP pub/sub Broker is a CoAP Server that exposes a REST API for
 clients to use to initiate publish-subscribe interactions. Avoiding
 the need for direct reachability between clients, the Broker only
 needs to be reachable from all clients. The Broker also needs to
 have sufficient resources (storage, bandwidth, etc.) to host CoAP
 resource services, and potentially buffer messages, on behalf of the
 clients.

3.3. CoAP Pub/sub Client

 A CoAP pub/sub Client interacts with a CoAP pub/sub Broker using the
 CoAP pub/sub REST API defined in this document. Clients initiate
 interactions with a CoAP pub/sub Broker. A data source (e.g., sensor
 clients) can publish state updates to the Broker and data sinks
 (e.g., actuator clients) can read from or subscribe to state updates
 from the Broker. Application clients can make use of both publish
 and subscribe in order to exchange state updates with data sources
 and data sinks.

3.4. CoAP Pub/sub Topic

 The clients and Broker use topics to identify a particular resource
 or object in a publish-subscribe system. Topics are conventionally
 formed as a hierarchy, e.g. "/sensors/weather/barometer/pressure" or
 "/EP-33543/sen/3303/0/5700". The topics are hosted by a Broker and
 all the clients using the Broker share the same namespace for topics.

 Every CoAP pub/sub topic has an associated link, consisting of a
 reference path on the Broker using URI path [RFC3986] construction
 and link attributes [RFC6690]. Every topic is associated with zero

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6690

Koster, et al. Expires April 2, 2020 [Page 5]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 or more stored representations and a content-format specified in the
 link. A CoAP pub/sub topic value may alternatively consist of a
 collection of one or more sub-topics, consisting of links to the sub-
 topic URIs and indicated by a link-format content-format. Sub-topics
 are also topics and may have their own sub-topics, forming a tree
 structure of unique paths that is implemented using URIs. The full
 URI of a topic includes a scheme and authority for the Broker, for
 example "coaps://192.0.2.13:5684/EP-33543/sen/3303/0/5700".

 A Topic may have a lifetime defined by using the CoAP Max-Age option
 on topic creation, or on publish operations to the topic. The
 lifetime is refreshed each time a representation is published to the
 topic. If the lifetime expires, the topic is removed from discovery
 responses, returns errors on subscription, and any outstanding
 subscriptions are cancelled.

3.5. Brokerless Pub/sub

 In some use cases, it is desireable to use pub/sub semantics for
 peer-to-peer communication, but it is not feasible or desireable to
 include a separate node on the network to serve as a Broker. In
 other use cases, it is desireable to enable one-way-only
 communication, such as sensors pushing updates to a service.

 Figure 2 shows an arrangement for using CoAP pub/sub in a
 "Brokerless" configuration between peer nodes. Nodes in a Brokerless
 system may act as both Broker and client. A node that supports
 Broker functionality may be pre-configured with topics that expose
 services and resources. Brokerless peer nodes can be mixed with
 client and Broker nodes in a system with full interoperability.

 Peer pub/sub Peer
 +-------+ | +-------+
 | CoAP | | | CoAP |
 |pub/sub|---------|---------|pub/sub|
 |Client | | |Broker |
 +-------+ | +-------+
 | CoAP | | | CoAP |
 |pub/sub|---------|---------|pub/sub|
 |Broker | | |Client |
 +-------+ | +-------+

 Figure 2: Brokerless pub/sub

Koster, et al. Expires April 2, 2020 [Page 6]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

4. CoAP Pub/sub REST API

 This section defines the REST API exposed by a CoAP pub/sub Broker to
 pub/sub Clients. The examples throughout this section assume the use
 of CoAP [RFC7252]. A CoAP pub/sub Broker implementing this
 specification SHOULD support the DISCOVERY, CREATE, PUBLISH,
 SUBSCRIBE, UNSUBSCRIBE, READ, and REMOVE operations defined in this
 section. Optimized implementations MAY support a subset of the
 operations as required by particular constrained use cases.

4.1. DISCOVERY

 CoAP pub/sub Clients discover CoAP pub/sub Brokers by using CoAP
 Simple Discovery or through a Resource Directory (RD)
 [I-D.ietf-core-resource-directory]. A CoAP pub/sub Broker SHOULD
 indicate its presence and availability on a network by exposing a
 link to the entry point of its pub/sub API at its .well-known/core
 location [RFC6690]. A CoAP pub/sub Broker MAY register its pub/sub
 REST API entry point with a Resource Directory. Figure 3 shows an
 example of a client discovering a local pub/sub API using CoAP Simple
 Discovery. A Broker wishing to advertise the CoAP pub/sub API for
 Simple Discovery or through a Resource Directory MUST use the link
 relation rt=core.ps. A Broker MAY advertise its supported content
 formats and other attributes in the link to its pub/sub API.

 A CoAP pub/sub Broker MAY offer a topic discovery entry point to
 enable Clients to find topics of interest, either by topic name or by
 link attributes which may be registered when the topic is created.
 Figure 4 shows an example of a client looking for a topic with a
 resource type (rt) of "temperature" using Discover. The client then
 receives the URI of the resource and its content-format. A pub/sub
 Broker wishing to advertise topic discovery MUST use the relation
 rt=core.ps.discover in the link.

 A CoAP pub/sub Broker MAY provide topic discovery functionality
 through the .well-known/core resource. Links to topics may be
 exposed at .well-known/core in addition to links to the pub/sub API.
 Figure 5 shows an example of topic discovery through .well-known/
 core.

 Topics in the broker may be created in hierarchies (see Section 4.2)
 with parent topics having sub-topics. For a discovery the broker may
 choose to not expose the sub-topics in order to limit amount of topic
 links sent in a discovery response. The client can then perform
 discovery for the parent topics it wants to discover the sub-topics.

 The DISCOVER interface is specified as follows:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6690

Koster, et al. Expires April 2, 2020 [Page 7]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Interaction: Client -> Broker

 Method: GET

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 Content-Format: application/link-format

 The following response codes are defined for the DISCOVER operation:

 Success: 2.05 "Content" with an application/link-format payload
 containing one or more matching entries for the Broker resource.
 A pub/sub Broker SHOULD use the value "/ps/" for the base URI of
 the pub/sub API wherever possible.

 Failure: 4.04 "Not Found" is returned in case no matching entry is
 found for a unicast request.

 Failure: 4.00 "Bad Request" is returned in case of a malformed
 request for a unicast request.

 Failure: No error response to a multicast request.

 Client Broker
 | |
 | ------ GET /.well-known/core?rt=core.ps ---->>|
 | -- Content-Format: application/link-format ---|
 | |
 | <<--- 2.05 Content |
 | </ps/>;rt=core.ps;rt=core.ps.discover;ct=40 --|
 | |

 Figure 3: Example of DISCOVER pub/sub function

https://datatracker.ietf.org/doc/html/rfc6690#section-4.1

Koster, et al. Expires April 2, 2020 [Page 8]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Client Broker
 | |
 | ---------- GET /ps/?rt="temperature" ------->>|
 | Content-Format: application/link-format |
 | |
 | <<-- 2.05 Content |
 | </ps/currentTemp>;rt="temperature";ct=50 ---|
 | |

 Figure 4: Example of DISCOVER topic

 Client Broker
 | |
 | -------- GET /.well-known/core?ct=50 ------->>|
 | Content-Format: application/link-format |
 | |
 | <<-- 2.05 Content |
 | </ps/currentTemp>;rt="temperature";ct=50 ---|
 | |

 Figure 5: Example of DISCOVER topic

4.2. CREATE

 A CoAP pub/sub broker SHOULD allow Clients to create new topics on
 the broker using CREATE. Some exceptions are for fixed brokerless
 devices and pre-configured brokers in dedicated installations. A
 client wishing to create a topic MUST use a CoAP POST to the pub/sub
 API with a payload indicating the desired topic. The topic
 specification sent in the payload MUST use a supported serialization
 of the CoRE link format [RFC6690]. The target of the link MUST be a
 URI formatted string. The client MUST indicate the desired content
 format for publishes to the topic by using the ct (Content Format)
 link attribute in the link-format payload. Additional link target
 attributes and relation values MAY be included in the topic
 specification link when a topic is created.

 The client MAY indicate the lifetime of the topic by including the
 Max-Age option in the CREATE request.

 Topic hierarchies can be created by creating parent topics. A parent
 topic is created with a POST using ct (Content Format) link attribute
 value which describes a supported serialization of the CoRE link
 format [RFC6690], such as application/link-format (ct=40) or its JSON
 or CBOR serializations. If a topic is created which describes a link

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690

Koster, et al. Expires April 2, 2020 [Page 9]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 serialization, that topic may then have sub-topics created under it
 as shown in Figure 7.

 Ony one level in the topic hierarchy may be created as a result of a
 CREATE operation, unless create on PUBLISH is supported (see

Section 4.3). The topic string used in the link target MUST NOT
 contain the "/" character.

 A topic creator MUST include exactly one content format link
 attribute value (ct) in the create payload. If the content format
 option is not included or if the option is repeated, the Broker MUST
 reject the operation with an error code of "4.00 Bad Request".

 Only one topic may be created per request. If there is more than one
 link included in a CREATE request, the Broker MUST reject the
 operation with an error code of "4.00 Bad Request".

 A Broker MUST return a response code of "2.01 Created" if the topic
 is created and MUST return the URI path of the created topic via
 Location-Path options. If a new topic can not be created, the Broker
 MUST return the appropriate 4.xx response code indicating the reason
 for failure.

 A Broker SHOULD remove topics if the Max-Age of the topic is exceeded
 without any publishes to the topic. A Broker SHOULD retain a topic
 indefinitely if the Max-Age option is elided or is set to zero upon
 topic creation. The lifetime of a topic MUST be refreshed upon
 create operations with a target of an existing topic.

 A topic creator SHOULD PUBLISH an initial value to a newly-created
 Topic in order to enable responses to READ and SUBSCRIBE requests
 that may be submitted after the topic is discoverable.

 The CREATE interface is specified as follows:

 Interaction: Client -> Broker

 Method: POST

 URI Template: {+ps}/{+topic}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 Content-Format: application/link-format

Koster, et al. Expires April 2, 2020 [Page 10]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Payload: The desired topic to CREATE

 The following response codes are defined for the CREATE operation:

 Success: 2.01 "Created". Successful Creation of the topic

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Figure 6 shows an example of a topic called "topic1" being
 successfully created.

 Client Broker
 | |
 | ---------- POST /ps/ "<topic1>;ct=50" ------->|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/topic1 |
 | |

 Figure 6: Example of CREATE topic

 Client Broker
 | |
 | ----- POST /ps/ "<parent-topic>;ct=40" ------>|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/parent-topic/ |
 | |
 |-- POST /ps/parent-topic/ "<subtopic>;ct=50" ->|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/parent-topic/subtopic |
 | |
 | |

 Figure 7: Example of CREATE of topic hierarchy

4.3. PUBLISH

 A CoAP pub/sub Broker MAY allow clients to PUBLISH to topics on the
 Broker. A client MAY use the PUT or the POST method to publish state
 updates to the CoAP pub/sub Broker. A client MUST use the content
 format specified upon creation of a given topic to publish updates to
 that topic. The Broker MUST reject publish operations which do not

Koster, et al. Expires April 2, 2020 [Page 11]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 use the specified content format. A CoAP client publishing on a
 topic MAY indicate the maximum lifetime of the value by including the
 Max-Age option in the publish request. The Broker MUST return a
 response code of "2.04 Changed" if the publish is accepted. A Broker
 MAY return a "4.04 Not Found" if the topic does not exist. A Broker
 MAY return "4.29 Too Many Requests" if simple flow control as
 described in Section 7 is implemented.

 A Broker MUST accept PUBLISH operations using the PUT method.
 PUBLISH operations using the PUT method replace any stored
 representation associated with the topic, with the supplied
 representation. A Broker MAY reject, or delay responses to, PUT
 requests to a topic while pending resolution of notifications to
 subscribers from previous PUT requests.

 Create on PUBLISH: A Broker MAY accept PUBLISH operations to new
 topics using the PUT method. If a Broker accepts a PUBLISH using PUT
 to a topic that does not exist, the Broker MUST create the topic
 using the information in the PUT operation. The Broker MUST create a
 topic with the URI-Path of the request, including all of the sub-
 topics necessary, and create a topic link with the ct attribute set
 to the content-format value from the header of the PUT request. If
 topic is created, the Broker MUST return the response "2.01 Created"
 with the URI of the created topic, including all of the created path
 segments, returned via the Location-Path option.

 Figure 9 shows an example of a topic being created on first PUBLISH.

 A Broker MAY accept PUBLISH operations using the POST method. If a
 Broker accepts PUBLISH using POST it shall respond with the 2.04
 Changed status code. If an attempt is made to PUBLISH using POST to
 a topic that does not exist, the Broker SHALL return a response
 status indicating resource not found, such as HTTP 404 or CoAP 4.04.

 A Broker MAY perform garbage collection of stored representations
 which have been delivered to all subscribers or which have timed out.
 A Broker MAY retain at least one most recently published
 representation to return in response to SUBSCRIBE and READ requests.

 A Broker MUST make a best-effort attempt to notify all clients
 subscribed on a particular topic each time it receives a publish on
 that topic. An example is shown in Figure 10.

 If a client publishes to a Broker without the Max-Age option, the
 Broker MUST refresh the topic lifetime with the most recently set
 Max-Age value, and the Broker MUST include the most recently set Max-
 Age value in the Max-Age option of all notifications.

Koster, et al. Expires April 2, 2020 [Page 12]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 If a client publishes to a Broker with the Max-Age option, the Broker
 MUST include the same value for the Max-Age option in all
 notifications.

 A Broker MUST use CoAP Notification as described in [RFC7641] to
 notify subscribed clients.

 The PUBLISH operation is specified as follows:

 Interaction: Client -> Broker

 Method: PUT, POST

 URI Template: {+ps}/{+topic}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 Content-Format: Any valid CoAP content format

 Payload: Representation of the topic value (CoAP resource state
 representation) in the indicated content format

 The following response codes are defined for the PUBLISH operation:

 Success: 2.01 "Created". Successful publish, topic is created

 Success: 2.04 "Changed". Successful publish, topic is updated

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Failure: 4.29 "Too Many Requests". The client should slow down the
 rate of publish messages for this topic (see Section 7).

 Figure 8 shows an example of a new value being successfully published
 to the topic "topic1". See Figure 10 for an example of a Broker
 forwarding a message from a publishing client to a subscribed client.

https://datatracker.ietf.org/doc/html/rfc7641

Koster, et al. Expires April 2, 2020 [Page 13]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Client Broker
 | |
 | ---------- PUT /ps/topic1 "1033.3" --------> |
 | |
 | |
 | <--------------- 2.04 Changed---------------- |
 | |

 Figure 8: Example of PUBLISH

 Client Broker
 | |
 | -------- PUT /ps/exa/mpl/e "1033.3" -------> |
 | |
 | |
 | <--------------- 2.01 Created---------------- |
 | Location: /ps/exa/mpl/e |
 | |

 Figure 9: Example of CREATE on PUBLISH

4.4. SUBSCRIBE

 A CoAP pub/sub Broker MAY allow Clients to subscribe to topics on the
 Broker using CoAP Observe as described in [RFC7641]. A CoAP pub/sub
 Client wishing to Subscribe to a topic on a Broker MUST use a CoAP
 GET with the Observe option set to 0 (zero). The Broker MAY add the
 client to a list of observers. The Broker MUST return a response
 code of "2.05 Content" along with the most recently published value
 if the topic contains a valid value and the Broker can supply the
 requested content format. The Broker MUST reject Subscribe requests
 on a topic if the content format of the request is not the content
 format the topic was created with.

 If the topic was published with the Max-Age option, the Broker MUST
 set the Max-Age option in the valid response to the amount of time
 remaining for the value to be valid since the last publish operation
 on that topic.

 The Broker MUST return a response code "4.04 Not Found" if the topic
 does not exist or has been removed, or if Max-Age of a previously
 published representation has expired.

 If a Topic has been created but not yet published to when a SUBSCRIBE
 to the topic is received, the Broker MAY acknowledge and queue the

https://datatracker.ietf.org/doc/html/rfc7641

Koster, et al. Expires April 2, 2020 [Page 14]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 pending SUBSCRIBE and defer the response until an initial PUBLISH
 occurs.

 The Broker MUST return a response code "4.15 Unsupported Content
 Format" if it can not return the requested content format. If a
 Broker is unable to accept a new Subscription on a topic, it SHOULD
 return the appropriate response code without the Observe option as
 per [RFC7641] Section 4.1.

 There is no explicit maximum lifetime of a Subscription, thus a
 Broker may remove subscribers at any time. The Broker, upon removing
 a Subscriber, will transmit the appropriate response code without the
 Observe option, as per [RFC7641] Section 4.2, to the removed
 Subscriber.

 The SUBSCRIBE operation is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 Options: Observe:0

 URI Template: {+ps}/{+topic}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 The following response codes are defined for the SUBSCRIBE operation:

 Success: 2.05 "Content". Successful subscribe, current value
 included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Failure: 4.15 "Unsupported Content Format". Unsupported content
 format.

 Figure 10 shows an example of Client2 subscribing to "topic1" and
 receiving a response from the Broker, with a subsequent notification.
 The subscribe response from the Broker uses the last stored value

https://datatracker.ietf.org/doc/html/rfc7641#section-4.1
https://datatracker.ietf.org/doc/html/rfc7641#section-4.2

Koster, et al. Expires April 2, 2020 [Page 15]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 associated with the topic1. The notification from the Broker is sent
 in response to the publish received from Client1.

 Client1 Client2 Broker
 | | Subscribe |
 | | ----- GET /ps/topic1 Observe:0 Token:XX ----> |
 | | |
 | | <---------- 2.05 Content Observe:10---------- |
 | | |
 | | |
 | | Publish |
 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |
 | | Notify |
 | | <---------- 2.05 Content Observe:11 --------- |
 | | |

 Figure 10: Example of SUBSCRIBE

4.5. UNSUBSCRIBE

 If a CoAP pub/sub Broker allows clients to SUBSCRIBE to topics on the
 Broker, it MUST allow Clients to unsubscribe from topics on the
 Broker using the CoAP Cancel Observation operation. A CoAP pub/sub
 Client wishing to unsubscribe to a topic on a Broker MUST either use
 CoAP GET with Observe using an Observe parameter of 1 or send a CoAP
 Reset message in response to a publish, as per [RFC7641].

 The UNSUBSCRIBE operation is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 Options: Observe:1

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc6690#section-4.1

Koster, et al. Expires April 2, 2020 [Page 16]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 The following response codes are defined for the UNSUBSCRIBE
 operation:

 Success: 2.05 "Content". Successful unsubscribe, current value
 included

 Success: 2.07 "No Content". Successful unsubscribe, value not
 included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Figure 11 shows an example of a client unsubscribe using the
 Observe=1 cancellation method.

 Client Broker
 | |
 | ----- GET /ps/topic1 Observe:1 Token:XX ----> |
 | |
 | <------------- 2.05 Content ----------------- |
 | |

 Figure 11: Example of UNSUBSCRIBE

4.6. READ

 A CoAP pub/sub Broker MAY accept Read requests on a topic using the
 the CoAP GET method if the content format of the request matches the
 content format the topic was created with. The Broker MUST return a
 response code of "2.05 Content" along with the most recently
 published value if the topic contains a valid value and the Broker
 can supply the requested content format.

 If the topic was published with the Max-Age option, the Broker MUST
 set the Max-Age option in the valid response to the amount of time
 remaining for the value to be valid since the last publish operation
 on that topic.

 The Broker MUST return a response code "4.04 Not Found" if the topic
 does not exist or has been removed, or if Max-Age of a previously
 published representation has expired.

Koster, et al. Expires April 2, 2020 [Page 17]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 If a Topic has been created but not yet published to when a READ to
 the topic is received, the Broker MAY acknowledge and queue the
 pending READ, and defer the response until an initial PUBLISH occurs.

 The Broker MUST return a response code "4.15 Unsupported Content
 Format" if the Broker can not return the requested content format.

 The READ operation is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 URI Template: {+ps}/{+topic}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 The following response codes are defined for the READ operation:

 Success: 2.05 "Content". Successful READ, current value included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Failure: 4.15 "Unsupported Content Format". Unsupported content-
 format.

 Figure 12 shows an example of a successful READ from topic1, followed
 by a Publish on the topic, followed at some time later by a read of
 the updated value from the recent Publish.

Koster, et al. Expires April 2, 2020 [Page 18]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Client1 Client2 Broker
 | | Read |
 | | --------------- GET /ps/topic1 -------------> |
 | | |
 | | <---------- 2.05 Content "1007.1"------------ |
 | | |
 | | |
 | | Publish |
 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |
 | | |
 | | |
 | | Read |
 | | --------------- GET /ps/topic1 -------------> |
 | | |
 | | <----------- 2.05 Content "1033.3" ---------- |
 | | |

 Figure 12: Example of READ

4.7. REMOVE

 A CoAP pub/sub Broker MAY allow clients to remove topics from the
 Broker using the CoAP Delete method on the URI of the topic. The
 CoAP pub/sub Broker MUST return "2.02 Deleted" if the removal is
 successful. The Broker MUST return the appropriate 4.xx response
 code indicating the reason for failure if the topic can not be
 removed.

 When a topic is removed for any reason, the Broker SHOULD remove all
 of the observers from the list of observers and return a final 4.04
 "Not Found" response as per [RFC7641] Section 3.2. If a topic which
 has sub-topics is removed, then all of its sub-topics MUST be
 recursively removed.

 The REMOVE operation is specified as follows:

 Interaction: Client -> Broker

 Method: DELETE

 URI Template: {+ps}/{+topic}

 URI Template Variables: ps := Pub/sub REST API entry point
 (optional). The entry point of the pub/sub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

https://datatracker.ietf.org/doc/html/rfc7641#section-3.2

Koster, et al. Expires April 2, 2020 [Page 19]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Content-Format: None

 Response Payload: None

 The following response codes are defined for the REMOVE operation:

 Success: 2.02 "Deleted". Successful remove

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Figure 13 shows a successful remove of topic1.

 Client Broker
 | |
 | ------------- DELETE /ps/topic1 ------------> |
 | |
 | |
 | <-------------- 2.02 Deleted ---------------- |
 | |

 Figure 13: Example of REMOVE

5. CoAP Pub/sub Operation with Resource Directory

 A CoAP pub/sub Broker may register the base URI, which is the REST
 API entry point for a pub/sub service, with a Resource Directory. A
 pub/sub Client may use an RD to discover a pub/sub Broker.

 A CoAP pub/sub Client may register links [RFC6690] with a Resource
 Directory to enable discovery of created pub/sub topics. A pub/sub
 Client may use an RD to discover pub/sub Topics. A client which
 registers pub/sub Topics with an RD MUST use the context relation
 (con) [I-D.ietf-core-resource-directory] to indicate that the context
 of the registered links is the pub/sub Broker.

 A CoAP pub/sub Broker may alternatively register links to its topics
 to a Resource Directory by triggering the RD to retrieve it's links
 from .well-known/core. In order to use this method, the links must
 first be exposed in the .well-known/core of the pub/sub Broker. See

Section 4.1 in this document.

 The pub/sub Broker triggers the RD to retrieve its links by sending a
 POST with an empty payload to the .well-known/core of the Resource

https://datatracker.ietf.org/doc/html/rfc6690

Koster, et al. Expires April 2, 2020 [Page 20]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 Directory. The RD server will then retrieve the links from the
 .well-known/core of the pub/sub Broker and incorporate them into the
 Resource Directory. See [I-D.ietf-core-resource-directory] for
 further details.

6. Sleep-Wake Operation

 CoAP pub/sub provides a way for client nodes to sleep between
 operations, conserving energy during idle periods. This is made
 possible by shifting the server role to the Broker, allowing the
 Broker to be always-on and respond to requests from other clients
 while a particular client is sleeping.

 For example, the Broker will retain the last state update received
 from a sleeping client, in order to supply the most recent state
 update to other clients in response to read and subscribe operations.

 Likewise, the Broker will retain the last state update received on
 the topic such that a sleeping client, upon waking, can perform a
 read operation to the Broker to update its own state from the most
 recent system state update.

7. Simple Flow Control

 Since the Broker node has to potentially send a large amount of
 notification messages for each publish message and it may be serving
 a large amount of subscribers and publishers simultaneously, the
 Broker may become overwhelmed if it receives many publish messages to
 popular topics in a short period of time.

 If the Broker is unable to serve a certain client that is sending
 publish messages too fast, the Broker SHOULD respond with Response
 Code 4.29, "Too Many Requests" [RFC8516] and set the Max-Age Option
 to indicate the number of seconds after which the client can retry.
 The Broker MAY stop creating notifications from the publish messages
 from this client and to this topic for the indicated time.

 If a client receives the 4.29 Response Code from the Broker for a
 publish message to a topic, it MUST NOT send new publish messages to
 the Broker on the same topic before the time indicated in Max-Age has
 passed.

8. Security Considerations

 CoAP pub/sub re-uses CoAP [RFC7252], CoRE Resource Directory
 [I-D.ietf-core-resource-directory], and Web Linking [RFC5988] and
 therefore the security considerations of those documents also apply
 to this specification. Additionally, a CoAP pub/sub Broker and the

https://datatracker.ietf.org/doc/html/rfc8516
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5988

Koster, et al. Expires April 2, 2020 [Page 21]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 clients SHOULD authenticate each other and enforce access control
 policies. A malicious client could subscribe to data it is not
 authorized to or mount a denial of service attack against the Broker
 by publishing a large number of resources. The authentication can be
 performed using the already standardized DTLS offered mechanisms,
 such as certificates. DTLS also allows communication security to be
 established to ensure integrity and confidentiality protection of the
 data exchanged between these relevant parties. Provisioning the
 necessary credentials, trust anchors and authorization policies is
 non-trivial and subject of ongoing work.

 The use of a CoAP pub/sub Broker introduces challenges for the use of
 end-to-end security between for example a client device on a sensor
 network and a client application running in a cloud-based server
 infrastructure since Brokers terminate the exchange. While running
 separate DTLS sessions from the client device to the Broker and from
 Broker to client application protects confidentially on those paths,
 the client device does not know whether the commands coming from the
 Broker are actually coming from the client application. Similarly, a
 client application requesting data does not know whether the data
 originated on the client device. For scenarios where end-to-end
 security is desirable the use of application layer security is
 unavoidable. Application layer security would then provide a
 guarantee to the client device that any request originated at the
 client application. Similarly, integrity protected sensor data from
 a client device will also provide guarantee to the client application
 that the data originated on the client device itself. The protected
 data can also be verified by the intermediate Broker ensuring that it
 stores/caches correct request/response and no malicious messages/
 requests are accepted. The Broker would still be able to perform
 aggregation of data/requests collected.

 Depending on the level of trust users and system designers place in
 the CoAP pub/sub Broker, the use of end-to-end object security is
 RECOMMENDED as described in [I-D.palombini-ace-coap-pubsub-profile].
 An example application that uses the CoAP pub/sub Broker and relies
 on end-to-end object security is described in [RFC8387]. When only
 end-to-end encryption is necessary and the CoAP Broker is trusted,
 Payload Only Protection (Mode:PAYL) could be used. The Publisher
 would wrap only the payload before sending it to the Broker and set
 the option Content-Format to application/smpayl. Upon receival, the
 Broker can read the unencrypted CoAP header to forward it to the
 subscribers.

https://datatracker.ietf.org/doc/html/rfc8387

Koster, et al. Expires April 2, 2020 [Page 22]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

9. IANA Considerations

 This document registers one attribute value in the Resource Type
 (rt=) registry established with [RFC6690] and appends to the
 definition of one CoAP Response Code in the CoRE Parameters Registry.

9.1. Resource Type value 'core.ps'

 o Attribute Value: core.ps

 o Description: Section 4 of [[This document]]

 o Reference: [[This document]]

 o Notes: None

9.2. Resource Type value 'core.ps.discover'

 o Attribute Value: core.ps.discover

 o Description: Section 4 of [[This document]]

 o Reference: [[This document]]

 o Notes: None

10. Acknowledgements

 The authors would like to thank Hannes Tschofenig, Zach Shelby, Mohit
 Sethi, Peter van der Stok, Tim Kellogg, Anders Eriksson, Goran
 Selander, Mikko Majanen, and Olaf Bergmann for their contributions
 and reviews.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986

Koster, et al. Expires April 2, 2020 [Page 23]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012, <https://www.rfc-

editor.org/info/rfc6570>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014, <https://www.rfc-

editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015, <https://www.rfc-

editor.org/info/rfc7641>.

 [RFC8516] Keranen, A., ""Too Many Requests" Response Code for the
 Constrained Application Protocol", RFC 8516,
 DOI 10.17487/RFC8516, January 2019, <https://www.rfc-

editor.org/info/rfc8516>.

11.2. Informative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-16 (work in
 progress), March 2019.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-

resource-directory-23 (work in progress), July 2019.

 [I-D.palombini-ace-coap-pubsub-profile]
 Palombini, F., "CoAP Pub-Sub Profile for Authentication
 and Authorization for Constrained Environments (ACE)",

draft-palombini-ace-coap-pubsub-profile-05 (work in
 progress), July 2019.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010, <https://www.rfc-

editor.org/info/rfc5988>.

https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc8516
https://www.rfc-editor.org/info/rfc8516
https://www.rfc-editor.org/info/rfc8516
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-23
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-23
https://datatracker.ietf.org/doc/html/draft-palombini-ace-coap-pubsub-profile-05
https://datatracker.ietf.org/doc/html/rfc5988
https://www.rfc-editor.org/info/rfc5988
https://www.rfc-editor.org/info/rfc5988

Koster, et al. Expires April 2, 2020 [Page 24]

Internet-Draft Publish-Subscribe Broker for CoAP September 2019

 [RFC8387] Sethi, M., Arkko, J., Keranen, A., and H. Back, "Practical
 Considerations and Implementation Experiences in Securing
 Smart Object Networks", RFC 8387, DOI 10.17487/RFC8387,
 May 2018, <https://www.rfc-editor.org/info/rfc8387>.

Authors' Addresses

 Michael Koster
 SmartThings

 Email: Michael.Koster@smartthings.com

 Ari Keranen
 Ericsson

 Email: ari.keranen@ericsson.com

 Jaime Jimenez
 Ericsson

 Email: jaime.jimenez@ericsson.com

https://datatracker.ietf.org/doc/html/rfc8387
https://www.rfc-editor.org/info/rfc8387

Koster, et al. Expires April 2, 2020 [Page 25]

