
Workgroup: Constrained RESTful Environments

Internet-Draft: draft-ietf-core-coap-pubsub-11

Published: 4 November 2022

Intended Status: Standards Track

Expires: 8 May 2023

Authors: M. Koster

SmartThings

A. Keranen

Ericsson

J. Jimenez

Ericsson

Publish-Subscribe Broker for the Constrained Application Protocol

(CoAP)

Abstract

The Constrained Application Protocol (CoAP), and related extensions

are intended to support machine-to-machine communication in systems

where one or more nodes are resource constrained, in particular for

low power wireless sensor networks. This document defines a publish-

subscribe Broker for CoAP that extends the capabilities of CoAP for

supporting nodes with long breaks in connectivity and/or up-time.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

github.com/jaimejim/draft-ietf-core-coap-pubsub.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 May 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://github.com/jaimejim/draft-ietf-core-coap-pubsub
https://github.com/jaimejim/draft-ietf-core-coap-pubsub
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Terminology

2. Architecture

2.1. CoAP Pub/sub Architecture

2.2. CoAP Pub/sub Broker

2.3. CoAP Pub/sub Client

2.4. CoAP Pub/sub Topic

2.5. Brokerless Pub/sub

3. CoAP Pub/sub REST API

3.1. DISCOVERY

3.2. CREATE

3.3. PUBLISH

3.4. SUBSCRIBE

3.5. UNSUBSCRIBE

3.6. READ

3.7. REMOVE

4. CoAP Pub/sub Operation with Resource Directory

5. Sleep-Wake Operation

6. Simple Flow Control

7. Security Considerations

8. IANA Considerations

8.1. Resource Type value 'core.ps'

8.2. Resource Type value 'core.ps.discover'

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] supports

machine-to-machine communication across networks of constrained

devices. CoAP uses a request/response model where clients make

requests to servers in order to request actions on resources.

Depending on the situation the same device may act either as a

server, a client, or both.

One important class of constrained devices includes devices that are

intended to run for years from a small battery, or by scavenging

energy from their environment. These devices have limited

reachability because they spend most of their time in a sleeping

state with no network connectivity. Devices may also have limited

reachability due to certain middle-boxes, such as Network Address

Translators (NATs) or firewalls. Such middle-boxes often prevent

connecting to a device from the Internet unless the connection was

initiated by the device.

For some applications the client/server and request/response

communication model is not optimal but publish-subscribe

communication with potentially many senders and/or receivers and

communication via topics rather than directly with endpoints may fit

better.

This document specifies simple extensions to CoAP for enabling

publish-subscribe communication using a Broker node that enables

store-and-forward messaging between two or more nodes. This model

facilitates communication of nodes with limited reachability,

enables simple many-to-many communication, and eases integration

with other publish-subscribe systems.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

This specification requires readers to be familiar with all the

terms and concepts that are discussed in [RFC5988] and [RFC6690].

Readers should also be familiar with the terms and concepts

discussed in [RFC7252] and [RFC9167]. The URI template format

[RFC6570] is used to describe the REST API defined in this

specification.

¶

¶

¶

¶

¶

¶

Publish-Subscribe (pub/sub):

CoAP pub/sub service:

CoAP pub/sub Broker:

CoAP pub/sub Client:

Topic:

This specification makes use of the following additional

terminology:

A messaging paradigm where messages

are published to a Broker and potential receivers can subscribe

to the Broker to receive messages. The publishers do not (need

to) know where the message will be eventually sent: the

publications and subscriptions are matched by a Broker and

publications are delivered by the Broker to subscribed receivers.

A group of REST resources, as defined in this

document, which together implement the required features of this

specification.

A server node capable of receiving messages

(publications) from and sending messages to other nodes, and able

to match subscriptions and publications in order to route

messages to the right destinations. The Broker can also

temporarily store publications to satisfy future subscriptions

and pending notifications.

A CoAP client which is capable of publish or

subscribe operations as defined in this specification.

A unique identifier for a particular item being published

and/or subscribed to. A Broker uses the topics to match

subscriptions to publications. A reference to a Topic on a Broker

is a valid CoAP URI as defined in [RFC7252]

2. Architecture

2.1. CoAP Pub/sub Architecture

Figure 1 shows the architecture of a CoAP pub/sub service. CoAP pub/

sub Clients interact with a CoAP pub/sub Broker through the CoAP

pub/sub REST API which is hosted by the Broker. State information is

updated between the Clients and the Broker. The CoAP pub/sub Broker

performs a store-and-forward of state update representations between

certain CoAP pub/sub Clients. Clients Subscribe to topics upon which

representations are Published by other Clients, which are forwarded

by the Broker to the subscribing clients. A CoAP pub/sub Broker may

be used as a REST resource proxy, retaining the last published

representation to supply in response to Read requests from Clients.

¶

¶

¶

¶

¶

¶

¶

Figure 1: CoAP pub/sub Architecture

2.2. CoAP Pub/sub Broker

A CoAP pub/sub Broker is a CoAP Server that exposes a REST API for

clients to use to initiate publish-subscribe interactions. Avoiding

the need for direct reachability between clients, the Broker only

needs to be reachable from all clients. The Broker also needs to

have sufficient resources (storage, bandwidth, etc.) to host CoAP

resource services, and potentially buffer messages, on behalf of the

clients.

2.3. CoAP Pub/sub Client

A CoAP pub/sub Client interacts with a CoAP pub/sub Broker using the

CoAP pub/sub REST API defined in this document. Clients initiate

interactions with a CoAP pub/sub Broker. A data source (e.g., sensor

clients) can publish state updates to the Broker and data sinks

(e.g., actuator clients) can read from or subscribe to state updates

from the Broker. Application clients can make use of both publish

and subscribe in order to exchange state updates with data sources

and data sinks.

2.4. CoAP Pub/sub Topic

The clients and Broker use topics to identify a particular resource

or object in a publish-subscribe system. Topics are conventionally

formed as a hierarchy, e.g. "/sensors/weather/barometer/pressure" or

"/EP-33543/sen/3303/0/5700". The topics are hosted by a Broker and

all the clients using the Broker share the same namespace for

topics.

Every CoAP pub/sub topic has an associated link, consisting of a

reference path on the Broker using URI path [RFC3986] construction

and link attributes [RFC6690]. Every topic is associated with zero

or more stored representations and a content-format specified in the

Clients pub/sub Broker

+-------+ |

| CoAP | |

|pub/sub|---------|------+

|Client | | | +-------+

+-------+ | +----| CoAP |

 | |pub/sub|

+-------+ | +----|Broker |

| CoAP | | | +-------+

|pub/sub|---------|------+

|Client | |

+-------+ |

¶

¶

¶

link. A CoAP pub/sub topic value may alternatively consist of a

collection of one or more sub-topics, consisting of links to the

sub-topic URIs and indicated by a link-format content-format. Sub-

topics are also topics and may have their own sub-topics, forming a

tree structure of unique paths that is implemented using URIs. The

full URI of a topic includes a scheme and authority for the Broker,

for example "coaps://192.0.2.13:5684/EP-33543/sen/3303/0/5700".

A Topic may have a lifetime defined by using the CoAP Max-Age option

on topic creation, or on publish operations to the topic. The

lifetime is refreshed each time a representation is published to the

topic. If the lifetime expires, the topic is removed from discovery

responses, returns errors on subscription, and any outstanding

subscriptions are cancelled.

2.5. Brokerless Pub/sub

In some use cases, it is desireable to use pub/sub semantics for

peer-to-peer communication, but it is not feasible or desireable to

include a separate node on the network to serve as a Broker. In

other use cases, it is desireable to enable one-way-only

communication, such as sensors pushing updates to a service.

Figure 2 shows an arrangement for using CoAP pub/sub in a

"Brokerless" configuration between peer nodes. Nodes in a Brokerless

system may act as both Broker and client. A node that supports

Broker functionality may be pre-configured with topics that expose

services and resources. Brokerless peer nodes can be mixed with

client and Broker nodes in a system with full interoperability.

Figure 2: Brokerless pub/sub

3. CoAP Pub/sub REST API

This section defines the REST API exposed by a CoAP pub/sub Broker

to pub/sub Clients. The examples throughout this section assume the

use of CoAP [RFC7252]. A CoAP pub/sub Broker implementing this

¶

¶

¶

¶

 Peer pub/sub Peer

+-------+ | +-------+

| CoAP | | | CoAP |

|pub/sub|---------|---------|pub/sub|

|Client | | |Broker |

+-------+ | +-------+

| CoAP | | | CoAP |

|pub/sub|---------|---------|pub/sub|

|Broker | | |Client |

+-------+ | +-------+

Interaction:

Method:

URI Template:

specification SHOULD support the DISCOVERY, CREATE, PUBLISH,

SUBSCRIBE, UNSUBSCRIBE, READ, and REMOVE operations defined in this

section. Optimized implementations MAY support a subset of the

operations as required by particular constrained use cases.

3.1. DISCOVERY

CoAP pub/sub Clients discover CoAP pub/sub Brokers by using CoAP

Simple Discovery or through a Resource Directory (RD) [RFC9167]. A

CoAP pub/sub Broker SHOULD indicate its presence and availability on

a network by exposing a link to the entry point of its pub/sub API

at its .well-known/core location [RFC6690]. A CoAP pub/sub Broker

MAY register its pub/sub REST API entry point with a Resource

Directory. Figure 3 shows an example of a client discovering a local

pub/sub API using CoAP Simple Discovery. A Broker wishing to

advertise the CoAP pub/sub API for Simple Discovery or through a

Resource Directory MUST use the link relation rt=core.ps. A Broker

MAY advertise its supported content formats and other attributes in

the link to its pub/sub API.

A CoAP pub/sub Broker MAY offer a topic discovery entry point to

enable Clients to find topics of interest, either by topic name or

by link attributes which may be registered when the topic is

created. Figure 4 shows an example of a client looking for a topic

with a resource type (rt) of "temperature" using Discover. The

client then receives the URI of the resource and its content-format.

A pub/sub Broker wishing to advertise topic discovery MUST use the

relation rt=core.ps.discover in the link.

A CoAP pub/sub Broker MAY provide topic discovery functionality

through the .well-known/core resource. Links to topics may be

exposed at .well-known/core in addition to links to the pub/sub API.

Figure 5 shows an example of topic discovery through .well-known/

core.

Topics in the broker may be created in hierarchies (see Section 3.2)

with parent topics having sub-topics. For a discovery the broker may

choose to not expose the sub-topics in order to limit amount of

topic links sent in a discovery response. The client can then

perform discovery for the parent topics it wants to discover the

sub-topics.

The DISCOVER interface is specified as follows:

Client -> Broker

GET

{+ps}/{+topic}{?q*}

¶

¶

¶

¶

¶

¶

¶

¶

¶

URI Template Variables:

Content-Format:

Success:

Failure:

Failure:

Failure:

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

q := Query Filter (optional). MAY contain a query filter list as

per [RFC6690] Section 4.1.

application/link-format

The following response codes are defined for the DISCOVER operation:

2.05 "Content" with an application/link-format payload

containing one or more matching entries for the Broker resource.

A pub/sub Broker SHOULD use the value "/ps/" for the base URI of

the pub/sub API wherever possible.

4.04 "Not Found" is returned in case no matching entry is

found for a unicast request.

4.00 "Bad Request" is returned in case of a malformed

request for a unicast request.

No error response to a multicast request.

Figure 3: Example of DISCOVER pub/sub function

¶

¶

¶

¶

¶

¶

¶

¶

¶

Client Broker

 | |

 | ------ GET /.well-known/core?rt=core.ps ---->>|

 | -- Content-Format: application/link-format ---|

 | |

 | <<--- 2.05 Content |

 | </ps/>;rt=core.ps;rt=core.ps.discover;ct=40 --|

 | |

Client Broker

 | |

 | ---------- GET /ps/?rt="temperature" ------->>|

 | Content-Format: application/link-format |

 | |

 | <<-- 2.05 Content |

 | </ps/currentTemp>;rt="temperature";ct=50 ---|

 | |

Figure 4: Example of DISCOVER topic

Figure 5: Example of DISCOVER topic

3.2. CREATE

A CoAP pub/sub broker SHOULD allow Clients to create new topics on

the broker using CREATE. Some exceptions are for fixed brokerless

devices and pre-configured brokers in dedicated installations. A

client wishing to create a topic MUST use a CoAP POST to the pub/sub

API with a payload indicating the desired topic. The topic

specification sent in the payload MUST use a supported serialization

of the CoRE link format [RFC6690]. The target of the link MUST be a

URI formatted string. The client MUST indicate the desired content

format for publishes to the topic by using the ct (Content Format)

link attribute in the link-format payload. Additional link target

attributes and relation values MAY be included in the topic

specification link when a topic is created.

The client MAY indicate the lifetime of the topic by including the

Max-Age option in the CREATE request.

Topic hierarchies can be created by creating parent topics. A parent

topic is created with a POST using ct (Content Format) link

attribute value which describes a supported serialization of the

CoRE link format [RFC6690], such as application/link-format (ct=40)

or its JSON or CBOR serializations. If a topic is created which

describes a link serialization, that topic may then have sub-topics

created under it as shown in Figure 7.

Ony one level in the topic hierarchy may be created as a result of a

CREATE operation, unless create on PUBLISH is supported (see

Section 3.3). The topic string used in the link target MUST NOT

contain the "/" character.

A topic creator MUST include exactly one content format link

attribute value (ct) in the create payload. If the content format

option is not included or if the option is repeated, the Broker MUST

reject the operation with an error code of "4.00 Bad Request".

Client Broker

 | |

 | -------- GET /.well-known/core?ct=50 ------->>|

 | Content-Format: application/link-format |

 | |

 | <<-- 2.05 Content |

 | </ps/currentTemp>;rt="temperature";ct=50 ---|

 | |

¶

¶

¶

¶

¶

Interaction:

Method:

URI Template:

URI Template Variables:

Content-Format:

Payload:

Success:

Failure:

Failure:

Only one topic may be created per request. If there is more than one

link included in a CREATE request, the Broker MUST reject the

operation with an error code of "4.00 Bad Request".

A Broker MUST return a response code of "2.01 Created" if the topic

is created and MUST return the URI path of the created topic via

Location-Path options. If a new topic can not be created, the Broker

MUST return the appropriate 4.xx response code indicating the reason

for failure.

A Broker SHOULD remove topics if the Max-Age of the topic is

exceeded without any publishes to the topic. A Broker SHOULD retain

a topic indefinitely if the Max-Age option is elided or is set to

zero upon topic creation. The lifetime of a topic MUST be refreshed

upon create operations with a target of an existing topic.

A topic creator SHOULD PUBLISH an initial value to a newly-created

Topic in order to enable responses to READ and SUBSCRIBE requests

that may be submitted after the topic is discoverable.

The CREATE interface is specified as follows:

Client -> Broker

POST

{+ps}/{+topic}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

application/link-format

The desired topic to CREATE

The following response codes are defined for the CREATE operation:

2.01 "Created". Successful Creation of the topic

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

Figure 6 shows an example of a topic called "topic1" being

successfully created.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 6: Example of CREATE topic

Figure 7: Example of CREATE of topic hierarchy

3.3. PUBLISH

A CoAP pub/sub Broker MAY allow clients to PUBLISH to topics on the

Broker. A client MAY use the PUT or the POST method to publish state

updates to the CoAP pub/sub Broker. A client MUST use the content

format specified upon creation of a given topic to publish updates

to that topic. The Broker MUST reject publish operations which do

not use the specified content format. A CoAP client publishing on a

topic MAY indicate the maximum lifetime of the value by including

the Max-Age option in the publish request. The Broker MUST return a

response code of "2.04 Changed" if the publish is accepted. A Broker

MAY return a "4.04 Not Found" if the topic does not exist. A Broker

MAY return "4.29 Too Many Requests" if simple flow control as

described in Section 6 is implemented.

A Broker MUST accept PUBLISH operations using the PUT method.

PUBLISH operations using the PUT method replace any stored

representation associated with the topic, with the supplied

representation. A Broker MAY reject, or delay responses to, PUT

requests to a topic while pending resolution of notifications to

subscribers from previous PUT requests.

Client Broker

 | |

 | ---------- POST /ps/ "<topic1>;ct=50" ------->|

 | |

 | <---------------- 2.01 Created ---------------|

 | Location: /ps/topic1 |

 | |

Client Broker

 | |

 | ----- POST /ps/ "<parent-topic>;ct=40" ------>|

 | |

 | <---------------- 2.01 Created ---------------|

 | Location: /ps/parent-topic/ |

 | |

 |-- POST /ps/parent-topic/ "<subtopic>;ct=50" ->|

 | |

 | <---------------- 2.01 Created ---------------|

 | Location: /ps/parent-topic/subtopic |

 | |

 | |

¶

¶

Create on PUBLISH: A Broker MAY accept PUBLISH operations to new

topics using the PUT method. If a Broker accepts a PUBLISH using PUT

to a topic that does not exist, the Broker MUST create the topic

using the information in the PUT operation. The Broker MUST create a

topic with the URI-Path of the request, including all of the sub-

topics necessary, and create a topic link with the ct attribute set

to the content-format value from the header of the PUT request. If

topic is created, the Broker MUST return the response "2.01 Created"

with the URI of the created topic, including all of the created path

segments, returned via the Location-Path option.

Figure 9 shows an example of a topic being created on first PUBLISH.

A Broker MAY accept PUBLISH operations using the POST method. If a

Broker accepts PUBLISH using POST it shall respond with the 2.04

Changed status code. If an attempt is made to PUBLISH using POST to

a topic that does not exist, the Broker SHALL return a response

status indicating resource not found, such as HTTP 404 or CoAP 4.04.

A Broker MAY perform garbage collection of stored representations

which have been delivered to all subscribers or which have timed

out. A Broker MAY retain at least one most recently published

representation to return in response to SUBSCRIBE and READ requests.

A Broker MUST make a best-effort attempt to notify all clients

subscribed on a particular topic each time it receives a publish on

that topic. An example is shown in Figure 10.

If a client publishes to a Broker without the Max-Age option, the

Broker MUST refresh the topic lifetime with the most recently set

Max-Age value, and the Broker MUST include the most recently set

Max-Age value in the Max-Age option of all notifications.

If a client publishes to a Broker with the Max-Age option, the

Broker MUST include the same value for the Max-Age option in all

notifications.

A Broker MUST use CoAP Notification as described in [RFC7641] to

notify subscribed clients.

The PUBLISH operation is specified as follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

Interaction:

Method:

URI Template:

URI Template Variables:

Content-Format:

Payload:

Success:

Success:

Failure:

Failure:

Failure:

Failure:

Client -> Broker

PUT, POST

{+ps}/{+topic}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

Any valid CoAP content format

Representation of the topic value (CoAP resource state

representation) in the indicated content format

The following response codes are defined for the PUBLISH operation:

2.01 "Created". Successful publish, topic is created

2.04 "Changed". Successful publish, topic is updated

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

4.04 "Not Found". Topic does not exist.

4.29 "Too Many Requests". The client should slow down the

rate of publish messages for this topic (see Section 6).

Figure 8 shows an example of a new value being successfully

published to the topic "topic1". See Figure 10 for an example of a

Broker forwarding a message from a publishing client to a subscribed

client.

Figure 8: Example of PUBLISH

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Client Broker

 | |

 | ---------- PUT /ps/topic1 "1033.3" --------> |

 | |

 | |

 | <--------------- 2.04 Changed---------------- |

 | |

Figure 9: Example of CREATE on PUBLISH

3.4. SUBSCRIBE

A CoAP pub/sub Broker MAY allow Clients to subscribe to topics on

the Broker using CoAP Observe as described in [RFC7641]. A CoAP pub/

sub Client wishing to Subscribe to a topic on a Broker MUST use a

CoAP GET with the Observe option set to 0 (zero). The Broker MAY add

the client to a list of observers. The Broker MUST return a response

code of "2.05 Content" along with the most recently published value

if the topic contains a valid value and the Broker can supply the

requested content format. The Broker MUST reject Subscribe requests

on a topic if the content format of the request is not the content

format the topic was created with.

If the topic was published with the Max-Age option, the Broker MUST

set the Max-Age option in the valid response to the amount of time

remaining for the value to be valid since the last publish operation

on that topic.

The Broker MUST return a response code "4.04 Not Found" if the topic

does not exist or has been removed, or if Max-Age of a previously

published representation has expired.

If a Topic has been created but not yet published to when a

SUBSCRIBE to the topic is received, the Broker MAY acknowledge and

queue the pending SUBSCRIBE and defer the response until an initial

PUBLISH occurs.

The Broker MUST return a response code "4.15 Unsupported Content

Format" if it can not return the requested content format. If a

Broker is unable to accept a new Subscription on a topic, it SHOULD

return the appropriate response code without the Observe option as

per [RFC7641] Section 4.1.

There is no explicit maximum lifetime of a Subscription, thus a

Broker may remove subscribers at any time. The Broker, upon removing

a Subscriber, will transmit the appropriate response code without

the Observe option, as per [RFC7641] Section 4.2, to the removed

Subscriber.

Client Broker

 | |

 | -------- PUT /ps/exa/mpl/e "1033.3" -------> |

 | |

 | |

 | <--------------- 2.01 Created---------------- |

 | Location: /ps/exa/mpl/e |

 | |

¶

¶

¶

¶

¶

¶

Interaction:

Method:

Options:

URI Template:

URI Template Variables:

Success:

Failure:

Failure:

Failure:

Failure:

The SUBSCRIBE operation is specified as follows:

Client -> Broker

GET

Observe:0

{+ps}/{+topic}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

The following response codes are defined for the SUBSCRIBE

operation:

2.05 "Content". Successful subscribe, current value

included

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

4.04 "Not Found". Topic does not exist.

4.15 "Unsupported Content Format". Unsupported content

format.

Figure 10 shows an example of Client2 subscribing to "topic1" and

receiving a response from the Broker, with a subsequent

notification. The subscribe response from the Broker uses the last

stored value associated with the topic1. The notification from the

Broker is sent in response to the publish received from Client1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Interaction:

Method:

Options:

URI Template:

URI Template Variables:

Success:

Figure 10: Example of SUBSCRIBE

3.5. UNSUBSCRIBE

If a CoAP pub/sub Broker allows clients to SUBSCRIBE to topics on

the Broker, it MUST allow Clients to unsubscribe from topics on the

Broker using the CoAP Cancel Observation operation. A CoAP pub/sub

Client wishing to unsubscribe to a topic on a Broker MUST either use

CoAP GET with Observe using an Observe parameter of 1 or send a CoAP

Reset message in response to a publish, as per [RFC7641].

The UNSUBSCRIBE operation is specified as follows:

Client -> Broker

GET

Observe:1

{+ps}/{+topic}{?q*}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

q := Query Filter (optional). MAY contain a query filter list as

per [RFC6690] Section 4.1.

The following response codes are defined for the UNSUBSCRIBE

operation:

2.05 "Content". Successful unsubscribe, current value

included

Client1 Client2 Broker

 | | Subscribe |

 | | ----- GET /ps/topic1 Observe:0 Token:XX ----> |

 | | |

 | | <---------- 2.05 Content Observe:10---------- |

 | | |

 | | |

 | | Publish |

 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |

 | | Notify |

 | | <---------- 2.05 Content Observe:11 --------- |

 | | |

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Success:

Failure:

Failure:

Failure:

2.07 "No Content". Successful unsubscribe, value not

included

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

4.04 "Not Found". Topic does not exist.

Figure 11 shows an example of a client unsubscribe using the

Observe=1 cancellation method.

Figure 11: Example of UNSUBSCRIBE

3.6. READ

A CoAP pub/sub Broker MAY accept Read requests on a topic using the

the CoAP GET method if the content format of the request matches the

content format the topic was created with. The Broker MUST return a

response code of "2.05 Content" along with the most recently

published value if the topic contains a valid value and the Broker

can supply the requested content format.

If the topic was published with the Max-Age option, the Broker MUST

set the Max-Age option in the valid response to the amount of time

remaining for the value to be valid since the last publish operation

on that topic.

The Broker MUST return a response code "4.04 Not Found" if the topic

does not exist or has been removed, or if Max-Age of a previously

published representation has expired.

If a Topic has been created but not yet published to when a READ to

the topic is received, the Broker MAY acknowledge and queue the

pending READ, and defer the response until an initial PUBLISH

occurs.

The Broker MUST return a response code "4.15 Unsupported Content

Format" if the Broker can not return the requested content format.

¶

¶

¶

¶

¶

Client Broker

 | |

 | ----- GET /ps/topic1 Observe:1 Token:XX ----> |

 | |

 | <------------- 2.05 Content ----------------- |

 | |

¶

¶

¶

¶

¶

Interaction:

Method:

URI Template:

URI Template Variables:

Success:

Failure:

Failure:

Failure:

Failure:

The READ operation is specified as follows:

Client -> Broker

GET

{+ps}/{+topic}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

The following response codes are defined for the READ operation:

2.05 "Content". Successful READ, current value included

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

4.04 "Not Found". Topic does not exist.

4.15 "Unsupported Content Format". Unsupported content-

format.

Figure 12 shows an example of a successful READ from topic1,

followed by a Publish on the topic, followed at some time later by a

read of the updated value from the recent Publish.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Client1 Client2 Broker

 | | Read |

 | | --------------- GET /ps/topic1 -------------> |

 | | |

 | | <---------- 2.05 Content "1007.1"------------ |

 | | |

 | | |

 | | Publish |

 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |

 | | |

 | | |

 | | Read |

 | | --------------- GET /ps/topic1 -------------> |

 | | |

 | | <----------- 2.05 Content "1033.3" ---------- |

 | | |

Interaction:

Method:

URI Template:

URI Template Variables:

Content-Format:

Response Payload:

Success:

Failure:

Failure:

Failure:

Figure 12: Example of READ

3.7. REMOVE

A CoAP pub/sub Broker MAY allow clients to remove topics from the

Broker using the CoAP Delete method on the URI of the topic. The

CoAP pub/sub Broker MUST return "2.02 Deleted" if the removal is

successful. The Broker MUST return the appropriate 4.xx response

code indicating the reason for failure if the topic can not be

removed.

When a topic is removed for any reason, the Broker SHOULD remove all

of the observers from the list of observers and return a final 4.04

"Not Found" response as per [RFC7641] Section 3.2. If a topic which

has sub-topics is removed, then all of its sub-topics MUST be

recursively removed.

The REMOVE operation is specified as follows:

Client -> Broker

DELETE

{+ps}/{+topic}

ps := Pub/sub REST API entry point

(optional). The entry point of the pub/sub REST API, as obtained

from discovery, used to discover topics.

topic := The desired topic to return links for (optional).

None

None

The following response codes are defined for the REMOVE operation:

2.02 "Deleted". Successful remove

4.00 "Bad Request". Malformed request.

4.01 "Unauthorized". Authorization failure.

4.04 "Not Found". Topic does not exist.

Figure 13 shows a successful remove of topic1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 13: Example of REMOVE

4. CoAP Pub/sub Operation with Resource Directory

A CoAP pub/sub Broker may register the base URI, which is the REST

API entry point for a pub/sub service, with a Resource Directory. A

pub/sub Client may use an RD to discover a pub/sub Broker.

A CoAP pub/sub Client may register links [RFC6690] with a Resource

Directory to enable discovery of created pub/sub topics. A pub/sub

Client may use an RD to discover pub/sub Topics. A client which

registers pub/sub Topics with an RD MUST use the context relation

(con) [RFC9167] to indicate that the context of the registered links

is the pub/sub Broker.

A CoAP pub/sub Broker may alternatively register links to its topics

to a Resource Directory by triggering the RD to retrieve it's links

from .well-known/core. In order to use this method, the links must

first be exposed in the .well-known/core of the pub/sub Broker. See

Section 3.1 in this document.

The pub/sub Broker triggers the RD to retrieve its links by sending

a POST with an empty payload to the .well-known/core of the Resource

Directory. The RD server will then retrieve the links from the

.well-known/core of the pub/sub Broker and incorporate them into the

Resource Directory. See [RFC9167] for further details.

5. Sleep-Wake Operation

CoAP pub/sub provides a way for client nodes to sleep between

operations, conserving energy during idle periods. This is made

possible by shifting the server role to the Broker, allowing the

Broker to be always-on and respond to requests from other clients

while a particular client is sleeping.

For example, the Broker will retain the last state update received

from a sleeping client, in order to supply the most recent state

update to other clients in response to read and subscribe

operations.

Client Broker

 | |

 | ------------- DELETE /ps/topic1 ------------> |

 | |

 | |

 | <-------------- 2.02 Deleted ---------------- |

 | |

¶

¶

¶

¶

¶

¶

Likewise, the Broker will retain the last state update received on

the topic such that a sleeping client, upon waking, can perform a

read operation to the Broker to update its own state from the most

recent system state update.

6. Simple Flow Control

Since the Broker node has to potentially send a large amount of

notification messages for each publish message and it may be serving

a large amount of subscribers and publishers simultaneously, the

Broker may become overwhelmed if it receives many publish messages

to popular topics in a short period of time.

If the Broker is unable to serve a certain client that is sending

publish messages too fast, the Broker SHOULD respond with Response

Code 4.29, "Too Many Requests" [RFC8516] and set the Max-Age Option

to indicate the number of seconds after which the client can retry.

The Broker MAY stop creating notifications from the publish messages

from this client and to this topic for the indicated time.

If a client receives the 4.29 Response Code from the Broker for a

publish message to a topic, it MUST NOT send new publish messages to

the Broker on the same topic before the time indicated in Max-Age

has passed.

7. Security Considerations

CoAP pub/sub re-uses CoAP [RFC7252], CoRE Resource Directory

[RFC9167], and Web Linking [RFC5988] and therefore the security

considerations of those documents also apply to this specification.

Additionally, a CoAP pub/sub Broker and the clients SHOULD

authenticate each other and enforce access control policies. A

malicious client could subscribe to data it is not authorized to or

mount a denial of service attack against the Broker by publishing a

large number of resources. The authentication can be performed using

the already standardized DTLS offered mechanisms, such as

certificates. DTLS also allows communication security to be

established to ensure integrity and confidentiality protection of

the data exchanged between these relevant parties. Provisioning the

necessary credentials, trust anchors and authorization policies is

non-trivial and subject of ongoing work.

The use of a CoAP pub/sub Broker introduces challenges for the use

of end-to-end security between for example a client device on a

sensor network and a client application running in a cloud-based

server infrastructure since Brokers terminate the exchange. While

running separate DTLS sessions from the client device to the Broker

and from Broker to client application protects confidentially on

those paths, the client device does not know whether the commands

¶

¶

¶

¶

¶

coming from the Broker are actually coming from the client

application. Similarly, a client application requesting data does

not know whether the data originated on the client device. For

scenarios where end-to-end security is desirable the use of

application layer security is unavoidable. Application layer

security would then provide a guarantee to the client device that

any request originated at the client application. Similarly,

integrity protected sensor data from a client device will also

provide guarantee to the client application that the data originated

on the client device itself. The protected data can also be verified

by the intermediate Broker ensuring that it stores/caches correct

request/response and no malicious messages/requests are accepted.

The Broker would still be able to perform aggregation of data/

requests collected.

Depending on the level of trust users and system designers place in

the CoAP pub/sub Broker, the use of end-to-end object security is

RECOMMENDED as described in [I-D.ietf-ace-pubsub-profile]. An

example application that uses the CoAP pub/sub Broker and relies on

end-to-end object security is described in [RFC8387]. When only end-

to-end encryption is necessary and the CoAP Broker is trusted,

Payload Only Protection (Mode:PAYL) could be used. The Publisher

would wrap only the payload before sending it to the Broker and set

the option Content-Format to application/smpayl. Upon receival, the

Broker can read the unencrypted CoAP header to forward it to the

subscribers.

8. IANA Considerations

This document registers one attribute value in the Resource Type

(rt=) registry established with [RFC6690] and appends to the

definition of one CoAP Response Code in the CoRE Parameters

Registry.

8.1. Resource Type value 'core.ps'

Attribute Value: core.ps

Description: Section 3 of [[This document]]

Reference: [[This document]]

Notes: None

8.2. Resource Type value 'core.ps.discover'

Attribute Value: core.ps.discover

Description: Section 3 of [[This document]]

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

[RFC2119]

[RFC3986]

[RFC6570]

[RFC6690]

[RFC7252]

[RFC7641]

[RFC8174]

[RFC8516]

Reference: [[This document]]

Notes: None

9. Acknowledgements

The authors would like to thank Klaus Hartke, Hannes Tschofenig,

Zach Shelby, Mohit Sethi, Peter van der Stok, Tim Kellogg, Anders

Eriksson, Goran Selander, Mikko Majanen, and Olaf Bergmann for their

contributions and reviews.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/rfc/rfc6690>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/rfc/

rfc7641>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Keranen, A., ""Too Many Requests" Response Code for the

Constrained Application Protocol", RFC 8516, DOI

* ¶

* ¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6690
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7641
https://www.rfc-editor.org/rfc/rfc7641
https://www.rfc-editor.org/rfc/rfc8174

[RFC9167]

[I-D.ietf-ace-pubsub-profile]

[RFC5988]

[RFC8387]

10.17487/RFC8516, January 2019, <https://www.rfc-

editor.org/rfc/rfc8516>.

Sattler, T., Carney, R., and J. Kolker, "Registry

Maintenance Notification for the Extensible Provisioning

Protocol (EPP)", RFC 9167, DOI 10.17487/RFC9167, December

2021, <https://www.rfc-editor.org/rfc/rfc9167>.

10.2. Informative References

Palombini, F. and C. Sengul, "Pub-Sub

Profile for Authentication and Authorization for

Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-pubsub-profile-04, 29

December 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-ace-pubsub-profile-04>.

Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/

RFC5988, October 2010, <https://www.rfc-editor.org/rfc/

rfc5988>.

Sethi, M., Arkko, J., Keranen, A., and H. Back,

"Practical Considerations and Implementation Experiences

in Securing Smart Object Networks", RFC 8387, DOI

10.17487/RFC8387, May 2018, <https://www.rfc-editor.org/

rfc/rfc8387>.

Authors' Addresses

Michael Koster

SmartThings

Email: Michael.Koster@smartthings.com

Ari Keranen

Ericsson

Email: ari.keranen@ericsson.com

Jaime Jimenez

Ericsson

Email: jaime@iki.fi

https://www.rfc-editor.org/rfc/rfc8516
https://www.rfc-editor.org/rfc/rfc8516
https://www.rfc-editor.org/rfc/rfc9167
https://datatracker.ietf.org/doc/html/draft-ietf-ace-pubsub-profile-04
https://datatracker.ietf.org/doc/html/draft-ietf-ace-pubsub-profile-04
https://www.rfc-editor.org/rfc/rfc5988
https://www.rfc-editor.org/rfc/rfc5988
https://www.rfc-editor.org/rfc/rfc8387
https://www.rfc-editor.org/rfc/rfc8387
mailto:Michael.Koster@smartthings.com
mailto:ari.keranen@ericsson.com
mailto:jaime@iki.fi

	Publish-Subscribe Broker for the Constrained Application Protocol (CoAP)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Terminology

	2. Architecture
	2.1. CoAP Pub/sub Architecture
	2.2. CoAP Pub/sub Broker
	2.3. CoAP Pub/sub Client
	2.4. CoAP Pub/sub Topic
	2.5. Brokerless Pub/sub

	3. CoAP Pub/sub REST API
	3.1. DISCOVERY
	3.2. CREATE
	3.3. PUBLISH
	3.4. SUBSCRIBE
	3.5. UNSUBSCRIBE
	3.6. READ
	3.7. REMOVE

	4. CoAP Pub/sub Operation with Resource Directory
	5. Sleep-Wake Operation
	6. Simple Flow Control
	7. Security Considerations
	8. IANA Considerations
	8.1. Resource Type value 'core.ps'
	8.2. Resource Type value 'core.ps.discover'

	9. Acknowledgements
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

