CoRE M. Veillette, Ed.
Internet-Draft Trilliant Networks Inc.
Intended status: Standards Track P. van der Stok, Ed.
Expires: January 18, 2018 consultant
A. Pelov

Acklio

A. Bierman

Yumaworks

July 17, 2017

CoAP Management Interface
draft-ietf-core-comi-01

Abstract

This document describes a network management interface for
constrained devices and networks, called CoAP Management Interface
(CoMI). The Constrained Application Protocol (CoAP) is used to
access datastore and data node resources specified in YANG, or SMIv2
converted to YANG. CoMI uses the YANG to CBOR mapping and converts
YANG identifier strings to numeric identifiers for payload size
reduction. CoMI extends the set of YANG based protocols, NETCONF and
RESTCONF, with the capability to manage constrained devices and
networks.

Note

Discussion and suggestions for improvement are requested, and should
be sent to core@ietf.org.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 18, 2018.

Veillette, et al. Expires January 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CoMI July 2017

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Terminology

2. CoMI Architecture
2.1. Major differences between RESTCONF and CoMI
2.2 Compression of YANG identifiers
2.3 Instance identifier .
2.4. CBOR ordered map schematic
2.5. Content-Formats

3. Example syntax

4. COAP Interface ..

5. CoMI Collection Interface

5.1. Using the 'k' Uri-Query optlon
5.2. Data Retrieval e e e e e
5.2.1. Using the 'c' Uri-Query option
5.2.2. Using the 'd' Uri-Query option
5.2.3. GET .
5.2.4. FETCH
5.3. Data Editing
5.3.1. Data Ordering
5.3.2 POST
5.3.3. PUT . .
5.3.4 iPATCH
5.3.5 DELETE

Full datastore access

.4.1. Full datastore examples
Event stream .
.5.1. Notify Examples

5.6 RPC statements

5.6.1. RPC Example

6. Access to MIB Data
7

(6)]
N

(6]
o1 o

o [on
NNNNNNNNNNNNNNINININ R R
ho‘ﬂ‘ﬂ‘@ %)kﬂLh‘w‘w %JMA‘O‘O k)ko‘ﬂ‘m‘cvkn‘b‘w‘w Mekn\m\m N o o1 B w

Use of Block

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Veillette, et al. Expires January 18, 2018 [Page 2]

Internet-Draft CoMI

(=

Resource Discovery

Error Handling

Security Considerations

IANA Considerations

11.1. Resource Type (rt=) Llnk Target Attrlbute Values
Registry . .

CoAP Content-Formats Reglstry

‘H‘H\@\m
H_@'-

11.2
11.3 Media Types Registry .o
11.4 Concise Binary Object Representatlon (CBOR) Tags
Registry
12. Acknowledgements
13. References

13.1. Normative References

13.2. Informative References
Appendix A. ietf-comi YANG module
Appendix B. ietf-comi .sid file
Appendix C. YANG example specifications

C.1. ietf-system
c.2 server list
C.3. interfaces
c.4 Example-port
C.5. IP-MIB .
Appendix D Comparison w1th LWM2M

Authors' Addresses

Introduction

July 2017

W (W W N
RIS

& & R
o1 (o |

o1 o1 o1 o1 o1 o1 DD DWW W W W

The Constrained Application Protocol (CoAP) [REC7252] is designed for

Machine to Machine (M2M) applications such as smart energy,

smart

city and building control. Constrained devices need to be managed in
an automatic fashion to handle the large quantities of devices that
are expected in future installations. Messages between devices need
to be as small and infrequent as possible. The implementation
complexity and runtime resources need to be as small as possible.

This draft describes the CoAP Management Interface which uses CoAP

methods to access structured data defined in YANG [REC7950].

This

draft is complementary to [REC8040] which describes a REST-like

interface called RESTCONF, which uses HTTP methods to access

structured data defined in YANG.

The use of standardized data models specified in a standardized
language, such as YANG, promotes interoperability between devices and

applications from different manufacturers.

CoMI and RESTCONF are intended to work in a stateless client-server
fashion. They use a single round-trip to complete a single editing

transaction, where NETCONF needs up to 10 round trips.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8040

Veillette, et al. Expires January 18, 2018 [Page 3]

Internet-Draft CoMI July 2017

To promote small messges, CoMI uses a YANG to CBOR mapping
[I-D.ietf-core-yang-cbor] and numeric identifiers [I-D.ietf-core-sid]
to minimize CBOR payloads and URI length.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

The following terms are defined in the YANG data modelling language
[REC7950]: action, anydata, anyxml, client, configuration data,
container, data model, data node, datastore, identity, instance
identifier, key, key leaf, leaf, leaf-list, list, module, RPC, schema
node, server, state data, submodule.

The following term is defined in [I-D.ietf-core-yang-cbor]: YANG
schema item identifier (SID).

The following terms are defined in the CoAP protocol [REC7252]:
Confirmable Message, Content-Format.

The following terms are defined in this document:
data node resource: a CoAP resource that models a YANG data node.
datastore resource: a CoOAP resource that models a YANG datastore.

event stream resource: a CoOAP resource used by clients to observe
YANG notifications.

target resource: the resource that is associated with a particular
CoAP request, identified by the request URI.

data node instance: An instance of a data node specified in a YANG
module and stored in the server.

notification instance: An instance of a schema node of type
notification, specified in a YANG module implemented by the
server. The instance is generated in the server at the occurrence
of the corresponding event and reported by an event stream.

list instance identifier: Handle used to identify a YANG data node
that is an instance of a YANG "list" specified with the values of
the key leaves of the list.

single instance identifier: Handle used to identify a specific data
node which can be instantiated only once. This includes data

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7252

Veillette, et al. Expires January 18, 2018 [Page 4]

Internet-Draft CoMI

N

July 2017

nodes defined at the root of a YANG module or data nodes defined
within a container. This excludes data nodes defined within a

list or any children of these data nodes.

instance identifier: List instance identifier or single instance

identifier.

data node value: The value assigned to a data node instance. Data
node values are serialized into the payload according to the rules

defined in section 4 of [I-D.ietf-core-yang-cbhor].

CoMI Architecture

This section describes the CoMI architecture to use COAP for reading
and modifying the content of datastore(s) used for the management of

the instrumented node.

Client Y, Server
B + e e e oo +
| Request | --> COAP request(3) -->| Indication |
| Confirm |<-- COAP response(3)<--| Response (4) |
I I I I
| |<==== Security (7) ===>|+----------------- +|
R R T + | | Datastore (5) [
R +|
R +|
| | Event stream (6)] |
[+----mmmmm - - +|
e +

Figure 1: Abstract CoMI architecture

Figure 1 is a high-level representation of the main elements of the
CoMI management architecture. The different numbered components of

Figure 1 are discussed according to component number.

(1) YANG specification: contains a set of named and versioned

modules.

Veillette, et al. Expires January 18, 2018 [Page 5]

Internet-Draft CoMI July 2017

(2) SMIv2 specification: A named module specifies a set of variables
and "conceptual tables". There is an algorithm to translate SMIv2
specifications to YANG specifications.

(3) CoAP request/response messages: The CoMI client sends request
messages to and receives response messages from the CoMI server.

(4) Request, Indication, Response, Confirm: The processes performed
by the CoMI clients and servers.

(5) Datastore: A resource used to access configuration data, state
data, RPCs and actions. A CoMI server may support multiple
datastores to support more complex operations such as
configuration rollback, scheduled update.

(6) Event stream: An observable resource used to get real time
notifications. A CoMI server may support multiple Event streams
serving different purposes such as normal monitoring, diagnostic,
syslog, security monitoring.

(7) Security: The server MUST prevent unauthorized users from
reading or writing any CoOMI resources. CoOMI relies on security
protocols such as DTLS [RFC6347] to secure CoAP communication.

2.1. Major differences between RESTCONF and CoMI

CoMI is a RESTful protocol for small devices where saving bytes to
transport counts. Contrary to RESTCONF, many design decisions are
motivated by the saving of bytes. Consequently, CoMI is not a
RESTCONF over CoOAP protocol, but differs more significantly from
RESTCONF. Some major differences are cited below:

0 CoOMI uses COAP/UDP as transport protocol and CBOR as payload
format [I-D.ietf-core-yang-cbor]. RESTCONF uses HTTP/TCP as
transport protocol and JSON [REC7159] or XML [XML] as payload
formats.

0o CoMI encodes YANG identifier strings as numbers, where RESTCONF
does not.

0 CoMI uses the methods FETCH and iPATCH, not used by RESTCONF.
RESTCONF uses the HTTP methods HEAD, and OPTIONS, which are not
used by CoMI.

0 CoMI does not support "insert" query parameter (first, last,
before, after) and the "point" query parameter which are supported
by RESTCONF.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7159

Veillette, et al. Expires January 18, 2018 [Page 6]

Int

ernet-Draft

CoMI

July 2017

0 CoMI does not support the "start-time" and "stop-time" query
parameters to retrieve past notifications.

0 CoMI and RESTCONF also differ in the handling of:

* notifications.

* default values.

Compression of YANG identifiers

In the YANG specification, items are identified with a name string.
In order to significantly reduce the size of identifiers used in

CoMI,

numeric identifiers are used instead of these strings.

YANG

Schema Item iDentifier (SID) is defined in [I-D.ietf-core-yang-chor]

section 2.1.

When used in a URI, SIDs are encoded in based64 using the URL and

Filename safe alphabet as defined by [RFC4648] section 5.

The last 6

bits encoded is always aligned with the least significant 6 bits of

the SID represented using an unsigned integer.

0) at the start of the resulting

SID in basae64 =

For example, SID

URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717
URLsafeChar[1717

URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID
URLsafeChar[SID

1717 is encoded

>> 60
>> 54
>> 48
>> 42
>> 36
>> 30
>> 24

OX3F] =
OX3F] =
OX3F] =
OX3F] =
OXx3F] =
OX3F] =
OXx3F] =
>> 18 & Ox3F] =
>> 12 & Ox3F] =
>> 6 & Ox3F] =
& Ox3F] =

R0 R0 RO R R0 QRO RO RO Ro

string are removed.

>> 60
>> 54
>> 48
>> 42
>> 36
>> 30
>> 24
>> 18 OX3F]
>> 12 OX3F]
>> 6 & Ox3F] |
& Ox3F]

OX3F] |
OXx3F] |
Ox3F] |
Ox3F] |
OXx3F] |
Ox3F] |
Ox3F] |

I

I

Q0 R R0 RO RO RO RO R0 Qo

as follow.

URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[0] =
URLsafeChar[26]

URLsafeChar[53]

IAI
IAI
IAI
IAI
IAI
IAI
IAI
IAI
IAI

|1|

'A' characters (value

https://datatracker.ietf.org/doc/html/rfc4648#section-5

Veillette, et al. Expires January 18, 2018 [Page 7]

Internet-Draft CoMI July 2017

The resulting base64 representation of SID 1717 is "a1"
2.3. Instance identifier

Instance identifiers are used to uniquely identify data node
instances within a datastore. This YANG built-in type is defined in
[REC7950] section 9.13. An instance identifier is composed of the
data node identifier (i.e. a SID) and for data nodes within list(s)
the keys used to index within these list(s).

When part of a payload, instance identifiers are encoded in CBOR
based on the rules defined in [I-D.ietf-core-yang-chor] section
5.13.1. When part of a URI, the SID is appended to the URI of the
targeted datastore, the keys are specified using the 'k' URI-Query as
defined in Section 5.1.

2.4. CBOR ordered map schematic

An ordered map is used as a root container of the application/yang-
tree+cbor Content-Format. This datatype share the same
functionalities as a CBOR map without the following limitations:

0 The ordering of the pairs of data items is preserved from
serialization to deserialization.

0 Duplicate keys are allowed

This schematic is constructed using a CBOR array comprising pairs of
data items, each pair consisting of a key that is immediately
followed by a value. Unlike a CBOR map for which the length denotes
the number of pairs, the length of the ordered map denotes the number
of items (i.e. number of keys plus number of values).

The use of this schematic can be inferred from its context or by the
presence of a preceding tag. The tag assigned to the Ordered map is
defined in Section 11.4.

In the case of CoMI, the use of the ordered map as the root container
of the application/yang-tree+cbor Content-Format is inferred, the
Ordered map tag is not used.

2.5. Content-Formats
ComI uses Content-Formats based on the YANG to CBOR mapping specified

in [I-D.ietf-core-yang-cbor]. All Content-Formats defined hereafter
are constructed using one or both of these constructs:

https://datatracker.ietf.org/doc/html/rfc7950#section-9.13

Veillette, et al. Expires January 18, 2018 [Page 8]

Internet-Draft CoMI July 2017

0 YANG data node value, encoded based on the rules defined in
[I-D.ietf-core-yang-cbor] section 4.

0 YANG instance identifier, encoded based on the rules defined in
[I-D.ietf-core-yang-cbor] section 5.13.1.

The following Content-formats are defined:

application/yang-value+cbor: represents a CBOR YANG document
containing one YANG data node value. The YANG data node instance
can be a leaf, a container, a list, a list instance, a RPC input,
a RPC output, an action input, an action output, a leaf-list, an
anydata or an anyxml. The CBOR encoding for each of these YANG
data node instances are defined in [I-D.ietf-core-yang-cbor]
section 4.

FORMAT: data-node-value

DELTA ENCODING: SIDs included in a YANG container, a list
instance, a RPC input, a RPC output, an action input, an actions
output and an anydata are encoded using a delta value equal to the
SID of the current schema node minus the SID of the parent. The
parent SID of root data nodes is defined by the URI carried in the
associated request (i.e. GET, PUT, POST).

application/yang-values+cbor: represents a YANG document containing
a list of data node values.

FORMAT: CBOR array of data-node-value

DELTA ENCODING: SIDs included in a YANG container, a list instance
and an anydata are encoded using a delta value equal to the SID of
the current schema node minus the SID of the parent. The parent
SID of root data nodes is defined by the corresponding instance-
identifier carried in the FETCH request.

application/yang-tree+chbor: represents a CBOR YANG document
containing a YANG data tree.

FORMAT: ordered map of single-instance-identifier, data-node-value

DELTA ENCODING: The SID part of the first instance-identifier
within the ordered map is encoded using its absolute value.
Subsequent instance-identifiers are encoded using a delta value
equal to the SID of the current instance-identifiers minus the SID
of the previous instance-identifier.

Veillette, et al. Expires January 18, 2018 [Page 9]

Internet-Draft CoMI July 2017

application/yang-selectors+chor: represents a CBOR YANG document
containing a list of data node selectors (i.e. instance
identifier).

FORMAT: CBOR array of instance-identifier

DELTA ENCODING: The SID part of the first instance-identifier
within the CBOR array is encoded using its absolute value.
Subsequent instance-identifiers are encoded using a delta value
equal to the SID of the current instance-identifiers minus the SID
of the previous instance-identifier.

application/yang-patch+cbor: represents a CBOR YANG document
containing a list of data nodes to be replaced, created, or
deleted.

For each data node instance, D, for which the instance identifier
is the same as for a data node instance, I, in the targeted
resource: the data node value of D replaces the data node value of
I. When the data node value of D is null, the data node instance
I is removed. When the targeted resource does not contain a data
node instance with the same instance identifier as D, a new data
node instance is created in the targeted resource with the same
instance identifier and data node value as D.

FORMAT: CBOR array of instance-identifier, data-node-value
DELTA ENCODING: Same as Content-Format application/yang-tree+chbor

The different Content-formats usage is summarized in the table below:

Veillette, et al. Expires January 18, 2018 [Page 10]

Internet-Draft CoMI July 2017

GET response event stream /application/yang-tree+cbor

POST request rpc, action /application/yang-value+chor

B S o m e e e e e e e e e +
| Method | Resource | Content-Format |
Fom e e e — - o m e e o gt +
| GET response | data node | /application/yang-value+cbor |
I I I I
| PUT request | data node | /application/yang-value+cbor |
I I I I
| POST request | data node | /application/yang-value+cbor |
I I I I
| DELETE | data node | n/a

I I I I
| GET response | datastore | /application/yang-tree+chbor |
I I I I
| PUT request | datastore | /application/yang-tree+cbor |
I I I I
| POST request | datastore | /application/yang-tree+chor |
I I I I
| FETCH request | datastore | /application/yang-selectors+chor |
I I I I
| FETCH response | datastore | /application/yang-values+cbor |
I I I I
| iPATCH request | datastore | /application/yang-patch+cbor |
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

rpc, action /application/yang-value+cbor

[*M]

Example syntax

This section presents the notation used for the examples. The YANG
modules that are used throughout this document are shown in

Appendix C. The example modules are copied from existing modules and
annotated with SIDs. The values of the SIDs are taken over from

[yang-cbor].

CBOR is used to encode CoMI request and response payloads. The CBOR
syntax of the YANG payloads is specified in [RFC7049]. The payload
examples are notated in Diagnostic notation (defined in section 6 of
[REC7049]) that can be automatically converted to CBOR.

SIDs in URIs are represented as a base64 number, SIDs in the payload
are represented as decimal numbers.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7049#section-6
https://datatracker.ietf.org/doc/html/rfc7049#section-6

Veillette, et al. Expires January 18, 2018 [Page 11]

Internet-Draft CoMI July 2017

4.

CoAP Interface

The format of the links is specified in [I-D.ietf-core-interfaces].
This note specifies a Management Collection Interface. CoMI end-
points that implement the CoMI management protocol, support at least
one discoverable management resource of resource type (rt):
core.c.datastore, with example path: /c, where c is short-hand for
CoMI. The path /c is recommended but not compulsory (see Section 8).

Three CoMI resources are accessible with the following three example
paths:

/c: Datastore resource with path "/c" and using CBOR content
encoding format. Sub-resouces of format /c/instance-identifier
may be available to access directly each data node resource for
this datastore.

/mod.uri: URI identifying the location of the YANG module library
used by this server, with path "/mod.uri" and Content-Format
"text/plain; charset=utf-8". An ETag MUST be maintained for this
resource by the server, which MUST be changed to a new value when
the set of YANG modules in use by the server changes.

/s: Event stream resource to which YANG notification instances are
reported. Notification support is optional, so this resource will
not exist if the server does not support any notifications.

The mapping of YANG data node instances to CoMI resources is as
follows. Every data node of the YANG modules loaded in the CoMI
server represents a sub-resource of the datastore resource (e.g. /c/
instance-identifier).

When multiple instances of a list exist, instance selection is
possible as described in Section 5.1, Section 5.2.4, and
Section 5.2.3.1.

The description of the management collection interface, with
if=core.c, is shown in the table below, following the guidelines of
[I-D.ietf-core-interfaces]:

Veillette, et al. Expires January 18, 2018 [Page 12]

Internet-Draft

(S}

CoMI July 2017

core.c.datastore

core.c.datanode

core.c.moduri

core.c.eventstream

The path values are example values. On discovery, the server makes
the actual path values known for these four resources.

CoMI Collection Interface

The CoMI Collection Interface provides a CoAP interface to manage
YANG servers.

The methods used by CoMI are:

FETCH

POST

PUT

iPATCH

DELETE

Retrieve the datastore resource or a data node
resource

Retrieve specific data nodes within a datastore
resource

Create a datastore resource or a data node resource,
invoke an RPC or action

Create or replace a datastore resource or a data node
resource

Idem-potently create, replace, and delete data node
resource(s) within a datastore resource

Delete a datastore resource or a data node resource

There is one Uri-Query option for the GET, PUT, POST, and DELETE
methods.

Veillette, et al. Expires January 18, 2018 [Page 13]

Internet-Draft CoMI July 2017

B S +
| Uri-Query option | Description |
o e e e e a o - e e e e e e e e e m - +
| k | Select an instance within YANG list(s) |
B o e oo o e e oo +

This parameter is not used for FETCH and iPATCH, because their
request payloads support list instance selection.

5.1. Using the 'k' Uri-Query option

The "k" (key) parameter specifies a specific instance of a data node.
The SID in the URI is followed by the (?k=keyl, key2,..). Where SID
identifies a data node, and keyl, key2 are the values of the key
leaves that specify an instance. Lists can have multiple keys, and
lists can be part of lists. The order of key value generation is
given recursively by:

o For a given list, if a parent data node is a list, generate the
keys for the parent list first.

o For a given list, generate key values in the order specified in
the YANG module.

Key values are encoded using the rules defined in the following
table.

Veillette, et al. Expires January 18, 2018 [Page 14]

Internet-Draft CoMI July 2017

uint8,uint16,unit32, uinte64 int2str(key)

int8, int16,int32, int64 urlSafeBase64(CBORencode(key))

I I I
I I |
I I I
I I I
| decimalé4 | urlSafeBase64(CBOR key) |
I I |
| string | key |
I I I
| boolean | "@" or "1i" |
I I |
| enumeration | int2str(key) |
I I I
| bits | urlSafeBase64(CBORencode(key)) |
I I |
| binary | urlSafeBase64(key) |
I I I
| identityref | int2str(key) |
I I I
| union | urlSafeBase64(CBORencode(key)) |
I I I
I I |

instance-identifier

In this table:

o The method int2str() is used to convert an integer value to a
string. For example, int2str(0x0123) return the string "291".

0 The method urlSafeBase64() is used to convert a binary string to
base64 using the URL and Filename safe alphabet as defined by
[REC4648] section 5. For example, urlSafeBase64(\xF9\x56\xA1\x3C)
return the string "-vahPA".

o The method CBORencode() is used to convert a YANG value to CBOR as
specified in [I-D.ietf-core-yang-chor] section 5, item 8.

The resulting key string is encoded in a Uri-Query as specified in
[REC7252] section 6.5.

5.2. Data Retrieval

One or more data nodes can be retrieved by the client. The operation
is mapped to the GET method defined in section 5.8.1 of [RFC7252] and
to the FETCH method defined in section 2 of [RFC8132].

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7252#section-5.8.1
https://datatracker.ietf.org/doc/html/rfc8132#section-2

Veillette, et al. Expires January 18, 2018 [Page 15]

Internet-Draft CoMI July 2017

It is possible that the size of the payload is too large to fit in a
single message. In the case that management data is bigger than the
maximum supported payload size, the Block mechanism from [REC7959]
may be used, as explained in more detail in Section 7.

There are two additional Uri-Query options for the GET and FETCH

methods.

Y o e oo e e e e e e e e e e e e e e e e emooo oo +
| Uri-Query | Description

| option | |
S o m e meoo o oo +
| ¢ | Control selection of configuration and non- |
| | configuration data nodes (GET and FETCH) |
I I I
| d | Control retrieval of default values. |
S o e o o o o e o o e e e e ——ooo oo +

5.2.1. Using the 'c' Uri-Query option

The 'c' (content) parameter controls how descendant nodes of the
requested data nodes will be processed in the reply.

The allowed values are:

Fommeea- B e N N~ +
| Value | Description |
oo - - oo e e e e e e e e e e e e e e e e e e e —— - +
| ¢ | Return only configuration descendant data nodes |
I I I
| n | Return only non-configuration descendant data nodes |
I I I
| a | Return all descendant data nodes |
oo B +

This parameter is only allowed for GET and FETCH methods on datastore
and data node resources. A 4.02 (Bad Option) error is returned if
used for other methods or resource types.

If this Uri-Query option is not present, the default value is "a".
5.2.2. Using the 'd' Uri-Query option

The "d" (with-defaults) parameter controls how the default values of
the descendant nodes of the requested data nodes will be processed.

The allowed values are:

https://datatracker.ietf.org/doc/html/rfc7959

Veillette, et al. Expires January 18, 2018 [Page 16]

Internet-Draft CoMI July 2017

a | A1l data nodes are reported. Defined as 'report-all' in
| section 3.1 of [RFC6243].

Data nodes set to the YANG default are not reported.
Defined as 'trim' in section 3.2 of [RFC6243].

t

If the target of a GET or FETCH method is a data node that represents
a leaf that has a default value, and the leaf has not been given a
value by any client yet, the server MUST return the default value of
the leaf.

If the target of a GET method is a data node that represents a
container or list that has child resources with default values, and
these have not been given value yet,

The server MUST not return the child resource if d= 't'

The server MUST return the child resource if d= 'a'.

If this Uri-Query option is not present, the default value is 't'.

5.2.3. GET

A request to read the values of a data node instance is sent with a
confirmable CoAP GET message. An instance identifier is specified in
the URI path prefixed with the example path /c.

FORMAT :
GET /c/instance-identifier

2.05 Content (Content-Format: application/yang-value+cbor)
data-node-value

The returned payload contains the CBOR encoding of the specified data
node instance value.

5.2.3.1. GET Examples

Using for example the current-datetime leaf from Appendix C.1, a
request is sent to retrieve the value of system-state/clock/current-
datetime specified in container system-state. The SID of system-
state/clock/current-datetime is 1719, encoded in octal 3267, yields
two 6 bit decimal numbers 26 and 55, encoded in base64, (according to
table 2 of [RFEC4648]) yields a3. The response to the request returns

https://datatracker.ietf.org/doc/html/rfc6243#section-3.1
https://datatracker.ietf.org/doc/html/rfc6243#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648

Veillette, et al. Expires January 18, 2018 [Page 17]

Internet-Draft

the CBOR encoding of this leaf of
[I-D.ietf-core-yang-cbor] section

CoMI

July 2017

type 'string' as defined in
5.4.

REQ: GET example.com/c/a3

RES: 2.05 Content (Content-Format:

"2014-10-26T12:16:312"

The next example represents the retrieval of a YANG container.
the CoMI client performs a GET request on the clock
1717; base64: al).

this case,
container (SID =

application/yang-value+cbor)

In

The container returned 1is

encoded using a CBOR map as specified by [I-D.ietf-core-yang-chor]

section 4.2.

REQ: GET example.com/c/al

RES: 2.05 Content (Content-Format:

{
+2
+1

"2014-10-26T12:16:512",
"2014-10-21T03:00:00Z2"

}

application/yang-value+cbor)

/ SID 1719 /
/ SID 1718 /

This example shows the retrieval of the /interfaces/interface YANG

list accessed using SID 1533 (base64: X9).

The return payload is

encoded using a CBOR array as specified by [I-D.ietf-core-yang-chbor]
section 4.4.1 containing 2 instances.

REQ: GET example.com/c/X9

RES: 2.05 Content (Content-Format:

[
{
+4 "etho", /
+1 "Ethernet adaptor", /
+5 @ 1179, /
/
+2 true /
3
{
+4 @ "eth1i", /
+1 "Ethernet adaptor", /
+5 @ 1179, /
/
+2 false /
}

application/yang-value+cbor)

name (SID 1537) /
description (SID 1534) /
type, (SID 1538) identity /
ethernetCsmacd (SID 1179) /
enabled (SID 1535) /

name (SID 1537) /
description (SID 1534) /
type, (SID 1538) identity /
ethernetCsmacd (SID 1179) /
enabled /

Veillette, et al. Expires January 18, 2018 [Page 18]

Internet-Draft CoMI July 2017

It is equally possible to select a leaf of a specific instance of a
list. The example below requests the description leaf (SID=1534,
base64: X-) within the interface list corresponding to the list key
"eth@". The returned value is encoded in CBOR based on the rules
specified by [I-D.ietf-core-yang-cbor] section 5.4.

REQ: GET example.com/c/X-?k="etho"

RES: 2.05 Content (Content-Format: application/yang-value+chbhor)
"Ethernet adaptor"

5.2.4. FETCH

The FETCH is used to retrieve multiple data node values. The FETCH
request payload contains a list of instance-identifier encoded based
on the rules defined by Content-Format application/yang-
selectors+chbor in Section 2.5. The return response payload contains
a list of values encoded based on the rules defined by Content-Format
application/yang-values+chor in Section 2.5. A value MUST be
returned for each instance-identifier specified in the request. A
CBOR null is returned for each data node requested by the client, not
supported by the server or not currently instantiated.

FORMAT :
FETCH /c (Content-Format :application/yang-selectors+cbor)
CBOR array of instance-identifier

2.05 Content (Content-Format: application/yang-values+cbor)
CBOR array of data-node-value

5.2.4.1. FETCH examples

The example uses the current-datetime leaf and the interface list
from Appendix C.1. 1In the following example the value of current-
datetime (SID 1719 and the interface list (SID 1533) instance
identified with name="eth0" are queried.

Veillette, et al. Expires January 18, 2018 [Page 19]

Internet-Draft CoMI July 2017

REQ: FETCH /c (Content-Format :application/yang-selectors+chor)

[
1719, / SID 1719 /

[-186, "etho"] / SID 1533 with name = "etho" /

RES: 2.05 Content (Content-Format :application/yang-value+cbor)

[
"2014-10-26T712:16:312",

{

+4 : "etho", / name (SID 1537) /

+1 : "Ethernet adaptor", / description (SID 1534) /

+5 : 1179, / type (SID 1538), identity /
/ ethernetCsmacd (SID 1179) /

+2 : true / enabled (SID 1535) /

5.3. Data Editing

CoMI allows datastore contents to be created, modified and deleted
using CoAP methods.

5.3.1. Data Ordering

A CoMI server SHOULD preserve the relative order of all user-ordered
list and leaf-1list entries that are received in a single edit
request. These YANG data node types are encoded as CBOR arrays so
messages will preserve their order.

5.3.2. POST

The CoAP POST operation is used in CoMI for creation of data node
resources and the invocation of "ACTION" and "RPC" resources. Refer
to Section 5.6 for details on "ACTION" and "RPC" resources.

A request to create a data node resource is sent with a confirmable
CoAP POST message. The URI specifies the data node to be
instantiated at the exception of list intances. In this case, for
compactness, the URI specifies the list for which an instance is
created.

FORMAT :
POST /c/<instance identifier>
(Content-Format :application/yang-value+chbor)
data-node-value

2.01 Created

Veillette, et al. Expires January 18, 2018 [Page 20]

Internet-Draft CoMI July 2017
If the data node resource already exists, then the POST request MUST
fail and a "4.09 Conflict" response code MUST be returned

5.3.2.1. Post example

The example uses the interface list from Appendix C.1. Example is
creating a new list instance within the interface list (SID = 1533):

REQ: POST /c/X9 (Content-Format :application/yang-value+chor)
{

+4 : "eths", / name (SID 1537) /
+1 : "Ethernet adaptor", / description (SID 1534) /
+5 : 1179, / type (SID 1538), identity /
/ ethernetCsmacd (SID 1179) /
+2 : true / enabled (SID 1535) /
}

RES: 2.01 Created

5.3.3. PUT

A data node resource instance is created or replaced with the PUT
method. A request to set the value of a data node instance is sent
with a confirmable CoAP PUT message.

FORMAT :
PUT /c/<instanceidentifier>
(Content-Format :application/yang-value+cbor)
data-node-value

2.01 Created
5.3.3.1. PUT example
The example uses the interface list from Appendix C.1. Example is

renewing an instance of the list interface (SID = 1533) with key
name="etho":

Veillette, et al. Expires January 18, 2018 [Page 21]

Internet-Draft CoMI July 2017

REQ: PUT /c/X9?k="etho"
(Content-Format :application/yang-value+cbor)

{
+4 : "etho", / name (SID 1537) /
+1 : "Ethernet adaptor", / description (SID 1534) /
+5 @ 1179, / type (SID 1538), identity /
/ ethernetCsmacd (SID 1179) /
+2 : true / enabled (SID 1535) /
}

RES: 2.04 Changed
5.3.4. 1iPATCH

One or multiple data node instances are replaced with the idempotent
iPATCH method [RFC8132]. A request is sent with a confirmable CoAP
iPATCH message.

There are no Uri-Query options for the iPATCH method.

The processing of the iPATCH command is specified by Content-Format
application/yang-patch+cbor. In summary, if the CBOR patch payload
contains a data node instance that is not present in the target, this
instance is added. If the target contains the specified instance,
the content of this instance is replaced with the value of the
payload. A null value indicates the removal of an existing data node
instance.

FORMAT :
iPATCH /c (Content-Format :application/yang-patch+cbor)
ordered map of instance-identifier, data-node-value

2.04 Changed
5.3.4.1. 1iPATCH example
In this example, a CoMI client requests the following operations:
o Set "/system/ntp/enabled" (SID 1751) to true.

0 Remove the server "tac.nrc.ca" from the"/system/ntp/server" (SID
1752) list.

0 Add the server "NTP Pool server 2" to the list "/system/ntp/
server" (SID 1752).

https://datatracker.ietf.org/doc/html/rfc8132

Veillette, et al. Expires January 18, 2018 [Page 22]

Internet-Draft CoMI July 2017

REQ: iPATCH /c (Content-Format :application/yang-patch+cbor)
[

1751 , true, / enabled (1751) /
[+1, "tac.nrc.ca"], null, / server (SID 1752) /
+0, / server (SID 1752) /
{
+3 : "tic.nrc.ca", / name (SID 1755) /
+4 : true, / prefer (SID 1756) /
+5 1 { / udp (SID 1757) /
+1 : "132.246.11.231" / address (SID 1758) /
}
}

]

RES: 2.04 Changed
5.3.5. DELETE
A data node resource is deleted with the DELETE method.

FORMAT :
Delete /c/<instance identifier>

2.02 Deleted
5.3.5.1. DELETE example

The example uses the interface list from Appendix C.3. Example is
deleting an instance of the interface list (SID = 1533):

REQ: DELETE /c/X9?k="etho"
RES: 2.02 Deleted
5.4. Full datastore access

The methods GET, PUT, POST, and DELETE can be used to request,
replace, create, and delete a whole datastore respectively.

FORMAT :
GET /c

2.05 Content (Content-Format: application/yang-tree+cbor)
ordered map of single-instance-identifier, data-node-value

Veillette, et al. Expires January 18, 2018 [Page 23]

Internet-Draft CoMI July 2017

FORMAT :
PUT /c (Content-Format: application/yang-tree+cbor)
ordered map of single-instance-identifier, data-node-value

2.04 Changed

FORMAT :
POST /c (Content-Format: application/yang-tree+chor)
ordered map of single-instance-identifier, data-node-value

2.01 Created

FORMAT:
DELETE /c

2.02 Deleted

The content of the ordered map represents the complete datastore of
the server at the GET indication of after a successful processing of
a PUT or POST request. When an Ordered map is used to carry a whole
datastore, all data nodes MUST be identified using single instance

identifiers (i.e. a SID), list instance identifiers are not allowed.

5.4.1. Full datastore examples

The example uses the interface list and the clock container from
Appendix C.3. Assume that the datastore contains two modules ietf-
system (SID 1700) and ietf-interfaces (SID 1500); they contain the
list interface (SID 1533) with one instance and the container Clock
(SID 1717). After invocation of GET, a map with these two modules is
returned:

Veillette, et al. Expires January 18, 2018 [Page 24]

Internet-Draft CoMI July 2017

REQ: GET /c

RES: 2.05 Content (Content-Format :application/yang-tree+cbor)

[
1717, / Clock (SID 1717) /

{
+2: "2016-10-26T12:16:312", / current-datetime (SID 1719) /
+1: "2014-10-05T09:00:00Z2" / boot-datetime (SID 1718) /

3
-186, / clock (SID 1533) /

{
+4 : "etho", / name (SID 1537) /
+1 : "Ethernet adaptor", / description (SID 1534) /
+5 @ 1179, / type (SID 1538), identity: /

/ ethernetCsmacd (SID 1179) /

+2 : true / enabled (SID 1535) /

}

5.5. Event stream

Event notification is an essential function for the management of
servers. CoMI allows notifications specified in YANG [REC5277] to be
reported to a list of clients. The recommended path of the default
event stream is /s. The server MAY support additional event stream
resources to address different notification needs.

Reception of notification instances is enabled with the CoAP Observe
[REC7641] function. Clients subscribe to the notifications by
sending a GET request with an "Observe" option, specifying the /s
resource when the default stream is selected.

Each response payload carries one or multiple notifications. The
number of notification reported and the conditions used to remove
notifications from the reported list is left to the implementers.
When multiple notifications are reported, they MUST be ordered
starting from the newest notification at index zero.

An example implementation is:

Every time an event is generated, the generated notification
instance is appended to the chosen stream(s). After appending the
instance, the content of the instance is sent to all clients
observing the modified stream.

Dependending on the storage space allocated to the notification
stream, the oldest notifications that do not fit inside the
notification stream storage space are removed.

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc7641

Veillette, et al. Expires January 18, 2018 [Page 25]

Internet-Draft CoMI July 2017
FORMAT :
Get /<stream-resource> Observe(0)

2.05 Content (Content-Format :application/yang-tree+cbor)
ordered map of instance-identifier, data-node-value

The array of data node instances may contain identical entries which
have been generated at different times.

5.5.1. Notify Examples
Suppose the server generates the event specified in Appendix C.4. By
executing a GET on the /s resource the client receives the following
response:

REQ: GET /s Observe(0) Token(0x93)

RES: 2.05 Content (Content-Format :application/yang-tree+chbor)
Observe(12) Token(0x93)

[
60010, / example-port-fault (SID 60010) /
{
+1 : "e/4/21", / port-name (SID 60011) /
+2 : "Open pin 2" / port-fault (SID 60012) /
}
+0, / example-port-fault (SID 60010) /
{
+1 : "1/4/21", / port-name (SID 60011) /
+2 : "Open pin 5" / port-fault (SID 60012) /
}
1

In the example, the request returns a success response with the
contents of the last two generated events. Consecutively the server
will regularly notify the client when a new event is generated.

To check that the client is still alive, the server MUST send
confirmable notifications periodically. When the client does not
confirm the notification from the server, the server will remove the
client from the list of observers [RFC7641].

5.6. RPC statements

The YANG "action" and "RPC" statements specify the execution of a
Remote procedure Call (RPC) in the server. It is invoked using a
POST method to an "Action" or "RPC" resource instance. The request
payload contains the values assigned to the input container when

https://datatracker.ietf.org/doc/html/rfc7641

Veillette, et al. Expires January 18, 2018 [Page 26]

Internet-Draft CoMI July 2017

specified. The response payload contains the values of the output
container when specified. Both the input and output containers are
encoded in CBOR using the rules defined in [I-D.ietf-core-yang-chor]
section 4.2.1. Root data nodes are encoded using the delta between
the current SID and the SID of the invoked instance identifier a
specified by the URI.

The returned success response code is 2.05 Content.

FORMAT :
POST /c/<instance identifier>
(Content-Format :application/yang-value+cbor)
data-node-value

2.05 Content (Content-Format :application/yang-value+cbor)
data-node-value

6.1. RPC Example

5.

o

The example is based on the YANG action specification of

Appendix C.2. A server list is specified and the action "reset" (SID
60002, base64: Opq), that is part of a "server instance" with key
value "myserver", is invoked.

REQ: POST /c/0pq?k="myserver"
(Content-Format :application/yang-value+cbor)

{
+1 : "2016-02-08T14:10:08209:00" / reset-at (SID 60003) /

3

RES: 2.05 Content (Content-Format :application/yang-value+cbor)

{
+2 : "2016-02-08T14:10:08209:18" / reset-finished-at (SID 60004)/

Access to MIB Data

Appendix C.5 shows a YANG module mapped from the SMI specification
"IP-MIB" [REC4293]. The following example shows the
"ipNetToPhysicalEntry" list with 2 instances, using diagnostic
notation without delta encoding.

https://datatracker.ietf.org/doc/html/rfc4293

Veillette, et al. Expires January 18, 2018 [Page 27]

Internet-Draft CoMI July 2017

{
60021 : / list ipNetToPhysicalEntry /
[
{
60022 : 1, / ipNetToPhysicalIfIndex /
60023 : 1, / ipNetToPhysicalNetAddressType /
60024 : h'GAGEOG33', / ipNetToPhysicalNetAddress /
60025 : h'0OOOOA01172D',/ ipNetToPhysicalPhysAddress /
60026 : 2333943, / ipNetToPhysicallastUpdated /
60027 : 4, / ipNetToPhysicalType /
60028 : 1, / ipNetToPhysicalState /
60029 : 1 / ipNetToPhysicalRowStatus /
3
{
60022 : 1, / ipNetToPhysicalIfIndex /
60023 : 1, / ipNetToPhysicalNetAddressType /
60024 : h'09020304', / ipNetToPhysicalNetAddress /
60025 : h'OOOOOA36200A',/ ipNetToPhysicalPhysAddress /
60026 : 2329836, / ipNetToPhysicallastUpdated /
60027 : 3, / ipNetToPhysicalType /
60028 : 6, / ipNetToPhysicalState /
60029 : 1 / ipNetToPhysicalRowStatus /
}
]
}

In this example one instance of /ip/ipNetToPhysicalEntry (SID 60021,
base64: 0z1) that matches the keys ipNetToPhysicalIfIndex = 1,
ipNetToPhysicalNetAddressType = ipv4 and ipNetToPhysicalNetAddress =
9.2.3.4 (h'09020304', base64: CQIDBA) is requested.

REQ: GET example.com/c/0z1?k="1,1,CQIDBA"

RES: 2.05 Content (Content-Format: application/yang-value+chbor)

{
+1 1, / (SID 60022) /
+2 @1, / (SID 60023) /
+3 : h'09020304', / (SID 60024) /
+4 : h'000OOA36200A", / (SID 60025) /
+5 : 2329836, / (SID 60026) /
+6 @ 3, / (SID 60027) /
+7 @ 6, / (SID 60028) /
+8 1 1 / (SID 60029) /

Veillette, et al. Expires January 18, 2018 [Page 28]

Internet-Draft CoMI July 2017

7.

|co

Use of Block

The COAP protocol provides reliability by acknowledging the UDP
datagrams. However, when large pieces of data need to be
transported, datagrams get fragmented, thus creating constraints on
the resources in the client, server and intermediate routers. The
block option [REC7959] allows the transport of the total payload in
individual blocks of which the size can be adapted to the underlying
transport sizes such as: (UDP datagram size ~64KiB, IPv6 MTU of 1280,
IEEE 802.15.4 payload of 60-80 bytes). Each block is individually
acknowledged to guarantee reliability.

Notice that the Block mechanism splits the data at fixed positions,
such that individual data fields may become fragmented. Therefore,
assembly of multiple blocks may be required to process the complete
data field.

Beware of race conditions. Blocks are filled one at a time and care
should be taken that the whole data representation is sent in
multiple blocks sequentially without interruption. On the server,
values are changed, lists are re-ordered, extended or reduced. When
these actions happen during the serialization of the contents of the
resource, the transported results do not correspond with a state
having occurred in the server; or worse the returned values are
inconsistent. For example: array length does not correspond with the
actual number of items. It may be advisable to use CBOR maps or CBOR
arrays of undefined length, which are foreseen for data streaming
purposes.

Resource Discovery

The presence and location of (path to) the management data are
discovered by sending a GET request to "/.well-known/core" including
a resource type (RT) parameter with the value "core.c.datastore"
[REC6690]. Upon success, the return payload will contain the root
resource of the management data. It is up to the implementation to
choose its root resource, the value "/c" is used as an example. The
example below shows the discovery of the presence and location of
management data.

REQ: GET /.well-known/core?rt=core.c.datastore

RES: 2.05 Content
</c>; rt="core.c.datastore"

Implemented data nodes MAY be discovered using the standard CoAP
resource discovery. The implementation can add the data node
identifiers (SID) supported to /.well-known/core with

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc6690

Veillette, et al. Expires January 18, 2018 [Page 29]

Internet-Draft CoMI July 2017

rt="core.c.datanode". The available SIDs can be discovered by
sending a GET request to "/.well-known/core" including a resource
type (rt) parameter with the value "core.c.datanode". Upon success,
the return payload will contain the registered SIDs and their
location.

The example below shows the discovery of the presence and location of
data nodes.

REQ: GET /.well-known/core?rt=core.c.datanode

RES: 2.05 Content
</c/BaAiN>; rt="core.c.datanode",
</c/CF_fA>; rt="core.c.datanode"

The list of data nodes may become prohibitively long. Therefore, it
is recommended to discover the details about the YANG modules
implemented by reading a YANG module library (e.g. "ietf-comi-yang-
library" ad defined by [I-D.veillette-core-yang-library]).

The resource "/mod.uri" is used to retrieve the location of the YANG
module library. This library can be stored locally on each server,
or remotely on a different server. The latter is advised when the
deployment of many servers are identical.

The following example shows the URI of a local instance of container
modules-state (SID=1802) as defined in
[I-D.veillette-core-yang-library].

REQ: GET example.com/mod.uri

RES: 2.05 Content (Content-Format: text/plain; charset=utf-8)
example.com/c/cK

The following example shows the URI of a remote instance of same
container.

REQ: GET example.com/mod.uri

RES: 2.05 Content (Content-Format: text/plain; charset=utf-8)
example-remote-server.com/groupl7/cK

wWithin the YANG module library all information about the module is
stored such as: module identifier, identifier hierarchy, grouping,
features and revision numbers.

Veillette, et al. Expires January 18, 2018 [Page 30]

Internet-Draft CoMI July 2017

9.

Error Handling

In case a request is received which cannot be processed properly, the
CoMI server MUST return an error message. This error message MUST
contain a CoAP 4.xx or 5.xX response code.

Errors returned by a CoMI server can be broken into two categories,
those associated to the CoAP protocol itself and those generated
during the validation of the YANG data model constrains as described
in [RFC7950] section 8.

The following list of common CoAP errors should be implemented by
CoMI servers. This list is not exhaustive, other errors defined by
CoAP and associated RFCs may be applicable.

0 Error 4.01 (Unauthorized) is returned by the CoMI server when the
CoMI client is not authorized to perform the requested action on
the targeted resource (i.e. data node, datastore, rpc, action or
event stream).

0 Error 4.02 (Bad Option) is returned by the CoMI server when one or
more COAP options are unknown or malformed.

0 Error 4.04 (Not Found) is returned by the CoMI server when the
CoMI client is requesting a non-instantiated resource (i.e. data
node, datastore, rpc, action or event stream).

0 Error 4.05 (Method Not Allowed) is returned by the CoMI server
when the CoMI client is requesting a method not supported on the
targeted resource. (e.g. GET on an rpc, PUT or POST on a data
node with "config" set to false).

0 Error 4.08 (Request Entity Incomplete) is returned by the CoMI
server if one or multiple blocks of a block transfer request is
missing, see [REC7959] for more details.

0 Error 4.13 (Request Entity Too Large) may be returned by the CoMI
server during a block transfer request, see [REC7959] for more
details.

0 Error 4.15 (Unsupported Content-Format) is returned by the CoMI
server when the Content-Format used in the request don't match
those specified in section 2.3.

CoMI server MUST also enforce the different constraints associated to
the YANG data models implemented. These constraints are described in
[REC7950] section 8. These errors are reported using the CoAP error

code 4.00 (Bad Request) and may have the following error container as

https://datatracker.ietf.org/doc/html/rfc7950#section-8
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7950#section-8

Veillette, et al. Expires January 18, 2018 [Page 31]

Internet-Draft CoMI July 2017

payload. The YANG definition and associated .sid file are available
in Appendix A and Appendix B. The error container is encoded using
delta value equal to the SID of the current schema node minus the SID
of the parent container (i.e 1024).

+--rw error!

+--rw error-tag identityref

+--rw error-app-tag? identityref

+--rw data-node-in-error? instance-identifier
+--rw error-message? string

The following error-tag and error-app-tag are defined by the ietf-
comi YANG module, these tags are implemented as YANG identity and can
be extended as needed.

0 error-tag operation-failed is returned by the CoMI server when the
operation request cannot be processed successfully.

* error-app-tag malformed-message is returned by the CoMI server
when the payload received from the CoMI client don't contain a
well-formed CBOR content as defined in [RFC7049] section 3.3 or
don't comply with the CBOR structure defined within this
document.

* error-app-tag data-not-unique is returned by the CoMI server
when the validation of the 'unique' constraint of a list or
leaf-1ist fails.

* error-app-tag too-many-elements is returned by the CoMI server
when the validation of the 'max-elements' constraint of a list
or leaf-list fails.

* error-app-tag too-few-elements is returned by the CoMI server
when the validation of the 'min-elements' constraint of a list
or leaf-list fails.

* error-app-tag must-violation is returned by the CoMI server
when the restrictions imposed by a 'must' statement are
violated.

* error-app-tag duplicate is returned by the CoMI server when a
client tries to create a duplicate list or leaf-list entry.

0 error-tag invalid-value is returned by the CoMI server when the
CoMI client tries to update or create a leaf with a value encoded
using an invalid CBOR datatype or if the 'range', 'length',
'pattern' or 'require-instance' constrain is not fulfilled.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.3

Veillette, et al. Expires January 18, 2018 [Page 32]

Internet-Draft CoMI July 2017

error-app-tag invalid-datatype is returned by the CoMI server
when CBOR encoding don't follow the rules set by or when the
value is incompatible with the YANG Built-In type. (e.g. a
value greater than 127 for an int8, undefined enumeration)

error-app-tag not-in-range is returned by the CoMI server when
the validation of the 'range' property fails.

error-app-tag invalid-length is returned by the CoMI server
when the validation of the 'length' property fails.

error-app-tag pattern-test-failed is returned by the CoMI
server when the validation of the 'pattern' property fails.

0 error-tag missing-element is returned by the CoMI server when the
operation requested by a CoMI client fail to comply with the
'mandatory' constraint defined. The 'mandatory' constraint is
enforced for leafs and choices, unless the node or any of its
ancestors have a 'when' condition or 'if-feature' expression that
evaluates to 'false'.

error-app-tag missing-key is returned by the CoMI server to
further qualify an missing-element error. This error is
returned when the CoMI client tries to create or list instance,
without all the 'key' specified or when the CoMI client tries
to delete a leaf listed as a 'key'.

error-app-tag missing-input-parameter is returned by the CoMI
server when the input parameters of an RPC or action are
incomplete.

0o error-tag unknown-element is returned by the CoMI server when the
CoMI client tries to access a data node of a YANG module not
supported, of a data node associated to an 'if-feature' expression
evaluated to 'false' or to a 'when' condition evaluated to
'false'.

0 error-tag bad-element is returned by the CoMI server when the CoMI
client tries to create data nodes for more than one case in a
choice.

0 error-tag data-missing is returned by the CoMI server when a data
node required to accept the request is not present.

*

error-app-tag instance-required is returned by the CoMI server
when a leaf of type 'instance-identifier' or 'leafref' marked
with require-instance set to 'true' refers to an instance that
does not exist.

Veillette, et al. Expires January 18, 2018 [Page 33]

Internet-Draft CoMI July 2017

11.

* error-app-tag missing-choice is returned by the CoMI server
when no nodes exist in a mandatory choice.

0 error-tag error is returned by the CoMI server when an unspecified
error has occurred.

For example, the CoMI server might return the following error.

RES: 4.00 Bad Request (Content-Format :application/yang-value+cbor)

{
+4 : 1020, / error-tag = invalid-value /
+2 : 1012, / error-app-tag = not-in-range /
+1 : 1736, / data-node-in-error = timezone-utc-offset /
+3 : "maximum value exceeded" / error-message /
}

Security Considerations

For secure network management, it is important to restrict access to
configuration variables only to authorized parties. CoOMI re-uses the
security mechanisms already available to CoAP, this includes DTLS
[REC6347] for protected access to resources, as well suitable
authentication and authorization mechanisms.

Among the security decisions that need to be made are selecting
security modes and encryption mechanisms (see [RFC7252]). This
requires a trade-off, as the NoKey mode gives no protection at all,
but is easy to implement, whereas the X.509 mode is quite secure, but
may be too complex for constrained devices.

In addition, mechanisms for authentication and authorization may need
to be selected.

CoMI avoids defining new security mechanisms as much as possible.
However, some adaptations may still be required, to cater for CoMI's
specific requirements.

IANA Considerations

11

.1. Resource Type (rt=) Link Target Attribute Values Registry

This document adds the following resource type to the "Resource Type
(rt=) Link Target Attribute Values", within the "Constrained RESTful
Environments (CoRE) Parameters" registry.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252

Veillette, et al. Expires January 18, 2018 [Page 34]

Internet-Draft CoMI July 2017

S o e e oo - R +
| Value | Description | Reference |
Fom e e e e ooooooo-- B Fomm e e oo o +
| core.c.datastore | YANG datastore | RFC XXXX |
I I I I
| core.c.datanode | YANG data node | RFC XXXX |
I I I I
| core.c.liburi | YANG module library | RFC XXXX |
I I I I
| core.c.eventstream | YANG event stream | RFC XXXX |
B B Fomm e e oo +

// RFC Ed.: replace RFC XXXX with this RFC number and remove this

11.2. CoOAP Content-Formats Registry

This document adds the following Content-Format to the "CoAP Content-
Formats", within the "Constrained RESTful Environments (CoRE)
Parameters" registry.

B T SRR —— S TR - +
| Media Type | Excoding ID | Reference |
e e e e e e e e e oo S Y +
| application/yang-value+cbor | XXX | RFC XXXX |
I I I I
| application/yang-values+cbor | XXX | RFC XXXX |
I I I I
| application/yang-selectors+cbor | XXX | RFC XXXX |
I I I I
| application/yang-tree+cbor | XXX | RFC XXXX |
I I I I
| application/yang-ipatch+cbor | XXX | RFC XXXX |
Fomm e e e e e e e mem o= Fomm e e e - Fommm e +

// RFC Ed.: replace XXX with assigned IDs and remove this note. //
RFC Ed.: replace RFC XXXX with this RFC number and remove this note.

11.3. Media Types Registry

This document adds the following media types to the "Media Types"
registry.

Veillette, et al. Expires January 18, 2018 [Page 35]

Internet-Draft CoMI
o e oo oo e e e e e e oo - -
| Name | Template
B oo e e oo

yang-value+cbor
yang-values+cbor
yang-selectors+chor
yang-tree+cbor

yang-ipatch+cbor

application/yang-value+cbor
application/yang-values+cbor
application/yang-selectors+chor

application/yang-tree+chor

application/yang-ipatch+cbor

July 2017

RFC XXXX

RFC XXXX

RFC XXXX

RFC XXXX

RFC XXXX

Each of these media types share the following information:

o

Subtype name: <as listed in table>
Required parameters: N/A
Optional parameters: N/A

Encoding considerations: binary

Security considerations: See the Security Considerations section

of RFC XXXX

Interoperability considerations: N/A
Published specification: RFC XXXX
Applications that use this media type: CoMI
Fragment identifier considerations: N/A
Additional information:

Deprecated alias names for this type: N/A
Magic number(s): N/A

File extension(s): N/A

Macintosh file type code(s): N/A

Person & email address to contact for further information:

iesg&ietf.org

Veillette, et al. Expires January 18, 2018 [Page 36]

Internet-Draft CoMI July 2017

11.

o Intended usage: COMMON

0 Restrictions on usage: N/A

0 Author: Michel Veillette, ietf&augustcellars.com
o Change Controller: IESG

0 Provisional registration? No

// RFC Ed.: replace RFC XXXX with this RFC number and remove this
note.

4. Concise Binary Object Representation (CBOR) Tags Registry

This document adds the following tags to the "Concise Binary Object
Representation (CBOR) Tags" registry.

L pe—— S SRR - SRR —— S TR - +
| Tag | Data Item | Semantics | Reference |
[ep— SRS S Y +
| xxx | array | Oedered map | RFC XXXX |
Fomm o o m e o - o m e e e o Fom e e +

// RFC Ed.: replace xxx by the assigned Tag and remove this note. //
RFC Ed.: replace RFC XXXX with this RFC number and remove this note.

Acknowledgements

We are very grateful to Bert Greevenbosch who was one of the original
authors of the CoMI specification and specified CBOR encoding and use
of hashes.

Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs
transported under SNMP. Carsten Bormann has given feedback on the
use of CBOR.

Timothy Carey has provided the text for Appendix D.

The draft has benefited from comments (alphabetical order) by Rodney
Cummings, Dee Denteneer, Esko Dijk, Michael van Hartskamp, Tanguy
Ropitault, Juergen Schoenwaelder, Anuj Sehgal, Zach Shelby, Hannes
Tschofenig, Michael Verschoor, and Thomas Watteyne.

Veillette, et al. Expires January 18, 2018 [Page 37]

Internet-Draft CoMI July 2017

13.

13.

References
1. Normative References

[I-D.ietf-core-sid]
Veillette, M., Pelov, A., Turner, R., Minaburo, A., and A.
Somaraju, "YANG Schema Item iDentifier (SID)", draft-ietf-
core-sid-01 (work in progress), May 2017.

[I-D.ietf-core-yang-chor]
Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
Minaburo, "CBOR Encoding of Data Modeled with YANG",
draft-ietf-core-yang-cbor-04 (work in progress), February
2017.

[I-D.veillette-core-yang-library]
Veillette, M., "Constrained YANG Module Library", draft-
veillette-core-yang-library-00 (work in progress), January
2017.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<http://www.rfc-editor.org/info/rfc4648>.

[RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
Notifications", REC 5277, DOI 10.17487/RFC5277, July 2008,
<http://www.rfc-editor.org/info/rfc5277>.

[RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
NETCONF", REC 6243, DOI 10.17487/RFC6243, June 2011,
<http://www.rfc-editor.org/info/rfc6243>.

[RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
Representation (CBOR)'", REC 7049, DOI 10.17487/RFC7049,
October 2013, <http://www.rfc-editor.org/info/rfc7049>.

[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", REC 7252,
DOI 10.17487/RFC7252, June 2014,
<http://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-sid-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-sid-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-yang-cbor-04
https://datatracker.ietf.org/doc/html/draft-veillette-core-yang-library-00
https://datatracker.ietf.org/doc/html/draft-veillette-core-yang-library-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5277
http://www.rfc-editor.org/info/rfc5277
https://datatracker.ietf.org/doc/html/rfc6243
http://www.rfc-editor.org/info/rfc6243
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252

Veillette, et al. Expires January 18, 2018 [Page 38]

Internet-Draft CoMI July 2017

[RFC7641] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,
DOI 10.17487/RFC7641, September 2015,
<http://www.rfc-editor.org/info/rfc7641>.

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
REC 7950, DOI 10.17487/RFC7950, August 2016,
<http://www.rfc-editor.org/info/rfc7950>,

[RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DOI 10.17487/RFC7959, August 2016,
<http://www.rfc-editor.org/info/rfc7959>.

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<http://www.rfc-editor.org/info/rfc8040>.

[RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
FETCH Methods for the Constrained Application Protocol
(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
<http://www.rfc-editor.org/info/rfc8132>.

13.2. Informative References

[I-D.ietf-core-interfaces]
Shelby, z., vial, M., Koster, M., and C. Groves, "Reusable
Interface Definitions for Constrained RESTful
Environments", draft-ietf-core-interfaces-09 (work in
progress), March 2017.

[netconfcentral]
YUMAworks, "NETCONF Central: library of YANG modules",
Web http://www.netconfcentral.org/modulelist.

[RFC4293] Routhier, S., Ed., "Management Information Base for the
Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
April 2006, <http://www.rfc-editor.org/info/rfc4293>.

[RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
January 2012, <http://www.rfc-editor.org/info/rfc6347>.

[RFC6690] Shelby, Z., "Constrained RESTful Environments (CoORE) Link
Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
<http://www.rfc-editor.org/info/rfc6690>.

https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7950
http://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc8040
http://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/html/rfc8132
http://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/draft-ietf-core-interfaces-09
http://www.netconfcentral.org/modulelist
https://datatracker.ietf.org/doc/html/rfc4293
http://www.rfc-editor.org/info/rfc4293
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690

Veillette, et al. Expires January 18, 2018 [Page 39]

Internet-Draft CoMI

July 2017

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <http://www.rfc-editor.org/info/rfc7159>.

[RFC7223] Bjorklund, M., "A YANG Data Model for Interface
Management'", RFC 7223, DOI 10.17487/RFC7223, May 2014,

<http://www.rfc-editor.org/info/rfc7223>.

[RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
System Management", RFC 7317, DOI 10.17487/RFC7317, August
2014, <http://www.rfc-editor.org/info/rfc7317>.

[XML] W3C, "Extensible Markup Language (XML)",
Web http://www.w3.org/xml.

[yang-cbor]
Veillette, M., "yang-cbor Registry", Web
https://github.com/core-wg/yang-
cbor/tree/master/registry/.

Appendix A. ietf-comi YANG module

<CODE BEGINS> file "ietf-comi@2017-07-01.yang"
module ietf-comi {
yang-version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf-comi";
prefix comi;

organization
"IETF Core Working Group";

contact
"Michel Veillette
<mailto:michel.veillette@trilliantinc.com>

Alexander Pelov
<mailto:alexander@ackl.io>

Peter van der Stok
<mailto:consultancy@vanderstok.org>

Andy Bierman
<mailto:andy@yumaworks.com>";

description
"This module contains the different definitions
by the CoMI protocol.";

required

https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7223
http://www.rfc-editor.org/info/rfc7223
https://datatracker.ietf.org/doc/html/rfc7317
http://www.rfc-editor.org/info/rfc7317
http://www.w3.org/xml
https://github.com/core-wg/yang-cbor/tree/master/registry/
https://github.com/core-wg/yang-cbor/tree/master/registry/

Veillette, et al. Expires January 18, 2018 [Page 40]

Internet-Draft CoMI July 2017

revision 2017-07-01 {
description
"Initial revision.";
reference
"draft-ietf-core-comi";

3

identity error-tag {
description
"Base identity for error-tag.";

identity operation-failed {
base error-tag;
description
"Returned by the CoMI server when the operation request
can't be processed successfully.";

identity invalid-value {

base error-tag;

description
"Returned by the CoMI server when the CoMI client tries to
update or create a leaf with a value encoded using an
invalid CBOR datatype or if the 'range', 'length',
'pattern' or 'require-instance' constrain is not
fulfilled.";

}

identity missing-element {

base error-tag;

description
"Returned by the CoMI server when the operation requested
by a CoMI client fails to comply with the 'mandatory'
constraint defined. The 'mandatory' constraint is
enforced for leafs and choices, unless the node or any of
its ancestors have a 'when' condition or 'if-feature'
expression that evaluates to 'false'.";

identity unknown-element {

base error-tag;

description
"Returned by the CoMI server when the CoMI client tries to
access a data node of a YANG module not supported, of a
data node associated with an 'if-feature' expression
evaluated to 'false' or to a 'when' condition evaluated
to 'false'.";

https://datatracker.ietf.org/doc/html/draft-ietf-core-comi

Veillette, et al. Expires January 18, 2018 [Page 41]

Internet-Draft CoMI July 2017

}

identity bad-element {
base error-tag;
description
"Returned by the CoMI server when the CoMI client tries to
create data nodes for more than one case in a choice.";

}

identity data-missing {
base error-tag;
description
"Returned by the CoMI server when a data node required to
accept the request is not present.";

}

identity error {
base error-tag;
description
"Returned by the CoMI server when an unspecified error has
occurred.";

}

identity error-app-tag {
description
"Base identity for error-app-tag.";

identity malformed-message {

base error-app-tag;

description
"Returned by the CoMI server when the payload received
from the CoMI client don't contain a well-formed CBOR
content as defined in [RFC7049] section 3.3 or don't
comply with the CBOR structure defined within this
document.";

}

identity data-not-unique {
base error-app-tag;
description
"Returned by the CoMI server when the validation of the
'unique' constraint of a list or leaf-list fails.";

3

identity too-many-elements {
base error-app-tag;

https://datatracker.ietf.org/doc/html/rfc7049#section-3.3

Veillette, et al. Expires January 18, 2018 [Page 42]

Internet-Draft CoMI July 2017

description
"Returned by the CoMI server when the validation of the
'max-elements' constraint of a list or leaf-list fails.";

}

identity too-few-elements {
base error-app-tag;
description
"Returned by the CoMI server when the validation of the
'min-elements' constraint of a list or leaf-list fails.";

}

identity must-violation {
base error-app-tag;
description
"Returned by the CoMI server when the restrictions
imposed by a 'must' statement are violated.";

}

identity duplicate {
base error-app-tag;
description
"Returned by the CoMI server when a client tries to create
a duplicate list or leaf-list entry.";

}

identity invalid-datatype {
base error-app-tag;
description
"Returned by the CoMI server when CBOR encoding is
incorect or when the value encoded is incompatible with
the YANG Built-In type. (e.g. value greater than 127
for an int8, undefined enumeration).";

}

identity not-in-range {
base error-app-tag;
description
"Returned by the CoMI server when the validation of the
'range' property fails.";

}

identity invalid-length {
base error-app-tag;
description
"Returned by the CoMI server when the validation of the
"length' property fails.";

Veillette, et al. Expires January 18, 2018 [Page 43]

Internet-Draft CoMI July 2017

identity pattern-test-failed {
base error-app-tag;
description
"Returned by the CoMI server when the validation of the
'pattern' property fails.";

3

identity missing-key {

base error-app-tag;

description
"Returned by the CoMI server to further qualify a
missing-element error. This error is returned when the
CoMI client tries to create or list instance, without all
the 'key' specified or when the CoMI client tries to
delete a leaf listed as a 'key'.";

}

identity missing-input-parameter {
base error-app-tag;
description
"Returned by the CoMI server when the input parameters
of a RPC or action are incomplete.";

}

identity instance-required {
base error-app-tag;
description
"Returned by the CoMI server when a leaf of type
'"instance-identifier' or 'leafref' marked with
require-instance set to 'true' refers to an instance
that does not exist.";

}

identity missing-choice {
base error-app-tag;
description
"Returned by the CoMI server when no nodes exist in a
mandatory choice.";

}

container error {
presence "Error paylaod";

description
"Optional payload of a 4.00 Bad Request COAP error.";

leaf error-tag {
type identityref {

Veillette, et al. Expires January 18, 2018 [Page 44]

Internet-Draft CoMI July 2017

b
b

base error-tag;
}
mandatory true;
description
"The enumerated error-tag.";

}

leaf error-app-tag {
type identityref {
base error-app-tag;
3
description
"The application-specific error-tag.";

3

leaf data-node-in-error {
type instance-identifier;
description
"When the error reported is caused by a specific data node,
this leaf identifies the data node in error.";

}

leaf error-message {
type string;
description
"A message describing the error.";

}

<CODE ENDS>

Appendix B. ietf-comi .sid file

{
"assignment-ranges": [
{
"entry-point": 1000,
"size": 100
3
1
"module-name": "ietf-comi",
"module-revision": "2017-07-01",
"items": [
{
"type": "Module",
"label": "ietf-comi",
"sid": 1000

3

Veillette, et al. Expires January 18, 2018 [Page 45]

Internet-

Draft CoMI July

"type": "identity",
"label": "/error-app-tag",
"sid": 1001

"type": "identity",
"label": "/error-app-tag/data-not-unique",
"sid": 1002

"type": "identity",
"label": "/error-app-tag/duplicate",
"sid": 1003

"type": "identity",
"label": "/error-app-tag/instance-required",
"sid": 1004

"type": "identity",
"label": "/error-app-tag/invalid-datatype",
"sid": 1005

"type": "identity",
"label": "/error-app-tag/invalid-length",
"sid": 1006

"type": "identity",
"label": "/error-app-tag/malformed-message",
"sid": 1007

"type": "identity",
"label": "/error-app-tag/missing-choice",
"sid": 1008

"type": "identity",
"label": "/error-app-tag/missing-input-parameter",
"sid": 1009

"type": "identity",
"label": "/error-app-tag/missing-key",

2017

Veillette, et al. Expires January 18, 2018 [Page 46]

Internet-

Draft CoMI July

"sid": 1010

"type": "identity",
"label": "/error-app-tag/must-violation",
"sid": 1011

"type": "identity",
"label": "/error-app-tag/not-in-range",
"sid": 1012

"type": "identity",
"label": "/error-app-tag/pattern-test-failed",
"sid": 1013

"type": "identity",
"label": "/error-app-tag/too-few-elements",
"sid": 1014

"type": "identity",
"label": "/error-app-tag/too-many-elements",
"sid": 1015

"type": "identity",
"label": "/error-tag",
"sid": 1016

"type": "identity",
"label": "/error-tag/bad-element",
"sid": 1017

"type": "identity",
"label": "/error-tag/data-missing",
"sid": 1018

"type": "identity",
"label": "/error-tag/error",
"sid": 1019

2017

Veillette, et al. Expires January 18, 2018 [Page 47]

Internet-Draft CoMI July 2017

"type": "identity",

"label": "/error-tag/invalid-value",
"sid": 1020
3
{
"type": "identity",
"label": "/error-tag/missing-element",
"sid": 1021
}/
{
"type": "identity",
"label": "/error-tag/operation-failed",
"sid": 1022
3
{
"type": "identity",
"label": "/error-tag/unknown-element",
"sid": 1023
3
{
"type": "node",
"label": "/error",
"sid": 1024
}/
{
"type": "node",
"label": "/error/data-node-in-error",
"sid": 1025
3
{
"type": "node",
"label": "/error/error-app-tag",
"sid": 1026
3
{
"type": "node",
"label": "/error/error-message",
"sid": 1027
}/
{
"type": "node",
"label": "/error/error-tag",
"sid": 1028
}

Veillette, et al. Expires January 18, 2018 [Page 48]

Int

Appendix C.

ernet-Draft

CoMI

YANG example specifications

July 2017

This appendix shows five YANG example specifications taken over from

as many existing YANG modules.
[netconfcentral].

SID shown after the "//" comment sign.

ietf-system

Excerpt of the YANG module ietf-system [RFC7317].

module ietf-system {
container system {
container clock {
choice timezone {
case timezone-name {
leaf timezone-name {
type timezone-name;

}
}

case timezone-utc-offset {
leaf timezone-utc-offset {
type int16 {

container ntp {
leaf enabled {
type boolean;
default true;

}

list server {
key name;
leaf name {
type string;

}

choice transport {
case udp {
container udp {
leaf address {

3

}

type inet:host;

leaf port {

}

type inet:port-number;

//
//
//

//

//

//
//

//

//

//
//

//

SID
SID
SID

SID

SID

SID
SID

SID

SID

SID
SID

SID

1700
1715
1734

1735

1736

1750
1751

1752

1755

1757
1758

1759

The YANG modules are available from
Each YANG item identifier is accompanied by its

https://datatracker.ietf.org/doc/html/rfc7317

Veillette, et al. Expires January 18, 2018 [Page 49]

Internet-Draft CoMI

3
b

leaf association-type {
type enumeration {
enum server {

}

enum peer {

}
enum pool {
}

}

}
leaf iburst {

type boolean;

}

leaf prefer {
type boolean;
default false;

}

}
}

container system-state {
container clock {
leaf current-datetime {
type yang:date-and-time;
}
leaf boot-datetime {
type yang:date-and-time;
}
}
}
}

C.2. server list

// SID 1753

//

//

//
//
//

//

Taken over from [RFC7950] section 7.15.3.

SID

SID

SID
SID
SID

SID

1754

1756

1716
1717
1719

1718

July 2017

https://datatracker.ietf.org/doc/html/rfc7950#section-7.15.3

Veillette, et al. Expires January 18, 2018 [Page 50]

Internet-Draft CoMI

module example-server-farm {
yang-version 1.1;
namespace "urn:example:server-farm";
prefix "sfarm";

import ietf-yang-types {
prefix "yang";

}

list server {
key name;
leaf name {
type string;
}
action reset {
input {
leaf reset-at {
type yang:date-and-time;
mandatory true;
}
}
output {
leaf reset-finished-at {
type yang:date-and-time;
mandatory true;

C.3. interfaces

Excerpt of the YANG module ietf-interfaces [REC7223].

//

//

//

//

SID

SID

SID

SID

SID

60000

60001

60002

60003

60004

July 2017

https://datatracker.ietf.org/doc/html/rfc7223

Veillette, et al. Expires January 18, 2018 [Page 51]

Internet-Draft

module ietf-interfaces {
container interfaces {
list interface {
key "name";
leaf name {
type string;
}
leaf description {
type string;
}
leaf type {
type identityref {

base interface-type;

}

mandatory true;

}

leaf enabled {
type boolean;
default "true";

}

leaf link-up-down-trap-enable {

if-feature if-mib;
type enumeration {
enum enabled {
value 1;
}
enum disabled {
value 2;

C.4. Example-port

CoMI

//

//

//

//

//

//

//

SID

SID

SID

SID

SID

SID

SID

SID

1500

1505

1533

1537

1534

1538

1535

1536

Notification example defined within this document.

July 2017

Veillette, et al. Expires January 18, 2018 [Page 52]

Internet-Draft CoMI July 2017

module example-port {

notification example-port-fault { // SID 60010
description
"Event generated if a hardware fault on a
line card port is detected";
leaf port-name { // SID 60011
type string;
description "Port name";
}
leaf port-fault { // SID 60012
type string;
description "Error condition detected";
}
}
}

C.5. IP-MIB

The YANG translation of the SMI specifying the IP-MIB [RFC4293],
extended with example SID numbers, yields:

module IP-MIB {

import IF-MIB {
prefix if-mib;

}

import INET-ADDRESS-MIB {
prefix inet-address;

}

import SNMPv2-TC {
prefix smiv2;

}

import ietf-inet-types {
prefix inet;

}

import yang-smi {
prefix smi;

}

import ietf-yang-types {
prefix yang;

}

container ip { // SID 60020
list ipNetToPhysicalEntry { // SID 60021
key "ipNetToPhysicalIfIndex
ipNetToPhysicalNetAddressType
ipNetToPhysicalNetAddress";
leaf ipNetToPhysicalIfIndex { // SID 60022

https://datatracker.ietf.org/doc/html/rfc4293

Veillette, et al. Expires January 18, 2018 [Page 53]

Internet-Draft CoMI July 2017

type if-mib:InterfaceIndex;

}
leaf ipNetToPhysicalNetAddressType { // SID 60023

type inet-address:InetAddressType;

}

leaf ipNetToPhysicalNetAddress { // SID 60024
type inet-address:InetAddress;

}

leaf ipNetToPhysicalPhysAddress { // SID 60025

type yang:phys-address {
length "0©..65535";

}

3

leaf ipNetToPhysicallLastUpdated { // SID 60026
type yang:timestamp;

3

leaf ipNetToPhysicalType { // SID 60027

type enumeration {
enum "other" {
value 1;
}
enum "invalid" {
value 2;
}
enum "dynamic" {
value 3;
3
enum "static" {
value 4;
3
enum "local" {
value 5;
3
}

}
leaf ipNetToPhysicalState { // SID 60028

type enumeration {
enum "reachable" {

value 1;

}

enum "stale" {
value 2;

}

enum "delay" {
value 3;

}

enum "probe" {
value 4;

Veillette, et al. Expires January 18, 2018 [Page 54]

Internet-Draft CoMI July 2017

}
enum "invalid" {
value 5;
}
enum "unknown" {
value 6;
}
enum "incomplete" {
value 7;
}
}
}
leaf ipNetToPhysicalRowStatus { // SID 60029

type smiv2:RowStatus;
} // list ipNetToPhysicalEntry
} // container ip
} // module IP-MIB

Appendix D. Comparison with LWM2M

TO DO Need updated text based on the current version of CoMI.
Multiple assumptions used in the original text are no more valid.

Authors' Addresses

Michel Veillette (editor)
Trilliant Networks Inc.
610 Rue du Luxembourg
Granby, Quebec J2J 2V2
Canada

Email: michel.veillette@trilliantinc.com
Peter van der Stok (editor)
consultant

Phone: +31-492474673 (Netherlands), +33-966015248 (France)
Email: consultancy@vanderstok.org
URI: www.vanderstok.org

Veillette, et al. Expires January 18, 2018 [Page 55]

Internet-Draft CoMI July 2017

Alexander Pelov

Acklio

2bis rue de la Chataigneraie
Cesson-Sevigne, Bretagne 35510
France

Email: a@ackl.io

Andy Bierman

Yumaworks

685 Cochran St.

Suite #160

Simi Valley, CA 93065
USA

Email: andy@yumaworks.com

Veillette, et al. Expires January 18, 2018 [Page 56]

