
Workgroup: CoRE

Internet-Draft: draft-ietf-core-comi-17

Published: 4 March 2024

Intended Status: Standards Track

Expires: 5 September 2024

Authors: M. V. Veillette, Ed.

Trilliant Networks Inc.

P. van der Stok, Ed.

consultant

A. Pelov, Ed.

IMT Atlantique

A. Bierman

YumaWorks

C. Bormann, Ed.

Universität Bremen TZI

CoAP Management Interface (CORECONF)

Abstract

This document describes a network management interface for

constrained devices and networks, called CoAP Management Interface

(CORECONF). The Constrained Application Protocol (CoAP) is used to

access datastore and data node resources specified in YANG, or SMIv2

converted to YANG. CORECONF uses the YANG to CBOR mapping and

converts YANG identifier strings to numeric identifiers for payload

size reduction. CORECONF extends the set of YANG based protocols,

NETCONF and RESTCONF, with the capability to manage constrained

devices and networks.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://core-

wg.github.io/comi/draft-ietf-core-comi.html. Status information for

this document may be found at https://datatracker.ietf.org/doc/

draft-ietf-core-comi/.

Discussion of this document takes place on the core Working Group

mailing list (mailto:core@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/core/. Subscribe at https://

www.ietf.org/mailman/listinfo/core/.

Source for this draft and an issue tracker can be found at https://

github.com/core-wg/comi.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

https://core-wg.github.io/comi/draft-ietf-core-comi.html
https://core-wg.github.io/comi/draft-ietf-core-comi.html
https://datatracker.ietf.org/doc/draft-ietf-core-comi/
https://datatracker.ietf.org/doc/draft-ietf-core-comi/
mailto:core@ietf.org
https://mailarchive.ietf.org/arch/browse/core/
https://mailarchive.ietf.org/arch/browse/core/
https://www.ietf.org/mailman/listinfo/core/
https://www.ietf.org/mailman/listinfo/core/
https://github.com/core-wg/comi
https://github.com/core-wg/comi
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Example syntax

2. CORECONF Architecture

2.1. Major differences between RESTCONF and CORECONF

2.1.1. Differences due to CoAP and its efficient usage

2.1.2. Differences due to the use of CBOR

2.2. Compression of YANG identifiers

2.2.1. Instance-identifiers

2.3. Media-Types

2.4. Unified datastore

3. CoAP Interface

3.1. Data Retrieval

3.1.1. Using the 'c' query parameter

3.1.2. Using the 'd' query parameter

3.1.3. FETCH

3.2. Data Editing

3.2.1. Data Ordering

3.2.2. POST

3.2.3. iPATCH

3.3. Full datastore access

3.3.1. Full datastore examples

3.4. Event stream

3.4.1. Filtering Notifications

3.4.2. Notify Examples

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.5. RPC and Action statements

3.5.1. RPC Example

3.5.2. Action Example

4. Use of Block-wise Transfers

5. Application Discovery

5.1. YANG library

5.2. Resource Discovery

5.2.1. Datastore Resource Discovery

5.2.2. Data node Resource Discovery

5.2.3. Event stream Resource Discovery

6. Error Handling

7. Security Considerations

8. IANA Considerations

8.1. Resource Type (rt=) Link Target Attribute Values Registry

8.2. CoAP Content-Formats Registry

8.3. Media Types Registry

8.4. YANG Namespace and Module Name Registration

9. References

9.1. Normative References

9.2. Informative References

Appendix A. ietf-coreconf YANG module

Appendix B. ietf-coreconf .sid file

Acknowledgments

Contributors

Authors' Addresses

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] is designed

for Machine to Machine (M2M) applications such as smart energy,

smart city, and building control. Constrained devices need to be

managed in an automatic fashion to handle the large quantities of

devices that are expected in future installations. Messages between

devices need to be as small and infrequent as possible. The

implementation complexity and runtime resources need to be as small

as possible.

This specification describes the CoAP Management Interface

(CORECONF) which uses CoAP methods to access structured data defined

in YANG [RFC7950]. This specification is complementary to [RFC8040]

which describes a REST-like interface called RESTCONF, which uses

HTTP methods to access structured data defined in YANG.

The use of standardized data models specified in a standardized

language, such as YANG, promotes interoperability between devices

and applications from different manufacturers.

¶

¶

¶

data node resource:

datastore resource:

event stream resource:

notification instance:

list instance identifier:

single instance identifier:

CORECONF and RESTCONF are intended to work in a stateless client-

server fashion. They use a single round-trip to complete a single

editing transaction, where NETCONF needs multiple round trips.

To promote small messages, CORECONF uses a YANG to CBOR mapping

[RFC9254] and numeric identifiers [I-D.ietf-core-sid] to minimize

CBOR payloads and URI length.

1.1. Terminology

The following terms are defined in the YANG data modeling language

[RFC7950]: action, anydata, anyxml, client, container, data model,

data node, identity, instance identifier, leaf, leaf-list, list,

module, RPC, schema node, server, submodule.

The following terms are defined in [RFC6241]: configuration data,

datastore, state data.

The following term is defined in [I-D.ietf-core-sid]: YANG schema

item identifier (YANG SID, often shortened to simply SID).

The following terms are defined in the CoAP protocol [RFC7252]:

Confirmable Message, Content-Format, Endpoint.

The following terms are defined in this document:

a CoAP resource that models a YANG data node.

a CoAP resource that models a YANG datastore.

a CoAP resource used by clients to observe

YANG notifications.

An instance of a schema node of type

notification, specified in a YANG module implemented by the

server. The instance is generated in the server at the occurrence

of the corresponding event and reported by an event stream

resource.

Handle used to identify a YANG data node

that is an instance of a YANG "list", specified with the values

of the key leaves of the list.

Handle used to identify a specific data

node which can be instantiated only once. This includes data

nodes defined at the root of a YANG module and data nodes defined

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

instance-identifier:

instance-value:

within a container. This excludes data nodes defined within a

list or any children of these data nodes.

List instance identifier or single instance

identifier.

The value assigned to a data node instance.

Instance-values are serialized into the payload according to the

rules defined in Section 4 of [RFC9254]. In a yang-instances data

item, the reference SID applying to the instance-value is

provided by the SID in the corresponding instance-identifier.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Example syntax

CBOR is used to encode CORECONF request and response payloads. The

CBOR syntax of the YANG payloads is specified in [RFC9254], based

on [RFC8949] and [RFC8742]. The payload examples are notated in

Diagnostic notation (defined in Section 8 of [RFC8949] and

Appendix G of [RFC8610]), which can be automatically converted to

CBOR.

2. CORECONF Architecture

This section describes the CORECONF architecture to use CoAP for

reading and modifying the content of datastore(s) used for the

management of the instrumented node.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9254#section-4
https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

(1) YANG specification:

(2) SMIv2 specification:

(3) CoAP request/response messages:

(4) Request, Indication, Response, Confirm:

(5) Datastore:

SMIv2 specification (optional) (2)

YANG specification (1)

Client Server

Request CoAP request(3) Indication
Confirm CoAP response(3) Response (4)

Security (7)
Datastore(s) (5)

Event stream(s) (6)

Figure 1: Abstract CORECONF architecture

Figure 1 is a high-level representation of the main elements of the

CORECONF management architecture. The different numbered components

of Figure 1 are discussed according to the component number.

contains a set of named and versioned

modules.

Optional part that consists of a named

module which, specifies a set of variables and "conceptual

tables". There is an algorithm to translate SMIv2 specifications

to YANG specifications.

The CORECONF client sends

request messages to and receives response messages from the

CORECONF server.

Processes performed by

the CORECONF clients and servers.

A resource used to access configuration data, state

data, RPCs, and actions. A CORECONF server supports a single

unified datastore. Multiple datastores, for instance as those

¶

¶

¶

¶

¶

¶

(6) Event stream:

(7) Security:

defined by Network Management Datastore Architecture (NMDA)

[RFC8342], are out of scope of this specification.

A resource used to get real-time notifications. A

CORECONF server may support multiple Event streams serving

different purposes such as normal monitoring, diagnostic, syslog,

security monitoring.

The server MUST prevent unauthorized users from

reading or writing any CORECONF resources. CORECONF relies on

security protocols such as DTLS [RFC6347][RFC9147] or OSCORE

[RFC8613] to secure CoAP communications.

2.1. Major differences between RESTCONF and CORECONF

CORECONF is a RESTful protocol for small devices where saving bytes

to transport a message is very important. Contrary to RESTCONF, many

design decisions are motivated by the saving of bytes. Consequently,

CORECONF is not a RESTCONF over CoAP protocol, but differs more

significantly from RESTCONF.

2.1.1. Differences due to CoAP and its efficient usage

CORECONF uses CoAP/UDP as transport protocol and CBOR as payload

format [RFC9254]. RESTCONF uses HTTP/TCP as transport protocol

and JSON or XML as payload formats.

CORECONF uses the methods FETCH and iPATCH to access data nodes.

RESTCONF uses instead the HTTP method PATCH and the HTTP method

GET with the "fields" Query parameter.

RESTCONF uses the HTTP methods HEAD, and OPTIONS, which are not

supported by CoAP.

CORECONF does not support "insert" query parameter (first, last,

before, after) and the "point" query parameter which are

supported by RESTCONF.

CORECONF does not support the "start-time" and "stop-time" query

parameters to retrieve past notifications.

2.1.2. Differences due to the use of CBOR

CORECONF encodes YANG identifier strings as numbers, where

RESTCONF does not.

CORECONF also differs in the handling of default values, only

'report-all' and 'trim' options are supported.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

application/yang-identifiers+cbor-seq:

application/yang-instances+cbor-seq:

2.2. Compression of YANG identifiers

In the YANG specification, items are identified with a name string.

In order to significantly reduce the size of identifiers used in

CORECONF, numeric identifiers called YANG Schema Item iDentifier

(YANG SID or simply SID) are used instead.

2.2.1. Instance-identifiers

Instance-identifiers are used to uniquely identify data node

instances within a datastore. This YANG built-in type is defined in

Section 9.13 of [RFC7950]. An instance-identifier is composed of the

data node identifier (i.e., a SID) and, for data nodes within

list(s), the keys used to index within these list(s).

In CORECONF, instance-identifiers are carried in the payload of

FETCH and PATCH requests. They are encoded in CBOR based on the

rules defined in Section 6.13.1 of [RFC9254].

2.3. Media-Types

CORECONF uses Media-Types based on the YANG to CBOR mapping

specified in [RFC9254].

The following new Media-Types based on CBOR sequences [RFC8742] are

defined in this document:

This Media-Type represents a

CBOR YANG document containing a list of instance-identifiers used

to target specific data node instances within a datastore.

FORMAT: CBOR sequence of instance-identifiers

The message payload of Media-Type 'application/yang-

identifiers+cbor-seq' is encoded using a CBOR sequence. Each item

of this CBOR sequence contains an instance-identifier encoded as

defined in Section 6.13.1 of [RFC9254].

This Media-Type represents a

CBOR YANG document containing a list of data node instances. Each

data node instance is identified by its associated instance-

identifier.

FORMAT: CBOR sequence of CBOR maps of instance-identifier,

instance-value

The message payload of Media-Type 'application/yang-

instances+cbor-seq' is encoded using a CBOR sequence. Each item

within this CBOR sequence contains a CBOR map carrying an

instance-identifier and associated instance-value. Instance-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-9.13
https://rfc-editor.org/rfc/rfc9254#section-6.13.1
https://rfc-editor.org/rfc/rfc9254#section-6.13.1

identifiers are encoded using the rules defined in Section 6.13.1

of [RFC9254], instance-values are encoded using the rules defined

in Section 4 of [RFC9254]. The reference SID applying to the

instance-value is provided by the SID in the instance-identifier.

When present in an iPATCH request payload, this Media-Type carry

a list of data node instances to be replaced, created, or

deleted. For each data node instance D, for which the instance-

identifier is the same as a data node instance I, in the targeted

datastore resource: the value of D replaces the value of I. When

the value of D is null, the data node instance I is removed. When

the targeted datastore resource does not contain a data node

instance with the same instance-identifier as D, a new instance

is created with the same instance-identifier and value as D

(unless the value of D is null).

The different Media-Type usages are summarized in the table below:

Method Resource Media-Type

FETCH request datastore
application/yang-identifiers+cbor-

seq

FETCH

response
datastore application/yang-instances+cbor-seq

iPATCH

request
datastore application/yang-instances+cbor-seq

GET response
event

stream
application/yang-instances+cbor-seq

POST request rpc, action application/yang-instances+cbor-seq

POST response rpc, action application/yang-instances+cbor-seq

Table 1: Summary of Media-Type Usages

2.4. Unified datastore

CORECONF supports a simple datastore model consisting of a single

unified datastore. This datastore provides access to both

configuration and operational data. Configuration updates performed

on this datastore are reflected immediately or with a minimal delay

as operational data.

More complex datastore models such as the Network Management

Datastore Architecture (NMDA) as defined by [RFC8342] are out of

scope of the present specification.

Characteristics of the unified datastore are summarized in the table

below:

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9254#section-6.13.1
https://rfc-editor.org/rfc/rfc9254#section-4

Name Value

Name unified

YANG

modules
all modules

YANG nodes all data nodes ("config true" and "config false")

Access read-write

How applied
changes applied in place immediately or with a

minimal delay

Protocols CORECONF

Defined in "ietf-coreconf"

Table 2: Characteristics of the Unified Datastore

3. CoAP Interface

This document specifies a Management Interface. CoAP endpoints that

implement the CORECONF management protocol, support at least one

discoverable management resource of resource type (rt): core.c.ds.

The path of the discoverable management resource is left to

implementers to select (see Section 5).

YANG data node instances are accessible by performing FETCH and

iPATCH operations on the datastore resource.

CORECONF also supports event stream resources used to observe

notification instances. Event stream resources can be discovered

using resource type (rt): core.c.ev.

The description of the CORECONF management interface is shown in the

table below:

CoAP resource Example path rt

Datastore resource /c core.c.ds

Default event stream resource /s core.c.ev

Table 3: Resources, example paths, and resource types

(rt)

The path values in the table are example ones. On discovery, the

server makes the actual path values known for these resources.

The methods used by CORECONF are:

Operation Description

FETCH
Retrieve specific data nodes within a datastore

resource or event stream resource

iPATCH
Idempotently create, replace, and delete data node(s)

within a datastore resource

POST Invoke an RPC or action

¶

¶

¶

¶

¶

¶

Operation Description

GET
Retrieve the datastore resource or event stream

resource

PUT Create or replace a datastore resource

DELETE Delete a datastore resource

Table 4: CoAP Methods in CORECONF

3.1. Data Retrieval

One or more data nodes can be retrieved by the client. The operation

is mapped to the FETCH method defined in Section 2 of [RFC8132].

There are two additional query parameters for the FETCH method:

query

parameters
Description

c
Control selection of configuration and non-

configuration data nodes (GET and FETCH)

d Control retrieval of default values.

Table 5

3.1.1. Using the 'c' query parameter

The 'c' (content) option controls how descendant nodes of the

requested data nodes will be processed in the reply.

The allowed values are:

Value Description

c Return only configuration descendant data nodes

n Return only non-configuration descendant data nodes

a Return all descendant data nodes

Table 6: Values for the 'c' query parameter

This option is only allowed for GET and FETCH methods on datastore

and data node resources. A 4.02 (Bad Option) error is returned if

used for other methods or resource types.

If this query parameter is not present, the default value is "a"

(the quotes are added for readability, but they are not part of the

payload).

3.1.2. Using the 'd' query parameter

The 'd' (with-defaults) option controls how the default values of

the descendant nodes of the requested data nodes will be processed.

The allowed values are:

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8132#section-2

Value Description

a
All data nodes are reported. Defined as 'report-all' in

Section 3.1 of [RFC6243].

t
Data nodes set to the YANG default are not reported.

Defined as 'trim' in Section 3.2 of [RFC6243].

Table 7: Values for the 'd' query parameter

If the target of a GET or FETCH method is a data node that

represents a leaf that has a default value, and the leaf has not

been given a value by any client yet, the server MUST return the

default value of the leaf.

If the target of a GET method is a data node that represents a

container or list that has child resources with default values, and

these have not been given a value yet,

The server MUST NOT return the child resource if d=t.

The server MUST return the child resource if d=a.

If this query parameter is not present, the default value is "t"

(the quotes are added for readability, but they are not part of the

payload).

3.1.3. FETCH

The FETCH method is used to retrieve one or more instance-values.

The FETCH request payload contains the list of instance-identifiers

of the data node instances requested.

The return response payload contains a list of data node instance-

values in the same order as requested. A CBOR null is returned for

each data node requested by the client, not supported by the server

or not currently instantiated.

For compactness, indexes of the list instance identifiers returned

by the FETCH response SHOULD be elided, only the SID is provided.

That means that the client is responsible for remembering the full

instance-identifiers in its request since no key values will be in

the response. This approach may also help reduce implementation

complexity since the format of each entry within the CBOR sequence

of the FETCH response is identical to the format of the

corresponding GET response.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6243#section-3.1
https://rfc-editor.org/rfc/rfc6243#section-3.2

3.1.3.1. FETCH examples

This example uses the current-datetime leaf from module ietf-system

[RFC7317] and the interface list from module ietf-interfaces

[RFC8343]. In this example the value of current-datetime (SID 1723)

and the interface list (SID 1533) instance identified with

name="eth0" are queried.

3.2. Data Editing

CORECONF allows datastore contents to be created, modified and

deleted using CoAP methods.

3.2.1. Data Ordering

A CORECONF server MUST preserve the relative order of all user-

ordered list and leaf-list entries that are received in a single

edit request. As per [RFC9254], these YANG data node types are

encoded as CBOR arrays, so messages will preserve their order.

FORMAT:

 FETCH <datastore resource>

 (Content-Format: application/yang-identifiers+cbor-seq)

 CBOR sequence of instance-identifiers

 2.05 Content (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of SID, instance-value

¶

¶

REQ: FETCH </c>

 (Content-Format: application/yang-identifiers+cbor-seq)

1723, / current-datetime (SID 1723) /

[1533, "eth0"] / interface (SID 1533) with name = "eth0" /

RES: 2.05 Content

 (Content-Format: application/yang-instances+cbor-seq)

{

 1723 : "2014-10-26T12:16:31Z" / current-datetime (SID 1723) /

},

{

 1533 : {

 4 : "eth0", / name (SID 1537) /

 1 : "Ethernet adaptor", / description (SID 1534) /

 5 : 1880, / type (SID 1538), identity /

 / ethernetCsmacd (SID 1880) /

 2 : true, / enabled (SID 1535) /

 11 : 3 / oper-status (SID 1544), value is testing /

 }

}

¶

¶

¶

3.2.2. POST

The CoAP POST operation is used in CORECONF for the invocation of

"ACTION" and "RPC" resources. Refer to Section 3.5 for details on

"ACTION" and "RPC" resources.

3.2.3. iPATCH

One or multiple data node instances are replaced with the idempotent

CoAP iPATCH method [RFC8132].

There are no query parameters for the iPATCH method.

The processing of the iPATCH command is specified by Media-Type

application/yang-instances+cbor-seq. In summary, if the CBOR patch

payload contains a data node instance that is not present in the

target, this instance is added. If the target contains the specified

instance, the content of this instance is replaced with the value of

the payload. A null value indicates the removal of an existing data

node instance.

3.2.3.1. iPATCH example

In this example, a CORECONF client requests the following

operations:

Set "/ietf-system:system/ntp/enabled" (SID 1755) to true.

Remove the server "tac.nrc.ca" from the "/ietf-system:system/ntp/

server" (SID 1756) list.

Add/set the server "NTP Pool server 2" to the list "/ietf-

system:system/ntp/server" (SID 1756).

¶

¶

¶

¶

FORMAT:

 iPATCH <datastore resource>

 (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of instance-identifier, instance-value

 2.04 Changed

¶

¶

* ¶

*

¶

*

¶

A data node resource is deleted using an iPATCH with a null value,

as seen in this example.

3.3. Full datastore access

The methods GET, PUT, POST, and DELETE can be used to request,

replace, create, and delete a whole datastore respectively.

REQ: iPATCH </c>

 (Content-Format: application/yang-instances+cbor-seq)

{

 1755 : true / enabled (SID 1755) /

},

{

 [1756, "tac.nrc.ca"] : null / server (SID 1756) /

},

{

 1756 : { / server (SID 1756) /

 3 : "tic.nrc.ca", / name (SID 1759) /

 4 : true, / prefer (SID 1760) /

 5 : { / udp (SID 1761) /

 1 : "132.246.11.231" / address (SID 1762) /

 }

 }

}

RES: 2.04 Changed

¶

¶

¶

FORMAT:

 GET <datastore resource>

 2.05 Content (Content-Format: application/yang-data+cbor; id=sid)

 CBOR map of SID, instance-value

¶

FORMAT:

 PUT <datastore resource>

 (Content-Format: application/yang-data+cbor; id=sid)

 CBOR map of SID, instance-value

 2.04 Changed

¶

FORMAT:

 POST <datastore resource>

 (Content-Format: application/yang-data+cbor; id=sid)

 CBOR map of SID, instance-value

 2.01 Created

¶

The content of the CBOR map represents the complete datastore of the

server at the GET indication of after a successful processing of a

PUT or POST request.

3.3.1. Full datastore examples

The example uses the interface list from module ietf-interfaces

[RFC8343] and the clock container from module ietf-system [RFC7317].

We assume that the datastore contains two modules ietf-system (SID

1700) and ietf-interfaces (SID 1500); they contain the 'interface'

list (SID 1533) with one instance and the 'clock' container (SID

1721). After invocation of GET, a CBOR map with data nodes from

these two modules is returned:

3.4. Event stream

Event notification is an essential function for the management of

servers. CORECONF allows notifications specified in YANG [RFC5277]

to be reported to a list of clients. The path for the default event

stream can be discovered as described in Section 3. The server MAY

support additional event stream resources to address different

notification needs.

FORMAT:

 DELETE <datastore resource>

 2.02 Deleted

¶

¶

¶

REQ: GET </c>

RES: 2.05 Content

 (Content-Format: application/yang-data+cbor; id=sid)

{

 1721 : { / Clock (SID 1721) /

 2: "2016-10-26T12:16:31Z", / current-datetime (SID 1723) /

 1: "2014-10-05T09:00:00Z" / boot-datetime (SID 1722) /

 },

 1533 : [

 { / interface (SID 1533) /

 4 : "eth0", / name (SID 1537) /

 1 : "Ethernet adaptor", / description (SID 1534) /

 5 : 1880, / type (SID 1538), identity: /

 / ethernetCsmacd (SID 1880) /

 2 : true, / enabled (SID 1535) /

 11 : 3 / oper-status (SID 1544), value is testing /

 }

]

}

¶

¶

Reception of notification instances is enabled with the CoAP Observe

[RFC7641] function. Clients subscribe to the notifications by

sending a GET request with an "Observe" option to the stream

resource.

Each response payload carries one or multiple notifications. The

number of notifications reported, and the conditions used to remove

notifications from the reported list are left to implementers. When

multiple notifications are reported, they MUST be ordered starting

from the newest notification at index zero. Note that this could

lead to notifications being sent multiple times, which increases the

probability for the client to receive them, but it might potentially

lead to messages that exceed the MTU of a single CoAP packet. If

such cases could arise, implementers should make sure appropriate

fragmentation is available - for example the one described in

Section 4.

The format of notifications is a CBOR sequence, where each item in

the sequence is a single notification as described in Section 4.2.1

of [RFC9254]. (Accordingly, a notification without any content is an

empty CBOR sequence, i.e., zero bytes.)

The sequence of data node instances may contain identical items

which have been generated at different times.

An example implementation is:

Every time an event is generated, the generated notification

instance is appended to the chosen stream(s). After an

aggregation period, which may be limited by the maximum number of

notifications supported, the content of the instance is sent to

all clients observing the modified stream.

3.4.1. Filtering Notifications

If only a subset of all possible notifications is of interest, a

FETCH operation can be performed with a request payload of type

application/yang-identifiers+cbor-seq that indicates which subset.

¶

¶

¶

FORMAT:

 GET <stream-resource> Observe(0)

 2.05 Content (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of instance-identifier, instance-value

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9254#section-4.2.1

When filtering is not supported by a CORECONF server, the request

payload can be ignored: all event notifications are then reported

independently of the presence and content of the request payload.

3.4.2. Notify Examples

Let suppose the server generates the example-port-fault event as

defined below.

In this example the default event stream resource path /s is an

example location discovered with a request similar to Figure 3. By

executing a GET with Observe 0 on the default event stream resource

the client receives the following response:

FORMAT:

 FETCH <stream-resource> Observe(0)

 (Content-Format: application/yang-identifiers+cbor-seq)

 CBOR sequence of instance-identifiers

 2.05 Content (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of instance-identifier, instance-value

¶

¶

¶

module example-port {

 yang-version 1.1;

 namespace "https://example.com/ns/example-port";

 prefix "port";

 notification example-port-fault { // SID 60010

 description

 "Event generated if a hardware fault is detected";

 leaf port-name { // SID 60011

 type string;

 }

 leaf port-fault { // SID 60012

 type string;

 }

 }

}

¶

¶

In the example, the request returns a success response with the

contents of the last two generated events. Consecutively the server

will regularly notify the client when a new event is generated.

A client that wants to filter notifications can use a FETCH payload:

REQ: GET </s> Observe(0)

RES: 2.05 Content

 (Content-Format: application/yang-instances+cbor-seq)

 Observe(12)

{

 60010 : { / example-port-fault (SID 60010) /

 1 : "0/4/21", / port-name (SID 60011) /

 2 : "Open pin 2" / port-fault (SID 60012) /

 }

},

{

 60010 : { / example-port-fault (SID 60010) /

 1 : "1/4/21", / port-name (SID 60011) /

 2 : "Open pin 5" / port-fault (SID 60012) /

 }

}

¶

¶

¶

REQ: FETCH </s> Observe(0)

 (Content-Format: application/yang-identifiers+cbor-seq)

60010, 60020 /CBOR sequence with two notification identifiers/

RES: 2.05 Content

 (Content-Format: application/yang-instances+cbor-seq)

 Observe(12)

{

 60010 : { / example-port-fault (SID 60010) /

 1 : "0/4/21", / port-name (SID 60011) /

 2 : "Open pin 2" / port-fault (SID 60012) /

 }

},

{

 60010 : { / example-port-fault (SID 60010) /

 1 : "1/4/21", / port-name (SID 60011) /

 2 : "Open pin 5" / port-fault (SID 60012) /

 }

}

¶

Note that the notifications in this example are identical to the

unfiltered example as they are all using identifier SID 60010 and

this is included in the filter.

3.5. RPC and Action statements

The YANG "action" and "RPC" statements specify the execution of a

Remote Procedure Call (RPC) in the server. It is invoked using a

POST method to an "Action" or "RPC" resource instance.

The request payload contains the values assigned to the input

container when specified. The response payload contains the values

of the output container when specified. Both the input and output

containers are encoded in CBOR using the rules defined in

Section 4.2.1 of [RFC9254].

The returned success response code is 2.04 Changed.

3.5.1. RPC Example

This example is based on Section 3.6.1 of [RFC8040], abbreviated and

annotated with SIDs as follows:

¶

¶

¶

¶

FORMAT:

 POST <datastore resource>

 (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of instance-identifier, instance-value

 2.04 (Content-Format: application/yang-instances+cbor-seq)

 CBOR sequence of CBOR maps of instance-identifier, instance-value

¶

¶

module example-ops {

 yang-version 1.1;

 namespace "https://example.com/ns/example-ops";

 prefix "ops";

 rpc reboot { // SID 61000

 description "Reboot operation.";

 input { // SID 61009

 leaf delay { // SID 61001

 type uint32;

 units "seconds";

 default 0;

 description

 "Number of seconds to wait before initiating the

 reboot operation.";

 }

 }

 }

}

¶

https://rfc-editor.org/rfc/rfc9254#section-4.2.1
https://rfc-editor.org/rfc/rfc8040#section-3.6.1

This example invokes the 'reboot' RPC (SID 61000).

3.5.2. Action Example

The example is based on the YANG action "reset" as defined in

Section 7.15.3 of [RFC7950] and annotated below with SIDs.

¶

REQ: POST </c>

 (Content-Format: application/yang-instances+cbor-seq)

{ 61000:

 {

 1 : 77

 }

}

RES: 2.04 Changed

 (Content-Format: application/yang-instances+cbor-seq)

{ 61000:

 null

}

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.15.3

This example invokes the 'reset' action (SID 60002), of the server

instance with name equal to "myserver".

module example-server-farm {

 yang-version 1.1;

 namespace "urn:example:server-farm";

 prefix "sfarm";

 import ietf-yang-types {

 prefix "yang";

 }

 list server { // SID 60000

 key name;

 leaf name { // SID 60001

 type string;

 }

 action reset { // SID 60002

 input { // SID 60008

 leaf reset-at { // SID 60003

 type yang:date-and-time;

 mandatory true;

 }

 }

 output { // SID 60009

 leaf reset-finished-at { // SID 60004

 type yang:date-and-time;

 mandatory true;

 }

 }

 }

 }

}

¶

¶

4. Use of Block-wise Transfers

The CoAP protocol provides reliability by acknowledging the UDP

datagrams. However, when large pieces of data need to be

transported, datagrams get fragmented, thus creating constraints on

the resources in the client, server and intermediate routers. The

block option [RFC7959] allows the transport of the total payload in

individual blocks of which the size can be adapted to the underlying

transport sizes such as: (UDP datagram size ~64KiB, IPv6 MTU of

1280, IEEE 802.15.4 payload of 60-80 bytes). Each block is

individually acknowledged to guarantee reliability.

Notice that the Block mechanism splits the data at fixed positions,

such that individual data fields may become fragmented. Therefore,

assembly of multiple blocks may be required to process complete data

fields.

Beware of race conditions. In case blocks are filled one at a time,

care should be taken that the whole and consistent data

representation is sent in multiple blocks sequentially without

interruption. On the server, values might change, lists might get

re-ordered, extended or reduced. When these actions happen during

the serialization of the contents of the resource, the transported

results do not correspond with a state having occurred in the

server; or worse the returned values are inconsistent. For example:

array length does not correspond with the actual number of items. It

may be advisable to use Indefinite-length CBOR arrays and maps,

which are foreseen for data streaming purposes. (Note that the outer

structure of yang-identifiers and yang-instances is a CBOR sequence,

which already behaves similar to an indefinite-length encoded

array.)

REQ: POST </c>

 (Content-Format: application/yang-instances+cbor-seq)

{ [60002, "myserver"]:

 {

 1 : "2016-02-08T14:10:08Z" / reset-at (SID 60003) /

 }

}

RES: 2.04 Changed

 (Content-Format: application/yang-instances+cbor-seq)

{ [60002, "myserver"]:

 {

 2 : "2016-02-08T14:10:11Z" / reset-finished-at (SID 60004)/

 }

}

¶

¶

¶

¶

5. Application Discovery

Two application discovery mechanisms are supported by CORECONF, the

YANG library data model as defined by [I-D.ietf-core-yang-library]

and the CORE resource discovery [RFC6690]. Implementers may choose

to implement one or the other or both.

5.1. YANG library

The YANG library data model [I-D.ietf-core-yang-library] provides a

high-level description of the resources available. The YANG library

contains the list of modules, features, and deviations supported by

the CORECONF server. From this information, CORECONF clients can

infer the list of data nodes supported and the interaction model to

be used to access them. This module also contains the list of

datastores implemented.

As described in [RFC6690], the location of the YANG library can be

found by sending a GET request to "/.well-known/core" including a

resource type (RT) parameter with the value "core.c.yl". Upon

success, the return payload will contain the root resource of the

YANG library module.

The following example assumes that the SID of the YANG library is

2351 (kv after encoding as specified in Section 2.2) and that the

server uses /c as datastore resource path.

5.2. Resource Discovery

As some CoAP interfaces and services might not support the YANG

library interface and still be interested to discover resources that

are available, implementations MAY choose to support discovery of

all available resources using "/.well-known/core" as defined by

[RFC6690].

5.2.1. Datastore Resource Discovery

The presence and location of (path to) each datastore implemented by

the CORECONF server can be discovered by sending a GET request to

"/.well-known/core" including a resource type (RT) parameter with

the value "core.c.ds".

Upon success, the return payload contains the list of datastore

resources.

¶

¶

¶

¶

REQ: GET </.well-known/core?rt=core.c.yl>

RES: 2.05 Content (Content-Format: application/link-format)

</c/kv>;rt="core.c.yl"

¶

¶

¶

¶

Each datastore returned is further qualified using the "ds" Link-

Format attribute. This attribute is set to the SID assigned to the

datastore identity. When a unified datastore is implemented, the ds

attribute is set to 1029 as specified in Appendix B. For other

examples of datastores, see the Network Management Datastore

Architecture (NMDA) [RFC7950].

The following example assumes that the server uses /c as datastore

resource path.

Figure 2

5.2.2. Data node Resource Discovery

If implemented, the presence and location of (path to) each data

node implemented by the CORECONF server are discovered by sending a

GET request to "/.well-known/core" including a resource type (RT)

parameter with the value "core.c.dn".

Upon success, the return payload contains the SID assigned to each

data node and their location.

The example below shows the discovery of the presence and location

of data nodes. Data nodes '/ietf-system:system-state/clock/boot-

datetime' (SID 1722) and '/ietf-system:system-state/clock/current-

datetime' (SID 1723) are returned. The example assumes that the

server uses /c as datastore resource path.

Without additional filtering, the list of data nodes may become

prohibitively long. If this is the case implementations SHOULD

support a way to obtain all links using multiple GET requests (for

example through some form of pagination).

¶

link-extension = ("ds" "=" sid)

 ; SID assigned to the datastore identity

sid = 1*DIGIT

¶

¶

REQ: GET </.well-known/core?rt=core.c.ds>

RES: 2.05 Content (Content-Format: application/link-format)

</c>; rt="core.c.ds";ds=1029

¶

¶

¶

REQ: GET </.well-known/core?rt=core.c.dn>

RES: 2.05 Content (Content-Format: application/link-format)

</c/a6>;rt="core.c.dn",

</c/a7>;rt="core.c.dn"

¶

¶

5.2.3. Event stream Resource Discovery

The presence and location of (path to) each event stream implemented

by the CORECONF server are discovered by sending a GET request to

"/.well-known/core" including a resource type (RT) parameter with

the value "core.c.es".

Upon success, the return payload contains the list of event stream

resources.

The following example assumes that the server uses /s as the default

event stream resource.

Figure 3

6. Error Handling

In case a request is received which cannot be processed properly,

the CORECONF server MUST return an error response. This error

response MUST contain a CoAP 4.xx or 5.xx response code. Requests

that result in an error response MUST NOT have an effect on the

datastore.

Errors returned by a CORECONF server can be broken into two

categories, those associated with the CoAP protocol itself and those

generated during the validation of the YANG data model constraints

as described in Section 8 of [RFC7950].

The following list of common CoAP errors should be implemented by

CORECONF servers. This list is not exhaustive, other errors defined

by CoAP and associated RFCs may be applicable.

Error 4.01 (Unauthorized) is returned by the CORECONF server when

the CORECONF client is not authorized to perform the requested

action on the targeted resource (i.e., data node, datastore, rpc,

action or event stream).

Error 4.02 (Bad Option) is returned by the CORECONF server when

one or more CoAP options are unknown or malformed.

Error 4.04 (Not Found) is returned by the CORECONF server when

the CORECONF client is requesting a non-instantiated resource

(i.e., data node, datastore, rpc, action or event stream).

¶

¶

¶

REQ: GET </.well-known/core?rt=core.c.es>

RES: 2.05 Content (Content-Format: application/link-format)

</s>;rt="core.c.es"

¶

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7950#section-8

Error 4.05 (Method Not Allowed) is returned by the CORECONF

server when the CORECONF client is requesting a method not

supported on the targeted resource. (e.g., GET on an rpc, PUT or

POST on a data node with "config" set to false).

Error 4.08 (Request Entity Incomplete) is returned by the

CORECONF server if one or multiple blocks of a block transfer

request is missing, see [RFC7959] for more details.

Error 4.13 (Request Entity Too Large) may be returned by the

CORECONF server during a block transfer request, see [RFC7959]

for more details.

Error 4.15 (Unsupported Content-Format) is returned by the

CORECONF server when the Content-Format used in the request does

not match those specified in Section 2.3.

The CORECONF server MUST also enforce the different constraints

associated with the YANG data models implemented. These constraints

are described in Section 8 of [RFC7950]. These errors are reported

using the CoAP error code 4.00 (Bad Request) and may have the

following error container as payload. The YANG definition and

associated .sid file are available in Appendix A and Appendix B. The

error container is encoded using the encoding rules of a YANG data

template as defined in Section 5 of [RFC9254].

The following 'error-tag' and 'error-app-tag' are defined by the

ietf-coreconf YANG module, these tags are implemented as YANG

identity and can be extended as needed.

error-tag 'operation-failed' is returned by the CORECONF server

when the operation request cannot be processed successfully.

error-app-tag 'malformed-message' is returned by the CORECONF

server when the payload received from the CORECONF client does

not contain a well-formed CBOR content as defined in [RFC8949]

or does not comply with the CBOR structure defined within this

document.

error-app-tag 'data-not-unique' is returned by the CORECONF

server when the validation of the 'unique' constraint of a

list or leaf-list fails.

*

¶

*

¶

*

¶

*

¶

¶

+--rw error!

 +--rw error-tag identityref

 +--rw error-app-tag? identityref

 +--rw error-data-node? instance-identifier

 +--rw error-message? string

¶

¶

*

¶

-

¶

-

¶

https://rfc-editor.org/rfc/rfc7950#section-8
https://rfc-editor.org/rfc/rfc9254#section-5

error-app-tag 'too-many-elements' is returned by the CORECONF

server when the validation of the 'max-elements' constraint of

a list or leaf-list fails.

error-app-tag 'too-few-elements' is returned by the CORECONF

server when the validation of the 'min-elements' constraint of

a list or leaf-list fails.

error-app-tag 'must-violation' is returned by the CORECONF

server when the restrictions imposed by a 'must' statement are

violated.

error-app-tag 'duplicate' is returned by the CORECONF server

when a client tries to create a duplicate list or leaf-list

entry.

error-tag 'invalid-value' is returned by the CORECONF server when

the CORECONF client tries to update or create a leaf with a value

encoded using an invalid CBOR datatype or if the 'range',

'length', 'pattern' or 'require-instance' constrain is not

fulfilled.

error-app-tag 'invalid-datatype' is returned by the CORECONF

server when CBOR encoding does not follow the rules set by the

YANG Build-In type or when the value is incompatible with it

(e.g., a value greater than 127 for an int8, undefined

enumeration).

error-app-tag 'not-in-range' is returned by the CORECONF

server when the validation of the 'range' property fails.

error-app-tag 'invalid-length' is returned by the CORECONF

server when the validation of the 'length' property fails.

error-app-tag 'pattern-test-failed' is returned by the

CORECONF server when the validation of the 'pattern' property

fails.

error-tag 'missing-element' is returned by the CORECONF server

when the operation requested by a CORECONF client fails to comply

with the 'mandatory' constraint defined. The 'mandatory'

constraint is enforced for leafs and choices, unless the node or

any of its ancestors have a 'when' condition or 'if-feature'

expression that evaluates to 'false'.

error-app-tag 'missing-key' is returned by the CORECONF server

to further qualify a missing-element error. This error is

returned when the CORECONF client tries to create or list

instance, without all the 'key' specified or when the CORECONF

client tries to delete a leaf listed as a 'key'.

-

¶

-

¶

-

¶

-

¶

*

¶

-

¶

-

¶

-

¶

-

¶

*

¶

-

¶

error-app-tag 'missing-input-parameter' is returned by the

CORECONF server when the input parameters of an RPC or action

are incomplete.

error-tag 'unknown-element' is returned by the CORECONF server

when the CORECONF client tries to access a data node of a YANG

module not supported, of a data node associated with an 'if-

feature' expression evaluated to 'false' or to a 'when' condition

evaluated to 'false'.

error-tag 'bad-element' is returned by the CORECONF server when

the CORECONF client tries to create data nodes for more than one

case in a choice.

error-tag 'data-missing' is returned by the CORECONF server when

a data node required to accept the request is not present.

error-app-tag 'instance-required' is returned by the CORECONF

server when a leaf of type 'instance-identifier' or 'leafref'

marked with require-instance set to 'true' refers to an

instance that does not exist.

error-app-tag 'missing-choice' is returned by the CORECONF

server when no nodes exist in a mandatory choice.

error-tag 'error' is returned by the CORECONF server when an

unspecified error has occurred.

For example, the CORECONF server might return the following error.

7. Security Considerations

For secure network management, it is important to restrict access to

configuration variables only to authorized parties. CORECONF re-uses

the security mechanisms already available to CoAP, this includes

DTLS [RFC6347][RFC9147] and OSCORE [RFC8613] for protected access to

-

¶

*

¶

*

¶

*

¶

-

¶

-

¶

*

¶

¶

RES: 4.00 Bad Request

 (Content-Format: application/yang-data+cbor; id=sid)

{

 1024 : {

 4 : 1011, / error-tag (SID 1028) /

 / = invalid-value (SID 1011) /

 1 : 1018, / error-app-tag (SID 1025) /

 / = not-in-range (SID 1018) /

 2 : 1740, / error-data-node (SID 1026) /

 / = timezone-utc-offset (SID 1740) /

 3 : "maximum value exceeded" / error-message (SID 1027) /

 }

}

¶

resources, as well as suitable authentication and authorization

mechanisms, for example those defined in ACE OAuth [RFC9200].

All the security considerations of [RFC7252], [RFC7959], [RFC8132]

and [RFC7641] apply to this document as well. The use of NoSec

(Section 9 of [RFC7252]), when OSCORE is not used, is NOT

RECOMMENDED.

In addition, mechanisms for authentication and authorization may

need to be selected if not provided with the CoAP security mode.

As [RFC9254] and [RFC4648] are used for payload and SID encoding,

the security considerations of those documents also need to be well-

understood.

8. IANA Considerations

8.1. Resource Type (rt=) Link Target Attribute Values Registry

This document adds the following resource type to the "Resource Type

(rt=) Link Target Attribute Values", within the "Constrained RESTful

Environments (CoRE) Parameters" registry.

Value Description Reference

core.c.ds YANG datastore RFC XXXX

core.c.dn YANG data node RFC XXXX

core.c.yl YANG module library RFC XXXX

core.c.es YANG event stream RFC XXXX

Table 8

// RFC Ed.: replace RFC XXXX with this RFC number and remove this

note.

8.2. CoAP Content-Formats Registry

This document adds the following Content-Format to the "CoAP

Content-Formats", within the "Constrained RESTful Environments

(CoRE) Parameters" registry.

Media Type
Content

Coding
ID Reference

application/yang-identifiers+cbor-

seq
TBD2 RFC XXXX

application/yang-instances+cbor-

seq
TBD3 RFC XXXX

Table 9

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-9

// RFC Ed.: replace TBD1, TBD2 and TBD3 with assigned IDs and remove

this note. // RFC Ed.: replace RFC XXXX with this RFC number and

remove this note.

8.3. Media Types Registry

This document adds the following media types to the "Media Types"

registry.

Name Template Reference

yang-identifiers+cbor-

seq

application/yang-

identifiers+cbor-seq
RFC XXXX

yang-instances+cbor-

seq

application/yang-

instances+cbor-seq
RFC XXXX

Table 10

Each of these media types share the following information:

Subtype name: <as listed in table>

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary

Security considerations: See the Security Considerations section

of RFC XXXX

Interoperability considerations: N/A

Published specification: RFC XXXX

Applications that use this media type: CORECONF

Fragment identifier considerations: N/A

Additional information:

Person & email address to contact for further information:

iesg&ietf.org

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* Deprecated alias names for this type: N/A

* Magic number(s): N/A

* File extension(s): N/A

* Macintosh file type code(s): N/A

¶

*

¶

[I-D.ietf-core-sid]

Intended usage: COMMON

Restrictions on usage: N/A

Author: Michel Veillette

Change Controller: IETF

Provisional registration? No

// RFC Ed.: replace RFC XXXX with this RFC number and remove this

note.

8.4. YANG Namespace and Module Name Registration

This document registers the following XML namespace URN in the "IETF

XML Registry", following the format defined in [RFC3688]:

URI: please assign urn:ietf:params:xml:ns:yang:ietf-coreconf

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

Reference: RFC XXXX

IANA is requested to register the following YANG module in the "YANG

Module Names" registry [RFC6020]:

Name: ietf-coreconf

Namespace: urn:ietf:params:xml:ns:yang:ietf-coreconf

Prefix: coreconf

Reference: RFC XXXX

// RFC Ed.: please replace XXXX with RFC number and remove this note

The YANG module and SID file are in Appendix A and Appendix B,

respectively.

9. References

9.1. Normative References

Veillette, M., Pelov, A., Petrov, I., Bormann,

C., and M. Richardson, "YANG Schema Item iDentifier (YANG

SID)", Work in Progress, Internet-Draft, draft-ietf-core-

sid-24, 22 December 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-core-sid-24>.

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-sid-24
https://datatracker.ietf.org/doc/html/draft-ietf-core-sid-24

[I-D.ietf-core-yang-library]

[RFC2119]

[RFC3688]

[RFC4648]

[RFC5277]

[RFC6020]

[RFC6241]

[RFC6243]

[RFC7252]

[RFC7641]

Veillette, M. and I. Petrov,

"Constrained YANG Module Library", Work in Progress,

Internet-Draft, draft-ietf-core-yang-library-03, 11

January 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-core-yang-library-03>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/rfc/rfc3688>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Chisholm, S. and H. Trevino, "NETCONF Event

Notifications", RFC 5277, DOI 10.17487/RFC5277, July

2008, <https://www.rfc-editor.org/rfc/rfc5277>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/rfc/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/rfc/rfc6241>.

Bierman, A. and B. Lengyel, "With-defaults Capability for

NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,

<https://www.rfc-editor.org/rfc/rfc6243>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

https://datatracker.ietf.org/doc/html/draft-ietf-core-yang-library-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-yang-library-03
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3688
https://www.rfc-editor.org/rfc/rfc3688
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc5277
https://www.rfc-editor.org/rfc/rfc6020
https://www.rfc-editor.org/rfc/rfc6020
https://www.rfc-editor.org/rfc/rfc6241
https://www.rfc-editor.org/rfc/rfc6243
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252

[RFC7950]

[RFC7959]

[RFC8040]

[RFC8132]

[RFC8174]

[RFC8342]

[RFC8610]

[RFC8742]

[RFC8949]

[RFC9254]

RFC7641, September 2015, <https://www.rfc-editor.org/rfc/

rfc7641>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/rfc/rfc7950>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/rfc/rfc7959>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/rfc/rfc8040>.

van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and

FETCH Methods for the Constrained Application Protocol

(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,

<https://www.rfc-editor.org/rfc/rfc8132>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/rfc/rfc8342>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/rfc/rfc8742>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,

C., and M. Richardson, "Encoding of Data Modeled with

YANG in the Concise Binary Object Representation (CBOR)",

RFC 9254, DOI 10.17487/RFC9254, July 2022, <https://

www.rfc-editor.org/rfc/rfc9254>.

https://www.rfc-editor.org/rfc/rfc7641
https://www.rfc-editor.org/rfc/rfc7641
https://www.rfc-editor.org/rfc/rfc7950
https://www.rfc-editor.org/rfc/rfc7959
https://www.rfc-editor.org/rfc/rfc7959
https://www.rfc-editor.org/rfc/rfc8040
https://www.rfc-editor.org/rfc/rfc8132
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8342
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8742
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc9254
https://www.rfc-editor.org/rfc/rfc9254

[RFC6347]

[RFC6690]

[RFC7317]

[RFC8343]

[RFC8613]

[RFC9147]

[RFC9200]

9.2. Informative References

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/rfc/rfc6690>.

Bierman, A. and M. Bjorklund, "A YANG Data Model for

System Management", RFC 7317, DOI 10.17487/RFC7317,

August 2014, <https://www.rfc-editor.org/rfc/rfc7317>.

Bjorklund, M., "A YANG Data Model for Interface

Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,

<https://www.rfc-editor.org/rfc/rfc8343>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/rfc/rfc8613>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/rfc/rfc9147>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S.,

and H. Tschofenig, "Authentication and Authorization for

Constrained Environments Using the OAuth 2.0 Framework

(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August

2022, <https://www.rfc-editor.org/rfc/rfc9200>.

Appendix A. ietf-coreconf YANG module

This appendix is normative.¶

https://www.rfc-editor.org/rfc/rfc6347
https://www.rfc-editor.org/rfc/rfc6690
https://www.rfc-editor.org/rfc/rfc7317
https://www.rfc-editor.org/rfc/rfc8343
https://www.rfc-editor.org/rfc/rfc8613
https://www.rfc-editor.org/rfc/rfc9147
https://www.rfc-editor.org/rfc/rfc9200

<CODE BEGINS> file "ietf-coreconf@2024-03-04.yang"

module ietf-coreconf {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-coreconf";

 prefix coreconf;

 import ietf-datastores {

 prefix ds;

 reference

 "RFC 8342: Network Management Datastore Architecture (NMDA)";

 }

 import ietf-restconf {

 prefix rc;

 description

 "This import statement is required to access

 the yang-data extension defined in RFC 8040.";

 reference "RFC 8040: RESTCONF Protocol";

 }

 organization

 "IETF Core Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/core/>

 WG List: <mailto:core@ietf.org>

 Michel Veillette

 <mailto:michel.veillette@trilliantinc.com>

 Alexander Pelov

 <mailto:alexander.pelov@imt-atlantique.fr>

 Peter van der Stok

 <mailto:stokcons@kpnmail.nl>

 Andy Bierman

 <mailto:andy@yumaworks.com>";

 description

 "This module contains the different definitions required

 by the CORECONF protocol.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX;

 see the RFC itself for full legal notices.";

 revision 2024-03-04 {

 description

 "Initial revision.";

 reference

 "[I-D.ietf-core-comi] CoAP Management Interface";

 }

 identity unified {

 base ds:datastore;

 description

 "Identifier of the unified configuration and operational

 state datastore.";

 }

 identity error-tag {

 description

 "Base identity for error-tag.";

 }

 identity operation-failed {

 base error-tag;

 description

 "Returned by the CORECONF server when the operation request

 can't be processed successfully.";

 }

 identity invalid-value {

 base error-tag;

 description

 "Returned by the CORECONF server when the CORECONF client tries

 to update or create a leaf with a value encoded using an

 invalid CBOR datatype or if the 'range', 'length',

 'pattern' or 'require-instance' constrain is not

 fulfilled.";

 }

 identity missing-element {

 base error-tag;

 description

 "Returned by the CORECONF server when the operation requested

 by a CORECONF client fails to comply with the 'mandatory'

 constraint defined. The 'mandatory' constraint is

 enforced for leafs and choices, unless the node or any of

 its ancestors have a 'when' condition or 'if-feature'

 expression that evaluates to 'false'.";

 }

 identity unknown-element {

 base error-tag;

 description

 "Returned by the CORECONF server when the CORECONF client tries

 to access a data node of a YANG module not supported, of a

 data node associated with an 'if-feature' expression

 evaluated to 'false' or to a 'when' condition evaluated

 to 'false'.";

 }

 identity bad-element {

 base error-tag;

 description

 "Returned by the CORECONF server when the CORECONF client tries

 to create data nodes for more than one case in a choice.";

 }

 identity data-missing {

 base error-tag;

 description

 "Returned by the CORECONF server when a data node required to

 accept the request is not present.";

 }

 identity error {

 base error-tag;

 description

 "Returned by the CORECONF server when an unspecified error has

 occurred.";

 }

 identity error-app-tag {

 description

 "Base identity for error-app-tag.";

 }

 identity malformed-message {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the payload received

 from the CORECONF client don't contain a well-formed CBOR

 content as defined in [RFC8949] or don't

 comply with the CBOR structure defined within this

 document.";

 }

 identity data-not-unique {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'unique' constraint of a list or leaf-list fails.";

 }

 identity too-many-elements {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'max-elements' constraint of a list or leaf-list fails.";

 }

 identity too-few-elements {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'min-elements' constraint of a list or leaf-list fails.";

 }

 identity must-violation {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the restrictions

 imposed by a 'must' statement are violated.";

 }

 identity duplicate {

 base error-app-tag;

 description

 "Returned by the CORECONF server when a client tries to create

 a duplicate list or leaf-list entry.";

 }

 identity invalid-datatype {

 base error-app-tag;

 description

 "Returned by the CORECONF server when CBOR encoding is

 incorect or when the value encoded is incompatible with

 the YANG Built-In type. (e.g., value greater than 127

 for an int8, undefined enumeration).";

 }

 identity not-in-range {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'range' property fails.";

 }

 identity invalid-length {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'length' property fails.";

 }

 identity pattern-test-failed {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the validation of the

 'pattern' property fails.";

 }

 identity missing-key {

 base error-app-tag;

 description

 "Returned by the CORECONF server to further qualify a

 missing-element error. This error is returned when the

 CORECONF client tries to create a list instance, without all

 the 'key' specified or when the CORECONF client tries to

 delete a leaf listed as a 'key'.";

 }

 identity missing-input-parameter {

 base error-app-tag;

 description

 "Returned by the CORECONF server when the input parameters

 of a RPC or action are incomplete.";

 }

 identity instance-required {

 base error-app-tag;

 description

 "Returned by the CORECONF server when a leaf of type

 'instance-identifier' or 'leafref' marked with

 require-instance set to 'true' refers to an instance

 that does not exist.";

 }

 identity missing-choice {

 base error-app-tag;

 description

 "Returned by the CORECONF server when no nodes exist in a

 mandatory choice.";

 }

 rc:yang-data coreconf-error {

 container error {

 description

 "Optional payload of a 4.00 Bad Request CoAP error.";

 leaf error-tag {

 type identityref {

 base error-tag;

 }

 mandatory true;

 description

 "The enumerated error-tag.";

 }

 leaf error-app-tag {

 type identityref {

 base error-app-tag;

 }

 description

 "The application-specific error-tag.";

 }

 leaf error-data-node {

 type instance-identifier;

 description

 "When the error reported is caused by a specific data node,

 this leaf identifies the data node in error.";

 }

 leaf error-message {

 type string;

 description

 "A message describing the error.";

 }

 }

 }

}

<CODE ENDS>

Figure 4: ietf-coreconf YANG module

Appendix B. ietf-coreconf .sid file

This appendix is normative.¶

<CODE BEGINS> file "ietf-coreconf@2024-03-04.sid"

{

 "ietf-sid-file:sid-file": {

 "module-name": "ietf-coreconf",

 "module-revision": "2024-03-04",

 "assignment-range": [

 {

 "entry-point": "1000",

 "size": "100"

 }

],

 "item": [

 {

 "namespace": "module",

 "identifier": "ietf-coreconf",

 "sid": "1000"

 },

 {

 "namespace": "identity",

 "identifier": "bad-element",

 "sid": "1001"

 },

 {

 "namespace": "identity",

 "identifier": "data-missing",

 "sid": "1002"

 },

 {

 "namespace": "identity",

 "identifier": "data-not-unique",

 "sid": "1003"

 },

 {

 "namespace": "identity",

 "identifier": "duplicate",

 "sid": "1004"

 },

 {

 "namespace": "identity",

 "identifier": "error",

 "sid": "1005"

 },

 {

 "namespace": "identity",

 "identifier": "error-app-tag",

 "sid": "1006"

 },

 {

 "namespace": "identity",

 "identifier": "error-tag",

 "sid": "1007"

 },

 {

 "namespace": "identity",

 "identifier": "instance-required",

 "sid": "1008"

 },

 {

 "namespace": "identity",

 "identifier": "invalid-datatype",

 "sid": "1009"

 },

 {

 "namespace": "identity",

 "identifier": "invalid-length",

 "sid": "1010"

 },

 {

 "namespace": "identity",

 "identifier": "invalid-value",

 "sid": "1011"

 },

 {

 "namespace": "identity",

 "identifier": "malformed-message",

 "sid": "1012"

 },

 {

 "namespace": "identity",

 "identifier": "missing-choice",

 "sid": "1013"

 },

 {

 "namespace": "identity",

 "identifier": "missing-element",

 "sid": "1014"

 },

 {

 "namespace": "identity",

 "identifier": "missing-input-parameter",

 "sid": "1015"

 },

 {

 "namespace": "identity",

 "identifier": "missing-key",

 "sid": "1016"

 },

 {

 "namespace": "identity",

 "identifier": "must-violation",

 "sid": "1017"

 },

 {

 "namespace": "identity",

 "identifier": "not-in-range",

 "sid": "1018"

 },

 {

 "namespace": "identity",

 "identifier": "operation-failed",

 "sid": "1019"

 },

 {

 "namespace": "identity",

 "identifier": "pattern-test-failed",

 "sid": "1020"

 },

 {

 "namespace": "identity",

 "identifier": "too-few-elements",

 "sid": "1021"

 },

 {

 "namespace": "identity",

 "identifier": "too-many-elements",

 "sid": "1022"

 },

 {

 "namespace": "identity",

 "identifier": "unified",

 "sid": "1029"

 },

 {

 "namespace": "identity",

 "identifier": "unknown-element",

 "sid": "1023"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-coreconf:error",

 "sid": "1024"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-coreconf:error/error-app-tag",

 "sid": "1025"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-coreconf:error/error-data-node",

 "sid": "1026"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-coreconf:error/error-message",

 "sid": "1027"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-coreconf:error/error-tag",

 "sid": "1028"

 }

]

 }

}

<CODE ENDS>

Figure 5: ietf-coreconf SID file

Acknowledgments

We are very grateful to Bert Greevenbosch who was one of the

original authors of the CORECONF specification.

Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs

transported under SNMP. Koen Zandberg's implementation input

motivated massively simplifying (and fixing) the URI construction

for GET/PUT/POST requests.

The specification has further benefited from comments (alphabetical

order) by Rodney Cummings, Dee Denteneer, Esko Dijk, Klaus Hartke,

Michael van Hartskamp, Tanguy Ropitault, Jürgen Schönwälder, Anuj

Sehgal, Zach Shelby, Hannes Tschofenig, Michael Verschoor, and

Thomas Watteyne.

Contributors

Ivaylo Petrov

Email: ivaylopetrov@google.com

Authors' Addresses

Michel Veillette (editor)

Trilliant Networks Inc.

610 Rue du Luxembourg

Granby Quebec J2J 2V2

Canada

Email: michel.veillette@trilliant.com

Peter van der Stok (editor)

consultant

Phone: +31625097806

Email: stokcons@kpnmail.nl

URI: https://vanderstok.tech

Alexander Pelov (editor)

IMT Atlantique

2 rue de la Châtaigneraie

35510 Cesson-Sevigne

France

Email: alexander.pelov@imt-atlantique.fr

Andy Bierman

¶

¶

¶

mailto:ivaylopetrov@google.com
mailto:michel.veillette@trilliant.com
tel:+31625097806
mailto:stokcons@kpnmail.nl
https://vanderstok.tech
mailto:alexander.pelov@imt-atlantique.fr

YumaWorks

685 Cochran St.

Suite #160

Simi Valley, CA 93065

United States of America

Email: andy@yumaworks.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:andy@yumaworks.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	CoAP Management Interface (CORECONF)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Example syntax

	2. CORECONF Architecture
	2.1. Major differences between RESTCONF and CORECONF
	2.1.1. Differences due to CoAP and its efficient usage
	2.1.2. Differences due to the use of CBOR

	2.2. Compression of YANG identifiers
	2.2.1. Instance-identifiers

	2.3. Media-Types
	2.4. Unified datastore

	3. CoAP Interface
	3.1. Data Retrieval
	3.1.1. Using the 'c' query parameter
	3.1.2. Using the 'd' query parameter
	3.1.3. FETCH
	3.1.3.1. FETCH examples

	3.2. Data Editing
	3.2.1. Data Ordering
	3.2.2. POST
	3.2.3. iPATCH
	3.2.3.1. iPATCH example

	3.3. Full datastore access
	3.3.1. Full datastore examples

	3.4. Event stream
	3.4.1. Filtering Notifications
	3.4.2. Notify Examples

	3.5. RPC and Action statements
	3.5.1. RPC Example
	3.5.2. Action Example

	4. Use of Block-wise Transfers
	5. Application Discovery
	5.1. YANG library
	5.2. Resource Discovery
	5.2.1. Datastore Resource Discovery
	5.2.2. Data node Resource Discovery
	5.2.3. Event stream Resource Discovery

	6. Error Handling
	7. Security Considerations
	8. IANA Considerations
	8.1. Resource Type (rt=) Link Target Attribute Values Registry
	8.2. CoAP Content-Formats Registry
	8.3. Media Types Registry
	8.4. YANG Namespace and Module Name Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. ietf-coreconf YANG module
	Appendix B. ietf-coreconf .sid file
	Acknowledgments
	Contributors
	Authors' Addresses

