
Workgroup: CoRE Working Group

Internet-Draft:

draft-ietf-core-conditional-attributes-06

Published: 14 January 2023

Intended Status: Informational

Expires: 18 July 2023

Authors: M. Koster

Dogtiger Labs

A. Soloway

Qualcomm Technologies, Inc.

B. Silverajan, Ed.

Tampere University

Conditional Attributes for Constrained RESTful Environments

Abstract

This specification defines Conditional Notification and Control

Attributes that work with CoAP Observe (RFC7641).

Editor note

The git repository for the draft is found at https://github.com/

core-wg/conditional-attributes/

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Conditional Attributes

3.1. Conditional Notification Attributes

3.1.1. Greater Than (c.gt)

3.1.2. Less Than (c.lt)

3.1.3. Change Step (c.st)

3.1.4. Notification Band (c.band)

3.1.5. Edge (c.edge)

3.2. Conditional Control Attributes

3.2.1. Minimum Period (c.pmin)

3.2.2. Maximum Period (c.pmax)

3.2.3. Minimum Evaluation Period (c.epmin)

3.2.4. Maximum Evaluation Period (c.epmax)

3.2.5. Confirmable Notification (c.con)

3.3. Server processing of Conditional Attributes

4. Implementation Considerations

5. Security Considerations

6. IANA Considerations

7. Acknowledgements

8. Contributors

9. Changelog

10. Normative References

Appendix A. Pseudocode: Processing Conditional Attributes

Appendix B. Examples

B.1. Minimum Period (c.pmin) example

B.2. Maximum Period (c.pmax) example

B.3. Greater Than (c.gt) example

B.4. Greater Than (c.gt) and Period Max (c.pmax) example

Authors' Addresses

1. Introduction

IETF Standards for machine-to-machine communication in constrained

environments describe the Constrained Application Protocol (CoAP)

[RFC7252], a RESTful application protocol, as well as a set of

related information standards that may be used to represent machine

data and machine metadata in REST interfaces.

This specification defines Conditional Notification and Control

Attributes for use with CoAP Observe [RFC7641].

¶

¶

¶

Notification Band:

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification requires readers to be familiar with all the

terms and concepts that are discussed in [RFC7252] and [RFC7641].

This specification makes use of the following additional

terminology:

A resource value range that may be bounded by a

minimum and maximum value or may be unbounded having either a

minimum or maximum value.

3. Conditional Attributes

This specification defines conditional attributes for use with CoRE

Observe [RFC7641]. Conditional attributes provide fine-grained

control of notification and synchronization of resource states. When

observing a resource, a CoAP client conveys conditional attributes

as metadata using the query component of a CoAP URI. A conditional

attribute can be represented as a "name=value" query parameter or

simply a "name" without a value. Multiple conditional attributes in

a query component are separated with an ampersand "&". A resource

marked as Observable in its link description SHOULD support these

conditional attributes.

Note: In this draft, we assume that there are finite quantization

effects in the internal or external updates to the value

representing the state of a resource; specifically, that a resource

state may be updated at any time with any valid value. We therefore

avoid any continuous-time assumptions in the description of the

conditional attributes and instead use the phrase "sampled value" to

refer to a member of a sequence of values that may be internally

observed from the resource state over time.

3.1. Conditional Notification Attributes

Conditional Notification Attributes define the conditions that

trigger a notification. Conditional Notification Attributes SHOULD

be evaluated on all potential notifications from a resource, whether

resulting from an internal server-driven sampling process or from

external update requests to the server.

The set of Conditional Notification Attributes defined here allows a

client to control how often a notification is received and how much

a representation state should change in order to trigger a

¶

¶

¶

¶

¶

¶

notification. One or more Conditional Notification Attributes MAY be

included in an Observe request.

Conditional Notification Attributes are defined below:

Attribute Name Value

Greater Than c.gt xs:decimal

Less Than c.lt xs:decimal

Change Step c.st xs:decimal (>0)

Notification Band c.band (none)

Edge c.edge xs:boolean

Table 1: Conditional Notification Attributes

3.1.1. Greater Than (c.gt)

When present, Greater Than indicates the upper limit value the

sampled value SHOULD cross before triggering a notification. A

notification is sent whenever the sampled value crosses the

specified upper limit value, relative to the last reported value,

and the time for "c.pmin" has elapsed since the last notification.

The sampled value is sent in the notification. If the value

continues to rise, no notifications are generated as a result of

"c.gt". If the value drops below the upper limit value then a

notification is sent, subject again to the "c.pmin" time.

The Greater Than parameter can only be supported on resources with a

scalar numeric value.

3.1.2. Less Than (c.lt)

When present, Less Than indicates the lower limit value the resource

value SHOULD cross before triggering a notification. A notification

is sent whenever the sampled value crosses the specified lower limit

value, relative to the last reported value, and the time for

"c.pmin" has elapsed since the last notification. The sampled value

is sent in the notification. If the value continues to fall no

notifications are generated as a result of "c.lt". If the value

rises above the lower limit value then a new notification is sent,

subject to the "c.pmin" time.

The Less Than parameter can only be supported on resources with a

scalar numeric value.

3.1.3. Change Step (c.st)

When present, Change step indicates how much the value representing

a resource state SHOULD change before triggering a notification,

compared to the previous resource state. Upon reception of a query

¶

¶

¶

¶

¶

¶

including the "c.st" attribute, the current resource state

representing the most recently sampled value is reported, and then

set as the last reported value (last_rep_v). When a subsequent

sampled value or update of the resource state differs from the last

reported state by an amount, positive or negative, greater than or

equal to st, and the time for "c.pmin" has elapsed since the last

notification, a notification is sent and the last reported value is

updated to the new resource state sent in the notification. The

change step MUST be greater than zero otherwise the receiver MUST

return a CoAP error code 4.00 "Bad Request" (or equivalent).

The Change Step parameter can only be supported on resources with a

scalar numeric value.

Note: due to sampling and other constraints, e.g. "c.pmin", the

change in resource states received in two sequential notifications

may differ by more than "c.st".

3.1.4. Notification Band (c.band)

The Notification Band attribute allows a bounded or unbounded (based

on a minimum or maximum) value range that may trigger multiple

notifications. This enables use cases where different ranges result

in differing behaviour. For example, in monitoring the temperature

of machinery, whilst the temperature is in the normal operating

range, only periodic updates are needed. However as the temperature

moves to more abnormal ranges more frequent state updates may be

sent to clients.

Without a notification band, a transition across a Less Than (c.lt),

or Greater Than (c.gt) limit only generates one notification. This

means that it is not possible to describe a case where multiple

notifications are sent so long as the limit is exceeded.

The "c.band" attribute works as a modifier to the behaviour of

"c.gt" and "c.lt". Its use is determined only by its presence, and

not its value. Therefore, if "c.band" is present in a query, "c.gt",

"c.lt" or both, MUST be included.

When "c.band" is present with "c.lt" but without "c.gt", the lower

bound for the notification band (notification band minimum) is

defined. Notifications occur when the resource value is equal to or

above the notification band minimum. No maximum values exist for the

band.

When "c.band" is present with "c.gt" but without "c.lt", the upper

bound for the notification band (notification band maximum) is

defined. Notifications occur when the resource value is equal to or

below the notification band maximum. No minimum values exist for the

band.

¶

¶

¶

¶

¶

¶

¶

¶

If "c.band" is specified in which the value of "c.gt" is less than

that of "c.lt", in-band notification occurs. That is, notification

occurs whenever the resource value is between the "c.gt" and "c.lt"

values, including equal to "c.gt" or "c.lt".

If "c.band" is specified in which the value of "c.gt" is greater

than that of "c.lt", out-of-band notification occurs. That is,

notification occurs when the resource value not between the "c.gt"

and "c.lt" values, excluding equal to "c.gt" and "c.lt".

The Notification Band parameter can only be supported on resources

with a scalar numeric value.

3.1.5. Edge (c.edge)

When present, the Edge attribute indicates interest for receiving

notifications of either the falling edge or the rising edge

transition of a boolean resource state. When the value of the

"c.edge" attribute is 0 (False), the server notifies the client each

time a resource state changes from True to False. When the value of

the "c.edge" attribute is 1 (True), the server notifies the client

each time a resource state changes from False to True.

The "c.edge" attribute can only be supported on resources with a

boolean value.

3.2. Conditional Control Attributes

Conditional Control Attributes define the time intervals between

consecutive notifications as well as the cadence of the evaluation

of the conditions that trigger a notification. Conditional Control

Attributes can be used to configure the internal server-driven

sampling process for performing evaluations of the conditions of a

resource. One or more Conditional Control Attributes MAY be included

in an Observe request.

Conditional Control Attributes are defined below:

Attribute Name Value

Minimum Period (s) c.pmin xs:decimal (>0)

Maximum Period (s) c.pmax xs:decimal (>0)

Minimum Evaluation Period (s) c.epmin xs:decimal (>0)

Maximum Evaluation Period (s) c.epmax xs:decimal (>0)

Confirmable Notification c.con xs:boolean

Table 2: Conditional Control Attributes

¶

¶

¶

¶

¶

¶

¶

3.2.1. Minimum Period (c.pmin)

When present, Minimum Period indicates the minimum time, in seconds,

between two consecutive notifications (whether or not the resource

state has changed). In the absence of this parameter, the minimum

period is up to the server. Minimum Period MUST be greater than zero

otherwise the receiver MUST return a CoAP error code 4.00 "Bad

Request" (or equivalent).

A server MAY update the resource state with the last sampled value

that occurred during the "c.pmin" interval, after the "c.pmin"

interval expires.

Note: due to finite quantization effects, the time between

notifications may be greater than "c.pmin" even when the sampled

value changes within the "c.pmin" interval. "c.pmin" may or may not

be used to drive the internal sampling process.

3.2.2. Maximum Period (c.pmax)

When present, Maximum Period indicates the maximum time, in seconds,

between two consecutive notifications (regardless of whether or not

the resource state has changed). In the absence of this parameter,

the maximum period is up to the server. Maximum Period MUST be

greater than zero and MUST be greater than or equal to Minimum

Period (if present), otherwise the receiver MUST return a CoAP error

code 4.00 "Bad Request" (or equivalent).

3.2.3. Minimum Evaluation Period (c.epmin)

When present, Minimum Evaluation Period indicates the minimum time,

in seconds, the client recommends to the server to wait between two

consecutive evaluations of the conditions of a resource, since the

client has no interest in the server doing more frequent

evaluations. When the value of Minimum Evaluation Period expires

after the previous evaluation, the server MAY immediately perform a

new evaluation. In the absence of this parameter, the minimum

evaluation period is not defined and thus not used by the server.

The server MAY use "c.pmin", if defined, as a guidance on the

desired evaluation cadence. Minimum Evaluation Period MUST be

greater than zero, otherwise the receiver MUST return a CoAP error

code 4.00 "Bad Request" (or equivalent).

3.2.4. Maximum Evaluation Period (c.epmax)

When present, Maximum Evaluation Period indicates the maximum time,

in seconds, the server MAY wait between two consecutive evaluations

of the conditions of a resource. When the value of Maximum

Evaluation Period expires after the previous evaluation, the server

MUST immediately perform a new evaluation. In the absence of this

¶

¶

¶

¶

¶

parameter, the maximum evaluation period is not defined and thus not

used by the server. Maximum Evaluation Period MUST be greater than

zero and MUST be greater than Minimum Evaluation Period (if

present), otherwise the receiver MUST return a CoAP error code 4.00

"Bad Request" (or equivalent).

3.2.5. Confirmable Notification (c.con)

When present with a value of 1 (True), Confirmable Notification

indicates a notification MUST be confirmable, i.e., the server MUST

send the notification in a confirmable CoAP message, to request an

acknowledgement from the client. When present with a value of 0

(False), Confirmable Notification indicates a notification can be

confirmable or non-confirmable, i.e., it can be sent in a

confirmable or a non-confirmable CoAP message.

3.3. Server processing of Conditional Attributes

Conditional Notification Attributes and Conditional Control

Attributes may be present in the same query. However, they are not

defined at multiple prioritization levels. The server sends a

notification whenever any of the parameter conditions are met, upon

which it updates its last notification value and time to prepare for

the next notification. Only one notification occurs when there are

multiple conditions being met at the same time. As a general

example, the pseudocode illustrated in Appendix A shows one way to

determine when a notification is to be sent.

4. Implementation Considerations

When "c.pmax" and "c.pmin" are equal, the expected behaviour is that

notifications will be sent every (c.pmin == c.pmax) seconds.

However, these notifications can only be fulfilled by the server on

a best effort basis. Because "c.pmin" and "c.pmax" are designed as

acceptable tolerance bounds for sending state updates, a query from

an interested client containing equal "c.pmin" and "c.pmax" values

must not be seen as a hard real-time scheduling contract between the

client and the server.

The use of the notification band minimum and maximum allows for a

synchronization whenever a change in the resource value occurs.

Theoretically this could occur in-line with the server internal

sample period or as defined by the "c.epmin" and "c.epmax" values

for determining the resource value. Implementors SHOULD consider the

resolution needed before updating the resource, e.g. updating the

resource when a temperature sensor value changes by 0.001 degree

versus 1 degree.

When a server has multiple observations with different measurement

cadences as defined by the "c.epmin" and "c.epmax" values, the

¶

¶

¶

¶

¶

server MAY evaluate all observations when performing the measurement

of any one observation.

This specification defines conditional attributes that can be used

with CoAP Observe relationships between CoAP clients and CoAP

servers. However, it is recognised that the presence of one or more

proxies between a client and a server can interfere with clients

receiving resource updates, if a proxy does not supply resource

representations when the value remains unchanged (e.g. if "c.pmax"

is set, and the server sends multiple updates when the resource

state contains the same value). A server SHOULD use the Max-Age

option to mitigate this by setting Max-Age to be less than or equal

to "c.pmax".

5. Security Considerations

The security considerations in Section 11 of [RFC7252] apply.

Additionally, the security considerations in Section 7 of [RFC7641]

also apply.

6. IANA Considerations

This specification requests a new Conditional Attributes registry to

ensure attributes map uniquely to parameter names.

Note to IANA: Please replace "RFC XXXX" with the assigned RFC number

in the table below.

Attribute Parameter Value Reference

Minimum Period (s) c.pmin xs:decimal (>0) RFC XXXX

Maximum Period (s) c.pmax xs:decimal (>0) RFC XXXX

Minimum Evaluation Period (s) c.epmin xs:decimal (>0) RFC XXXX

Maximum Evaluation Period (s) c.epmax xs:decimal (>0) RFC XXXX

Confirmable Notification c.con xs:boolean RFC XXXX

Greater Than c.gt xs:decimal RFC XXXX

Less Than c.lt xs:decimal RFC XXXX

Change Step c.st xs:decimal (>0) RFC XXXX

Notification Band c.band (none) RFC XXXX

Edge c.edge xs:boolean RFC XXXX

Table 3

7. Acknowledgements

Hannes Tschofenig and Mert Ocak highlighted syntactical corrections

in the usage of pmax and pmin in a query. David Navarro proposed

allowing for pmax to be equal to pmin. Marco Tiloca provided an

extensive review.

¶

¶

¶

¶

¶

¶

8. Contributors

9. Changelog

draft-ietf-core-conditional-attributes-06

Removed code block from Section 3.5

Added an appendix containing pseudocode for server processing.

draft-ietf-core-conditional-attributes-05

Multiple (mostly editorial) clarifications and updates based on

review comments on mailing list from Marco Tiloca.

draft-ietf-core-conditional-attributes-04

Reference code updated to include behaviour for edge attribute.

draft-ietf-core-conditional-attributes-03

Attribute names updated to create uniqueness for use as

conditional observe attributes.

Christian Groves

Australia

email: cngroves.std@gmail.com

Zach Shelby

ARM

Vuokatti

FINLAND

phone: +358 40 7796297

email: zach.shelby@arm.com

Matthieu Vial

Schneider-Electric

Grenoble

France

phone: +33 (0)47657 6522

eMail: matthieu.vial@schneider-electric.com

Jintao Zhu

Huawei

Xi’an, Shaanxi Province

China

email: jintao.zhu@huawei.com

¶

¶

* ¶

* ¶

¶

*

¶

¶

* ¶

¶

*

¶

[RFC2119]

[RFC7252]

[RFC7641]

[RFC8174]

draft-ietf-core-conditional-attributes-02

Clarifications on usage and value of the band parameter

Implementation considerations for proxies added

Security considerations added

IANA considerations added

draft-ietf-core-conditional-attributes-01

Clarifications on True and False values for Edge and Con

Attributes

Alan Soloway added as author

draft-ietf-core-conditional-attributes-00

Conditional Atttributes section from draft-ietf-core-dynlink-13

separated into own WG draft

10. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Pseudocode: Processing Conditional Attributes

This appendix is informative. It describes the possible logic of how

a server processes conditional attributes to determine when to send

a notification to a client.

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

¶

*

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8174

Note: The pseudocode is not exhaustive nor should it be treated as

reference code. It depicts a subset of the conditional attributes

described in this document.¶

// struct Resource {

//

// bool band;

// int pmin;

// int pmax;

// int epmin;

// int epmax;

// int st;

// int gt;

// int lt;

//

// time_t last_sampled_time;

// time_t last_rep_time;

// int curr_state;

// int prev_state;

//

// ...

//

// };

boolean is_notifiable(Resource * r) {

 time_t curr_time = get_current_time();

 #define BAND_EXISTS (r->band)

 #define LT_EXISTS (r->lt)

 #define GT_EXISTS (r->gt)

 #define EPMIN_TRUE (curr_time - r->last_sampled_time >= r->epmin)

 #define EPMAX_TRUE (curr_time - r->last_sampled_time > r->epmax)

 #define PMIN_TRUE (curr_time - r->last_reported_time >= r->pmin)

 #define PMAX_TRUE (curr_time - r->last_reported_time > r->pmax)

 #define LT_TRUE (r->curr_state < r->lt ^ r->prev_state < r->lt)

 #define GT_TRUE (r->curr_state > r->gt ^ r->prev_state > r->gt)

 #define ST_TRUE (abs(r->curr_state - r->prev_state) >= r->st)

 #define INBAND_TRUE (gt < lt && (gt <= curr_state && curr_state <= lt))

 #define OUTOFBAND_TRUE (lt < gt && (gt < curr_state || curr_state < lt))

 #define BANDMIN_TRUE (r->lt <= r->curr_state)

 #define BANDMAX_TRUE (r->curr_state <= r->gt)

 if PMAX_TRUE {

 return true;

 }

 if PMIN_TRUE {

 if !BAND_EXISTS {

 if LT_TRUE || GT_TRUE || ST_TRUE {

 return true;

 }

 }

 else {

 if ((BANDMIN_TRUE && !GT_EXISTS) || (BANDMAX_TRUE && !LT_EXISTS) || INBAND_TRUE || OUTOFBAND_TRUE) {

 return true;

 }

 }

 }

 return false;

}

Figure 1: Pseudocode showing the logic for processing conditional

attributes

Appendix B. Examples

This appendix is informative. It provides some examples of the use

of Conditional Attributes.

Note: For brevity only the method or response code is shown in the

header field.

B.1. Minimum Period (c.pmin) example

Figure 2: Client registers and receives one notification of the current

state and one of a new state state when c.pmin time expires.

B.2. Maximum Period (c.pmax) example

¶

¶

 Observed CLIENT SERVER Actual

 t State | | State

 ____________ | | ____________

 1 | |

 2 unknown | | 18.5 Cel

 3 +----->| Header: GET

 4 | GET | Token: 0x4a

 5 | | Uri-Path: temperature

 6 | | Uri-Query: c.pmin="10"

 7 | | Observe: 0 (register)

 8 | |

 9 ____________ |<-----+ Header: 2.05

 10 | 2.05 | Token: 0x4a

 11 18.5 Cel | | Observe: 9

 12 | | Payload: "18.5 Cel"

 13 | | ____________

 14 | |

 15 | | 23 Cel

 16 | |

 17 | |

 18 | |

 19 | | ____________

 20 ____________ |<-----+ Header: 2.05

 21 | 2.05 | 26 Cel Token: 0x4a

 22 26 Cel | | Observe: 20

 23 | | Payload: "26 Cel"

 24 | |

 25 | |

Figure 3: Client registers and receives one notification of the current

state, one of a new state and one of an unchanged state when c.pmax

time expires.

 Observed CLIENT SERVER Actual

 t State | | State

 ____________ | | ____________

 1 | |

 2 unknown | | 18.5 Cel

 3 +----->| Header: GET

 4 | GET | Token: 0x4a

 5 | | Uri-Path: temperature

 6 | | Uri-Query: c.pmax="20"

 7 | | Observe: 0 (register)

 8 | |

 9 ____________ |<-----+ Header: 2.05

 10 | 2.05 | Token: 0x4a

 11 18.5 Cel | | Observe: 9

 12 | | Payload: "18.5 Cel"

 13 | |

 14 | |

 15 | | ____________

 16 ____________ |<-----+ Header: 2.05

 17 | 2.05 | 23 Cel Token: 0x4a

 18 23 Cel | | Observe: 16

 19 | | Payload: "23 Cel"

 20 | |

 21 | |

 22 | |

 23 | |

 24 | |

 25 | |

 26 | |

 27 | |

 28 | |

 29 | |

 30 | |

 31 | |

 32 | |

 33 | |

 34 | |

 35 | |

 36 | | ____________

 37 ____________ |<-----+ Header: 2.05

 38 | 2.05 | 23 Cel Token: 0x4a

 39 23 Cel | | Observe: 37

 40 | | Payload: "23 Cel"

 41 | |

 42 | |

B.3. Greater Than (c.gt) example

Figure 4: Client registers and receives one notification of the current

state and one of a new state when it passes through the greater than

threshold of 25.

B.4. Greater Than (c.gt) and Period Max (c.pmax) example

 Observed CLIENT SERVER Actual

 t State | | State

 ____________ | | ____________

 1 | |

 2 unknown | | 18.5 Cel

 3 +----->| Header: GET

 4 | GET | Token: 0x4a

 5 | | Uri-Path: temperature

 6 | | Uri-Query: c.gt=25

 7 | | Observe: 0 (register)

 8 | |

 9 ____________ |<-----+ Header: 2.05

10 | 2.05 | Token: 0x4a

11 18.5 Cel | | Observe: 9

12 | | Payload: "18.5 Cel"

13 | |

14 | |

15 | | ____________

16 ____________ |<-----+ Header: 2.05

17 | 2.05 | 26 Cel Token: 0x4a

18 26 Cel | | Observe: 16

29 | | Payload: "26 Cel"

20 | |

21 | |

Figure 5: Client registers and receives one notification of the current

state, one when c.pmax time expires and one of a new state when it

passes through the greater than threshold of 25.

 Observed CLIENT SERVER Actual

 t State | | State

 ____________ | | ____________

 1 | |

 2 unknown | | 18.5 Cel

 3 +----->| Header: GET

 4 | GET | Token: 0x4a

 5 | | Uri-Path: temperature

 6 | | Uri-Query: c.pmax=20;c.gt=25

 7 | | Observe: 0 (register)

 8 | |

 9 ____________ |<-----+ Header: 2.05

10 | 2.05 | Token: 0x4a

11 18.5 Cel | | Observe: 9

12 | | Payload: "18.5 Cel"

13 | |

14 | |

15 | |

16 | |

17 | |

18 | |

19 | |

20 | |

21 | |

22 | |

23 | |

24 | |

25 | |

26 | |

27 | |

28 | |

29 | | ____________

30 ____________ |<-----+ Header: 2.05

31 | 2.05 | 23 Cel Token: 0x4a

32 23 Cel | | Observe: 30

33 | | Payload: "23 Cel"

34 | |

35 | |

36 | | ____________

37 ____________ |<-----+ Header: 2.05

38 | 2.05 | 26 Cel Token: 0x4a

39 26 Cel | | Observe: 37

40 | | Payload: "26 Cel"

41 | |

42 | |

Authors' Addresses

Michael Koster

Dogtiger Labs

524 H Street

Antioch, CA, 94509

United States of America

Email: michaeljohnkoster@gmail.com

Alan Soloway

Qualcomm Technologies, Inc.

5775 Morehouse Drive

San Diego, 92121

United States of America

Email: asoloway@qti.qualcomm.com

Bilhanan Silverajan (editor)

Tampere University

Kalevantie 4

FI-33100 Tampere

Finland

Email: bilhanan.silverajan@tuni.fi

mailto:michaeljohnkoster@gmail.com
mailto:asoloway@qti.qualcomm.com
mailto:bilhanan.silverajan@tuni.fi

	Conditional Attributes for Constrained RESTful Environments
	Abstract
	Editor note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Conditional Attributes
	3.1. Conditional Notification Attributes
	3.1.1. Greater Than (c.gt)
	3.1.2. Less Than (c.lt)
	3.1.3. Change Step (c.st)
	3.1.4. Notification Band (c.band)
	3.1.5. Edge (c.edge)

	3.2. Conditional Control Attributes
	3.2.1. Minimum Period (c.pmin)
	3.2.2. Maximum Period (c.pmax)
	3.2.3. Minimum Evaluation Period (c.epmin)
	3.2.4. Maximum Evaluation Period (c.epmax)
	3.2.5. Confirmable Notification (c.con)

	3.3. Server processing of Conditional Attributes

	4. Implementation Considerations
	5. Security Considerations
	6. IANA Considerations
	7. Acknowledgements
	8. Contributors
	9. Changelog
	10. Normative References
	Appendix A. Pseudocode: Processing Conditional Attributes
	Appendix B. Examples
	B.1. Minimum Period (c.pmin) example
	B.2. Maximum Period (c.pmax) example
	B.3. Greater Than (c.gt) example
	B.4. Greater Than (c.gt) and Period Max (c.pmax) example

	Authors' Addresses

