
Workgroup: CoRE Working Group

Published: 9 March 2020

Intended Status: Standards Track

Expires: 10 September 2020

Authors: K. Hartke

Ericsson

The Constrained RESTful Application Language (CoRAL)

Abstract

The Constrained RESTful Application Language (CoRAL) defines a data

model and interaction model as well as two specialized serialization

formats for the description of typed connections between resources

on the Web ("links"), possible operations on such resources

("forms"), and simple resource metadata.

Note to Readers

This note is to be removed before publishing as an RFC.

The issues list for this Internet-Draft can be found at <https://

github.com/core-wg/coral/labels/coral>.

Companion material for this Internet-Draft can be found at <https://

github.com/core-wg/coral>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/core-wg/coral/labels/coral
https://github.com/core-wg/coral/labels/coral
https://github.com/core-wg/coral
https://github.com/core-wg/coral
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Data and Interaction Model

1.2. Serialization Formats

1.3. Notational Conventions

2. Data and Interaction Model

2.1. Browsing Context

2.2. Documents

2.3. Links

2.4. Forms

2.5. Form Fields

2.6. Navigation

2.7. History Traversal

3. Binary Format

3.1. Data Structure

3.1.1. Documents

3.1.2. Directives

3.1.3. IRIs

3.1.4. Links

3.1.5. Forms

3.1.6. Form Fields

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.2. Dictionary Compression

3.2.1. Dictionary References

3.2.2. Media Type Parameter

3.3. Export Interface

4. Textual Format

4.1. Lexical Structure

4.1.1. Line Terminators

4.1.2. White Space

4.1.3. Comments

4.1.4. Identifiers

4.1.5. Literals

4.1.6. Punctuators

4.2. Syntactic Structure

4.2.1. Documents

4.2.2. Directives

4.2.3. IRIs

4.2.4. Links

4.2.5. Forms

4.2.6. Form Fields

5. Document Semantics

5.1. Submitting Documents

5.1.1. PUT Requests

5.1.2. POST Requests

5.2. Returning Documents

5.2.1. Success Responses

5.2.2. Redirection Responses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2.3. Error Responses

6. Usage Considerations

6.1. Specifying CoRAL-based Applications

6.1.1. Application Interfaces

6.1.2. Resource Identifiers

6.1.3. Implementation Limits

6.2. Minting Vocabulary

6.3. Expressing Registered Link Relation Types

6.4. Expressing Simple RDF Statements

6.5. Expressing Natural Language Texts

6.6. Embedding Representations in CoRAL

7. Security Considerations

8. IANA Considerations

8.1. Media Type "application/coral+cbor"

8.2. Media Type "text/coral"

8.3. CoAP Content Formats

8.4. CBOR Tag

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Core Vocabulary

A.1. Base

A.2. Collections

A.3. HTTP

A.4. CoAP

Appendix B. Default Dictionary

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix C. Change Log

Acknowledgements

Author's Address

1. Introduction

The Constrained RESTful Application Language (CoRAL) is a language

for the description of typed connections between resources on the

Web ("links"), possible operations on such resources ("forms"), and

simple resource metadata.

CoRAL is intended for driving automated software agents that

navigate a Web application based on a standardized vocabulary of

link relation types and operation types. It is designed to be used

in conjunction with a Web transfer protocol, such as the Hypertext

Transfer Protocol (HTTP) [RFC7230] or the Constrained Application

Protocol (CoAP) [RFC7252].

This document defines the CoRAL data model and interaction model as

well as two specialized CoRAL serialization formats.

1.1. Data and Interaction Model

The data model derives from the Web Linking model of [RFC8288] and

consists primarily of two elements: "links" that describe the

relationship between two resources and the type of that

relationship; and "forms" that describe a possible operation on a

resource and the type of that operation.

The data model can additionally make simple statements about

resources in a way similar to the Resource Description Framework

(RDF) [W3C.REC-rdf11-concepts-20140225]. In contrast to RDF,

however, the focus of CoRAL is not on the description of a graph of

resources, but on the discovery of possible future application

states.

The interaction model derives from the processing model of HTML

[W3C.REC-html52-20171214] and specifies how an automated software

agent can change the application state by navigating between

resources following links and performing operations on resources

submitting forms.

1.2. Serialization Formats

The primary serialization format is a compact, binary encoding of

links and forms in Concise Binary Object Representation (CBOR)

[RFC7049bis]. This format is intended for environments with

constraints on power, memory, and processing resources [RFC7228] and

¶

¶

¶

¶

¶

¶

¶

¶

¶

shares many similarities with the message format of CoAP: In place

of verbose strings, small numeric identifiers are used to encode

link relation types and operation types. Uniform Resource

Identifiers (URIs) [RFC3986] are pre-parsed into (what CoAP

considers to be) their components, which considerably simplifies URI

processing for constrained nodes that already have a CoAP

implementation. As a result, link serializations in CoRAL are often

much more compact and easier to process than equivalent

serializations in CoRE Link Format [RFC6690].

The secondary serialization format is a lightweight, textual

encoding of links and forms that is intended to be easy to read and

to write for humans. The format is loosely inspired by the syntax of

Turtle [W3C.REC-turtle-20140225] and is mainly intended for giving

examples in documentation and specifications with precise semantics.

1.3. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Terms defined in this document appear in cursive where they are

introduced (rendered in plain text as the new term surrounded by

underscores).

2. Data and Interaction Model

The Constrained RESTful Application Language (CoRAL) is designed for

building Web-based applications [W3C.REC-webarch-20041215] in which

automated software agents navigate between resources by following

links and perform operations on resources by submitting forms.

2.1. Browsing Context

Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent

maintains a browsing context in which the representations of Web

resources are processed. (In HTML, the browsing context typically

corresponds to a tab or window in a Web browser.)

At any time, one representation in a browsing context is designated

the active representation.

2.2. Documents

A resource representation in one of the CoRAL serialization formats

is called a CoRAL document. The URI that was used to retrieve such a

document is called the document's retrieval context. This URI is

¶

¶

¶

¶

¶

¶

¶

also considered the base URI for relative URI references in the

document.

A CoRAL document consists of a list of zero or more links and forms,

collectively called elements. CoRAL serialization formats may define

additional types of elements for efficiency or convenience, such as

an embedded base URI that takes precedence over the document's base

URI.

2.3. Links

A link describes a relationship between two resources on the Web. As

in [RFC8288], a link in CoRAL has a link context, a link relation

type, and a link target. However, a link in CoRAL does not have

target attributes. Instead, a link may have a list of zero or more

nested elements. These enable both the description of resource

metadata and the chaining of links, which is done in [RFC8288] by

setting the anchor of one link to the target of another.

A link can be viewed as a statement of the form "{link context}

has a {link relation type} resource at {link target}" where the

link target may be further described by nested elements.

A link relation type identifies the semantics of a link. In HTML and

in [RFC8288], link relation types are typically denoted by an IANA-

registered name, such as stylesheet or type. In CoRAL, all link

relation types are in contrast denoted by an Internationalized

Resource Identifier (IRI) [RFC3987], such as <http://www.iana.org/

assignments/relation/stylesheet> or <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type>. This allows for the decentralized creation of

new link relation types without the risk of collisions when from

different organizations or domains of knowledge. IRIs can also lead

to documentation, schema, and other information about a link

relation type. In CoRAL documents, these IRIs are only used as

identity tokens, though, and are compared with Simple String

Comparison as specified in Section 5.3.1 of [RFC3987].

Link contexts and link targets can both be either a URI, a literal

value, or an anonymous resource. If the link target is a URI and the

URI scheme indicates a Web transfer protocol like HTTP or CoAP, an

agent can dereference the URI and navigate the browsing context to

its target resource; this is called following the link. Literal

values are distinct and distinguishable from URIs and directly

identify data by means of a literal representation. A literal value

can be either a Boolean value, an integer number, a floating-point

number, a date/time instant, a byte string, or a text string. An

anonymous resource is a resource that is neither identified by a URI

nor a literal representation.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3987#section-5.3.1

A link can occur as a top-level element in a document or as a nested

element within a link. When a link occurs as a top-level element,

the link context implicitly is the document's retrieval context.

When a link occurs nested within a link, the link context of the

nested link is the link target of the enclosing link.

There are no restrictions on the cardinality of links; there can be

multiple links to and from a particular target, and multiple links

of the same or different types between a given link context and

target. However, the nesting nature of the data model constrains the

description of resource relations to a tree: Relations between

linked resources can only be described by further nesting links.

2.4. Forms

A form provides instructions to an agent for performing an operation

on a resource on the Web. A form has a form context, an operation

type, a request method, and a submission target. Additionally, a

form may be accompanied by a list of zero or more form fields.

A form can be viewed as an instruction of the form "To perform an

{operation type} operation on {form context}, make a {request

method} request to {submission target}" where the request may be

further described by form fields.

An operation type identifies the semantics of the operation.

Operation types are denoted (like link relation types) by an IRI.

Form contexts and submission targets are both denoted by a URI. The

form context is the resource on which the operation is ultimately

performed. To perform the operation, an agent needs to construct a

request with the specified method as the request method and the

specified submission target as the request URI. Usually, the

submission target is the same resource as the form context, but may

be a different resource. Constructing and sending the request is

called submitting the form.

A form can occur as a top-level element in a document or as a nested

element within a link. When a form occurs as a top-level element,

the form context implicitly is the document's retrieval context.

When a form occurs nested within a link, the form context is the

link target of the enclosing link.

2.5. Form Fields

Form fields can be used to provide more detailed instructions to

agents for constructing the request when submitting a form. For

example, a form field could instruct an agent to include a certain

payload or header field in the request. A payload could, for

instance, be described by form fields providing acceptable media

¶

¶

¶

¶

¶

¶

¶

types, a reference to schema information, or a number of individual

data items that the agents needs to supply. Form fields can be

specific to the Web transfer protocol that is used for submitting

the form.

A form field is a pair of a form field type and a form field value.

Additionally, a form field may have a list of zero or more nested

elements that further describe the form field value.

A form field type identifies the semantics of the form field. Form

field types are denoted (like link relation types and operation

types) by an IRI.

Form field values can be either a URI, a Boolean value, an integer

number, a floating-point number, a date/time instant, a byte string,

a text string, or null. A null indicates the intentional absence of

any form field value.

2.6. Navigation

An agent begins the interaction with an application by performing a

GET request on an entry point URI. The entry point URI is the only

URI that the agent is expected to know beforehand. From then on, the

agent is expected to make all requests by following links and

submitting forms that are provided in the responses resulting from

the requests. The entry point URI could be obtained through some

discovery process or manual configuration.

If dereferencing the entry point URI yields a CoRAL document (or any

other representation that implements the CoRAL data and interaction

model), the agent makes this document the active representation in

the browsing context and proceeds as follows:

The first step for the agent is to decide what to do next,

i.e., which type of link to follow or form to submit, based on

the link relation types and operation types it understands.

An agent may follow a link without understanding the link

relation type, e.g., for the sake of pre-fetching or building a

search index. However, an agent MUST NOT submit a form without

understanding the operation type.

The agent then finds the link(s) or form(s) with the respective

type in the active representation. This may yield one or more

candidates, from which the agent will have to select the most

appropriate one. The set of candidates can be empty, for

example, when an application state transition is not supported

or not allowed.

¶

¶

¶

¶

¶

¶

1.

¶

¶

2.

¶

The agent selects one of the candidates based on the metadata

associated them (in the form of form fields and nested

elements) and their order of appearance in the document.

Examples for relevant metadata could include the indication of

a media type for the target resource representation, the URI

scheme of a target resource, or the request method of an

operation.

The agent obtains the request URI from the link target or

submission target. Link targets and submission targets can be

denoted by relative URI references, which need to be resolved

against a base URI to obtain the request URI. Fragment

identifiers are not part of the request URI and MUST be

separated from the rest of the URI prior to the next step.

The agent constructs a new request with the request URI. If the

agent is following a link, then the request method MUST be GET.

If the agent is submitting a form, then the request method MUST

be the one supplied by the form. An IRI may need to be

converted to a URI (see Section 3.1 of [RFC3987]) for protocols

that do not support IRIs.

The agent SHOULD set HTTP header fields and CoAP request

options according to the metadata (e.g., set the HTTP Accept

header field or the CoAP Accept option when a media type for

the target resource is provided). Depending on the operation

type of a form, the agent may also have to include a request

payload that matches the specifications of some form fields.

The agent sends the request and receives the response.

If a fragment identifier was separated from the request URI,

the agent selects the fragment indicated by the fragment

identifier within the received representation according to the

semantics of its media type.

The agent updates the browsing context by making the (selected

fragment of the) received representation the active

representation.

Finally, the agent processes the representation according to

the semantics of its media type. If the representation is a

CoRAL document (or any other representation that implements the

CoRAL data and interaction model), the agent again has the

choice of what to do next. Go to step 1.

3.

¶

4.

¶

5.

¶

¶

6. ¶

7.

¶

8.

¶

9.

¶

https://rfc-editor.org/rfc/rfc3987#section-3.1

2.7. History Traversal

A browsing context has a session history, which lists the resource

representations that the agent has processed, is processing, or will

process.

A session history consists of session history entries. The number of

session history entries may be limited and dependent on the agent.

An agent with severe constraints on memory size might only have

enough memory for the most recent entry.

An entry in the session history consists of a resource

representation and the representation's retrieval context. New

entries are added to the session history as the agent navigates from

resource to resource, discarding entries that are no longer used.

An agent can decide to navigate a browsing context (in addition to

following links and submitting forms) by traversing the session

history. For example, when an agent receives a response with a

representation that does not contain any further links or forms, it

can navigate back to a resource representation it has visited

earlier and make that the active representation.

Traversing the history SHOULD take advantage of caches to avoid new

requests. An agent may reissue a safe request (e.g., a GET) when it

does not have a fresh representation in its cache. An agent MUST NOT

reissue an unsafe request (e.g., a PUT or POST) unless it actually

intends to perform that operation again.

3. Binary Format

This section defines the encoding of documents in the CoRAL binary

format.

A document in the binary format is encoded in Concise Binary Object

Representation (CBOR) [RFC7049bis]. The encoding MUST satisfy the

Core Deterministic Encoding Requirements specified in Section 4.2.1

of [RFC7049bis].

The CBOR structure of a document is presented in the Concise Data

Definition Language (CDDL) [RFC8610]. All CDDL rules not defined in

this document are defined in Appendix D of [RFC8610].

The media type of documents in the binary format is application/

coral+cbor.

3.1. Data Structure

The data structure of a document in the binary format is made up of

three kinds of elements: links, forms, and (as an extension to the

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13#section-4.2.1
https://rfc-editor.org/rfc/rfc8610#appendix-D

CoRAL data model) directives. Directives provide a way to encode URI

references with a common base more efficiently.

3.1.1. Documents

A document in the binary format is encoded as a CBOR array that

contains zero or more elements. An element is either a link, a form,

or a directive.

document = [*element]

element = link / form / directive

The elements are processed in the order they appear in the document.

Document processors need to maintain an environment while iterating

an array of elements. The environment consists of two variables: the

current context and the current base. The current context and the

current base are both initially set to the document's retrieval

context.

3.1.2. Directives

Directives provide the ability to manipulate the environment while

processing elements.

There is a single type of directives available: the Base directive.

directive = base-directive

It is an error if a document processor encounters any other type of

directive.

3.1.2.1. Base Directives

A Base directive is encoded as a CBOR array that contains the

unsigned integer 1 and a base URI.

base-directive = [1, baseURI]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The base URI is denoted by a Constrained Resource Identifier (CRI)

reference [I-D.ietf-core-href]. The CRI reference MUST be resolved

against the current context (not the current base).

baseURI = CRI-Reference

CRI-Reference = <Defined in Section XX of RFC XXXX>

The directive is processed by resolving the CRI reference against

the current context and assigning the result to the current base.

3.1.3. IRIs

IRIs in links and forms are encoded as CRI references.

IRI = CRI-Reference

A CRI reference is processed by resolving it to an IRI as specified

in Section 5.2 of [I-D.ietf-core-href] using the current base.

3.1.4. Links

A link is encoded as a CBOR array that contains the unsigned integer

2, the link relation type, the link target, and, optionally, an

array of zero or more nested elements.

link = [2, relation-type, link-target, ?[*element]]

The link relation type is an IRI.

relation-type = IRI

The link target is either an IRI, a literal value, or null.

link-target = IRI / literal / null

literal = bool / int / float / time / bytes / text

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-core-href-03#section-5.2

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the link target of the

enclosing link. The current base is initially set to the link

target, if the link target is an IRI; otherwise, it is set to the

current base of the current environment.

3.1.5. Forms

A form is encoded as a CBOR array that contains the unsigned integer

3, the operation type, the submission target, and, optionally, an

array of zero or more form fields.

form = [3, operation-type, submission-target, ?[*form-field]]

The operation type is an IRI.

operation-type = IRI

The submission target is an IRI.

submission-target = IRI

The request method is either implied by the operation type or

encoded as a form field. If both are given, the form field takes

precedence over the operation type. Either way, the method MUST be

applicable to the Web transfer protocol identified by the scheme of

the submission target.

The form fields, if any, MUST be processed in a fresh environment.

The current context is set to an unspecified URI that represents the

enclosing form. The current base is initially set to the submission

target of the enclosing form.

3.1.6. Form Fields

A form field is encoded as a CBOR sequence that consists of a form

field type, a form field value, and, optionally, an array of zero or

more nested elements.

form-field = (form-field-type, form-field-value, ?[*element])

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The form field type is an IRI.

form-field-type = IRI

The form field value is either an IRI, a literal value, or null.

form-field-value = IRI / literal / null

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the form field value of

the enclosing form field. The current base is initially set to the

form field value, if the form field value is an IRI; otherwise, it

is set to the current base of the current environment.

3.2. Dictionary Compression

A document in the binary format MAY reference values from an

external dictionary. This helps to reduce representation size and

processing cost. Dictionary references can be used in place of link

relation types, link targets, operation types, submission targets,

form field types, and form field values.

3.2.1. Dictionary References

A dictionary reference is encoded as an unsigned integer. Where a

dictionary reference cannot be expressed unambiguously, the unsigned

integer is tagged with CBOR tag TBD6, as follows:

relation-type /= uint

link-target /= #6.TBD6(uint)

operation-type /= uint

submission-target /= #6.TBD6(uint)

form-field-type /= uint

form-field-value /= #6.TBD6(uint)

A dictionary reference MUST NOT refer to a dictionary value that

would otherwise not be syntactically allowed in that position. For

example, a dictionary reference in the position of a link relation

type cannot refer to a Boolean value; it can only refer to an IRI.

3.2.2. Media Type Parameter

The application/coral+cbor media type for documents in the binary

format is defined to have a dictionary parameter that specifies the

¶

¶

¶

¶

¶

¶

¶

¶

¶

dictionary in use. The dictionary is identified by a URI. For

example, a CoRAL document that uses the dictionary identified by the

URI <http://example.com/dictionary> would have the following content

type:

application/coral+cbor;dictionary="http://example.com/dictionary"

The URI serves only as an identifier; it does not necessarily have

to be dereferencable (or even use a dereferencable URI scheme). It

is permissible, though, to use a dereferencable URI and to serve a

representation that provides information about the dictionary in a

machine- or human-readable way. (The representation format and

security considerations of such a representation are outside the

scope of this document.)

For simplicity, a CoRAL document can reference values only from one

dictionary; the value of the dictionary parameter MUST be a single

URI.

The dictionary parameter is OPTIONAL. If it is absent, the default

dictionary specified in Appendix B of this document is assumed.

Once a dictionary has made an assignment, the assignment MUST NOT be

changed or removed. A dictionary, however, may contain additional

information about an assignment, which may change over time.

In CoAP, media types (including specific values for their

parameters, plus an optional content coding) are encoded as an

unsigned integer called the "content format" of a representation.

For use with CoAP, each new CoRAL dictionary therefore needs to have

a new content format registered in the CoAP Content Formats Registry

[CORE-PARAMETERS].

3.3. Export Interface

The definition of documents, links, and forms in the CoRAL binary

format can be reused in other CBOR-based protocols. Specifications

using CDDL should reference the following rules for this purpose:

CoRAL-Document = document

CoRAL-Link = link

CoRAL-Form = form

For each embedded document, link, and form, the CBOR-based protocol

needs to specify the document retrieval context, link context, and

form context, respectively.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Textual Format

This section defines the syntax of documents in the CoRAL textual

format using two grammars: The lexical grammar defines how Unicode

characters are combined to form line terminators, white space,

comments, and tokens. The syntactic grammar defines how tokens are

combined to form documents. Both grammars are presented in Augmented

Backus-Naur Form (ABNF) [RFC5234].

A document in the textual format is a Unicode string in a Unicode

encoding form [Unicode]. The media type for such documents is text/

coral. The charset parameter of textual media types [RFC6657] is not

used; instead, charset information is transported inside the

document in the form of an OPTIONAL Byte Order Mark (BOM). The use

of the UTF-8 encoding scheme [RFC3629] without a BOM is RECOMMENDED.

4.1. Lexical Structure

The lexical structure of a document in the textual format is made up

of four basic elements: line terminators, white space, comments, and

tokens. Of these, only tokens are significant in the syntactic

grammar. There are three kinds of tokens: identifier tokens, literal

tokens, and punctuator tokens.

token = identifier / IRIref / boolean / integer / float

 / datetime / bytes / text / null / punctuator

When several lexical grammar rules match a sequence of characters in

a document, the longest match takes priority.

4.1.1. Line Terminators

Line terminators divide text into lines. A line terminator is any

Unicode character with Line_Break class BK, CR, LF, or NL. However,

any CR character that immediately precedes a LF character is

ignored. (This affects only the numbering of lines in error

messages.)

4.1.2. White Space

White space is a sequence of one or more white space characters. A

white space character is any Unicode character with the White_Space

property.

4.1.3. Comments

Comments are sequences of characters that are ignored when parsing

text into tokens. Single-line comments begin with the characters //

¶

¶

¶

¶

¶

¶

¶

and extend to the end of the line. Delimited comments begin with the

characters /* and end with the characters */. Delimited comments can

occupy a portion of a line, a single line, or multiple lines.

Comments do not nest. The character sequences /* and */ have no

special meaning within a single-line comment; the character

sequences // and /* have no special meaning within a delimited

comment.

4.1.4. Identifiers

An identifier token is a user-defined symbolic name. The syntax for

identifiers corresponds to the Default Identifier Syntax in Unicode

Standard Annex #31 [UAX31] with the following profile:

identifier = START *CONTINUE *(MEDIAL 1*CONTINUE)

START = <Any character with the XID_Start property>

CONTINUE = <Any character with the XID_Continue property>

MEDIAL = <Any character from Table XX>

Code Point

U+002D HYPHEN-MINUS

U+002E FULL STOP

U+007E TILDE

U+058A ARMENIAN HYPHEN

U+0F0B TIBETAN MARK INTERSYLLABIC TSHEG

U+2010 HYPHEN

U+2027 HYPHENATION POINT

U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN

U+30FB KATAKANA MIDDLE DOT

Table 1: Medial Characters

All identifiers MUST be converted into Unicode Normalization Form C

(NFC) [Unicode]. Comparison of identifiers is based on NFC and case-

sensitive (unless otherwise noted).

4.1.5. Literals

A literal token is a textual representation of a value.

4.1.5.1. IRI Reference Literals

IRI reference tokens denote references to resources on the Web.

An IRI reference literal consists of a Unicode string that conforms

to the syntax defined in [RFC3987]. An IRI reference is either an

¶

¶

¶

¶

¶

¶

¶

IRI or a relative reference. IRI references are enclosed in angle

brackets (< and >).

IRIref = "<" IRI-reference ">"

IRI-reference = <Defined in Section 2.2 of RFC 3987>

4.1.5.2. Boolean Literals

The case-insensitive tokens true and false denote the Boolean values

true and false, respectively.

boolean = "true" / "false"

4.1.5.3. Integer Literals

Integer literal tokens denote an integer value of unspecified

precision. By default, integer literals are expressed in decimal,

but they can also be specified in an alternate base using a prefix:

Binary literals begin with 0b, octal literals begin with 0o, and

hexadecimal literals begin with 0x.

Decimal literals contain the digits 0 through 9. Binary literals

contain 0 and 1, octal literals contain 0 through 7, and hexadecimal

literals contain 0 through 9 as well as A through F in upper- or

lowercase.

Negative integers are expressed by prepending a minus sign (-).

integer = ["+" / "-"] (decimal / binary / octal / hexadecimal)

decimal = 1*DIGIT

binary = %x30 (%x42 / %x62) 1*BINDIG

octal = %x30 (%x4F / %x6F) 1*OCTDIG

hexadecimal = %x30 (%x58 / %x78) 1*HEXDIG

DIGIT = %x30-39

BINDIG = %x30-31

OCTDIG = %x30-37

HEXDIG = %x30-39 / %x41-46 / %x61-66

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.1.5.4. Floating-point Literals

Floating-point literal tokens denote a floating-point number of

unspecified precision.

Floating-point literals consist of a sequence of decimal digits

followed by a fraction, an exponent, or both. The fraction consists

of a decimal point (.) followed by a sequence of decimal digits. The

exponent consists of the letter e in upper- or lowercase, followed

by an optional sign and a sequence of decimal digits that indicate a

power of 10 by which the value preceding the e is multiplied.

Negative floating-point values are expressed by prepending a minus

sign (-).

float = ["+" / "-"] 1*DIGIT [fraction] [exponent]

fraction = "." 1*DIGIT

exponent = (%x45 / %x65) ["+" / "-"] 1*DIGIT

A floating-point literal can additionally denote either the special

"Not-a-Number" (NaN) value, positive infinity, or negative infinity.

The NaN value is produced by the case-insensitive token NaN. The two

infinite values are produced by the case-insensitive tokens

+Infinity (or simply Infinity) and -Infinity.

float =/ "NaN" / ["+" / "-"] "Infinity"

4.1.5.5. Date/Time Literals

Date/time literal tokens denote an instant in time.

A date/time literal consists of the prefix dt and a sequence of

Unicode characters in Internet Date/Time Format [RFC3339], enclosed

in single quotes.

datetime = %x64.74 SQUOTE date-time SQUOTE

date-time = <Defined in Section 5.6 of RFC 3339>

SQUOTE = %x27

4.1.5.6. Byte String Literals

Byte string literal tokens denote an ordered sequence of bytes.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A byte string literal consists of a prefix and zero or more bytes

encoded in Base16, Base32, or Base64 [RFC4648], enclosed in single

quotes. Byte string literals encoded in Base16 begin with h or b16,

byte string literals encoded in Base32 begin with b32, and byte

string literals encoded in Base64 begin with b64.

bytes = base16 / base32 / base64

base16 = (%x68 / %x62.31.36) SQUOTE <Base16 encoded data> SQUOTE

base32 = %x62.33.32 SQUOTE <Base32 encoded data> SQUOTE

base64 = %x62.36.34 SQUOTE <Base64 encoded data> SQUOTE

4.1.5.7. Text String Literals

Text string literal tokens denote a Unicode string.

A text string literal consists of zero or more Unicode characters

enclosed in double quotes. It can include simple escape sequences

(such as \t for the tab character) as well as hexadecimal and

Unicode escape sequences.

text = DQUOTE *(char / %x5C escape) DQUOTE

char = <Any character except DQUOTE, %x5C, and line terminators>

escape = simple-escape / hexadecimal-escape / unicode-escape

simple-escape = %x30 / %x62 / %x74 / %x6E / %x76

 / %x66 / %x72 / %x22 / %x27 / %x5C

hexadecimal-escape = (%x78 / %x58) 2HEXDIG

unicode-escape = %x75 4HEXDIG / %x55 8HEXDIG

DQUOTE = %x22

An escape sequence denotes a single Unicode code point. For

hexadecimal and Unicode escape sequences, the code point is

expressed by the hexadecimal number following the \x, \X, \u, or \U

prefix. Simple escape sequences indicate the code points listed in

Table 2.

Escape Sequence Code Point

\0 U+0000 NULL

\b U+0008 BACKSPACE

\t U+0009 HORIZONTAL TABULATION

\n U+000A LINE FEED

\v U+000B VERTICAL TABULATION

\f U+000C FORM FEED

\r U+000D CARRIAGE RETURN

\" U+0022 QUOTATION MARK

¶

¶

¶

¶

¶

¶

Escape Sequence Code Point

\' U+0027 APOSTROPHE

\\ U+005C REVERSE SOLIDUS

Table 2: Simple Escape Sequences

4.1.5.8. Null Literal

The case-insensitive tokens null and _ denote the intentional

absence of any value.

null = "null" / "_"

4.1.6. Punctuators

Punctuator tokens are used for grouping and separating.

punctuator = "#" / ":" / "=" / "@" / "[" / "]" / "{" / "}" / "->"

4.2. Syntactic Structure

The syntactic structure of a document in the textual format is made

up of three kinds of elements: links, forms, and (as an extension to

the CoRAL data model) directives. Directives provide a way to make

documents easier to read and write by setting a base for relative

IRI references and introducing shorthands for IRIs.

4.2.1. Documents

A document in the textual format consists of a sequence of zero or

more elements. An element is either a link, a form, or a directive.

document = *element

element = link / form / directive

The elements are processed in the order they appear in the document.

Document processors need to maintain an environment while iterating

a sequence of elements. The environment consists of three variables:

the current context, the current base, and the current mapping from

identifiers to IRIs. The current context and the current base are

both initially set to the document's retrieval context. The current

mapping from identifiers to IRIs is initially empty.

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.2. Directives

Directives provide the ability to manipulate the environment while

processing elements.

All directives start with a number sign (#) followed by an

identifier. The identifier is case-insensitive and restricted to

Unicode characters in the Basic Latin block.

The following two types of directives are available: the Base

directive and the Using directive.

directive = base-directive / using-directive

It is an error if a document processor encounters any other type of

directive.

4.2.2.1. Base Directives

A Base directive consists of a number sign (#), followed by the

case-insensitive token base, followed by a base IRI.

base-directive = "#" "base" baseIRI

The base IRI is denoted by an IRI reference. The IRI reference MUST

be resolved against the current context (not the current base).

baseIRI = IRIref

The directive is processed by resolving the IRI reference against

the current context and assigning the result to the current base.

4.2.2.2. Using Directives

A Using directive consists of a number sign (#), followed by the

case-insensitive token using, optionally followed by an identifier

and an equals sign (=), finally followed by an IRI. If the

identifier is not specified, it is assumed to be the empty string.

using-directive = "#" "using" [identifier "="] IRIref

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The directive is processed by adding the specified identifier and

IRI to the current mapping from identifiers to IRIs. It is an error

if the identifier is already present in the mapping or if the IRI is

not an IRI but a relative reference.

4.2.3. IRIs

IRIs in links and forms can be either denoted by an IRI reference or

looked up in a mapping from identifiers to IRIs. Lookups can be done

in three ways: using a simple name, a qualified name, or a

predefined name.

IRI = IRIref / simple-name / qualified-name / predefined-name

All IRI references and names are processed by resolving them to an

IRI, as described in the following sub-sections.

4.2.3.1. IRI References

An IRI reference is resolved to an IRI as specified in Section 6.5

of [RFC3987] using the current base as the base URI.

4.2.3.2. Simple Names

A simple name consists of an identifier.

simple-name = identifier

A simple name is resolved to an IRI by looking up the empty string

in the current mapping from identifiers to IRIs and appending the

given identifier to the result. It is an error if the empty string

is not present in the mapping.

4.2.3.3. Qualified Names

A qualified name consists of two identifiers separated by a colon

(:).

qualified-name = identifier ":" identifier

A qualified name is resolved to an IRI by looking up the identifier

given on the left hand side in the current mapping from identifiers

to IRIs. The identifier given on the right hand side is appended to

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3987#section-6.5

the result. It is an error if the identifier on the left hand side

is not present in the mapping.

4.2.3.4. Predefined Names

A predefined name consists of a commercial at sign (@) followed by

an identifier. The identifier is case-insensitive and restricted to

Unicode characters in the Basic Latin block.

predefined-name = "@" identifier

A predefined name is resolved to an IRI by looking up the identifier

in Table 3. It is an error if the identifier is not present in the

table.

Identifier IRI

direction <http://coreapps.org/base#direction>

language <http://coreapps.org/base#language>

Table 3: Predefined Names

4.2.4. Links

A link consists of the link relation type, followed by the link

target, optionally followed by a sequence of zero or more nested

elements enclosed in curly brackets ({ and }).

link = relation-type link-target ["{" *element "}"]

The link relation type is an IRI.

relation-type = IRI

The link target is either an IRI, a literal value, or null.

link-target = IRI / literal / null

literal = boolean / integer / float / datetime / bytes / text

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the link target of the

enclosing link. The current base is initially set to the link

target, if the link target is an IRI; otherwise, it is set to the

current base of the current environment. The mapping from

identifiers to IRIs is initially set to a copy of the mapping from

identifiers to IRIs in the current environment.

4.2.5. Forms

A form consists of the operation type, followed by a -> token and

the submission target, optionally followed by a sequence of zero or

more form fields enclosed in square brackets ([and]).

form = operation-type "->" submission-target ["[" *form-field "]"]

The operation type is an IRI.

operation-type = IRI

The submission target is an IRI.

submission-target = IRI

The request method is either implied by the operation type or

encoded as a form field. If both are given, the form field takes

precedence over the operation type. Either way, the method MUST be

applicable to the Web transfer protocol identified by the scheme of

the submission target.

The form fields, if any, MUST be processed in a fresh environment.

The current context is set to an unspecified URI that represents the

enclosing form. The current base is initially set to the submission

target of the enclosing form. The mapping from identifiers to IRIs

is initially set to a copy of the mapping from identifiers to IRIs

in the current environment.

4.2.6. Form Fields

A form field consists of a form field type, followed by a form field

value, optionally followed by a sequence of zero or more nested

elements enclosed in curly brackets ({ and }).

form-field = form-field-type form-field-value ["{" *element "}"]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The form field type is an IRI.

form-field-type = IRI

The form field value is either an IRI, a literal value, or null.

form-field-value = IRI / literal / null

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the form field value of

the enclosing form field. The current base is initially set to the

form field value, if the form field value is an IRI; otherwise, it

is set to the current base of the current environment. The mapping

from identifiers to IRIs is initially set to a copy of the mapping

from identifiers to IRIs in the current environment.

5. Document Semantics

5.1. Submitting Documents

By default, a CoRAL document is a representation that captures the

current state of a resource. The meaning of a CoRAL document changes

when it is submitted in a request. Depending on the request method,

the CoRAL document can capture the intended state of a resource

(PUT) or be subject to application-specific processing (POST).

5.1.1. PUT Requests

A PUT request with a CoRAL document enclosed in the request payload

requests that the state of the target resource be created or

replaced with the state described by the CoRAL document. A

successful PUT of a CoRAL document generally means that a subsequent

GET on that same target resource would result in an equivalent

document being sent in a success response.

An origin server SHOULD verify that a submitted CoRAL document is

consistent with any constraints the server has for the target

resource. When a document is inconsistent with the target resource,

the origin server SHOULD either make it consistent (e.g., by

removing inconsistent elements) or respond with an appropriate error

message containing sufficient information to explain why the

document is unsuitable.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The retrieval context and the base URI of a CoRAL document in a PUT

are the request URI of the request.

5.1.2. POST Requests

A POST request with a CoRAL document enclosed in the request payload

requests that the target resource process the CoRAL document

according to the resource's own specific semantics.

The retrieval context of a CoRAL document in a POST is defined by

the target resource's processing semantics; it may be an unspecified

URI. The base URI of the document is the request URI of the request.

5.2. Returning Documents

In a response, the meaning of a CoRAL document changes depending on

the request method and the response status code. For example, a

CoRAL document in a successful response to a GET represents the

current state of the target resource, whereas a CoRAL document in a

successful response to a POST might represent either the processing

result or the new resource state. A CoRAL document in an error

response represents the error condition, usually describing the

error state and what next steps are suggested for resolving it.

5.2.1. Success Responses

Success responses have a response status code that indicates that

the client's request was successfully received, understood, and

accepted (2xx in HTTP, 2.xx in CoAP). When the representation in a

success response does not describe the state of the target resource,

it describes result of processing the request. For example, when a

request has been fulfilled and has resulted in one or more new

resources being created, a CoRAL document in the response can link

to and describe the resource(s) created.

The retrieval context and the base URI of a CoRAL document

representing the current state of a resource are the request URI of

the request.

The retrieval context of a CoRAL document representing a processing

result is an unspecified URI that refers to the processing result

itself. The base URI of the document is the request URI of the

request.

5.2.2. Redirection Responses

Redirection responses have a response status code that indicates

that further action needs to be taken by the agent (3xx in HTTP). A

redirection response, for example, might indicate that the target

resource is available at a different URI or the server offers a

¶

¶

¶

¶

¶

¶

¶

choice of multiple matching resources, each with its own specific

URI.

In the latter case, the representation in the response might contain

a list of resource metadata and URI references (i.e., links) from

which the agent can choose the most preferred one.

The retrieval context of a CoRAL document representing such multiple

choices in a redirection response is an unspecified URI that refers

to the redirection itself. The base URI of the document is the

request URI of the request.

5.2.3. Error Responses

Error response have a response status code that indicates that

either the request cannot be fulfilled or the server failed to

fulfill an apparently valid request (4xx or 5xx in HTTP, 4.xx or

5.xx in CoAP). A representation in an error response describes the

error condition.

The retrieval context of a CoRAL document representing such an error

condition is an unspecified URI that refers to the error condition

itself. The base URI of the document is the request URI of the

request.

6. Usage Considerations

This section discusses some considerations in creating CoRAL-based

applications and vocabularies.

6.1. Specifying CoRAL-based Applications

CoRAL-based applications naturally implement the Web architecture

[W3C.REC-webarch-20041215] and thus are centered around orthogonal

specifications for identification, interaction, and representation:

Resources are identified by IRIs or represented by literal

values.

Interactions are based on the hypermedia interaction model of the

Web and the methods provided by the Web transfer protocol. The

semantics of possible interactions are identified by link

relation types and operation types.

Representations are CoRAL documents encoded in the binary format

defined in Section 3 or the textual format defined in Section 4.

Depending on the application, additional representation formats

may be used.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

6.1.1. Application Interfaces

Specifications for CoRAL-based applications need to list the

specific components used in the application interface and their

identifiers. This should include the following items:

The Web transfer protocols supported.

The representation formats used, identified by their Internet

media types, including the CoRAL serialization formats.

The link relation types used.

The operation types used. Additionally, for each operation type,

the permissible request methods.

The form field types used. Additionally, for each form field

type, the permissible form field values.

6.1.2. Resource Identifiers

URIs are a cornerstone of Web-based applications. They enable the

uniform identification of resources and are used every time a client

interacts with a server or a resource representation needs to refer

to another resource.

URIs often include structured application data in the path and query

components, such as paths in a filesystem or keys in a database. It

is a common practice in HTTP-based application programming

interfaces (APIs) to make this part of the application

specification, i.e., to prescribe fixed URI templates that are hard-

coded in implementations. However, there are a number of problems

with this practice [RFC7320bis].

In CoRAL-based applications, resource names are therefore not part

of the application specification -- they are an implementation

detail. The specification of a CoRAL-based application MUST NOT

mandate any particular form of resource name structure.

[RFC7320bis] describes the problematic practice of fixed URI

structures in more detail and provides some acceptable alternatives.

6.1.3. Implementation Limits

This document places no restrictions on the number of elements in a

CoRAL document or the depth of nested elements. Applications using

CoRAL (in particular those running in constrained environments) may

limit these numbers and define specific implementation limits that

an implementation must support at least to be interoperable.

¶

* ¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

Applications may also mandate the following and other restrictions:

Use of only either the binary format or the text format.

Use of only either HTTP or CoAP as the supported Web transfer

protocol.

Use of only dictionary references in the binary format for

certain vocabulary.

Use of URI references and CRI references only up to a specific

length.

6.2. Minting Vocabulary

New link relation types, operation types, and form field types can

be minted by defining an IRI that uniquely identifies the item.

Although the IRI may point to a resource that contains a definition

of the semantics, clients SHOULD NOT automatically access that

resource to avoid overburdening its server. The IRI SHOULD be under

the control of the person or party defining it, or be delegated to

them.

To avoid interoperability problems, it is RECOMMENDED that only IRIs

are minted that are normalized according to Section 5.3 of

[RFC3987]. Non-normalized forms that are best avoided include:

Uppercase characters in scheme names and domain names

Percent-encoding of characters where it is not required by the

IRI syntax

Explicitly stated HTTP default port (e.g., <http://example.com/>

is preferable over <http://example.com:80/>)

Completely empty path in HTTP IRIs (e.g., <http://example.com/>

is preferable over <http://example.com>)

Dot segments (/./ or /../) in the path component of an IRI

Lowercase hexadecimal letters within percent-encoding triplets

(e.g., %3F is preferable over %3f)

Punycode-encoding of Internationalized Domain Names in IRIs

IRIs that are not in Unicode Normalization Form C

IRIs that identify vocabulary do not need to be registered. The

inclusion of domain names in IRIs allows for the decentralized

creation of new IRIs without the risk of collisions.

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

¶

https://rfc-editor.org/rfc/rfc3987#section-5.3

However, IRIs can be relatively verbose and impose a high overhead

on a representation. This can be a problem in constrained

environments [RFC7228]. Therefore, CoRAL alternatively allows the

use of unsigned integers to reference CBOR data items from a

dictionary, as specified in Section 3.2. These impose a much smaller

overhead but instead need to be assigned by an authority to avoid

collisions.

6.3. Expressing Registered Link Relation Types

Link relation types registered in the Link Relations Registry [LINK-

RELATIONS], such as collection [RFC6573] or icon [W3C.REC-

html52-20171214], can be used in CoRAL by appending the registered

name to the IRI <http://www.iana.org/assignments/relation/>:

#using iana = <http://www.iana.org/assignments/relation/>

iana:collection </items>

iana:icon </favicon.png>

The convention of appending the relation type name to the prefix

<http://www.iana.org/assignments/relation/> to form IRIs is adopted

from the Atom Syndication Format [RFC4287]; see also Appendix A.2 of

[RFC8288].

Note that registered relation type names are required to be

lowercase ASCII letters (see Section 3.3 of [RFC8288]).

6.4. Expressing Simple RDF Statements

In RDF [W3C.REC-rdf11-concepts-20140225], a statement says that some

relationship, indicated by a predicate, holds between two resources.

Existing RDF vocabularies can therefore be a good source for link

relation types that describe resource metadata. For example, a CoRAL

document could use the FOAF vocabulary [FOAF] to describe the person

or software that made it:

#using rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

#using foaf = <http://xmlns.com/foaf/0.1/>

foaf:maker null {

 rdf:type <http://xmlns.com/foaf/0.1/Person>

 foaf:familyName "Hartke"

 foaf:givenName "Klaus"

 foaf:mbox <mailto:klaus.hartke@ericsson.com>

}

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8288#appendix-A.2
https://rfc-editor.org/rfc/rfc8288#section-3.3

6.5. Expressing Natural Language Texts

Text strings can be associated with a Language Tag [RFC5646] and a

base text direction (right-to-left or left-to-right) by nesting

links of types <http://coreapps.org/base#language> and <http://

coreapps.org/base#direction>, respectively:

#using base = <http://coreapps.org/base#>

#using iana = <http://www.iana.org/assignments/relation/>

iana:terms-of-service </tos> {

 base:title "Nutzungsbedingungen" {

 @language "de"

 @direction "ltr"

 }

 base:title "Terms of use" {

 @language "en-US"

 @direction "ltr"

 }

}

The link relation types <http://coreapps.org/base#language> and

<http://coreapps.org/base#direction> are defined in Appendix A.

6.6. Embedding Representations in CoRAL

When a document links to many Web resources and an agent needs a

representation of each of them, it can be inefficient to retrieve

each representations individually. To minimize round-trips,

documents can embed representations of resources.

A representation can be embedded in a document by including a link

of type <http://coreapps.org/base#representation>:

#using base = <http://coreapps.org/base#>

#using http = <http://coreapps.org/http#>

#using iana = <http://www.iana.org/assignments/relation/>

iana:icon </favicon.gif> {

 base:representation

 b64'R0lGODlhAQABAAAAACH5BAEKAAEALAAAAAABAAEAAAIAOw==' {

 http:type "image/gif"

 }

}

¶

¶

¶

¶

¶

¶

An embedded representation SHOULD have a nested link of type

<http://coreapps.org/http#type> or <http://coreapps.org/coap#type>

that indicates the content type of the representation.

The link relation types <http://coreapps.org/base#representation>,

<http://coreapps.org/http#type>, and <http://coreapps.org/coap#type>

are defined in Appendix A.

7. Security Considerations

CoRAL document processors need to be fully prepared for all types of

hostile input that may be designed to corrupt, overrun, or achieve

control of the agent processing the document. For example, hostile

input may be constructed to overrun buffers, allocate very big data

structures, or exhaust the stack depth by setting up deeply nested

elements. Processors need to have appropriate resource management to

mitigate these attacks.

CoRAL serialization formats intentionally do not feature the

equivalent of XML entity references so as to preclude the entire

class of attacks relating to them, such as exponential XML entity

expansion ("billion laughs") [CAPEC-197] and malicious XML entity

linking [CAPEC-201].

Implementers of the CoRAL binary format need to consider the

security aspects of decoding CBOR. See Section 10 of [RFC7049bis]

for security considerations relating to CBOR. In particular,

different number encodings for the same numeric value are not

equivalent in CoRAL (e.g., a floating-point value of 0.0 is not the

same as the integer 0).

Implementers of the CoRAL textual format need to consider the

security aspects of handling Unicode input. See Unicode Technical

Report #36 [UTR36] for security considerations relating to visual

spoofing and misuse of character encodings. See Section 10 of

[RFC3629] for security considerations relating to UTF-8. See Unicode

Technical Standard #39 [UTS39] for security mechanisms that can be

used to detect possible security problems relating to Unicode.

CoRAL makes extensive use of resource identifiers. See Section 7 of

[RFC3986] for security considerations relating to URIs. See

Section 8 of [RFC3987] for security considerations relating to IRIs.

See Section 7 of [I-D.ietf-core-href] for security considerations

relating to CRIs.

The security of applications using CoRAL can depend on the proper

preparation and comparison of internationalized strings. For

example, such strings can be used to make authentication and

authorization decisions, and the security of an application could be

compromised if an entity providing a given string is connected to

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13#section-10
https://rfc-editor.org/rfc/rfc3629#section-10
https://rfc-editor.org/rfc/rfc3986#section-7
https://rfc-editor.org/rfc/rfc3987#section-8
https://tools.ietf.org/html/draft-ietf-core-href-03#section-7

Type name:

Subtype name:

Required parameters:

the wrong account or online resource based on different

interpretations of the string. See [RFC6943] for security

considerations relating to identifiers in IRIs and other strings.

CoRAL is intended to be used in conjunction with a Web transfer

protocol like HTTP or CoAP. See Section 9 of [RFC7230], Section 9 of

[RFC7231], etc., for security considerations relating to HTTP. See

Section 11 of [RFC7252] for security considerations relating to

CoAP.

CoRAL does not define any specific mechanisms for protecting the

confidentiality and integrity of CoRAL documents. It relies on

security mechanisms on the application layer or transport layer for

this, such as Transport Layer Security (TLS) [RFC8446].

CoRAL documents and the structure of a web of resources revealed

from automatically following links can disclose personal information

and other sensitive information. Implementations need to prevent the

unintentional disclosure of such information. See Section 9 of

[RFC7231] for additional considerations.

Applications using CoRAL ought to consider the attack vectors opened

by automatically following, trusting, or otherwise using links and

forms in CoRAL documents. See Section 5 of [RFC8288] for related

considerations.

In particular, when a CoRAL document is the representation of a

resource, the server that is authoritative for that resource may not

necessarily be authoritative for nested elements in the document. In

this case, unless an application defines specific rules, any link or

form where the link/form context and the document's retrieval

context do not share the same Web Origin [RFC6454] should be

discarded ("same-origin policy").

8. IANA Considerations

8.1. Media Type "application/coral+cbor"

This document registers the media type application/coral+cbor

according to the procedures of [RFC6838].

application

coral+cbor

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7230#section-9
https://rfc-editor.org/rfc/rfc7231#section-9
https://rfc-editor.org/rfc/rfc7252#section-11
https://rfc-editor.org/rfc/rfc7231#section-9
https://rfc-editor.org/rfc/rfc8288#section-5

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration?

dictionary - See Section 3.2 of [I-D.ietf-core-coral].

binary - See Section 3 of [I-D.ietf-core-coral].

See Section 7 of [I-D.ietf-core-coral].

N/A

[I-D.ietf-core-coral]

See Section 1 of [I-D.ietf-core-coral].

As specified for application/cbor.

Deprecated alias names for this type: N/A

Magic number(s): N/A

File extension(s): .coral.cbor

Macintosh file type code(s): N/A

See the Author's Address section of [I-D.ietf-core-coral].

COMMON

N/A

See the Author's Address section of [I-D.ietf-core-coral].

IESG

No

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

8.2. Media Type "text/coral"

This document registers the media type text/coral according to the

procedures of [RFC6838] and guidelines of [RFC6657].

text

coral

N/A

N/A

binary - See Section 4 of [I-D.ietf-core-coral].

See Section 7 of [I-D.ietf-core-coral].

N/A

[I-D.ietf-core-coral]

See Section 1 of [I-D.ietf-core-coral].

N/A

Deprecated alias names for this type: N/A

Magic number(s): N/A

File extension(s): .coral

Macintosh file type code(s): N/A

See the Author's Address section of [I-D.ietf-core-coral].

COMMON

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Restrictions on usage:

Author:

Change controller:

Provisional registration?

Content Type:

Content Coding:

ID:

Reference:

Content Type:

Content Coding:

ID:

Reference:

Tag:

Data Item:

Semantics:

Reference:

N/A

See the Author's Address section of [I-D.ietf-core-coral].

IESG

No

8.3. CoAP Content Formats

This document registers CoAP content formats for the content types

application/coral+cbor and text/coral according to the procedures of

[RFC7252].

application/coral+cbor

identity

TBD3

[I-D.ietf-core-coral]

text/coral

identity

TBD4

[I-D.ietf-core-coral]

[[NOTE TO RFC EDITOR: Please replace all occurrences of TBD3 and

TBD4 in this document with the code points assigned by IANA.]]

[[NOTE TO IMPLEMENTERS: Experimental implementations may use content

format ID 65087 for application/coral+cbor and content format ID

65343 for text/coral until IANA has assigned code points.]]

8.4. CBOR Tag

This document registers a CBOR tag for dictionary references

according to the procedures of [RFC7049bis].

TBD6

unsigned integer

Dictionary reference

[I-D.ietf-core-coral]

[[NOTE TO RFC EDITOR: Please replace all occurrences of TBD6 in this

document with the code point assigned by IANA.]]

¶

¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

¶

¶

¶

¶

* ¶

¶

¶

¶

¶

[I-D.ietf-core-href]

[RFC2119]

[RFC3339]

[RFC3629]

[RFC3986]

[RFC3987]

[RFC4648]

[RFC5234]

[RFC5646]

[RFC6454]

9. References

9.1. Normative References

Hartke, K., "Constrained Resource Identifiers", Work in

Progress, Internet-Draft, draft-ietf-core-href-03, 9

March 2020, <https://tools.ietf.org/html/draft-ietf-core-

href-03>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Duerst, M. and M. Suignard, "Internationalized Resource

Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,

January 2005, <https://www.rfc-editor.org/info/rfc3987>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

https://tools.ietf.org/html/draft-ietf-core-href-03
https://tools.ietf.org/html/draft-ietf-core-href-03
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454

[RFC6657]

[RFC6838]

[RFC7049bis]

[RFC8174]

[RFC8610]

[Unicode]

[CAPEC-197]

[CAPEC-201]

[CORE-PARAMETERS]

[FOAF]

[HAL]

Melnikov, A. and J. Reschke, "Update to MIME regarding

"charset" Parameter Handling in Textual Media Types", RFC

6657, DOI 10.17487/RFC6657, July 2012, <https://www.rfc-

editor.org/info/rfc6657>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", Work in Progress, Internet-Draft,

draft-ietf-cbor-7049bis-13, 8 March 2020, <https://

tools.ietf.org/html/draft-ietf-cbor-7049bis-13>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

The Unicode Consortium, "The Unicode Standard, Version

12.1.0", ISBN 978-1-936213-25-2, May 2019, <http://

www.unicode.org/versions/Unicode12.1.0/>.

9.2. Informative References

MITRE, "CAPEC-197: XML Entity Expansion", 30 September

2019, <https://capec.mitre.org/data/definitions/

197.html>.

MITRE, "CAPEC-201: XML Entity Linking", 30 September

2019, <https://capec.mitre.org/data/definitions/

201.html>.

IANA, "Constrained RESTful Environments (CoRE)

Parameters", , <http://www.iana.org/assignments/core-

parameters>.

Brickley, D. and L. Miller, "FOAF Vocabulary

Specification 0.99", 14 January 2014, <http://xmlns.com/

foaf/spec/20140114.html>.

Kelly, M., "JSON Hypertext Application Language", Work in

Progress, Internet-Draft, draft-kelly-json-hal-08, 12 May

https://www.rfc-editor.org/info/rfc6657
https://www.rfc-editor.org/info/rfc6657
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
http://www.unicode.org/versions/Unicode12.1.0/
http://www.unicode.org/versions/Unicode12.1.0/
https://capec.mitre.org/data/definitions/197.html
https://capec.mitre.org/data/definitions/197.html
https://capec.mitre.org/data/definitions/201.html
https://capec.mitre.org/data/definitions/201.html
http://www.iana.org/assignments/core-parameters
http://www.iana.org/assignments/core-parameters
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html

[HTTP-METHODS]

[LINK-RELATIONS]

[MEDIA-TYPES]

[RFC4287]

[RFC5789]

[RFC6573]

[RFC6690]

[RFC6943]

[RFC7228]

[RFC7230]

[RFC7231]

[RFC7252]

2016, <https://tools.ietf.org/html/draft-kelly-json-

hal-08>.

IANA, "Hypertext Transfer Protocol (HTTP) Method

Registry", , <http://www.iana.org/assignments/http-

methods>.

IANA, "Link Relations", , <http://www.iana.org/

assignments/link-relations>.

IANA, "Media Types", , <http://www.iana.org/

assignments/media-types>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/info/rfc4287>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/info/rfc5789>.

Amundsen, M., "The Item and Collection Link Relations",

RFC 6573, DOI 10.17487/RFC6573, April 2012, <https://

www.rfc-editor.org/info/rfc6573>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/info/rfc6690>.

Thaler, D., Ed., "Issues in Identifier Comparison for

Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May

2013, <https://www.rfc-editor.org/info/rfc6943>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-08
http://www.iana.org/assignments/http-methods
http://www.iana.org/assignments/http-methods
http://www.iana.org/assignments/link-relations
http://www.iana.org/assignments/link-relations
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc6943
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231

[RFC7320bis]

[RFC8132]

[RFC8288]

[RFC8446]

[UAX31]

[UTR36]

[UTS39]

[W3C.REC-html52-20171214]

[W3C.REC-rdf-schema-20140225]

[W3C.REC-rdf11-concepts-20140225]

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Nottingham, M., "URI Design and Ownership", Work in

Progress, Internet-Draft, draft-nottingham-rfc7320bis-03,

5 January 2020, <https://tools.ietf.org/html/draft-

nottingham-rfc7320bis-03>.

van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and

FETCH Methods for the Constrained Application Protocol

(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,

<https://www.rfc-editor.org/info/rfc8132>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

The Unicode Consortium, "Unicode Standard Annex #31:

Unicode Identifier and Pattern Syntax", Revision 31,

February 2019, <http://www.unicode.org/reports/tr31/

tr31-31.html>.

The Unicode Consortium, "Unicode Technical Report #36:

Unicode Security Considerations", Revision 15, September

2014, <http://www.unicode.org/reports/tr36/tr36-15.html>.

The Unicode Consortium, "Unicode Technical Standard #39:

Unicode Security Mechanisms", Revision 20, May 2019,

<http://www.unicode.org/reports/tr39/tr39-20.html>.

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Brickley, D. and R. Guha, "RDF Schema

1.1", World Wide Web Consortium Recommendation REC-rdf-

schema-20140225, 25 February 2014, <http://www.w3.org/TR/

2014/REC-rdf-schema-20140225>.

Cyganiak, R., Wood, D., and M. Lanthaler, "RDF 1.1

Concepts and Abstract Syntax", World Wide Web Consortium

Recommendation REC-rdf11-concepts-20140225, 25 February

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://tools.ietf.org/html/draft-nottingham-rfc7320bis-03
https://tools.ietf.org/html/draft-nottingham-rfc7320bis-03
https://www.rfc-editor.org/info/rfc8132
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8446
http://www.unicode.org/reports/tr31/tr31-31.html
http://www.unicode.org/reports/tr31/tr31-31.html
http://www.unicode.org/reports/tr36/tr36-15.html
http://www.unicode.org/reports/tr39/tr39-20.html
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214
http://www.w3.org/TR/2014/REC-rdf-schema-20140225
http://www.w3.org/TR/2014/REC-rdf-schema-20140225

[W3C.REC-turtle-20140225]

[W3C.REC-webarch-20041215]

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://coreapps.org/base#title>

<http://coreapps.org/base#language>

<http://coreapps.org/base#direction>

2014, <http://www.w3.org/TR/2014/REC-rdf11-

concepts-20140225>.

Prud'hommeaux, E. and G. Carothers, "RDF 1.1

Turtle", World Wide Web Consortium Recommendation REC-

turtle-20140225, 25 February 2014, <http://www.w3.org/TR/

2014/REC-turtle-20140225>.

Jacobs, I. and N. Walsh, "Architecture of

the World Wide Web, Volume One", World Wide Web

Consortium Recommendation REC-webarch-20041215, 15

December 2004, <http://www.w3.org/TR/2004/REC-

webarch-20041215>.

Appendix A. Core Vocabulary

This section defines the core vocabulary for CoRAL: a set of link

relation types, operation types, and form field types.

A.1. Base

Link Relation Types:

Indicates that the link's context is an instance of the class

specified as the link's target, as defined by RDF Schema

[W3C.REC-rdf-schema-20140225].

Indicates that the link target is a human-readable label (e.g., a

menu entry).

The link target MUST be a text string. The text string SHOULD be

annotated with a language and text direction using nested links

of type <http://coreapps.org/base#language> and <http://

coreapps.org/base#direction>, respectively.

Indicates that the link target is a Language Tag [RFC5646] that

specifies the language of the link context.

The link target MUST be a text string in the format specified in

Section 2.1 of [RFC5646].

Indicates that the link target is a base text direction (right-

to-left or left-to-right) that specifies the text directionality

of the link context.

¶

¶

¶

¶

¶

¶

¶

¶

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-turtle-20140225
http://www.w3.org/TR/2014/REC-turtle-20140225
http://www.w3.org/TR/2004/REC-webarch-20041215
http://www.w3.org/TR/2004/REC-webarch-20041215
https://rfc-editor.org/rfc/rfc5646#section-2.1

<http://coreapps.org/base#representation>

<http://coreapps.org/base#update>

<http://coreapps.org/base#search>

The link target MUST be either the text string "rtl" or the text

string "ltr".

Indicates that the link target is a representation of the link

context.

The link target MUST be a byte string.

The representation may be a full, partial, or inconsistent

version of the representation served from the URI of the

resource.

A link with this link relation type can occur as a top-level

element in a document or as a nested element within a link. When

it occurs as a top-level element, it provides an alternate

representation of the document's retrieval context. When it

occurs nested within a link, it provides a representation of link

target of the enclosing link.

Operation Types:

Indicates that the state of the form's context can be replaced

with the state described by a representation submitted to the

server.

This operation type defaults to the PUT method [RFC7231]

[RFC7252] for both HTTP and CoAP. Typical overrides by a form

field include the PATCH method [RFC5789] [RFC8132] for HTTP and

CoAP and the iPATCH method [RFC8132] for CoAP.

Indicates that the form's context can be searched by submitting a

search query.

This operation type defaults to the POST method [RFC7231] for

HTTP and the FETCH method [RFC8132] for CoAP. Typical overrides

by a form field include the POST method [RFC7252] for CoAP.

A.2. Collections

Link Relation Types:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

<http://www.iana.org/assignments/relation/item>

<http://www.iana.org/assignments/relation/collection>

<http://coreapps.org/collections#create>

<http://coreapps.org/collections#delete>

<http://coreapps.org/http#method>

<http://coreapps.org/http#accept>

Indicates that the link's context is a collection and that the

link's target is a member of that collection, as defined in

Section 2.1 of [RFC6573].

Indicates that the link's target is a collection and that the

link's context is a member of that collection, as defined in

Section 2.2 of [RFC6573].

Operation Types:

Indicates that the form's context is a collection and that a new

item can be created in that collection with the state defined by

a representation submitted to the server.

This operation type defaults to the POST method [RFC7231]

[RFC7252] for both HTTP and CoAP.

Indicates that the form's context is a member of a collection and

that the form's context can be removed from that collection.

This operation type defaults to the DELETE method [RFC7231]

[RFC7252] for both HTTP and CoAP.

A.3. HTTP

Form Field Types:

Specifies the HTTP method for the request.

The form field value MUST be a text string in the format defined

in Section 4.1 of [RFC7231]. The possible set of values is

maintained in the HTTP Methods Registry [HTTP-METHODS].

A form field of this type MUST NOT occur more than once in a

form. If absent, it defaults to the request method implied by the

form's operation type.

Specifies an acceptable HTTP content type for the request

payload. There may be multiple form fields of this type. If a

form does not include a form field of this type, the server

accepts any or no request payload, depending on the operation

type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6573#section-2.1
https://rfc-editor.org/rfc/rfc6573#section-2.2
https://rfc-editor.org/rfc/rfc7231#section-4.1

<http://coreapps.org/http#type>

<http://coreapps.org/coap#method>

<http://coreapps.org/coap#accept>

<http://coreapps.org/coap#type>

The form field value MUST be a text string in the format defined

in Section 3.1.1.1 of [RFC7231]. The possible set of media types

and their parameters is maintained in the Media Types Registry

[MEDIA-TYPES].

Link Relation Types:

Specifies the HTTP content type of the link context.

The link target MUST be a text string in the format defined in

Section 3.1.1.1 of [RFC7231]. The possible set of media types and

their parameters is maintained in the Media Types Registry

[MEDIA-TYPES].

A.4. CoAP

Form Field Types:

Specifies the CoAP method for the request.

The form field value MUST be an integer identifying a CoAP method

(e.g., the integer 2 for the POST method). The possible set of

values is maintained in the CoAP Method Codes Registry [CORE-

PARAMETERS].

A form field of this type MUST NOT occur more than once in a

form. If absent, it defaults to the request method implied by the

form's operation type.

Specifies an acceptable CoAP content format for the request

payload. There may be multiple form fields of this type. If a

form does not include a form field of this type, the server

accepts any or no request payload, depending on the operation

type.

The form field value MUST be an integer identifying a CoAP

content format. The possible set of values is maintained in the

CoAP Content Formats Registry [CORE-PARAMETERS].

Link Relation Types:

Specifies the CoAP content format of the link context.

The link target MUST be an integer identifying a CoAP content

format (e.g., the integer 42 for the content type application/

octet-stream without a content coding). The possible set of

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7231#section-3.1.1.1
https://rfc-editor.org/rfc/rfc7231#section-3.1.1.1

values is maintained in the CoAP Content Formats Registry [CORE-

PARAMETERS].

Appendix B. Default Dictionary

This section defines a default dictionary that is assumed when the

application/coral+cbor media type is used without a dictionary

parameter.

Key Value

0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

1 <http://www.iana.org/assignments/relation/item>

2 <http://www.iana.org/assignments/relation/collection>

3 <http://coreapps.org/collections#create>

4 <http://coreapps.org/base#update>

5 <http://coreapps.org/collections#delete>

6 <http://coreapps.org/base#search>

7 <http://coreapps.org/coap#accept>

8 <http://coreapps.org/coap#type>

9 <http://coreapps.org/base#language>

10 <http://coreapps.org/coap#method>

11 <http://coreapps.org/base#direction>

12 "ltr"

13 "rtl"

14 <http://coreapps.org/base#representation>

Table 4: Default Dictionary

Appendix C. Change Log

This section is to be removed before publishing as an RFC.

Changes from -02 to -03:

Changed the binary format to express relation types, operation

types and form field types using [I-D.ietf-core-href] (#2).

Clarified the current context and current base for nested

elements and form fields (#53).

Minor editorial improvements (#27).

Changes from -01 to -02:

Added nested elements to form fields.

Replaced the special construct for embedded representations with

links.

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

* ¶

*

¶

Changed the textual format to allow simple/qualified names

wherever IRI references are allowed.

Introduced predefined names in the textual format (#39).

Minor editorial improvements and bug fixes (#16 #28 #31 #37 #39).

Changes from -00 to -01:

Added a section on the semantics of CoRAL documents in responses.

Minor editorial improvements.

Acknowledgements

CoRAL is heavily inspired by Mike Kelly's JSON Hypertext Application

Language [HAL].

The recommendations for minting IRIs have been adopted from RDF 1.1

Concepts and Abstract Syntax [W3C.REC-rdf11-concepts-20140225] to

ease the interoperability between RDF predicates and link relation

types.

Thanks to Christian Amsüss, Carsten Bormann, Thomas Fossati,

Jaime Jiménez, Jim Schaad, Sebastian Käbisch, Ari Keranen,

Michael Koster, Matthias Kovatsch and Niklas Widell for helpful

comments and discussions that have shaped the document.

Author's Address

Klaus Hartke

Ericsson

Torshamnsgatan 23

16483 Stockholm

Sweden

Email: klaus.hartke@ericsson.com

*

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

¶

¶

mailto:klaus.hartke@ericsson.com

	The Constrained RESTful Application Language (CoRAL)
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Data and Interaction Model
	1.2. Serialization Formats
	1.3. Notational Conventions

	2. Data and Interaction Model
	2.1. Browsing Context
	2.2. Documents
	2.3. Links
	2.4. Forms
	2.5. Form Fields
	2.6. Navigation
	2.7. History Traversal

	3. Binary Format
	3.1. Data Structure
	3.1.1. Documents
	3.1.2. Directives
	3.1.2.1. Base Directives

	3.1.3. IRIs
	3.1.4. Links
	3.1.5. Forms
	3.1.6. Form Fields

	3.2. Dictionary Compression
	3.2.1. Dictionary References
	3.2.2. Media Type Parameter

	3.3. Export Interface

	4. Textual Format
	4.1. Lexical Structure
	4.1.1. Line Terminators
	4.1.2. White Space
	4.1.3. Comments
	4.1.4. Identifiers
	4.1.5. Literals
	4.1.5.1. IRI Reference Literals
	4.1.5.2. Boolean Literals
	4.1.5.3. Integer Literals
	4.1.5.4. Floating-point Literals
	4.1.5.5. Date/Time Literals
	4.1.5.6. Byte String Literals
	4.1.5.7. Text String Literals
	4.1.5.8. Null Literal

	4.1.6. Punctuators

	4.2. Syntactic Structure
	4.2.1. Documents
	4.2.2. Directives
	4.2.2.1. Base Directives
	4.2.2.2. Using Directives

	4.2.3. IRIs
	4.2.3.1. IRI References
	4.2.3.2. Simple Names
	4.2.3.3. Qualified Names
	4.2.3.4. Predefined Names

	4.2.4. Links
	4.2.5. Forms
	4.2.6. Form Fields

	5. Document Semantics
	5.1. Submitting Documents
	5.1.1. PUT Requests
	5.1.2. POST Requests

	5.2. Returning Documents
	5.2.1. Success Responses
	5.2.2. Redirection Responses
	5.2.3. Error Responses

	6. Usage Considerations
	6.1. Specifying CoRAL-based Applications
	6.1.1. Application Interfaces
	6.1.2. Resource Identifiers
	6.1.3. Implementation Limits

	6.2. Minting Vocabulary
	6.3. Expressing Registered Link Relation Types
	6.4. Expressing Simple RDF Statements
	6.5. Expressing Natural Language Texts
	6.6. Embedding Representations in CoRAL

	7. Security Considerations
	8. IANA Considerations
	8.1. Media Type "application/coral+cbor"
	8.2. Media Type "text/coral"
	8.3. CoAP Content Formats
	8.4. CBOR Tag

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Core Vocabulary
	A.1. Base
	A.2. Collections
	A.3. HTTP
	A.4. CoAP
	Appendix B. Default Dictionary
	Appendix C. Change Log
	Acknowledgements
	Author's Address

