
Workgroup: CoRE Working Group

Internet-Draft: draft-ietf-core-coral-05

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: C. Amsüss T. Fossati

ARM

The Constrained RESTful Application Language (CoRAL)

Abstract

The Constrained RESTful Application Language (CoRAL) defines a data

model and interaction model as well as a compact serialization

formats for the description of typed connections between resources

on the Web ("links"), possible operations on such resources

("forms"), and simple resource metadata.

Note to Readers

This note is to be removed before publishing as an RFC.

The issues list for this Internet-Draft can be found at <https://

github.com/core-wg/coral/labels/coral>. Companion material for this

Internet-Draft can be found at <https://github.com/core-wg/coral>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/core-wg/coral/labels/coral
https://github.com/core-wg/coral/labels/coral
https://github.com/core-wg/coral
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Data and Interaction Model

1.2. Notational Conventions

2. Data and Interaction Model

2.1. Browsing Context

2.2. Documents

2.3. Data model

2.3.1. Observations

2.3.2. Possible variations

2.3.3. Examples

2.4. Serialization Format

2.5. Links

2.6. Forms

2.7. Form Fields

2.8. Navigation

2.9. History Traversal

2.10. Designing interactions in an Open World

3. Binary Format

3.1. Data Structure

3.1.1. Documents

3.1.2. Directives

3.1.3. URIs

3.1.4. Links

3.1.5. Forms

3.1.6. Form Fields

3.2. Dictionary Compression

3.2.1. Media Type Parameter

3.3. Export Interface

4. Document Semantics

4.1. Submitting Documents

4.1.1. PUT Requests

4.1.2. POST Requests

4.2. Returning Documents

4.2.1. Success Responses

4.2.2. Redirection Responses

4.2.3. Error Responses

5. Usage Considerations

5.1. Specifying CoRAL-based Applications

5.1.1. Application Interfaces

¶

https://trustee.ietf.org/license-info

5.1.2. Resource Identifiers

5.1.3. Implementation Limits

5.2. Minting Vocabulary

5.3. Expressing Registered Link Relation Types

5.4. Expressing Simple RDF Statements

5.5. Expressing Natural Language Texts

5.6. Embedding Representations in CoRAL

6. Security Considerations

7. IANA Considerations

7.1. Media Type "application/coral+cbor"

7.2. CoAP Content Formats

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Core Vocabulary

A.1. Base

A.2. Collections

A.3. HTTP

A.4. CoAP

Appendix B. Default Dictionary

Appendix C. Mappings to other formats

C.1. RDF

C.1.1. Example

C.2. CoRE Link Format

Appendix D. Change Log

Acknowledgements

Authors' Addresses

1. Introduction

The Constrained RESTful Application Language (CoRAL) is a language

for the description of typed connections between resources on the

Web ("links"), possible operations on such resources ("forms"), and

simple resource metadata.

CoRAL is intended for driving automated software agents that

navigate a Web application based on a standardized vocabulary of

link relation types and operation types. It is designed to be used

in conjunction with a Web transfer protocol, such as the Hypertext

Transfer Protocol (HTTP) [RFC7230] or the Constrained Application

Protocol (CoAP) [RFC7252].

This document defines the CoRAL data model and interaction model as

well as a compact serialization format.

1.1. Data and Interaction Model

The data model is similar to the Resource Description Framework

(RDF) [W3C.REC-rdf11-concepts-20140225] model, with provisions to

¶

¶

¶

enable form based interaction and to express data from Web Linking

([RFC8288]) based models such as [RFC6690]'s Link Format.

The interaction model derives from the processing model of HTML

[W3C.REC-html52-20171214] and specifies how an automated software

agent can change the application state by navigating between

resources following links and performing operations on resources

submitting forms.

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Terms defined in this document appear in cursive where they are

introduced (rendered in plain text as the new term surrounded by

underscores).

2. Data and Interaction Model

The Constrained RESTful Application Language (CoRAL) is designed for

building Web-based applications [W3C.REC-webarch-20041215] in which

automated software agents navigate between resources by following

links and perform operations on resources by submitting forms.

2.1. Browsing Context

Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent

maintains a browsing context in which the representations of Web

resources are processed. (In HTML, the browsing context typically

corresponds to a tab or window in a Web browser.)

At any time, one representation in a browsing context is designated

the active representation.

2.2. Documents

A resource representation in one of the CoRAL serialization formats

is called a CoRAL document. The URI that was used to retrieve such a

document is called the document's retrieval context. This URI is

also considered the base URI for relative URI references in the

document.

A CoRAL document consists of a list of zero or more statements that

can express links or (in a composition of statements) forms. CoRAL

serialization formats may contain additional elements for efficiency

or convenience, such as an embedded base URI that takes precedence

¶

¶

¶

¶

¶

¶

¶

¶

over the document's base URI, or to concisely represent compound

statements (e.g., to express forms).

2.3. Data model

The basic CoRAL information model is similar to the Resource

Description Framework (RDF) [W3C.REC-rdf11-concepts-20140225]

information model: Data is expressed as an (unordered) set of

triples (also called statements), consisting of a subject, a

predicate and an object. The predicate is always a URI, the subject

is a URI or a blank node, and the object is either a URI, a blank

node or a litreal. All URIs here are limited to the syntax-based

normalized form of [RFC3986] Section 6.2.2.

Blank nodes are unnamed entities. Literals are CBOR objects.

These triples form a directed multigraph with the subject and object

being source and destination, and the predicate a description on the

edge. That graph is equivalent to the data.

To form a set and a graph, we define an equivalence relation: URIs

are only equal to URIs and if they are identical byte-wise. A blank

node is only equal to itself. A literal is equal to a different

literal if its value is equal to the other literal's value in the

CBOR generic data model.

Triples are equivalent to each other if their subject, predicate and

object are pair-wise equivalent.

The CoRAL structured information model is a sequence of "passings"

of the basic model's edges, starting at a node identifying the

document (its retrieval context, typically URI from which it was

obtained) where

each edge is passed at least one time in total,

each edge is passed at most one time after each passing that ends

in its start point (with the obvious exception that edges from

the retrieval context can be passed once from the start), and

between a passing of an edge from A to B and a later passing from

B to C, passings can only be along edges that can be reached from

B along the graph, until B is the end of a different passing.

For better understanding, think of the structured information model

as a sort of tree spanning from the retrieval context, with the

oddity that when a node is reached along two different edges (which

a normal tree doesn't do), it is up to the builder of the tree

whether to describe anything children of the entered node on one

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

parent or on the other parent, on both, or to describe some children

at the first and others at a later occasion.

Exceeding the RDF-like model, this represents CoRAL's focus on the

discovery of possivble future application states over the

description of a graph of resources.

2.3.1. Observations

The structured form of a data set is in general not unique: If a

node has more than one child, their sequence can be varied. If a

node has more than one parent, its children may be expressed on any

non-empty set of its parents to obtain a structured data set that

expresses the same data set.

In general, arbitrary basic data can not be expressed in a

structured data set, because

There may not be a tree that covers the directed graph, or the

tree's root may not be the retrieval context.

There may be multiple edges into a blank node.

In particular, the precise data from one structured information

document can only be expressed with the same retrieval context.

However, statements can be added to make a data set that is

expressible elsewhere (this document defines the carries-

information-about relation type leading to the http://www.iana.org/

assignments/relation/carries-information-about predicate being

usable here), and subsets of the data can be taken and expressed.

Forms are not special in the information model, but are merely

statements around a blank node. They can be special in serialization

formats (which have more efficient notations for them), and are used

by the interaction model for special operations.

The structured information model contains more information than the

basic information model. [TBD put this into a different context

because it's not an observation any more:] Which precise structure

is picked is to suit the processing application, typically by

profiling the information and its serialization. It is recommended

that the information encoded in the structure (including the order)

be derived from data available in the general data set, even though

the statements that guide the structure are not necessarily encoded

in the subset of data that is being structured.

Serializations like the one in Section 3 have even more choices than

the structured information model: They can choose to use or not use

packed CBOR to compress parts, can spell out URIs in full or use

relative references, or can exercise freedoms of the CBOR encoding.

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

Variation there is not to have an influence on the interpretation of

a CoRAL document.

2.3.2. Possible variations

Each URI is tagged with whether it is intended to be dereferenced

or used as an identifier.

2.3.3. Examples

This subsection illustrates the information model and serialization

based on an example from [RFC6690]:

Figure 1: Original example at coap://.../.well-known/core

After an extraction described in Appendix C.2, this list represents

the content of the basic information model representing the above.

For the basic model, the table is to be considered unsorted in the

first step.

Subject Predicate Object

coap://.../ rel:hosts coap://.../sensors

coap://.../

sensors
linkformat:ct 40

coap://.../

sensors
linkformat:title "Sensor Index"

coap://.../
http://www.iana.org/

assignments/relation/hosts

coap://.../sensors/

temp

coap://.../

sensors/temp
linkformat:rt rt:temperature-c

coap://.../

sensors/temp
linkformat:if if:sensor

coap://.../

sensors/temp
rel:describedby

http://

www.example.com/

sensors/t123

coap://.../

sensors/temp
rel:alternate coap://.../t

coap://.../
http://www.iana.org/

assignments/relation/hosts

coap://.../sensors/

light

coap://.../

sensors/light
linkformat:rt rt:light-lux

¶

*

¶

¶

</sensors>;ct=40;title="Sensor Index",

</sensors/temp>;rt="temperature-c";if="sensor",

</sensors/light>;rt="light-lux";if="sensor",

<http://www.example.com/sensors/t123>;anchor="/sensors/temp";rel="describedby",

</t>;anchor="/sensors/temp";rel="alternate"

¶

Subject Predicate Object

coap://.../

sensors/light
linkformat:if if:sensor

Table 1: Basic (and, through the sequence, Strucutred) Information

Model extracted from there (using CURIEs: rel = http://www.iana.org/

assignments/relation/, linkformat is TBD in the conversion, if, rt is

TBD with IANA).

During extraction, some information on item ordering was preserved

into the structured data. Note that while the CoRAL structured data

preserves some sequence aspects of the Link-Format file (like the

order of attributes), others (like the relative order of links from

different contexts) are deemed irrelevant and not preserved.

For serialization, the use of the packing described with the

conversion results in a binary CBOR file with this CBOR diagnostic

notation:

Figure 2: Serialized CoRAL file in diagnostic notation.

[TBD: Numbers are made up]

Note that the "temperature-c" interface and "sensor" resource type

get code points in the link-format dictionary because they are of

reg-name style and thus would be registered as CoRE Parameters, and

be included in the packing as well.

2.3.3.1. Literal example

To illustrate non-trivial literals, a link example of [RFC8288] is

converted.

¶

¶

[

 [2, simple(10) / item 10 for rel:hosts /, cri"/sensors", [

 [2, 6(2) / item 20 for linkformat:ct /, 40],

 [2, simple(15) / item 15 for linkformat:title /, "Sensor Index"]

]],

 [2, simple(10) / item 10 for rel:hosts /, cri"/sensors/temp", [

 [2, 6(1) / item 18 for linkformat:if /, 6(200) / cri"http:∕∕TBD∕...∕temperature-c" /],

 [2, 6(-2) / item 19 for linkformat:rt /, 6(250) / cri"http:∕∕TBD∕...∕sensor" /],

 [2, simple(12) / item 12 for rel:describedby /, cri"http://www.example.com/sensors/t123"],

 [2, simple(11) / item 11 for rel:alternate /, cri"/t"]

]],

 [2, 10 / item10 for rel:hosts /, cri"/sensors/light", [

 [2, 6(1) / item 18 for linkformat:if /, 6(-201)],

 [2, 6(-2) / item 19 for linkformat:rt /, 6(250)]

]]

]

¶

¶

¶

(Note that even the conversion scheme hinted at above for [RFC6690]

link format makes no claims at being applicable to general purpose

web links like the below; this is merely done to demonstrate how

literals can be handled. The example even so happens well illustrate

that point: General link attributes may only be valid on the target

when the link is followed in that direction ("letztes Kapitel" means

last chapter), whereas convertible link-format documents use titles

that apply to the described resource independent of which link is

currently being followed.)

Figure 3: Original link about a book chapter from RFC8288

The model this would be converted to is:

Subject Predicate Object

http://.../ rel:previous http://.../TheBook/chapter2

http://.../TheBook/

chapter2
linkformat:title

"letztes Kapitel" with

language tag "de"

Table 2: Information model extracted from above

In CBOR serialization, this produces:

Figure 4: Serialization of the RFC8288-based example

2.4. Serialization Format

The primary serialization format is a compact, binary encoding of

links and forms in Concise Binary Object Representation (CBOR)

[RFC8949]. This format is intended for environments with constraints

on power, memory, and processing resources [RFC7228] and shares many

similarities with the message format of CoAP: In place of verbose

strings, small numeric identifiers are used to encode link relation

types and operation types. Uniform Resource Identifiers (URIs)

[RFC3986] are expressed as Constrained Resource Identifier (CRI)

references [I-D.ietf-core-href] and thus pre-parsed for easy use

with CoAP. As a result, link serializations in CoRAL are often much

more compact and easier to process than equivalent serializations in

CoRE Link Format [RFC6690].

¶

 Link: </TheBook/chapter2>;

 rel="previous"; title*=UTF-8'de'letztes%20Kapitel,

¶

¶

[

 [2, 6(...) / rel:previous /, cri"/TheBook/chapter2", [

 [2, simple(15) / item 15 for linkformat:title /, 38(["de", "letztes Kapitel"])]

]]

]

¶

For easy representation of CoRAL documents in text, CBOR diagnostic

notation is used. Along with indentation and comments, the notation

introduced in [I-D.bormann-cbor-edn-literals] is used to represent

CRIs. This format is not expected to be sent over the network.

[To be discussed: For even better readability, the RDF Turtle

[W3C.REC-turtle-20140225] format can be used when only the basic

information model content is to be conveyed. When used like this,

the conversion according to the RDF appendix is implied.]

2.5. Links

Any statement "links" a resource with a second resource or literal,

and is thus also referred to as a link.

In [RFC8288] terminology, a CoRAL link's subject is the link

context, the predicate is the link relation type, and the object is

the link target.

However, a link in CoRAL does not have target attributes. Instead, a

link may have a list of zero or more nested elements. These enable

both the description of resource metadata and the chaining of links,

which is done in [RFC8288] by setting the anchor of one link to the

target of another.

A link can be viewed as a statement of the form "{link context}

has a {link relation type} resource at {link target}" where the

link target may be further described by nested elements.

A link relation type identifies the semantics of a link. In HTML and

in [RFC8288], link relation types are typically denoted by an IANA-

registered name, such as stylesheet or type. In CoRAL, all link

relation types are, in contrast, denoted by a Universal Resource

Identifier (URI) [RFC3986], such as <http://www.iana.org/

assignments/relation/stylesheet> or <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type>. This allows for the decentralized creation of

new link relation types without the risk of collisions when they

come from different organizations or domains of knowledge. URIs can

also lead to documentation, schema, and other information about a

link relation type. In CoRAL documents, these URIs are only used as

identity tokens, though, and are compared with Simple String

Comparison as specified in Section 6.2.1 of [RFC3986].

If the link target is a URI and the URI scheme indicates a Web

transfer protocol like HTTP or CoAP, an agent can dereference the

URI and navigate the browsing context to its target resource; this

is called following the link. An anonymous resource is a resource

that is identified by neither a URI nor a literal representation.

The agent can still follow the link, but can not dereference it and

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-6.2.1

is limited in its next steps by the outgoing links that are

expressed in the current document.

A link can occur as a top-level element in a document or as a nested

element within a link. When a link occurs as a top-level element,

the link context implicitly is the document's retrieval context.

When a link occurs nested within a link, the link context of the

nested link is the link target of the enclosing link.

There are no restrictions on the cardinality of links; there can be

multiple links to and from a particular target, and multiple links

of the same or different types between a given link context and

target. However, the nesting nature of the data model constrains the

description of resource relations to a tree: Relations between

linked resources can only be described by further nesting links.

2.6. Forms

A form provides instructions to an agent for performing an operation

on a resource on the Web. A form has a form context, an operation

type, a request method, and a submission target. Additionally, a

form may be accompanied by a list of zero or more form fields.

In the basic information model, the form is identified with an

anonymous node. The form context and operation type are the subject

and predicate of an incoming link, respectively; request method and

submission target of an outgoing link. Form fields are additional

links from that form.

A form can be viewed as an instruction of the form "To perform an

{operation type} operation on {form context}, make a {request

method} request to {submission target}" where the request may be

further described by form fields.

An operation type identifies the semantics of the operation.

Operation types are denoted (like link relation types) by a URI.

Form contexts and submission targets are both denoted by a URI. The

form context is the resource on which the operation is ultimately

performed. To perform the operation, an agent needs to construct a

request with the specified method as the request method and the

specified submission target as the request URI. Usually, the

submission target is the same resource as the form context, but may

be a different resource. Constructing and sending the request is

called submitting the form.

A form can occur as a top-level element in a document or as a nested

element within a link. When a form occurs as a top-level element,

the form context implicitly is the document's retrieval context.

¶

¶

¶

¶

¶

¶

¶

¶

When a form occurs nested within a link, the form context is the

link target of the enclosing link.

2.7. Form Fields

Form fields can be used to provide more detailed instructions to

agents for constructing the request when submitting a form. For

example, a form field could instruct an agent to include a certain

payload or header field in the request. A payload could, for

instance, be described by form fields providing acceptable media

types, a reference to schema information, or a number of individual

data items that the agents needs to supply. Form fields can be

specific to the Web transfer protocol that is used for submitting

the form.

A form field is a pair of a form field type and a form field value.

Additionally, a form field may have a list of zero or more nested

elements that further describe the form field value.

A form field type identifies the semantics of the form field. Form

field types are predicates and thus URIs. Form field values are

URIs, blank nodes or literals.

2.8. Navigation

An agent begins the interaction with an application by performing a

GET request on an entry point URI. The entry point URI is the only

URI that the agent is expected to know beforehand. From then on, the

agent is expected to make all requests by following links and

submitting forms that are provided in the responses resulting from

the requests. The entry point URI could be obtained through some

discovery process or manual configuration.

If dereferencing the entry point URI yields a CoRAL document (or any

other representation that implements the CoRAL data and interaction

model), the agent makes this document the active representation in

the browsing context and proceeds as follows:

The first step for the agent is to decide what to do next,

i.e., which type of link to follow or form to submit, based on

the link relation types and operation types it understands.

An agent may follow a link without understanding the link

relation type, e.g., for the sake of pre-fetching or building a

search index. However, an agent MUST NOT submit a form without

understanding the operation type.

The agent then finds the link(s) or form(s) with the respective

type in the active representation. This may yield one or more

candidates, from which the agent will have to select the most

¶

¶

¶

¶

¶

¶

1.

¶

¶

2.

appropriate one. The set of candidates can be empty, for

example, when an application state transition is not supported

or not allowed.

The agent selects one of the candidates based on the metadata

associated them (in the form of form fields and nested

elements) and their order of appearance in the document.

Examples for relevant metadata could include the indication of

a media type for the target resource representation, the URI

scheme of a target resource, or the request method of an

operation.

The agent obtains the request URI from the link target or

submission target. Fragment identifiers are not part of the

request URI and MUST be separated from the rest of the URI

prior to the next step.

The agent constructs a new request with the request URI. If the

agent is following a link, then the request method MUST be GET.

If the agent is submitting a form, then the request method MUST

be the one supplied by the form.

The agent SHOULD set HTTP header fields and CoAP request

options according to the metadata (e.g., set the HTTP Accept

header field or the CoAP Accept option when a media type for

the target resource is provided). Depending on the operation

type of a form, the agent may also have to include a request

payload that matches the specifications of some form fields.

The agent sends the request and receives the response.

If a fragment identifier was separated from the request URI,

the agent selects the fragment indicated by the fragment

identifier within the received representation according to the

semantics of its media type.

The agent updates the browsing context by making the (selected

fragment of the) received representation the active

representation.

Finally, the agent processes the representation according to

the semantics of its media type. If the representation is a

CoRAL document (or any other representation that implements the

CoRAL data and interaction model), the agent again has the

choice of what to do next. Go to step 1.

¶

3.

¶

4.

¶

5.

¶

¶

6. ¶

7.

¶

8.

¶

9.

¶

2.9. History Traversal

A browsing context has a session history, which lists the resource

representations that the agent has processed, is processing, or will

process.

A session history consists of session history entries. The number of

session history entries may be limited and dependent on the agent.

An agent with severe constraints on memory size might only have

enough memory for the most recent entry.

An entry in the session history consists of a resource

representation and the representation's retrieval context. New

entries are added to the session history as the agent navigates from

resource to resource, discarding entries that are no longer used.

An agent can decide to navigate a browsing context (in addition to

following links and submitting forms) by traversing the session

history. For example, when an agent receives a response with a

representation that does not contain any further links or forms, it

can navigate back to a resource representation it has visited

earlier and make that the active representation.

Traversing the history SHOULD take advantage of caches to avoid new

requests. An agent may reissue a safe request (e.g., a GET) when it

does not have a fresh representation in its cache. An agent MUST NOT

reissue an unsafe request (e.g., a PUT or POST) unless it actually

intends to perform that operation again.

2.10. Designing interactions in an Open World

CoRAL can be used to build both open world systems ("if something is

not said, it may or may not be true") and closed world systems ("if

something is not said, it is not true").

In constrained environments (and the web in general), partial

representations are often used for efficiency. For example, a device

can query another for particular statements using a yet to be

defined FETCH version of CoRAL. It is expected that some tools

(e.g., server or agent libraries) require the application to be

tolerant of unprocessed statements. Furthermore, it can be easier to

evolve applications and their packing dictionaries if loss of

statements leads to graceful degradation.

Therefore, it is convenient to build applications on open world

assumptions. Such applications can only use statements that add

possibilities, and none that limit interactions. Any limitations

need to be encoded in statements the agent necesarily has to perform

an action in the first place, and can then be relaxed in additional

statements.

¶

¶

¶

¶

¶

¶

¶

¶

For example, an application built with open-world assumptions can

not create a form that allows feeding gremlins, and in an additional

statement (e.g., a form field) forbid after midnight. Instead, the

application needs to describe a limited-feeding form, which can only

be used if any of the attached conditions is met; the condition

"before midnight" can then be expressed in an additional statement.

3. Binary Format

This section defines the encoding of documents in the CoRAL binary

format.

A document in the binary format is encoded in Concise Binary Object

Representation (CBOR) [RFC8949].

The CBOR structure of a document is presented in the Concise Data

Definition Language (CDDL) [RFC8610]. All CDDL rules not defined in

this document are defined in Appendix D of [RFC8610].

The media type of documents in the binary format is application/

coral+cbor.

3.1. Data Structure

The data structure of a document in the binary format is made up of

three kinds of elements: links, forms (as short hands for the

statements they are constructed of), and (as an extension to the

CoRAL data model) directives. Directives provide a way to encode URI

references with a common base more efficiently.

3.1.1. Documents

A document in the binary format is encoded as a CBOR array that

contains zero or more elements. An element is either a link, a form,

or a directive.

document = [*element]

element = link / form / directive

The elements are processed in the order they appear in the document.

Document processors need to maintain an environment while iterating

an array of elements. The environment consists of two variables: the

current context and the current base. The current context and the

current base are both initially set to the document's retrieval

context.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-D

3.1.2. Directives

Directives provide the ability to manipulate the environment while

processing elements.

There is a single type of directives available: the Base directive.

directive = base-directive

It is an error if a document processor encounters any other type of

directive.

3.1.2.1. Base Directives

A Base directive is encoded as a CBOR array that contains the

unsigned integer 1 and a base URI.

base-directive = [1, baseURI]

The base URI is denoted by a Constrained Resource Identifier (CRI)

reference [I-D.ietf-core-href]. The CRI reference MUST be resolved

against the current context (not the current base).

baseURI = CRI-Reference

CRI-Reference = <Defined in Section XX of RFC XXXX>

The directive is processed by resolving the CRI reference against

the current context and assigning the result to the current base.

3.1.3. URIs

URIs in links and forms are encoded as CRI references.

URI = CRI-Reference

A CRI reference is processed by resolving it to a URI as specified

in Section 5.2 of [I-D.ietf-core-href] using the current base.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-href-09#section-5.2

3.1.4. Links

A link is encoded as a CBOR array that contains the unsigned integer

2, the link relation type, the link target, and, optionally, an

array of zero or more nested elements.

link = [2, relation-type, link-target, ?[*element]]

The link relation type is a URI.

relation-type = URI

The link target is either a URI, a literal value, or null.

link-target = URI / literal / null

literal = bool / int / float / time / bytes / text

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the link target of the

enclosing link. The current base is initially set to the link

target, if the link target is a URI; otherwise, it is set to the

current base of the current environment.

3.1.5. Forms

A form is encoded as a CBOR array that contains the unsigned integer

3, the operation type, the submission target, and, optionally, an

array of zero or more form fields.

form = [3, operation-type, submission-target, ?[*form-field]]

The operation type is a URI.

operation-type = URI

The submission target is a URI.

submission-target = URI

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The request method is either implied by the operation type or

encoded as a form field. If both are given, the form field takes

precedence over the operation type. Either way, the method MUST be

applicable to the Web transfer protocol identified by the scheme of

the submission target.

The form fields, if any, MUST be processed in a fresh environment.

The current context is set to an unspecified URI that represents the

enclosing form. The current base is initially set to the submission

target of the enclosing form.

3.1.6. Form Fields

A form field is encoded as a CBOR sequence that consists of a form

field type, a form field value, and, optionally, an array of zero or

more nested elements.

form-field = (form-field-type, form-field-value, ?[*element])

The form field type is a URI.

form-field-type = URI

The form field value is either a URI, a literal value, or null.

form-field-value = URI / literal / null

The nested elements, if any, MUST be processed in a fresh

environment. The current context is set to the form field value of

the enclosing form field. The current base is initially set to the

form field value, if the form field value is a URI; otherwise, it is

set to the current base of the current environment.

3.2. Dictionary Compression

A document in the binary format MAY reference values from an

external dictionary using Packed CBOR [I-D.ietf-cbor-packed]. This

helps to reduce representation size and processing cost.

Dictionary references can be used subject to [yet to be defined]

profiling.

Implementers should note that Packed CBOR is not designed to be

uncompressed, but to be used in a compressed form. In particular,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

constrained devices may operate without even knowing what a given

dictionary entry expands to (as long as they know its meaning) .

3.2.1. Media Type Parameter

The application/coral+cbor media type for documents in the binary

format is defined to have a dictionary parameter that specifies the

dictionary in use. The dictionary is identified by a URI. For

example, a CoRAL document that uses the dictionary identified by the

URI <http://example.com/dictionary> would have the following content

type:

The URI serves only as an identifier; it does not necessarily have

to be dereferencable (or even use a dereferencable URI scheme). It

is permissible, though, to use a dereferencable URI and to serve a

representation that provides information about the dictionary in a

machine- or human-readable way. (The representation format and

security considerations of such a representation are outside the

scope of this document.)

For simplicity, a CoRAL document can reference values only from one

dictionary; the value of the dictionary parameter MUST be a single

URI.

The dictionary parameter is OPTIONAL. If it is absent, the default

dictionary specified in Appendix B of this document is assumed.

Once a dictionary has made an assignment, the assignment MUST NOT be

changed or removed. A dictionary, however, may contain additional

information about an assignment, which may change over time.

In CoAP, media types (including specific values for their

parameters, plus an optional content coding) are encoded as an

unsigned integer called the "content format" of a representation.

For use with CoAP, each new CoRAL dictionary therefore needs to have

a new content format registered in the CoAP Content Formats Registry

[CORE-PARAMETERS].

3.3. Export Interface

The definition of documents, links, and forms in the CoRAL binary

format can be reused in other CBOR-based protocols. Specifications

using CDDL should reference the following rules for this purpose:

CoRAL-Document = document

CoRAL-Link = link

CoRAL-Form = form

¶

¶

application/coral+cbor;dictionary="http://example.com/dictionary"¶

¶

¶

¶

¶

¶

¶

For each embedded document, link, and form, the CBOR-based protocol

needs to specify the document retrieval context, link context, and

form context, respectively.

4. Document Semantics

4.1. Submitting Documents

By default, a CoRAL document is a representation that captures the

current state of a resource. The meaning of a CoRAL document changes

when it is submitted in a request. Depending on the request method,

the CoRAL document can capture the intended state of a resource

(PUT) or be subject to application-specific processing (POST).

4.1.1. PUT Requests

A PUT request with a CoRAL document enclosed in the request payload

requests that the state of the target resource be created or

replaced with the state described by the CoRAL document. A

successful PUT of a CoRAL document generally means that a subsequent

GET on that same target resource would result in an equivalent

document being sent in a success response.

An origin server SHOULD verify that a submitted CoRAL document is

consistent with any constraints the server has for the target

resource. When a document is inconsistent with the target resource,

the origin server SHOULD either make it consistent (e.g., by

removing inconsistent elements) or respond with an appropriate error

message containing sufficient information to explain why the

document is unsuitable.

The retrieval context and the base URI of a CoRAL document in a PUT

are the request URI of the request.

4.1.2. POST Requests

A POST request with a CoRAL document enclosed in the request payload

requests that the target resource process the CoRAL document

according to the resource's own specific semantics.

The retrieval context of a CoRAL document in a POST is defined by

the target resource's processing semantics; it may be an unspecified

URI. The base URI of the document is the request URI of the request.

4.2. Returning Documents

In a response, the meaning of a CoRAL document changes depending on

the request method and the response status code. For example, a

¶

¶

¶

¶

¶

¶

¶

¶

CoRAL document in a successful response to a GET represents the

current state of the target resource, whereas a CoRAL document in a

successful response to a POST might represent either the processing

result or the new resource state. A CoRAL document in an error

response represents the error condition, usually describing the

error state and what next steps are suggested for resolving it.

4.2.1. Success Responses

Success responses have a response status code that indicates that

the client's request was successfully received, understood, and

accepted (2xx in HTTP, 2.xx in CoAP). When the representation in a

success response does not describe the state of the target resource,

it describes result of processing the request. For example, when a

request has been fulfilled and has resulted in one or more new

resources being created, a CoRAL document in the response can link

to and describe the resource(s) created.

The retrieval context and the base URI of a CoRAL document

representing the current state of a resource are the request URI of

the request.

The retrieval context of a CoRAL document representing a processing

result is an unspecified URI that refers to the processing result

itself. The base URI of the document is the request URI of the

request.

4.2.2. Redirection Responses

Redirection responses have a response status code that indicates

that further action needs to be taken by the agent (3xx in HTTP). A

redirection response, for example, might indicate that the target

resource is available at a different URI or the server offers a

choice of multiple matching resources, each with its own specific

URI.

In the latter case, the representation in the response might contain

a list of resource metadata and URI references (i.e., links) from

which the agent can choose the most preferred one.

The retrieval context of a CoRAL document representing such multiple

choices in a redirection response is an unspecified URI that refers

to the redirection itself. The base URI of the document is the

request URI of the request.

4.2.3. Error Responses

Error response have a response status code that indicates that

either the request cannot be fulfilled or the server failed to

fulfill an apparently valid request (4xx or 5xx in HTTP, 4.xx or

¶

¶

¶

¶

¶

¶

¶

5.xx in CoAP). A representation in an error response describes the

error condition.

The retrieval context of a CoRAL document representing such an error

condition is an unspecified URI that refers to the error condition

itself. The base URI of the document is the request URI of the

request.

5. Usage Considerations

This section discusses some considerations in creating CoRAL-based

applications and vocabularies.

5.1. Specifying CoRAL-based Applications

CoRAL-based applications naturally implement the Web architecture

[W3C.REC-webarch-20041215] and thus are centered around orthogonal

specifications for identification, interaction, and representation:

Resources are identified by URIs or represented by literal

values.

Interactions are based on the hypermedia interaction model of the

Web and the methods provided by the Web transfer protocol. The

semantics of possible interactions are identified by link

relation types and operation types.

Representations are CoRAL documents encoded in the binary format

defined in Section 3. Depending on the application, additional

representation formats may be used.

5.1.1. Application Interfaces

Specifications for CoRAL-based applications need to list the

specific components used in the application interface and their

identifiers. This should include the following items:

The Web transfer protocols supported.

The representation formats used, identified by their Internet

media types, including the CoRAL serialization formats.

The link relation types used.

The operation types used. Additionally, for each operation type,

the permissible request methods.

The form field types used. Additionally, for each form field

type, the permissible form field values.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

*

¶

5.1.2. Resource Identifiers

URIs are a cornerstone of Web-based applications. They enable the

uniform identification of resources and are used every time a client

interacts with a server or a resource representation needs to refer

to another resource.

URIs often include structured application data in the path and query

components, such as paths in a filesystem or keys in a database. It

is a common practice in HTTP-based application programming

interfaces (APIs) to make this part of the application

specification, i.e., to prescribe fixed URI templates that are hard-

coded in implementations. However, there are a number of problems

with this practice [RFC8820].

In CoRAL-based applications, resource names are therefore not part

of the application specification --- they are an implementation

detail. The specification of a CoRAL-based application MUST NOT

mandate any particular form of resource name structure.

[RFC8820] describes the problematic practice of fixed URI structures

in more detail and provides some acceptable alternatives.

5.1.3. Implementation Limits

This document places no restrictions on the number of elements in a

CoRAL document or the depth of nested elements. Applications using

CoRAL (in particular those running in constrained environments) may

limit these numbers and define specific implementation limits that

an implementation must support at least to be interoperable.

Applications may also mandate the following and other restrictions:

Use of only either HTTP or CoAP as the supported Web transfer

protocol.

Use of only dictionary references in the binary format for

certain vocabulary.

Use of URI references and CRI references only up to a specific

length.

5.2. Minting Vocabulary

New link relation types, operation types, and form field types can

be minted by defining a URI that uniquely identifies the item.

Although the URI may point to a resource that contains a definition

of the semantics, clients SHOULD NOT automatically access that

resource to avoid overburdening its server. The URI SHOULD be under

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

the control of the person or party defining it, or be delegated to

them.

To avoid interoperability problems, it is RECOMMENDED that only URIs

are minted that are normalized according to Section 6.2 of

[RFC3986]. This is easily achieved when the URIs are defined in CRI

form (in which they also become part of the dictionary), as this

avoids many common non-normalized forms of URIs by construction.

Non-normalized forms that are still to be avoided include:

Uppercase characters in scheme names and domain names

Explicitly stated HTTP default port (e.g., <http://example.com/>

is preferable over <http://example.com:80/>)

Punycode-encoding of Internationalized Domain Names in URIs

URIs that are not in Unicode Normalization Form C

URIs that identify vocabulary do not need to be registered. The

inclusion of domain names in URIs allows for the decentralized

creation of new URIs without the risk of collisions.

However, URIs can be relatively verbose and impose a high overhead

on a representation. This can be a problem in constrained

environments [RFC7228]. Therefore, CoRAL alternatively allows the

use of packed references that abbreviate CBOR data items from a

dictionary, as specified in Section 3.2. These impose a much smaller

overhead but instead need to be assigned by an authority to avoid

collisions.

5.3. Expressing Registered Link Relation Types

Link relation types registered in the Link Relations Registry [LINK-

RELATIONS], such as collection [RFC6573] or icon [W3C.REC-

html52-20171214], can be used in CoRAL by appending the registered

name to the URI <http://www.iana.org/assignments/relation/>:

#using iana = <http://www.iana.org/assignments/relation/>

iana:collection </items>

iana:icon </favicon.png>

The convention of appending the relation type name to the prefix

<http://www.iana.org/assignments/relation/> to form URIs is adopted

from the Atom Syndication Format [RFC4287]; see also Appendix A.2 of

[RFC8288].

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-6.2
https://rfc-editor.org/rfc/rfc8288#appendix-A.2

Note that registered relation type names are required to be

lowercase ASCII letters (see Section 3.3 of [RFC8288]).

5.4. Expressing Simple RDF Statements

In RDF [W3C.REC-rdf11-concepts-20140225], a statement says that some

relationship, indicated by a predicate, holds between two resources.

Existing RDF vocabularies can therefore be a good source for link

relation types that describe resource metadata. For example, a CoRAL

document could use the FOAF vocabulary [FOAF] to describe the person

or software that made it:

#using rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

#using foaf = <http://xmlns.com/foaf/0.1/>

foaf:maker null {

 rdf:type <http://xmlns.com/foaf/0.1/Person>

 foaf:familyName "Hartke"

 foaf:givenName "Klaus"

 foaf:mbox <mailto:klaus.hartke@ericsson.com>

}

5.5. Expressing Natural Language Texts

Text strings can be associated with a Language Tag [RFC5646] and a

base text direction (right-to-left or left-to-right) by using CBOR

tag 38.

#using base = <http://coreapps.org/base#>

#using iana = <http://www.iana.org/assignments/relation/>

iana:terms-of-service </tos> {

 base:title 38(["de", "Nutzungsbedingungen"])

 base:title 38(["en-US", "Terms of use"])

 base:title 38(["az", "ltr", "İstifadə şərtləri"])
}

[Maturity note: Whether direction will actually be expressed in an

updated tag 38, how precisely that is done, or whether a new tag

will be allocated for text with direction is currently still under

discussion.]

5.6. Embedding Representations in CoRAL

When a document links to many Web resources and an agent needs a

representation of each of them, it can be inefficient to retrieve

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8288#section-3.3

each representations individually. To minimize round-trips,

documents can embed representations of resources.

A representation can be embedded in a document by including a link

of type <http://coreapps.org/base#representation>:

#using base = <http://coreapps.org/base#>

#using http = <http://coreapps.org/http#>

#using iana = <http://www.iana.org/assignments/relation/>

iana:icon </favicon.gif> {

 base:representation

 b64'R0lGODlhAQABAAAAACH5BAEKAAEALAAAAAABAAEAAAIAOw==' {

 http:type "image/gif"

 }

}

An embedded representation SHOULD have a nested link of type

<http://coreapps.org/http#type> or <http://coreapps.org/coap#type>

that indicates the content type of the representation.

The link relation types <http://coreapps.org/base#representation>,

<http://coreapps.org/http#type>, and <http://coreapps.org/coap#type>

are defined in Appendix A.

6. Security Considerations

CoRAL document processors need to be fully prepared for all types of

hostile input that may be designed to corrupt, overrun, or achieve

control of the agent processing the document. For example, hostile

input may be constructed to overrun buffers, allocate very big data

structures, or exhaust the stack depth by setting up deeply nested

elements. Processors need to have appropriate resource management to

mitigate these attacks.

CoRAL serialization formats intentionally do not feature the

equivalent of XML entity references so as to preclude the entire

class of attacks relating to them, such as exponential XML entity

expansion ("billion laughs") [CAPEC-197] and malicious XML entity

linking [CAPEC-201].

Implementers of the CoRAL binary format need to consider the

security aspects of decoding CBOR. See Section 10 of [RFC8949] for

security considerations relating to CBOR. In particular, different

number encodings for the same numeric value are not equivalent in

CoRAL (e.g., a floating-point value of 0.0 is not the same as the

integer 0).

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-10

CoRAL makes extensive use of resource identifiers. See Section 7 of

[RFC3986] for security considerations relating to URIs. See

Section 7 of [I-D.ietf-core-href] for security considerations

relating to CRIs.

The security of applications using CoRAL can depend on the proper

preparation and comparison of internationalized strings. For

example, such strings can be used to make authentication and

authorization decisions, and the security of an application could be

compromised if an entity providing a given string is connected to

the wrong account or online resource based on different

interpretations of the string. See [RFC6943] for security

considerations relating to identifiers in URIs and other strings.

CoRAL is intended to be used in conjunction with a Web transfer

protocol like HTTP or CoAP. See Section 9 of [RFC7230], Section 9 of

[RFC7231], etc., for security considerations relating to HTTP. See

Section 11 of [RFC7252] for security considerations relating to

CoAP.

CoRAL does not define any specific mechanisms for protecting the

confidentiality and integrity of CoRAL documents. It relies on

security mechanisms on the application layer or transport layer for

this, such as Transport Layer Security (TLS) [RFC8446].

CoRAL documents and the structure of a web of resources revealed

from automatically following links can disclose personal information

and other sensitive information. Implementations need to prevent the

unintentional disclosure of such information. See Section 9 of

[RFC7231] for additional considerations.

Applications using CoRAL ought to consider the attack vectors opened

by automatically following, trusting, or otherwise using links and

forms in CoRAL documents. See Section 5 of [RFC8288] for related

considerations.

In particular, when a CoRAL document is the representation of a

resource, the server that is authoritative for that resource may not

necessarily be authoritative for nested elements in the document. In

this case, unless an application defines specific rules, any link or

form where the link/form context and the document's retrieval

context do not share the same Web Origin [RFC6454] should be

discarded ("same-origin policy").

7. IANA Considerations

7.1. Media Type "application/coral+cbor"

This document registers the media type application/coral+cbor

according to the procedures of [RFC6838].

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-7
https://datatracker.ietf.org/doc/html/draft-ietf-core-href-09#section-7
https://rfc-editor.org/rfc/rfc7230#section-9
https://rfc-editor.org/rfc/rfc7231#section-9
https://rfc-editor.org/rfc/rfc7252#section-11
https://rfc-editor.org/rfc/rfc7231#section-9
https://rfc-editor.org/rfc/rfc8288#section-5

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

application

coral+cbor

N/A

dictionary - See Section 3.2 of [I-D.ietf-core-coral].

binary - See Section 3 of [I-D.ietf-core-coral].

See Section 6 of [I-D.ietf-core-coral].

N/A

[I-D.ietf-core-coral]

See Section 1 of [I-D.ietf-core-coral].

As specified for application/cbor.

N/A

N/A

.coral.cbor

N/A

See the Author's Address section of [I-D.ietf-core-coral].

COMMON

N/A

See the Author's Address section of [I-D.ietf-core-coral].

IESG

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Provisional registration?

Content Type:

Content Coding:

ID:

Reference:

[I-D.bormann-cbor-edn-literals]

[I-D.ietf-cbor-packed]

[I-D.ietf-core-href]

[RFC2119]

No

7.2. CoAP Content Formats

This document registers CoAP content formats for the content types

application/coral+cbor and text/coral according to the procedures of

[RFC7252].

application/coral+cbor

identity

TBD3

[I-D.ietf-core-coral]

[[NOTE TO RFC EDITOR: Please replace all occurrences of TBD3 in this

document with the code points assigned by IANA.]]

[[NOTE TO IMPLEMENTERS: Experimental implementations may use content

format ID 65087 for application/coral+cbor until IANA has assigned

code points.]]

8. References

8.1. Normative References

Bormann, C., "Application-Oriented Literals in CBOR

Extended Diagnostic Notation", Work in Progress,

Internet-Draft, draft-bormann-cbor-edn-literals-00, 6

October 2021, <https://datatracker.ietf.org/doc/html/

draft-bormann-cbor-edn-literals-00>.

Bormann, C., "Packed CBOR", Work in Progress, Internet-

Draft, draft-ietf-cbor-packed-04, 13 February 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-cbor-

packed-04>.

Bormann, C. and H. Birkholz, "Constrained

Resource Identifiers", Work in Progress, Internet-Draft,

draft-ietf-core-href-09, 15 January 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-href-09>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

* ¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-bormann-cbor-edn-literals-00
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-edn-literals-00
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-packed-04
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-packed-04
https://datatracker.ietf.org/doc/html/draft-ietf-core-href-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-href-09

[RFC3339]

[RFC3629]

[RFC3986]

[RFC4648]

[RFC5234]

[RFC5646]

[RFC6454]

[RFC6657]

[RFC6838]

[RFC8174]

[RFC8610]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/rfc/rfc3339>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/rfc/

rfc5646>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

Melnikov, A. and J. Reschke, "Update to MIME regarding

"charset" Parameter Handling in Textual Media Types", RFC

6657, DOI 10.17487/RFC6657, July 2012, <https://www.rfc-

editor.org/rfc/rfc6657>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/rfc/rfc6838>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5646
https://www.rfc-editor.org/rfc/rfc5646
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6657
https://www.rfc-editor.org/rfc/rfc6657
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc8174

[RFC8949]

[Unicode]

[CAPEC-197]

[CAPEC-201]

[CORE-PARAMETERS]

[FOAF]

[HAL]

[HTTP-METHODS]

[I-D.ietf-httpapi-linkset]

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

The Unicode Consortium, "The Unicode Standard, Version

13.0.0", ISBN 978-1-936213-26-9, March 2020, <https://

www.unicode.org/versions/Unicode13.0.0/>.

8.2. Informative References

MITRE, "CAPEC-197: XML Entity Expansion", September

2019, <https://capec.mitre.org/data/definitions/

197.html>.

MITRE, "CAPEC-201: XML Entity Linking", September 2019,

<https://capec.mitre.org/data/definitions/201.html>.

IANA, "Constrained RESTful Environments (CoRE)

Parameters", <https://www.iana.org/assignments/core-

parameters>.

Brickley, D. and L. Miller, "FOAF Vocabulary

Specification 0.99", January 2014, <http://xmlns.com/

foaf/spec/20140114.html>.

Kelly, M., "JSON Hypertext Application Language", Work in

Progress, Internet-Draft, draft-kelly-json-hal-08, 12 May

2016, <https://datatracker.ietf.org/doc/html/draft-kelly-

json-hal-08>.

IANA, "Hypertext Transfer Protocol (HTTP) Method

Registry", <https://www.iana.org/assignments/http-

methods>.

Wilde, E. and H. V. D. Sompel, "Linkset:

Media Types and a Link Relation Type for Link Sets", Work

in Progress, Internet-Draft, draft-ietf-httpapi-

linkset-08, 8 February 2022, <https://

https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.unicode.org/versions/Unicode13.0.0/
https://www.unicode.org/versions/Unicode13.0.0/
https://capec.mitre.org/data/definitions/197.html
https://capec.mitre.org/data/definitions/197.html
https://capec.mitre.org/data/definitions/201.html
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html
https://datatracker.ietf.org/doc/html/draft-kelly-json-hal-08
https://datatracker.ietf.org/doc/html/draft-kelly-json-hal-08
https://www.iana.org/assignments/http-methods
https://www.iana.org/assignments/http-methods
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-linkset-08

[LINK-RELATIONS]

[MEDIA-TYPES]

[RFC4287]

[RFC5789]

[RFC6573]

[RFC6690]

[RFC6943]

[RFC7089]

[RFC7228]

[RFC7230]

[RFC7231]

datatracker.ietf.org/doc/html/draft-ietf-httpapi-

linkset-08>.

IANA, "Link Relations", <https://www.iana.org/

assignments/link-relations>.

IANA, "Media Types", <https://www.iana.org/

assignments/media-types>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/rfc/rfc4287>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/rfc/rfc5789>.

Amundsen, M., "The Item and Collection Link Relations",

RFC 6573, DOI 10.17487/RFC6573, April 2012, <https://

www.rfc-editor.org/rfc/rfc6573>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/rfc/rfc6690>.

Thaler, D., Ed., "Issues in Identifier Comparison for

Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May

2013, <https://www.rfc-editor.org/rfc/rfc6943>.

Van de Sompel, H., Nelson, M., and R. Sanderson, "HTTP

Framework for Time-Based Access to Resource States --

Memento", RFC 7089, DOI 10.17487/RFC7089, December 2013,

<https://www.rfc-editor.org/rfc/rfc7089>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/rfc/

rfc7228>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-linkset-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-linkset-08
https://www.iana.org/assignments/link-relations
https://www.iana.org/assignments/link-relations
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.rfc-editor.org/rfc/rfc4287
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc6573
https://www.rfc-editor.org/rfc/rfc6573
https://www.rfc-editor.org/rfc/rfc6690
https://www.rfc-editor.org/rfc/rfc6943
https://www.rfc-editor.org/rfc/rfc7089
https://www.rfc-editor.org/rfc/rfc7228
https://www.rfc-editor.org/rfc/rfc7228
https://www.rfc-editor.org/rfc/rfc7230

[RFC7252]

[RFC8132]

[RFC8288]

[RFC8446]

[RFC8820]

[UAX31]

[UTR36]

[UTS39]

[W3C.REC-html52-20171214]

[W3C.REC-rdf-schema-20140225]

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/rfc/rfc7231>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and

FETCH Methods for the Constrained Application Protocol

(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,

<https://www.rfc-editor.org/rfc/rfc8132>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/rfc/

rfc8288>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Nottingham, M., "URI Design and Ownership", BCP 190, RFC

8820, DOI 10.17487/RFC8820, June 2020, <https://www.rfc-

editor.org/rfc/rfc8820>.

The Unicode Consortium, "Unicode Standard Annex #31:

Unicode Identifier and Pattern Syntax", Revision 33,

March 2020, <https://www.unicode.org/reports/tr31/

tr31-33.html>.

The Unicode Consortium, "Unicode Technical Report #36:

Unicode Security Considerations", Revision 15, September

2014, <https://www.unicode.org/reports/tr36/

tr36-15.html>.

The Unicode Consortium, "Unicode Technical Standard #39:

Unicode Security Mechanisms", Revision 22, February 2020,

<https://www.unicode.org/reports/tr39/tr39-22.html>.

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Brickley, D. and R. Guha, "RDF Schema

1.1", World Wide Web Consortium Recommendation REC-rdf-

schema-20140225, 25 February 2014, <https://www.w3.org/

TR/2014/REC-rdf-schema-20140225>.

https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc8132
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8820
https://www.rfc-editor.org/rfc/rfc8820
https://www.unicode.org/reports/tr31/tr31-33.html
https://www.unicode.org/reports/tr31/tr31-33.html
https://www.unicode.org/reports/tr36/tr36-15.html
https://www.unicode.org/reports/tr36/tr36-15.html
https://www.unicode.org/reports/tr39/tr39-22.html
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2014/REC-rdf-schema-20140225
https://www.w3.org/TR/2014/REC-rdf-schema-20140225

[W3C.REC-rdf11-concepts-20140225]

[W3C.REC-turtle-20140225]

[W3C.REC-webarch-20041215]

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://coreapps.org/base#title>

<http://coreapps.org/base#representation>

Cyganiak, R., Wood, D., and M.

Lanthaler, "RDF 1.1 Concepts and Abstract Syntax", World

Wide Web Consortium Recommendation REC-rdf11-

concepts-20140225, 25 February 2014, <https://www.w3.org/

TR/2014/REC-rdf11-concepts-20140225>.

Prud'hommeaux, E. and G. Carothers,

"RDF 1.1 Turtle", World Wide Web Consortium

Recommendation REC-turtle-20140225, 25 February 2014,

<https://www.w3.org/TR/2014/REC-turtle-20140225>.

Jacobs, I. and N. Walsh, "Architecture of

the World Wide Web, Volume One", World Wide Web

Consortium Recommendation REC-webarch-20041215, 15

December 2004, <https://www.w3.org/TR/2004/REC-

webarch-20041215>.

Appendix A. Core Vocabulary

This section defines the core vocabulary for CoRAL: a set of link

relation types, operation types, and form field types.

A.1. Base

Link Relation Types:

Indicates that the link's context is an instance of the class

specified as the link's target, as defined by RDF Schema

[W3C.REC-rdf-schema-20140225].

Indicates that the link target is a human-readable label (e.g., a

menu entry).

The link target MUST be a literal. The text string SHOULD be

wrapped in a tag indicating language and, if necessary, direction

if applicable.

Indicates that the link target is a representation of the link

context.

The link target MUST be a byte string.

The representation may be a full, partial, or inconsistent

version of the representation served from the URI of the

resource.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://www.w3.org/TR/2014/REC-turtle-20140225
https://www.w3.org/TR/2004/REC-webarch-20041215
https://www.w3.org/TR/2004/REC-webarch-20041215

<http://coreapps.org/base#update>

<http://coreapps.org/base#search>

<http://www.iana.org/assignments/relation/item>

<http://www.iana.org/assignments/relation/collection>

<http://coreapps.org/collections#create>

A link with this link relation type can occur as a top-level

element in a document or as a nested element within a link. When

it occurs as a top-level element, it provides an alternate

representation of the document's retrieval context. When it

occurs nested within a link, it provides a representation of link

target of the enclosing link.

Operation Types:

Indicates that the state of the form's context can be replaced

with the state described by a representation submitted to the

server.

This operation type defaults to the PUT method [RFC7231]

[RFC7252] for both HTTP and CoAP. Typical overrides by a form

field include the PATCH method [RFC5789] [RFC8132] for HTTP and

CoAP and the iPATCH method [RFC8132] for CoAP.

Indicates that the form's context can be searched by submitting a

search query.

This operation type defaults to the POST method [RFC7231] for

HTTP and the FETCH method [RFC8132] for CoAP. Typical overrides

by a form field include the POST method [RFC7252] for CoAP.

A.2. Collections

Link Relation Types:

Indicates that the link's context is a collection and that the

link's target is a member of that collection, as defined in

Section 2.1 of [RFC6573].

Indicates that the link's target is a collection and that the

link's context is a member of that collection, as defined in

Section 2.2 of [RFC6573].

Operation Types:

Indicates that the form's context is a collection and that a new

item can be created in that collection with the state defined by

a representation submitted to the server.

This operation type defaults to the POST method [RFC7231]

[RFC7252] for both HTTP and CoAP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6573#section-2.1
https://rfc-editor.org/rfc/rfc6573#section-2.2

<http://coreapps.org/collections#delete>

<http://coreapps.org/http#method>

<http://coreapps.org/http#accept>

<http://coreapps.org/http#type>

<http://coreapps.org/coap#method>

Indicates that the form's context is a member of a collection and

that the form's context can be removed from that collection.

This operation type defaults to the DELETE method [RFC7231]

[RFC7252] for both HTTP and CoAP.

A.3. HTTP

Form Field Types:

Specifies the HTTP method for the request.

The form field value MUST be a text string in the format defined

in Section 4.1 of [RFC7231]. The possible set of values is

maintained in the HTTP Methods Registry [HTTP-METHODS].

A form field of this type MUST NOT occur more than once in a

form. If absent, it defaults to the request method implied by the

form's operation type.

Specifies an acceptable HTTP content type for the request

payload. There may be multiple form fields of this type. If a

form does not include a form field of this type, the server

accepts any or no request payload, depending on the operation

type.

The form field value MUST be a text string in the format defined

in Section 3.1.1.1 of [RFC7231]. The possible set of media types

and their parameters is maintained in the Media Types Registry

[MEDIA-TYPES].

Link Relation Types:

Specifies the HTTP content type of the link context.

The link target MUST be a text string in the format defined in

Section 3.1.1.1 of [RFC7231]. The possible set of media types and

their parameters is maintained in the Media Types Registry

[MEDIA-TYPES].

A.4. CoAP

Form Field Types:

Specifies the CoAP method for the request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7231#section-4.1
https://rfc-editor.org/rfc/rfc7231#section-3.1.1.1
https://rfc-editor.org/rfc/rfc7231#section-3.1.1.1

<http://coreapps.org/coap#accept>

<http://coreapps.org/coap#type>

The form field value MUST be an integer identifying a CoAP method

(e.g., the integer 2 for the POST method). The possible set of

values is maintained in the CoAP Method Codes Registry [CORE-

PARAMETERS].

A form field of this type MUST NOT occur more than once in a

form. If absent, it defaults to the request method implied by the

form's operation type.

Specifies an acceptable CoAP content format for the request

payload. There may be multiple form fields of this type. If a

form does not include a form field of this type, the server

accepts any or no request payload, depending on the operation

type.

The form field value MUST be an integer identifying a CoAP

content format. The possible set of values is maintained in the

CoAP Content Formats Registry [CORE-PARAMETERS].

Link Relation Types:

Specifies the CoAP content format of the link context.

The link target MUST be an integer identifying a CoAP content

format (e.g., the integer 42 for the content type application/

octet-stream without a content coding). The possible set of

values is maintained in the CoAP Content Formats Registry [CORE-

PARAMETERS].

Appendix B. Default Dictionary

This section defines a default dictionary that is assumed when the

application/coral+cbor media type is used without a dictionary

parameter.

Key Value

0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

1 <http://www.iana.org/assignments/relation/item>

2 <http://www.iana.org/assignments/relation/collection>

3 <http://coreapps.org/collections#create>

4 <http://coreapps.org/base#update>

5 <http://coreapps.org/collections#delete>

6 <http://coreapps.org/base#search>

7 <http://coreapps.org/coap#accept>

8 <http://coreapps.org/coap#type>

10 <http://coreapps.org/coap#method>

¶

¶

¶

¶

¶

¶

¶

¶

Key Value

14 <http://coreapps.org/base#representation>

Table 3: Default Dictionary

Appendix C. Mappings to other formats

While CoRAL has an information model of its own, its data can be

converted to different extents with other data formats.

Using these conversions is generally application specific, i.e.,

this document does not claim equivalence of (say) a given RDF its

converted CoRAL document, but applications can choose use these

conversions if the limitations described with the conversion are

acceptable to them.

C.1. RDF

[TBD: Expand / introduce the common CURIEs used here.]

RDF and the CoRAL Basic Information Model can be interconverted

losslessly, as long as some basic restrictions are met:

All involved IRIs (on the RDF side) and CRIs (on the CoRAL side)

can be converted; that means that round-tripping IRIs through

CoRAL converts them to the equivalent URIs.

The precise limitations of what CRIs can not express are

described in [I-D.ietf-core-href] and out of scope of this

document.

A possible extension to CoRAL that allows tagged URIs in place of

CRIs could remove this limitation. (CRIs that can not be

expressed as URIs are not valid anyway).

A blank node of CoRAL can only have one incoming edge in

serialization. RDF documents with multiply connected blank nodes

need to undergo skolemization before they can be expressed in

CoRAL.

CoRAL supports arbitrary literal objects, including CBOR tags.

For each object that is used in a literal, a mapping to a

datatype (typically XSD) needs to be defined.

When literals are normalized in RDF according to XSD rules, or

the literal mappings to RDF datatypes are ambiguous on the CoRAL

side, round-tripping CoRAL through RDF can be lossy to the extent

of the normalization or ambiguity.

As always with expressing arbitrary graphs of the Basic

Information Model in serialization, if there is no directed tree

¶

¶

¶

¶

*

¶

¶

¶

*

¶

*

¶

¶

*

spanning the directed graph, statements need to be introduced to

reach some topics.

Each statement in RDF is mapped to a statement in CoRAL. Any IRI it

contains in RDF is mapped to an equivalent CRI in CoRAL and vice

versa. Any blank node of RDF is converted to a blank node

(serialized as a null) in CoRAL. (Beware that depending on the

context established in Section 4, the retrieval context may be a URI

or a blank node). Literals are converted as follows:

CBOR text strings are coverted to RDF string literals without a

language tag.

CBOR literals from the following list are converted to their

corresponding text representations of the datatype from the

following table:

CDDL XSD datatype

bool xsd:boolean

integer xsd:integer

float xsd:double

decfrac xsd:decimal

bytes
xsd:base64Binary or

xsd:base64hexBinary (?)

tdate xsd:date

#6.38([lang: tstr, text: tstr])
rdf:langString with lang as

language tag

#6.TBD([lang: tstr, dir: tstr,

text: tstr])
i18n:{lang}_{dir}

Table 4: Mapping between CDDL types and XSD datatypes

[TBD: Check compatibilities, give type for at least the basic tags.

Directional text might wind up in tag 38,]

RDF literals are mapped to any CoRAL literal that yields an

equivalent RDF literal in the opposite direction.

C.1.1. Example

The FOAF namespace provides this example:

¶

¶

*

¶

*

¶

¶

*

¶

¶

<foaf:Person rdf:about="#danbri" xmlns:foaf="http://xmlns.com/foaf/0.1/">

 <foaf:name>Dan Brickley</foaf:name>

 <foaf:homepage rdf:resource="http://danbri.org/" />

 <foaf:openid rdf:resource="http://danbri.org/" />

 <foaf:img rdf:resource="/images/me.jpg" />

</foaf:Person>

Figure 5: Original FOAF file at http://.../me.xml

Converted, assuming no particular profiling or dictionary setup (and

an ad-hoc table following Section 3.1 of [I-D.ietf-cbor-packed]),

this could be:

Figure 6: Serialized FOAF file at http://.../me.coral

The TBD:talks-about statement is introduced to bridge the gap

between the basic and the necessarily structured information model.

[TBD: Introduce that somewhere else more generally.]

In this packing, an invalid CRI (with trailing null leaving room for

a fragment identifier to be added through packing) is added into the

prefixes list. It is not sure whether this particular trick will

ever be permitted by any of the profilings, or whether this is

better done with base URIs. The mechanism is used because right now

it works with the specifications involved without the need for

further text, and is likely to be replaced by better mechanisms in

later revisions of this document.

C.2. CoRE Link Format

Generic information in Web Links as described in [RFC8288] can not

be converted to CoRAL in any practical way: Attributes are not

managed, and it is not clear from the syntax whether an attribute is

making a statement about the link or its target. (See Section

2.3.3.1 for an example).

Applications that use links with the attribute semantics common in

the CoRE ecosystem (typically used with [RFC6690] Link Format) can

use this conversion. It defines terms for common properties used for

discovering resources, and describes a way to compatibly extend the

mapping.

The same mechanism (but probably with a different mapping between

names and attributes, and different rules about the necessity of

packing entries) can be defined for any data model that builds on

[RFC8288] semantics, e.g., the links sent in headers or payloads

¶

51([[cri'http://danbri.org/'], [<<-3, "xmlns.com", ["foaf", "0.1"], null>>], [], [

 [2, cri'http://www.iana.org/assignments/relation/carries-information-about', cri'/me.xml#danbri',

 [2, cri'http://www.w3.org/1999/02/22-rdf-syntax-ns#type', 6(<<'Person'>>)],

 [2, 6(<<'name'>>), "Dan Brickley"],

 [2, 6(<<'homepage'>>), 6(0)],

 [2, 6(<<'openid'>>), 6(0)],

 [2, 6(<<'img'>>), cri'/images/me.jpg']

]

]])

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-cbor-packed-04#section-3.1

about [RFC7089] mementos, or applications building on [I-D.ietf-

httpapi-linkset].

In several points the mapping describes URIs to necessarily have an

entry in the packing table; this refers to the profiling described

further down. Parts of a Link Format document that would need an

entry but do not have one can not be converted; these are ignored in

the conversion unless the converter is configured to be strict and

fail the complete conversion in that case.

This mapping from Link Format to CoRAL is performed as follows: *

For each relation in a link, a statement is created mapping the link

context to the subject, the link target to the object and the

relation to the predicate.

If the relation is of ext-rel-type, it is used as a URI as is.

Otherwise it is a registered value, prefixed with http://

www.iana.org/assignments/relation/ and necessarily packed using

table TBD. (This is equivalent to the RPP mechanism for attribute

values).

Each target attribute is converted to one or more statements by

the mechanism indicated for the attribute name in the following

table. Statements produced from a link have the target as its

subject, the attribute name without any trailing asterisk

(prefixed with https://TBD/ [to be picked together with IANA as

it'll be a registry]) as its predicate, and the object(s)

depending on the mechanism.

Attributes are necessarily listed in this table.

TN Name Mechanism

TBD hreflang [do we need that?]

TBD media [do we need that?]

16 title string

TBD type [do we need that?]

0 rt WSSP; RPP http://www.iana.org/TBDr/

1 if WSSP; RPP http://www.iana.org/TBDi/

2 sz int

3 ct WSSP; int

Table 5: Initial entries of the target attribute

registry (TN = table number)

Available mechanisms are:

SPSP (space split): Link format values are split at space

characters (SP in the RFC6690 ABNF), and all values treated using

another mechanism.

¶

¶

¶

¶

*

¶

¶

¶

*

¶

string: The attribute value is stored as a text string literal.

If the Link Format attribute is language tagged (i.e. when the

attribute name ends with an asterisk and the value is of ext-

value shape), the literal is encapsulated in a CBOR language tag

(38).

int: The target attribute is processed as an ASCII encoded number

and expressed as an integer literal. A failing conversion is

treated like an unknown registered value: It is ignored unless

configured otherwise.

RPP (registered-prefix / packed): The input value (often the

result of the SPSP mechanism) is parsed according to the

relation-type ABNF production. If it is of ext-rel-type, it is

expressed as that URI. If it is prefixed with the string

indicated with the mechanism, and necessarily compressed through

table TBD.

All currently registered link attributes are used in the CoRE

ecosystem as indicating a property of the target that is independent

of the link being followed. If this conversion is to be extended to

cover attributes that pertain to the full link being followed

(typically along with one or more link relations), the relevant

relations are not expressed as a single statement, but as a form,

i.e. as two statements linking the context to a blank node and the

blank node to the target; the attributes are attached to the blank

node. The precise mechanism out of scope for this document, and left

to those who first register such an attribute.

Some structure can be carried over from Link Format to the

structured model: The sequences of links gets reused, and the set

and sequence of attributes in a particular occurrence of a link get

applied to the statement produced from the link (or all the

statements, if the link has multiple link relations). Statements

whose subject is not the document itself are attached to the

retrieval context using the necessarily packed http://www.iana.org/

assignments/relation/carries-information-about property. Statements

about URLs mentioned elsewhere in the document can be expressed

there instead.

Link relations of the reg-name form, link attributes, and attribute

values from the RPP mechanism MUST be serialized using packed CBOR

as initialized in table TBD. No other packing is used. A consumer

MAY ignore any items compressed through the dictionary for which it

does not know the expanded version: These necessarily represent

statements that involve terms the consumer does not understand.

[As an alternative, packing attributes together with their URIs is

considered: Rather than [2, 6(/ attr:rt /), 6(/ rt:core.rd /)] we

*

¶

*

¶

*

¶

¶

¶

¶

could have 6(rt-core) right away; unregistered values would stay [2,

6(/ attr:rt /), value] or maybe 254([value]) using prefix packing.]

Appendix D. Change Log

This section is to be removed before publishing as an RFC.

Changes from -04 to -05:

Literals can no longer have properties. The only use case was

annotating languages and directions, and that can be done in

CBOR.

Added section about open and close world modelling.

Information model merged with the previous data model and

interaction section.

Changes from -03 to -04:

Formalize information model, as basic and structured model.

Remove textual representation, using CBOR diagnostig notation

instead.

Use Packed CBOR instead of custom dictionaries.

Give explicit conversions from Link Format and with RDF.

Remove references to IRIs (outside RDF) as CRIs are closer to

URIs.

Remove requirement for deterministic encoding.

Many editorial changes.

Update references.

Change of authorship.

Changes from -02 to -03:

Changed the binary format to express relation types, operation

types and form field types using [I-D.ietf-core-href] (#2).

Clarified the current context and current base for nested

elements and form fields (#53).

Minor editorial improvements (#27).

¶

¶

¶

*

¶

* ¶

*

¶

¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

Changes from -01 to -02:

Added nested elements to form fields.

Replaced the special construct for embedded representations with

links.

Changed the textual format to allow simple/qualified names

wherever IRI references are allowed.

Introduced predefined names in the textual format (#39).

Minor editorial improvements and bug fixes (#16 #28 #31 #37 #39).

Changes from -00 to -01:

Added a section on the semantics of CoRAL documents in responses.

Minor editorial improvements.

Acknowledgements

The concept and original version of CoRAL (as well as CRIs) was

developed by Klaus Hartke. It was heavily inspired by Mike Kelly's

JSON Hypertext Application Language [HAL].

The recommendations for minting URIs have been adopted from RDF 1.1

Concepts and Abstract Syntax [W3C.REC-rdf11-concepts-20140225] to

ease the interoperability between RDF predicates and link relation

types.

Thanks to Carsten Bormann, Jaime Jiménez, Jim Schaad, Sebastian

Käbisch, Ari Keränen, Michael Koster, Matthias Kovatsch and Niklas

Widell for helpful comments and discussions that have shaped the

document.

Authors' Addresses

Christian Amsüss

Email: christian@amsuess.com

Thomas Fossati

ARM

Email: thomas.fossati@arm.com

¶

* ¶

*

¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

¶

¶

mailto:christian@amsuess.com
mailto:thomas.fossati@arm.com

	The Constrained RESTful Application Language (CoRAL)
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Data and Interaction Model
	1.2. Notational Conventions

	2. Data and Interaction Model
	2.1. Browsing Context
	2.2. Documents
	2.3. Data model
	2.3.1. Observations
	2.3.2. Possible variations
	2.3.3. Examples
	2.3.3.1. Literal example

	2.4. Serialization Format
	2.5. Links
	2.6. Forms
	2.7. Form Fields
	2.8. Navigation
	2.9. History Traversal
	2.10. Designing interactions in an Open World

	3. Binary Format
	3.1. Data Structure
	3.1.1. Documents
	3.1.2. Directives
	3.1.2.1. Base Directives

	3.1.3. URIs
	3.1.4. Links
	3.1.5. Forms
	3.1.6. Form Fields

	3.2. Dictionary Compression
	3.2.1. Media Type Parameter

	3.3. Export Interface

	4. Document Semantics
	4.1. Submitting Documents
	4.1.1. PUT Requests
	4.1.2. POST Requests

	4.2. Returning Documents
	4.2.1. Success Responses
	4.2.2. Redirection Responses
	4.2.3. Error Responses

	5. Usage Considerations
	5.1. Specifying CoRAL-based Applications
	5.1.1. Application Interfaces
	5.1.2. Resource Identifiers
	5.1.3. Implementation Limits

	5.2. Minting Vocabulary
	5.3. Expressing Registered Link Relation Types
	5.4. Expressing Simple RDF Statements
	5.5. Expressing Natural Language Texts
	5.6. Embedding Representations in CoRAL

	6. Security Considerations
	7. IANA Considerations
	7.1. Media Type "application/coral+cbor"
	7.2. CoAP Content Formats

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Core Vocabulary
	A.1. Base
	A.2. Collections
	A.3. HTTP
	A.4. CoAP

	Appendix B. Default Dictionary
	Appendix C. Mappings to other formats
	C.1. RDF
	C.1.1. Example

	C.2. CoRE Link Format

	Appendix D. Change Log
	Acknowledgements
	Authors' Addresses

