
CoRE Working Group C. Amsuess
Internet-Draft
Updates: 7252 (if approved) J. Mattsson
Intended status: Standards Track G. Selander
Expires: January 14, 2021 Ericsson AB
 July 13, 2020

CoAP: Echo, Request-Tag, and Token Processing
draft-ietf-core-echo-request-tag-10

Abstract

 This document specifies enhancements to the Constrained Application
 Protocol (CoAP) that mitigate security issues in particular use
 cases. The Echo option enables a CoAP server to verify the freshness
 of a request or to force a client to demonstrate reachability at its
 claimed network address. The Request-Tag option allows the CoAP
 server to match block-wise message fragments belonging to the same
 request. This document updates RFC7252 with respect to the client
 Token processing requirements, forbidding non-secure reuse of Tokens
 to ensure binding of response to request when CoAP is used with
 security, and with respect to amplification mitigation, where the use
 of Echo is now recommended.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 14, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Amsuess, et al. Expires January 14, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft CoAP: ERT July 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3

2. Request Freshness and the Echo Option 4
2.1. Request Freshness . 4
2.2. The Echo Option . 5
2.2.1. Echo Option Format 5

2.3. Echo Processing . 6
2.4. Applications of the Echo Option 10

3. Protecting Message Bodies using Request Tags 11
3.1. Fragmented Message Body Integrity 11
3.2. The Request-Tag Option 12
3.2.1. Request-Tag Option Format 12

3.3. Request-Tag Processing by Servers 13
3.4. Setting the Request-Tag 14
3.5. Applications of the Request-Tag Option 15
3.5.1. Body Integrity Based on Payload Integrity 15
3.5.2. Multiple Concurrent Block-wise Operations 16

 3.5.3. Simplified Block-Wise Handling for Constrained
 Proxies . 17

3.6. Rationale for the Option Properties 17
3.7. Rationale for Introducing the Option 17
3.8. Block2 / ETag Processing 18

4. Token Processing for Secure Request-Response Binding 18
4.1. Request-Response Binding 18
4.2. Updated Token Processing Requirements for Clients 19

5. Security Considerations 19
5.1. Token reuse . 20

6. Privacy Considerations 22
7. IANA Considerations . 22
8. References . 23
8.1. Normative References 23
8.2. Informative References 23

Appendix A. Methods for Generating Echo Option Values 24
Appendix B. Request-Tag Message Size Impact 26
Appendix C. Change Log . 26

 Acknowledgments . 31

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Amsuess, et al. Expires January 14, 2021 [Page 2]

Internet-Draft CoAP: ERT July 2020

 Authors' Addresses . 31

1. Introduction

 The initial Constrained Application Protocol (CoAP) suite of
 specifications ([RFC7252], [RFC7641], and [RFC7959]) was designed
 with the assumption that security could be provided on a separate
 layer, in particular by using DTLS ([RFC6347]). However, for some
 use cases, additional functionality or extra processing is needed to
 support secure CoAP operations. This document specifies security
 enhancements to the Constrained Application Protocol (CoAP).

 This document specifies two CoAP options, the Echo option and the
 Request-Tag option: The Echo option enables a CoAP server to verify
 the freshness of a request, synchronize state, or force a client to
 demonstrate reachability at its claimed network address. The
 Request-Tag option allows the CoAP server to match message fragments
 belonging to the same request, fragmented using the CoAP block-wise
 Transfer mechanism, which mitigates attacks and enables concurrent
 block-wise operations. These options in themselves do not replace
 the need for a security protocol; they specify the format and
 processing of data which, when integrity protected using e.g. DTLS
 ([RFC6347]), TLS ([RFC8446]), or OSCORE ([RFC8613]), provide the
 additional security features.

 This document updates [RFC7252] with a recommendation that servers
 use the Echo option to mitigate amplification attacks.

 The document also updates the Token processing requirements for
 clients specified in [RFC7252]. The updated processing forbids non-
 secure reuse of Tokens to ensure binding of responses to requests
 when CoAP is used with security, thus mitigating error cases and
 attacks where the client may erroneously associate the wrong response
 to a request.

 Each of the following sections provides a more detailed introduction
 to the topic at hand in its first subsection.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Unless otherwise specified, the terms "client" and "server" refers to
 "CoAP client" and "CoAP server", respectively, as defined in

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Amsuess, et al. Expires January 14, 2021 [Page 3]

Internet-Draft CoAP: ERT July 2020

 [RFC7252]. The term "origin server" is used as in [RFC7252]. The
 term "origin client" is used in this document to denote the client
 from which a request originates; to distinguish from clients in
 proxies.

 The terms "payload" and "body" of a message are used as in [RFC7959].
 The complete interchange of a request and a response body is called a
 (REST) "operation". An operation fragmented using [RFC7959] is
 called a "block-wise operation". A block-wise operation which is
 fragmenting the request body is called a "block-wise request
 operation". A block-wise operation which is fragmenting the response
 body is called a "block-wise response operation".

 Two request messages are said to be "matchable" if they occur between
 the same endpoint pair, have the same code and the same set of
 options except for elective NoCacheKey options and options involved
 in block-wise transfer (Block1, Block2 and Request-Tag). Two
 operations are said to be matchable if any of their messages are.

 Two matchable block-wise operations are said to be "concurrent" if a
 block of the second request is exchanged even though the client still
 intends to exchange further blocks in the first operation.
 (Concurrent block-wise request operations from a single endpoint are
 impossible with the options of [RFC7959] (see the last paragraphs of
 Sections 2.4 and 2.5) because the second operation's block overwrites
 any state of the first exchange.).

 The Echo and Request-Tag options are defined in this document.

2. Request Freshness and the Echo Option

2.1. Request Freshness

 A CoAP server receiving a request is in general not able to verify
 when the request was sent by the CoAP client. This remains true even
 if the request was protected with a security protocol, such as DTLS.
 This makes CoAP requests vulnerable to certain delay attacks which
 are particularly perilous in the case of actuators
 ([I-D.mattsson-core-coap-actuators]). Some attacks can be mitigated
 by establishing fresh session keys, e.g. performing a DTLS handshake
 for each request, but in general this is not a solution suitable for
 constrained environments, for example, due to increased message
 overhead and latency. Additionally, if there are proxies, fresh DTLS
 session keys between server and proxy does not say anything about
 when the client made the request. In a general hop-by-hop setting,
 freshness may need to be verified in each hop.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959

Amsuess, et al. Expires January 14, 2021 [Page 4]

Internet-Draft CoAP: ERT July 2020

 A straightforward mitigation of potential delayed requests is that
 the CoAP server rejects a request the first time it appears and asks
 the CoAP client to prove that it intended to make the request at this
 point in time.

2.2. The Echo Option

 This document defines the Echo option, a lightweight challenge-
 response mechanism for CoAP that enables a CoAP server to verify the
 freshness of a request. A fresh request is one whose age has not yet
 exceeded the freshness requirements set by the server. The freshness
 requirements are application specific and may vary based on resource,
 method, and parameters outside of CoAP such as policies. The Echo
 option value is a challenge from the server to the client included in
 a CoAP response and echoed back to the server in one or more CoAP
 requests. The Echo option provides a convention to transfer
 freshness indicators that works for all CoAP methods and response
 codes.

 This mechanism is not only important in the case of actuators, or
 other use cases where the CoAP operations require freshness of
 requests, but also in general for synchronizing state between CoAP
 client and server, cryptographically verify the aliveness of the
 client, or force a client to demonstrate reachability at its claimed
 network address. The same functionality can be provided by echoing
 freshness indicators in CoAP payloads, but this only works for
 methods and response codes defined to have a payload. The Echo
 option provides a convention to transfer freshness indicators that
 works for all methods and response codes.

2.2.1. Echo Option Format

 The Echo Option is elective, safe-to-forward, not part of the cache-
 key, and not repeatable, see Figure 1, which extends Table 4 of
 [RFC7252]).

+--------+---+---+---+---+-------------+--------+------+---------+---+---+
| No. | C | U | N | R | Name | Format | Len. | Default | E | U |
+--------+---+---+---+---+-------------+--------+------+---------+---+---+
| TBD252 | | | x | | Echo | opaque | 1-40 | (none) | x | x |
+--------+---+---+---+---+-------------+--------+------+---------+---+---+

 C = Critical, U = Unsafe, N = NoCacheKey, R = Repeatable,
 E = Encrypt and Integrity Protect (when using OSCORE)

 Figure 1: Echo Option Summary

https://datatracker.ietf.org/doc/html/rfc7252

Amsuess, et al. Expires January 14, 2021 [Page 5]

Internet-Draft CoAP: ERT July 2020

 The Echo option value is generated by a server, and its content and
 structure are implementation specific. Different methods for
 generating Echo option values are outlined in Appendix A. Clients
 and intermediaries MUST treat an Echo option value as opaque and make
 no assumptions about its content or structure.

 When receiving an Echo option in a request, the server MUST be able
 to verify that the Echo option value (a) was generated by the server
 or some other party that the server trusts, and (b) fulfills the
 freshness requirements of the application. Depending on the
 freshness requirements the server may verify exactly when the Echo
 option value was generated (time-based freshness) or verify that the
 Echo option was generated after a specific event (event-based
 freshness). As the request is bound to the Echo option value, the
 server can determine that the request is not older that the Echo
 option value.

 When the Echo option is used with OSCORE [RFC8613] it MAY be an Inner
 or Outer option, and the Inner and Outer values are independent.
 OSCORE servers MUST only produce Inner Echo options unless they are
 merely testing for reachability of the client (the same as proxies
 may do). The Inner option is encrypted and integrity protected
 between the endpoints, whereas the Outer option is not protected by
 OSCORE and visible between the endpoints to the extent it is not
 protected by some other security protocol. E.g. in the case of DTLS
 hop-by-hop between the endpoints, the Outer option is visible to
 proxies along the path.

2.3. Echo Processing

 The Echo option MAY be included in any request or response (see
Section 2.4 for different applications).

 The application decides under what conditions a CoAP request to a
 resource is required to be fresh. These conditions can for example
 include what resource is requested, the request method and other data
 in the request, and conditions in the environment such as the state
 of the server or the time of the day.

 If a certain request is required to be fresh, the request does not
 contain a fresh Echo option value, and the server cannot verify the
 freshness of the request in some other way, the server MUST NOT
 process the request further and SHOULD send a 4.01 Unauthorized
 response with an Echo option. The server MAY include the same Echo
 option value in several different response messages and to different
 clients. Examples of this could be time-based freshness when several
 responses are sent closely after each other or event-based freshness
 with no event taking place between the responses.

https://datatracker.ietf.org/doc/html/rfc8613

Amsuess, et al. Expires January 14, 2021 [Page 6]

Internet-Draft CoAP: ERT July 2020

 The server may use request freshness provided by the Echo option to
 verify the aliveness of a client or to synchronize state. The server
 may also include the Echo option in a response to force a client to
 demonstrate reachability at its claimed network address. Note that
 the Echo option does not bind a request to any particular previous
 response, but provides an indication that the client had access to
 the previous response at the time when it created the request.

 Upon receiving a 4.01 Unauthorized response with the Echo option, the
 client SHOULD resend the original request with the addition of an
 Echo option with the received Echo option value. The client MAY send
 a different request compared to the original request. Upon receiving
 any other response with the Echo option, the client SHOULD echo the
 Echo option value in the next request to the server. The client MAY
 include the same Echo option value in several different requests to
 the server.

 A client MUST only send Echo values to endpoints it received them
 from (where as defined in [RFC7252] Section 1.2, the security
 association is part of the endpoint). In OSCORE processing, that
 means sending Echo values from Outer options (or from non-OSCORE
 responses) back in Outer options, and those from Inner options in
 Inner options in the same security context.

 Upon receiving a request with the Echo option, the server determines
 if the request is required to be fresh. If not, the Echo option MAY
 be ignored. If the request is required to be fresh and the server
 cannot verify the freshness of the request in some other way, the
 server MUST use the Echo option to verify that the request is fresh.
 If the server cannot verify that the request is fresh, the request is
 not processed further, and an error message MAY be sent. The error
 message SHOULD include a new Echo option.

 One way for the server to verify freshness is that to bind the Echo
 value to a specific point in time and verify that the request is not
 older than a certain threshold T. The server can verify this by
 checking that (t1 - t0) < T, where t1 is the request receive time and
 t0 is the time when the Echo option value was generated. An example
 message flow is shown in Figure 2.

https://datatracker.ietf.org/doc/html/rfc7252#section-1.2

Amsuess, et al. Expires January 14, 2021 [Page 7]

Internet-Draft CoAP: ERT July 2020

 Client Server
 | |
 +------>| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<------+ Code: 4.01 (Unauthorized)
 | 4.01 | Token: 0x41
 | | Echo: 0x437468756c687521 (t0)
 | |
 +------>| t1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Echo: 0x437468756c687521 (t0)
 | | Payload: 0 (Unlock)
 | |
 |<------+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 2: Example Message Flow for Time-Based Freshness

 Another way for the server to verify freshness is to maintain a cache
 of values associated to events. The size of the cache is defined by
 the application. In the following we assume the cache size is 1, in
 which case freshness is defined as no new event has taken place. At
 each event a new value is written into the cache. The cache values
 MUST be different for all practical purposes. The server verifies
 freshness by checking that e0 equals e1, where e0 is the cached value
 when the Echo option value was generated, and e1 is the cached value
 at the reception of the request. An example message flow is shown in
 Figure 3.

Amsuess, et al. Expires January 14, 2021 [Page 8]

Internet-Draft CoAP: ERT July 2020

 Client Server
 | |
 +------>| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<------+ Code: 4.01 (Unauthorized)
 | 4.01 | Token: 0x41
 | | Echo: 0x436F6D69632053616E73 (e0)
 | |
 +------>| e1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Echo: 0x436F6D69632053616E73 (e0)
 | | Payload: 0 (Unlock)
 | |
 |<------+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 3: Example Message Flow for Event-Based Freshness

 When used to serve freshness requirements (including client aliveness
 and state synchronizing), the Echo option value MUST be integrity
 protected between the intended endpoints, e.g. using DTLS, TLS, or an
 OSCORE Inner option ([RFC8613]). When used to demonstrate
 reachability at a claimed network address, the Echo option SHOULD
 contain the client's network address, but MAY be unprotected.

 A CoAP-to-CoAP proxy MAY set an Echo option on responses, both on
 forwarded ones that had no Echo option or ones generated by the proxy
 (from cache or as an error). If it does so, it MUST remove the Echo
 option it recognizes as one generated by itself on follow-up
 requests. When it receives an Echo option in a response, it may
 forward it to the client (and, not recognizing it as an own in future
 requests, relay it in the other direction as well) or process it on
 its own. If it does so, it MUST ensure that the client's request was
 generated (or is re-generated) after the Echo value used to send to
 the server was first seen. (In most cases, this means that the proxy
 needs to ask the client to repeat the request with a new Echo value).

 The CoAP server side of CoAP-to-HTTP proxies MAY request freshness,
 especially if they have reason to assume that access may require it
 (e.g. because it is a PUT or POST); how this is determined is out of
 scope for this document. The CoAP client side of HTTP-to-CoAP
 proxies SHOULD respond to Echo challenges themselves if they know
 from the recent establishing of the connection that the HTTP request

https://datatracker.ietf.org/doc/html/rfc8613

Amsuess, et al. Expires January 14, 2021 [Page 9]

Internet-Draft CoAP: ERT July 2020

 is fresh. Otherwise, they SHOULD respond with 503 Service
 Unavailable, Retry-After: 0 and terminate any underlying Keep-Alive
 connection. If the HTTP request arrived in Early Data, the proxy
 SHOULD use a 425 Too Early response instead (see [RFC8470]). They
 MAY also use other mechanisms to establish freshness of the HTTP
 request that are not specified here.

2.4. Applications of the Echo Option

 1. Actuation requests often require freshness guarantees to avoid
 accidental or malicious delayed actuator actions. In general,
 all non-safe methods (e.g. POST, PUT, DELETE) may require
 freshness guarantees for secure operation.

 * The same Echo value may be used for multiple actuation
 requests to the same server, as long as the total round-trip
 time since the Echo option value was generated is below the
 freshness threshold.

 * For actuator applications with low delay tolerance, to avoid
 additional round-trips for multiple requests in rapid
 sequence, the server may include the Echo option with a new
 value even in a successful response to a request,
 irrespectively of whether the request contained an Echo option
 or not. The client then uses the Echo option with the new
 value in the next actuation request, and the server compares
 the receive time accordingly.

 2. A server may use the Echo option to synchronize properties (such
 as state or time) with a requesting client. A server MUST NOT
 synchronize a property with a client which is not the authority
 of the property being synchronized. E.g. if access to a server
 resource is dependent on time, then server MUST NOT synchronize
 time with a client requesting access unless it is time authority
 for the server.

 * If a server reboots during operation it may need to
 synchronize state or time before continuing the interaction.
 For example, with OSCORE it is possible to reuse a partly
 persistently stored security context by synchronizing the
 Partial IV (sequence number) using the Echo option, see

Section 7.5 of [RFC8613].

 * A device joining a CoAP group communication [RFC7390]
 protected with OSCORE [I-D.ietf-core-oscore-groupcomm] may be
 required to initially verify freshness and synchronize state
 or time with a client by using the Echo option in a unicast
 response to a multicast request. The client receiving the

https://datatracker.ietf.org/doc/html/rfc8470
https://datatracker.ietf.org/doc/html/rfc8613#section-7.5
https://datatracker.ietf.org/doc/html/rfc7390

Amsuess, et al. Expires January 14, 2021 [Page 10]

Internet-Draft CoAP: ERT July 2020

 response with the Echo option includes the Echo value in a
 subsequent unicast request to the responding server.

 3. A server that sends large responses to unauthenticated peers
 SHOULD mitigate amplification attacks such as described in

Section 11.3 of [RFC7252] (where an attacker would put a victim's
 address in the source address of a CoAP request). The
 RECOMMENDED way to do this is to ask a client to Echo its request
 to verify its source address. This needs to be done only once
 per peer and limits the range of potential victims from the
 general Internet to endpoints that have been previously in
 contact with the server. For this application, the Echo option
 can be used in messages that are not integrity protected, for
 example during discovery.

 * In the presence of a proxy, a server will not be able to
 distinguish different origin client endpoints. Following from
 the recommendation above, a proxy that sends large responses
 to unauthenticated peers SHOULD mitigate amplification
 attacks. The proxy SHOULD use Echo to verify origin
 reachability as described in Section 2.3. The proxy MAY
 forward idempotent requests immediately to have a cached
 result available when the client's Echoed request arrives.

 * Amplification mitigation should be used when the response
 would be more than three times the size of the request,
 considering the complete frame on the wire as it is typically
 sent across the Internet. In practice, this allows UDP data
 of at least 152 Bytes without further checks.

 * When an Echo response is sent to mitigate amplification, it
 MUST be sent as a piggybacked or non-confirmable response,
 never as a separate one (which would cause amplification due
 to retransmission).

 4. A server may want to use the request freshness provided by the
 Echo to verify the aliveness of a client. Note that in a
 deployment with hop-by-hop security and proxies, the server can
 only verify aliveness of the closest proxy.

3. Protecting Message Bodies using Request Tags

3.1. Fragmented Message Body Integrity

 CoAP was designed to work over unreliable transports, such as UDP,
 and include a lightweight reliability feature to handle messages
 which are lost or arrive out of order. In order for a security
 protocol to support CoAP operations over unreliable transports, it

https://datatracker.ietf.org/doc/html/rfc7252#section-11.3

Amsuess, et al. Expires January 14, 2021 [Page 11]

Internet-Draft CoAP: ERT July 2020

 must allow out-of-order delivery of messages using e.g. a sliding
 replay window such as described in Section 4.1.2.6 of DTLS
 ([RFC6347]).

 The block-wise transfer mechanism [RFC7959] extends CoAP by defining
 the transfer of a large resource representation (CoAP message body)
 as a sequence of blocks (CoAP message payloads). The mechanism uses
 a pair of CoAP options, Block1 and Block2, pertaining to the request
 and response payload, respectively. The block-wise functionality
 does not support the detection of interchanged blocks between
 different message bodies to the same resource having the same block
 number. This remains true even when CoAP is used together with a
 security protocol such as DTLS or OSCORE, within the replay window
 ([I-D.mattsson-core-coap-actuators]), which is a vulnerability of
 CoAP when using RFC7959.

 A straightforward mitigation of mixing up blocks from different
 messages is to use unique identifiers for different message bodies,
 which would provide equivalent protection to the case where the
 complete body fits into a single payload. The ETag option [RFC7252],
 set by the CoAP server, identifies a response body fragmented using
 the Block2 option.

3.2. The Request-Tag Option

 This document defines the Request-Tag option for identifying request
 bodies, similar to ETag, but ephemeral and set by the CoAP client.
 The Request-Tag is intended for use as a short-lived identifier for
 keeping apart distinct block-wise request operations on one resource
 from one client, addressing the issue described in Section 3.1. It
 enables the receiving server to reliably assemble request payloads
 (blocks) to their message bodies, and, if it chooses to support it,
 to reliably process simultaneous block-wise request operations on a
 single resource. The requests must be integrity protected if they
 should protect against interchange of blocks between different
 message bodies. The Request-Tag option is only used in requests that
 carry the Block1 option, and in Block2 requests following these.

 In essence, it is an implementation of the "proxy-safe elective
 option" used just to "vary the cache key" as suggested in [RFC7959]
 Section 2.4.

3.2.1. Request-Tag Option Format

 The Request-Tag option is not critical, is safe to forward,
 repeatable, and part of the cache key, see Figure 4, which extends
 Table 4 of [RFC7252]).

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959#section-2.4
https://datatracker.ietf.org/doc/html/rfc7959#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252

Amsuess, et al. Expires January 14, 2021 [Page 12]

Internet-Draft CoAP: ERT July 2020

+--------+---+---+---+---+-------------+--------+------+---------+---+---+
| No. | C | U | N | R | Name | Format | Len. | Default | E | U |
+--------+---+---+---+---+-------------+--------+------+---------+---+---+
| TBD292 | | | | x | Request-Tag | opaque | 0-8 | (none) | x | x |
+--------+---+---+---+---+-------------+--------+------+---------+---+---+

 C = Critical, U = Unsafe, N = NoCacheKey, R = Repeatable,
 E = Encrypt and Integrity Protect (when using OSCORE)

 Figure 4: Request-Tag Option Summary

 Request-Tag, like the block options, is both a class E and a class U
 option in terms of OSCORE processing (see Section 4.1 of [RFC8613]):
 The Request-Tag MAY be an Inner or Outer option. It influences the
 Inner or Outer block operation, respectively. The Inner and Outer
 values are therefore independent of each other. The Inner option is
 encrypted and integrity protected between client and server, and
 provides message body identification in case of end-to-end
 fragmentation of requests. The Outer option is visible to proxies
 and labels message bodies in case of hop-by-hop fragmentation of
 requests.

 The Request-Tag option is only used in the request messages of block-
 wise operations.

 The Request-Tag mechanism can be applied independently on the server
 and client sides of CoAP-to-CoAP proxies as are the block options,
 though given it is safe to forward, a proxy is free to just forward
 it when processing an operation. CoAP-to-HTTP proxies and HTTP-to-
 CoAP proxies can use Request-Tag on their CoAP sides; it is not
 applicable to HTTP requests.

3.3. Request-Tag Processing by Servers

 The Request-Tag option does not require any particular processing on
 the server side outside of the processing already necessary for any
 unknown elective proxy-safe cache-key option: The option varies the
 properties that distinguish block-wise operations (which includes all
 options except elective NoCacheKey and except Block1/2), and thus the
 server can not treat messages with a different list of Request-Tag
 options as belonging to the same operation.

 To keep utilizing the cache, a server (including proxies) MAY discard
 the Request-Tag option from an assembled block-wise request when
 consulting its cache, as the option relates to the operation-on-the-
 wire and not its semantics. For example, a FETCH request with the
 same body as an older one can be served from the cache if the older's
 Max-Age has not expired yet, even if the second operation uses a

https://datatracker.ietf.org/doc/html/rfc8613#section-4.1

Amsuess, et al. Expires January 14, 2021 [Page 13]

Internet-Draft CoAP: ERT July 2020

 Request-Tag and the first did not. (This is similar to the situation
 about ETag in that it is formally part of the cache key, but
 implementations that are aware of its meaning can cache more
 efficiently, see [RFC7252] Section 5.4.2).

 A server receiving a Request-Tag MUST treat it as opaque and make no
 assumptions about its content or structure.

 Two messages carrying the same Request-Tag is a necessary but not
 sufficient condition for being part of the same operation. For one,
 a server may still treat them as independent messages when it sends
 2.01/2.04 responses for every block. Also, a client that lost
 interest in an old operation but wants to start over can overwrite
 the server's old state with a new initial (num=0) Block1 request and
 the same Request-Tag under some circumstances. Likewise, that
 results in the new message not being part of he old operation.

 As it has always been, a server that can only serve a limited number
 of block-wise operations at the same time can delay the start of the
 operation by replying with 5.03 (Service unavailable) and a Max-Age
 indicating how long it expects the existing operation to go on, or it
 can forget about the state established with the older operation and
 respond with 4.08 (Request Entity Incomplete) to later blocks on the
 first operation.

3.4. Setting the Request-Tag

 For each separate block-wise request operation, the client can choose
 a Request-Tag value, or choose not to set a Request-Tag. It needs to
 be set to the same value (or unset) in all messages belonging to the
 same operation, as otherwise they are treated as separate operations
 by the server.

 Starting a request operation matchable to a previous operation and
 even using the same Request-Tag value is called request tag
 recycling. The absence of a Request-Tag option is viewed as a value
 distinct from all values with a single Request-Tag option set;
 starting a request operation matchable to a previous operation where
 neither has a Request-Tag option therefore constitutes request tag
 recycling just as well (also called "recycling the absent option").

 Clients that use Request-Tag for a particular purpose (like in
Section 3.5) MUST NOT recycle a request tag unless the first

 operation has concluded. What constitutes a concluded operation
 depends on that purpose, and is defined there.

 When Block1 and Block2 are combined in an operation, the Request-Tag
 of the Block1 phase is set in the Block2 phase as well for otherwise

https://datatracker.ietf.org/doc/html/rfc7252#section-5.4.2

Amsuess, et al. Expires January 14, 2021 [Page 14]

Internet-Draft CoAP: ERT July 2020

 the request would have a different set of options and would not be
 recognized any more.

 Clients are encouraged to generate compact messages. This means
 sending messages without Request-Tag options whenever possible, and
 using short values when the absent option can not be recycled.

 The Request-Tag options MAY be present in request messages that carry
 no Block option (for example, because a Request-Tag unaware proxy
 reassembled them), and MUST be ignored in those.

 The Request-Tag option MUST NOT be present in response messages.

3.5. Applications of the Request-Tag Option

3.5.1. Body Integrity Based on Payload Integrity

 When a client fragments a request body into multiple message
 payloads, even if the individual messages are integrity protected, it
 is still possible for a man-in-the-middle to maliciously replace a
 later operation's blocks with an earlier operation's blocks (see
 Section 2.5 of [I-D.mattsson-core-coap-actuators]). Therefore, the
 integrity protection of each block does not extend to the operation's
 request body.

 In order to gain that protection, use the Request-Tag mechanism as
 follows:

 o The individual exchanges MUST be integrity protected end-to-end
 between client and server.

 o The client MUST NOT recycle a request tag in a new operation
 unless the previous operation matchable to the new one has
 concluded.

 If any future security mechanisms allow a block-wise transfer to
 continue after an endpoint's details (like the IP address) have
 changed, then the client MUST consider messages sent to _any_
 endpoint address within the new operation's security context.

 o The client MUST NOT regard a block-wise request operation as
 concluded unless all of the messages the client previously sent in
 the operation have been confirmed by the message integrity
 protection mechanism, or are considered invalid by the server if
 replayed.

 Typically, in OSCORE, these confirmations can result either from
 the client receiving an OSCORE response message matching the

Amsuess, et al. Expires January 14, 2021 [Page 15]

Internet-Draft CoAP: ERT July 2020

 request (an empty ACK is insufficient), or because the message's
 sequence number is old enough to be outside the server's receive
 window.

 In DTLS, this can only be confirmed if the request message was not
 retransmitted, and was responded to.

 Authors of other documents (e.g. applications of [RFC8613]) are
 invited to mandate this behavior for clients that execute block-wise
 interactions over secured transports. In this way, the server can
 rely on a conforming client to set the Request-Tag option when
 required, and thereby conclude on the integrity of the assembled
 body.

 Note that this mechanism is implicitly implemented when the security
 layer guarantees ordered delivery (e.g. CoAP over TLS [RFC8323]).
 This is because with each message, any earlier message can not be
 replayed any more, so the client never needs to set the Request-Tag
 option unless it wants to perform concurrent operations.

 Body integrity only makes sense in applications that have stateful
 block-wise transfers. On applications where all the state is in the
 application (e.g. because rather than POSTing a large representation
 to a collection in a stateful block-wise transfer, a collection item
 is created first, then written to once and available when written
 completely), clients need not concern themselves with body integrity
 and thus the Request-Tag.

3.5.2. Multiple Concurrent Block-wise Operations

 CoAP clients, especially CoAP proxies, may initiate a block-wise
 request operation to a resource, to which a previous one is already
 in progress, which the new request should not cancel. A CoAP proxy
 would be in such a situation when it forwards operations with the
 same cache-key options but possibly different payloads.

 For those cases, Request-Tag is the proxy-safe elective option
 suggested in [RFC7959] Section 2.4 last paragraph.

 When initializing a new block-wise operation, a client has to look at
 other active operations:

 o If any of them is matchable to the new one, and the client neither
 wants to cancel the old one nor postpone the new one, it can pick
 a Request-Tag value (including the absent option) that is not in
 use by the other matchable operations for the new operation.

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc7959#section-2.4

Amsuess, et al. Expires January 14, 2021 [Page 16]

Internet-Draft CoAP: ERT July 2020

 o Otherwise, it can start the new operation without setting the
 Request-Tag option on it.

3.5.3. Simplified Block-Wise Handling for Constrained Proxies

 The Block options were defined to be unsafe to forward because a
 proxy that would forward blocks as plain messages would risk mixing
 up clients' requests.

 In some cases, for example when forwarding block-wise request
 operations, appending a Request-Tag value unique to the client can
 satisfy the requirements on the proxy that come from the presence of
 a block option.

 This is particularly useful to proxies that strive for stateless
 operation as described in [I-D.ietf-core-stateless] Section 4.

 The precise classification of cases in which such a Request-Tag
 option is sufficient is not trivial, especially when both request and
 response body are fragmented, and out of scope for this document.

3.6. Rationale for the Option Properties

 The Request-Tag option can be elective, because to servers unaware of
 the Request-Tag option, operations with differing request tags will
 not be matchable.

 The Request-Tag option can be safe to forward but part of the cache
 key, because to proxies unaware of the Request-Tag option will
 consider operations with differing request tags unmatchable but can
 still forward them.

 The Request-Tag option is repeatable because this easily allows
 stateless proxies to "chain" their origin address. They can perform
 the steps of Section 3.5.3 without the need to create an option value
 that is the concatenation of the received option and their own value,
 and can simply add a new Request-Tag option unconditionally.

 In draft versions of this document, the Request-Tag option used to be
 critical and unsafe to forward. That design was based on an
 erroneous understanding of which blocks could be composed according
 to [RFC7959].

3.7. Rationale for Introducing the Option

 An alternative that was considered to the Request-Tag option for
 coping with the problem of fragmented message body integrity
 (Section 3.5.1) was to update [RFC7959] to say that blocks could only

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959

Amsuess, et al. Expires January 14, 2021 [Page 17]

Internet-Draft CoAP: ERT July 2020

 be assembled if their fragments' order corresponded to the sequence
 numbers.

 That approach would have been difficult to roll out reliably on DTLS
 where many implementations do not expose sequence numbers, and would
 still not prevent attacks like in [I-D.mattsson-core-coap-actuators]

Section 2.5.2.

3.8. Block2 / ETag Processing

 The same security properties as in Section 3.5.1 can be obtained for
 blockwise response operations. The threat model here is not an
 attacker (because the response is made sure to belong to the current
 request by the security layer), but blocks in the client's cache.

 Rules stating that response body reassembly is conditional on
 matching ETag values are already in place from Section 2.4 of
 [RFC7959].

 To gain equivalent protection to Section 3.5.1, a server MUST use the
 Block2 option in conjunction with the ETag option ([RFC7252],
 Section 5.10.6), and MUST NOT use the same ETag value for different
 representations of a resource.

4. Token Processing for Secure Request-Response Binding

4.1. Request-Response Binding

 A fundamental requirement of secure REST operations is that the
 client can bind a response to a particular request. If this is not
 ensured, a client may erroneously associate the wrong response to a
 request. The wrong response may be an old response for the same
 resource or for a completely different resource (see e.g.
 Section 2.3 of [I-D.mattsson-core-coap-actuators]). For example, a
 request for the alarm status "GET /status" may be associated to a
 prior response "on", instead of the correct response "off".

 In HTTPS, this type of binding is always assured by the ordered and
 reliable delivery as well as mandating that the server sends
 responses in the same order that the requests were received. The
 same is not true for CoAP where the server (or an attacker) can
 return responses in any order and where there can be any number of
 responses to a request (see e.g. [RFC7641]). In CoAP, concurrent
 requests are differentiated by their Token. Note that the CoAP
 Message ID cannot be used for this purpose since those are typically
 different for REST request and corresponding response in case of
 "separate response", see Section 2.2 of [RFC7252].

https://datatracker.ietf.org/doc/html/rfc7959#section-2.4
https://datatracker.ietf.org/doc/html/rfc7959#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252#section-2.2

Amsuess, et al. Expires January 14, 2021 [Page 18]

Internet-Draft CoAP: ERT July 2020

 CoAP [RFC7252] does not treat Token as a cryptographically important
 value and does not give stricter guidelines than that the Tokens
 currently "in use" SHOULD (not SHALL) be unique. If used with a
 security protocol not providing bindings between requests and
 responses (e.g. DTLS and TLS) Token reuse may result in situations
 where a client matches a response to the wrong request. Note that
 mismatches can also happen for other reasons than a malicious
 attacker, e.g. delayed delivery or a server sending notifications to
 an uninterested client.

 A straightforward mitigation is to mandate clients to not reuse
 Tokens until the traffic keys have been replaced. One easy way to
 accomplish this is to implement the Token as a counter starting at
 zero for each new or rekeyed secure connection.

4.2. Updated Token Processing Requirements for Clients

 As described in Section 4.1, the client must be able to verify that a
 response corresponds to a particular request. This section updates
 the Token processing requirements for clients in [RFC7252] to always
 assure a cryptographically secure binding of responses to requests
 for secure REST operations like "coaps". The Token processing for
 servers is not updated. Token processing in Section 5.3.1 of
 [RFC7252] is updated by adding the following text:

 When CoAP is used with a security protocol not providing bindings
 between requests and responses, the Tokens have cryptographic
 importance. The client MUST make sure that Tokens are not used in a
 way so that responses risk being associated with the wrong request.
 One easy way to accomplish this is to implement the Token (or part of
 the Token) as a sequence number starting at zero for each new or
 rekeyed secure connection, this approach SHOULD be followed.

5. Security Considerations

 The availability of a secure pseudorandom number generator and truly
 random seeds are essential for the security of the Echo option
 (except when using counting Echo values). If no true random number
 generator is available, a truly random seed must be provided from an
 external source. As each pseudoranom number must only be used once,
 an implementation need to get a new truly random seed after reboot,
 or continously store state in nonvolatile memory, see ([RFC8613],
 Appendix B.1.1) for issues and solution approaches for writing to
 nonvolatile memory.

 A single active Echo value with 64 (pseudo-)random bits gives the
 same theoretical security level as a 64-bit MAC (as used in e.g.
 AES_128_CCM_8). Unless a counting Echo value is used, the Echo

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.1
https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.1

Amsuess, et al. Expires January 14, 2021 [Page 19]

Internet-Draft CoAP: ERT July 2020

 option value MUST contain 32 (pseudo-)random bits that are not
 predictable for any other party than the server, and SHOULD contain
 64 (pseudo-)random bits. A server MAY use different security levels
 for different uses cases (client aliveness, request freshness, state
 synchronization, network address reachability, etc.).

 The security provided by the Echo and Request-Tag options depends on
 the security protocol used. CoAP and HTTP proxies require (D)TLS to
 be terminated at the proxies. The proxies are therefore able to
 manipulate, inject, delete, or reorder options or packets. The
 security claims in such architectures only hold under the assumption
 that all intermediaries are fully trusted and have not been
 compromised.

 Counting Echo values can only be used to show freshness relative to
 numbered events, and are the legitimate case for Echo values shorter
 than four bytes, which are not necessarily secret. They MUST only be
 used when the request Echo values are integrity protected.

 Servers SHOULD use a monotonic clock to generate timestamps and
 compute round-trip times. Use of non-monotonic clocks is not secure
 as the server will accept expired Echo option values if the clock is
 moved backward. The server will also reject fresh Echo option values
 if the clock is moved forward. Non-monotonic clocks MAY be used as
 long as they have deviations that are acceptable given the freshness
 requirements. If the deviations from a monotonic clock are known, it
 may be possible to adjust the threshold accordingly.

 An attacker may be able to affect the server's system time in various
 ways such as setting up a fake NTP server or broadcasting false time
 signals to radio-controlled clocks.

 Servers MAY use the time since reboot measured in some unit of time.
 Servers MAY reset the timer at certain times and MAY generate a
 random offset applied to all timestamps. When resetting the timer,
 the server MUST reject all Echo values that was created before the
 reset.

 Servers that use the List of Cached Random Values and Timestamps
 method described in Appendix A may be vulnerable to resource
 exhaustion attacks. One way to minimize state is to use the
 Integrity Protected Timestamp method described in Appendix A.

5.1. Token reuse

 Reusing Tokens in a way so that responses are guaranteed to not be
 associated with the wrong request is not trivial as on-path attackers
 may block, delay, and reorder messages, requests may be sent to

Amsuess, et al. Expires January 14, 2021 [Page 20]

Internet-Draft CoAP: ERT July 2020

 several servers, and servers may process requests in any order and
 send many responses to the same request. The use of a sequence
 number is therefore recommended when CoAP is used with a security
 protocol that does not provide bindings between requests and
 responses such as DTLS or TLS.

 For a generic response to a confirmable request over DTLS, binding
 can only be claimed without out-of-band knowledge if

 o the original request was never retransmitted,

 o the response was piggybacked in an Acknowledgement message (as a
 confirmable or non-confirmable response may have been transmitted
 multiple times), and

 o if observation was used, the same holds for the registration, all
 re-registrations, and the cancellation.

 (In addition, for observations, any responses using that Token and a
 DTLS sequence number earlier than the cancellation Acknowledgement
 message need to be discarded. This is typically not supported in
 DTLS implementations.)

 In some setups, Tokens can be reused without the above constraints,
 as a different component in the setup provides the associations:

 o In CoAP over TLS, retransmissions are not handled by the CoAP
 layer and the replay window size is always exactly 1. When a
 client is sending TLS protected requests without Observe to a
 single server, the client can reuse a Token as soon as the
 previous response with that Token has been received.

 o Requests whose responses are cryptographically bound to the
 requests (like in OSCORE) can reuse Tokens indefinitely.

 In all other cases, a sequence number approach is RECOMMENDED as per
Section 4.

 Tokens that cannot be reused need to be handled appropriately. This
 could be solved by increasing the Token as soon as the currently used
 Token cannot be reused, or by keeping a list of all blacklisted
 Tokens.

 When the Token (or part of the Token) contains a sequence number, the
 encoding of the sequence number has to be chosen in a way to avoid
 any collisions. This is especially true when the Token contains more
 information than just the sequence number, e.g. serialized state as
 in [I-D.ietf-core-stateless].

Amsuess, et al. Expires January 14, 2021 [Page 21]

Internet-Draft CoAP: ERT July 2020

6. Privacy Considerations

 Implementations SHOULD NOT put any privacy sensitive information in
 the Echo or Request-Tag option values. Unencrypted timestamps MAY
 reveal information about the server such as location or time since
 reboot, or that the server will accept expired certificates.
 Timestamps MAY be used if Echo is encrypted between the client and
 the server, e.g. in the case of DTLS without proxies or when using
 OSCORE with an Inner Echo option.

 Like HTTP cookies, the Echo option could potentially be abused as a
 tracking mechanism to link to different requests to the same client.
 This is especially true for pre-emptive Echo values. Servers MUST
 NOT use the Echo option to correlate requests for other purposes than
 freshness and reachability. Clients only send Echo to the same
 server from which they were received. Compared to HTTP, CoAP clients
 are often authenticated and non-mobile, and servers can therefore
 often correlate requests based on the security context, the client
 credentials, or the network address. Especially when the Echo option
 increases a server's ability to correlate requests, clients MAY
 discard all pre-emptive Echo values.

7. IANA Considerations

 IANA is requested to add the following option numbers to the "CoAP
 Option Numbers" registry defined by [RFC7252]:

 [

 The editor is asked to suggest the numbers after TBD, as those
 satisfy the construction requirements set out in RFC7252: Echo is
 NoCacheKey but not Unsafe or Critical, so it needs to end with 11100
 in binary representation; Request-Tag has no properties so it needs
 to end with 00 and not with 11100).

 Request-Tag was picked to not waste the precious space of less-than-
 one-byte options, but such that its offset from the Block1 option it
 regularly occurs with can still be expressed in an 1-byte offset (27
 + (13 + 255) > 292).

 Echo was picked to be the shortest it can be in an empty message as a
 NoCacheKey option (11100 in binary does not fit in a nibble, and two
 lower ones are already taken), and as high as possible to keep room
 for other options that might typically occur in pairs and might still
 use optimization around low numbers.

]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Amsuess, et al. Expires January 14, 2021 [Page 22]

Internet-Draft CoAP: ERT July 2020

 +--------+-------------+-------------------+
 | Number | Name | Reference |
 +--------+-------------+-------------------+
 | TBD252 | Echo | [[this document]] |
 | | | |
 | TBD292 | Request-Tag | [[this document]] |
 +--------+-------------+-------------------+

 Figure 5: CoAP Option Numbers

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., and J. Park,
 "Group OSCORE - Secure Group Communication for CoAP",

draft-ietf-core-oscore-groupcomm-09 (work in progress),
 June 2020.

 [I-D.ietf-core-stateless]
 Hartke, K., "Extended Tokens and Stateless Clients in the
 Constrained Application Protocol (CoAP)", draft-ietf-core-

stateless-06 (work in progress), April 2020.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-stateless-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-stateless-06

Amsuess, et al. Expires January 14, 2021 [Page 23]

Internet-Draft CoAP: ERT July 2020

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., Palombini, F.,
 and C. Amsuess, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-06 (work in progress),
 September 2018.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7390] Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
 the Constrained Application Protocol (CoAP)", RFC 7390,
 DOI 10.17487/RFC7390, October 2014,
 <https://www.rfc-editor.org/info/rfc7390>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8470] Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/info/rfc8470>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

Appendix A. Methods for Generating Echo Option Values

 The content and structure of the Echo option value are implementation
 specific and determined by the server. Two simple mechanisms for
 time-based freshness are outlined in this section, the first is
 RECOMMENDED in general, and the second is RECOMMENDED in case the
 Echo option is encrypted between the client and the server.

https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-06
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-06
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7390
https://www.rfc-editor.org/info/rfc7390
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613

Amsuess, et al. Expires January 14, 2021 [Page 24]

Internet-Draft CoAP: ERT July 2020

 Different mechanisms have different tradeoffs between the size of the
 Echo option value, the amount of server state, the amount of
 computation, and the security properties offered. A server MAY use
 different methods and security levels for different uses cases
 (client aliveness, request freshness, state synchronization, network
 address reachability, etc.).

 1. List of Cached Random Values and Timestamps. The Echo option
 value is a (pseudo-)random byte string. The server caches a list
 containing the random byte strings and their transmission times.
 Assuming 72-bit random values and 32-bit timestamps, the size of the
 Echo option value is 9 bytes and the amount of server state is 13n
 bytes, where n is the number of active Echo Option values. The
 security against an attacker guessing echo values is given by s = bit
 length of r - log2(n). The length of r and the maximum allowed n
 should be set so that the security level is harmonized with other
 parts of the deployment, e.g., s >= 64. If the server loses time
 continuity, e.g. due to reboot, the entries in the old list MUST be
 deleted.

 Echo option value: random value r
 Server State: random value r, timestamp t0

 2. Integrity Protected Timestamp. The Echo option value is an
 integrity protected timestamp. The timestamp can have different
 resolution and range. A 32-bit timestamp can e.g. give a resolution
 of 1 second with a range of 136 years. The (pseudo-)random secret
 key is generated by the server and not shared with any other party.
 The use of truncated HMAC-SHA-256 is RECOMMENDED. With a 32-bit
 timestamp and a 64-bit MAC, the size of the Echo option value is 12
 bytes and the Server state is small and constant. The security
 against an attacker guessing echo values is given by the MAC length.
 If the server loses time continuity, e.g. due to reboot, the old key
 MUST be deleted and replaced by a new random secret key. Note that
 the privacy considerations in Section 6 may apply to the timestamp.
 A server MAY want to encrypt its timestamps, and, depending on the
 choice of encryption algorithms, this may require a nonce to be
 included in the Echo option value.

 Echo option value: timestamp t0, MAC(k, t0)
 Server State: secret key k

 Other mechanisms complying with the security and privacy
 considerations may be used. The use of encrypted timestamps in the
 Echo option increases security, but typically requires an IV to be
 included in the Echo option value, which adds overhead and makes the
 specification of such a mechanism slightly more complicated than the
 two mechanisms specified here.

Amsuess, et al. Expires January 14, 2021 [Page 25]

Internet-Draft CoAP: ERT July 2020

Appendix B. Request-Tag Message Size Impact

 In absence of concurrent operations, the Request-Tag mechanism for
 body integrity (Section 3.5.1) incurs no overhead if no messages are
 lost (more precisely: in OSCORE, if no operations are aborted due to
 repeated transmission failure; in DTLS, if no packages are lost), or
 when block-wise request operations happen rarely (in OSCORE, if there
 is always only one request block-wise operation in the replay
 window).

 In those situations, no message has any Request-Tag option set, and
 that can be recycled indefinitely.

 When the absence of a Request-Tag option can not be recycled any more
 within a security context, the messages with a present but empty
 Request-Tag option can be used (1 Byte overhead), and when that is
 used-up, 256 values from one byte long options (2 Bytes overhead) are
 available.

 In situations where those overheads are unacceptable (e.g. because
 the payloads are known to be at a fragmentation threshold), the
 absent Request-Tag value can be made usable again:

 o In DTLS, a new session can be established.

 o In OSCORE, the sequence number can be artificially increased so
 that all lost messages are outside of the replay window by the
 time the first request of the new operation gets processed, and
 all earlier operations can therefore be regarded as concluded.

Appendix C. Change Log

 [The editor is asked to remove this section before publication.]

 o Changes since draft-ietf-core-echo-request-tag-09:

 * Allow intermediaries to do Echo processing, provided they ask
 at least as much freshness as they forward

 * Emphasize that clients can forget Echo to further discourage
 abuse as cookies

 * Emphasize that RESTful application design can avoid the need
 for a Request-Tag

 * Align with core-oscore-groupcomm-09

 * Add interaction with HTTP Early Data / 425 Too Early

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-09

Amsuess, et al. Expires January 14, 2021 [Page 26]

Internet-Draft CoAP: ERT July 2020

 * Abstract: Explicitly mention both updates to 7252

 * Change requested option number of Echo to 252 (previous
 property calculation was erroneous)

 o Changes since draft-ietf-core-echo-request-tag-08:

 * Make amplification attack mitigation by Echo an RFC7252
 updating recommendation

 * Give some more concrete guidance to that use case in terms of
 sizes and message types

 * Allow short (1-3 byte) Echo values for deterministic cases,
 with according security considerations

 * Point out the tricky parts around Request-Tag for stateless
 proxies, and make that purely an outlook example with out-of-
 scope details

 * Lift ban on Request-Tag options without Block1 (as they can
 legitimately be generated by an unaware proxy)

 * Suggest concrete numbers for the options

 o Changes since draft-ietf-core-echo-request-tag-07 (largely
 addressing Francesca's review):

 * Request tag: Explicitly limit "MUST NOT recycle" requirement to
 particular applications

 * Token reuse: upper-case RECOMMEND sequence number approach

 * Structure: Move per-topic introductions to respective chapters
 (this avoids long jumps by the reader)

 * Structure: Group Block2 / ETag section inside new fragmentation
 (formerly Request-Tag) section

 * More precise references into other documents

 * "concurrent operations": Emphasise that all here only matters
 between endpoint pairs

 * Freshness: Generalize wording away from time-based freshness

 * Echo: Emphasise that no binding between any particular pair of
 responses and requests is established

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-08
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-07

Amsuess, et al. Expires January 14, 2021 [Page 27]

Internet-Draft CoAP: ERT July 2020

 * Echo: Add event-based example

 * Echo: Clarify when protection is needed

 * Request tag: Enhance wording around "not sufficient condition"

 * Request tag: Explicitly state when a tag needs to be set

 * Request tag: Clarification about permissibility of leaving the
 option absent

 * Security considerations: wall clock time -> system time (and
 remove inaccurate explanations)

 * Token reuse: describe blacklisting in a more implementation-
 independent way

 o Changes since draft-ietf-core-echo-request-tag-06:

 * Removed visible comment that should not be visible in Token
 reuse considerations.

 o Changes since draft-ietf-core-echo-request-tag-05:

 * Add privacy considerations on cookie-style use of Echo values

 * Add security considerations for token reuse

 * Add note in security considerations on use of nonvolatile
 memory when dealing with pseudorandom numbers

 * Appendix on echo generation: add a few words on up- and
 downsides of the encrypted timestamp alternative

 * Clarifications around Outer Echo:

 + Could be generated by the origin server to prove network
 reachability (but for most applications it MUST be inner)

 + Could be generated by intermediaries

 + Is answered by the client to the endpoint from which it
 received it (ie. Outer if received as Outer)

 * Clarification that a server can send Echo preemtively

 * Refer to stateless to explain what "more information than just
 the sequence number" could be

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-05

Amsuess, et al. Expires January 14, 2021 [Page 28]

Internet-Draft CoAP: ERT July 2020

 * Remove explanations around 0.00 empty messags

 * Rewordings:

 + the attack: from "forging" to "guessing"

 + "freshness tokens" to "freshness indicators" (to avoid
 confusion with the Token)

 * Editorial fixes:

 + Abstract and introduction mention what is updated in RFC7252

 + Reference updates

 + Capitalization, spelling, terms from other documents

 o Changes since draft-ietf-core-echo-request-tag-04:

 * Editorial fixes

 + Moved paragraph on collision-free encoding of data in the
 Token to Security Considerations and rephrased it

 + "easiest" -> "one easy"

 o Changes since draft-ietf-core-echo-request-tag-03:

 * Mention Token processing changes in title

 * Abstract reworded

 * Clarify updates to Token processing

 * Describe security levels from Echo length

 * Allow non-monotonic clocks under certain conditions for
 freshness

 * Simplify freshness expressions

 * Describe when a Request-Tag can be set

 * Add note on application-level freshness mechanisms

 * Minor editorial changes

 o Changes since draft-ietf-core-echo-request-tag-02:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-04
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-02

Amsuess, et al. Expires January 14, 2021 [Page 29]

Internet-Draft CoAP: ERT July 2020

 * Define "freshness"

 * Note limitations of "aliveness"

 * Clarify proxy and OSCORE handling in presence of "echo"

 * Clarify when Echo values may be reused

 * Update security considerations

 * Various minor clarifications

 * Minor editorial changes

 o Major changes since draft-ietf-core-echo-request-tag-01:

 * Follow-up changes after the "relying on block-wise" change in
 -01:

 + Simplify the description of Request-Tag and matchability

 + Do not update RFC7959 any more

 * Make Request-Tag repeatable.

 * Add rationale on not relying purely on sequence numbers.

 o Major changes since draft-ietf-core-echo-request-tag-00:

 * Reworded the Echo section.

 * Added rules for Token processing.

 * Added security considerations.

 * Added actual IANA section.

 * Made Request-Tag optional and safe-to-forward, relying on
 block-wise to treat it as part of the cache-key

 * Dropped use case about OSCORE Outer-block-wise (the case went
 away when its Partial IV was moved into the Object-Security
 option)

 o Major changes since draft-amsuess-core-repeat-request-tag-00:

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-01
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-00
https://datatracker.ietf.org/doc/html/draft-amsuess-core-repeat-request-tag-00

Amsuess, et al. Expires January 14, 2021 [Page 30]

Internet-Draft CoAP: ERT July 2020

 * The option used for establishing freshness was renamed from
 "Repeat" to "Echo" to reduce confusion about repeatable
 options.

 * The response code that goes with Echo was changed from 4.03 to
 4.01 because the client needs to provide better credentials.

 * The interaction between the new option and (cross) proxies is
 now covered.

 * Two messages being "Request-Tag matchable" was introduced to
 replace the older concept of having a request tag value with
 its slightly awkward equivalence definition.

Acknowledgments

 The authors want to thank Carsten Bormann, Francesca Palombini, and
 Jim Schaad for providing valuable input to the draft.

Authors' Addresses

 Christian Amsuess

 Email: christian@amsuess.com

 John Preuss Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Amsuess, et al. Expires January 14, 2021 [Page 31]

