
core P. van der Stok
Internet-Draft Consultant
Intended status: Standards Track C. Bormann
Expires: February 11, 2017 Universitaet Bremen TZI
 A. Sehgal
 Consultant
 August 10, 2016

Patch and Fetch Methods for Constrained Application Protocol (CoAP)
draft-ietf-core-etch-02

Abstract

 The existing Constrained Application Protocol (CoAP) methods only
 allow access to a complete resource, not to parts of a resource. In
 case of resources with larger or complex data, or in situations where
 a resource continuity is required, replacing or requesting the whole
 resource is undesirable. Several applications using CoAP will need
 to perform partial resource accesses.

 Similar to HTTP, the existing Constrained Application Protocol (CoAP)
 GET method only allows the specification of a URI and request
 parameters in CoAP options, not the transfer of a request payload
 detailing the request. This leads to some applications to using POST
 where actually a cacheable, idempotent, safe request is desired.

 Again similar to HTTP, the existing Constrained Application Protocol
 (CoAP) PUT method only allows to replace a complete resource. This
 also leads applications to use POST where actually a cacheable,
 possibly idempotent request is desired.

 This specification adds new CoAP methods, FETCH, to perform the
 equivalent of a GET with a request body; and the twin methods PATCH
 and iPATCH, to modify parts of a CoAP resource.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

van der Stok, et al. Expires February 11, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CoAP Fetch Patch August 2016

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 11, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. FETCH . 3
1.2. PATCH and iPATCH . 4
1.3. Requirements Language 4
1.4. Terminology and Acronyms 4

2. FETCH Method . 5
2.1. Response Codes . 6
2.2. Option Numbers . 6
2.2.1. The Content-Format Option 6
2.2.2. The ETag Option 6

2.3. Working with Observe 6
2.4. Working with Block 6
2.5. FETCH discussion . 7
2.6. A Simple Example for FETCH 7

3. PATCH and iPATCH Methods 8
3.1. Simple Examples for PATCH and iPATCH 9
3.2. Response Codes . 11
3.3. Option Numbers . 11
3.4. Error Handling . 12

4. Discussion . 13
5. Security Considerations 14
6. IANA Considerations . 14
7. Change log . 15
8. References . 15
8.1. Normative References 15
8.2. Informative References 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

van der Stok, et al. Expires February 11, 2017 [Page 2]

Internet-Draft CoAP Fetch Patch August 2016

 Acknowledgements . 17
 Authors' Addresses . 17

1. Introduction

 This specification defines the new Constrained Application Protocol
 (CoAP) [RFC7252] methods, FETCH, PATCH and iPATCH, which are used to
 access and update parts of a resource.

1.1. FETCH

 The CoAP GET method [RFC7252] is used to obtain the representation of
 a resource, where the resource is specified by a URI and additional
 request parameters can additionally shape the representation. This
 has been modelled after the HTTP GET operation and the REST model in
 general.

 In HTTP, a resource is often used to search for information, and
 existing systems varyingly use the HTTP GET and POST methods to
 perform a search. Often a POST method is used for the sole reason
 that a larger set of parameters to the search can be supplied in the
 request body than can comfortably be transferred in the URI with a
 GET request. The draft [I-D.snell-search-method] proposes a SEARCH
 method that is similar to GET in most properties but enables sending
 a request body as with POST. The FETCH method defined in the present
 specification is inspired by [I-D.snell-search-method], which updates
 the definition and semantics of the HTTP SEARCH request method
 previously defined by [RFC5323]. However, there is no intention to
 limit FETCH to search-type operations, and the resulting properties
 may not be the same as those of HTTP SEARCH.

 A major problem with GET is that the information that controls the
 request needs to be bundled up in some unspecified way into the URI.
 Using the request body for this information has a number of
 advantages:

 o The client can specify a media type (and a content encoding),
 enabling the server to unambiguously interpret the request
 parameters in the context of that media type. Also, the request
 body is not limited by the character set limitations of URIs,
 enabling a more natural (and more efficient) representation of
 certain domain-specific parameters.

 o The request parameters are not limited by the maximum size of the
 URI. In HTTP, that is a problem as the practical limit for this
 size varies. In CoAP, another problem is that the block-wise
 transfer is not available for transferring large URI options in
 multiple rounds.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5323

van der Stok, et al. Expires February 11, 2017 [Page 3]

Internet-Draft CoAP Fetch Patch August 2016

 As an alternative to using GET, many implementations make use of the
 POST method to perform extended requests, even if they are
 semantically idempotent, safe, and even cacheable, to be able to pass
 along the input parameters within the request payload as opposed to
 using the request URI.

 The FETCH method provides a solution that spans the gap between the
 use of GET and POST. As with POST, the input to the FETCH operation
 is passed along within the payload of the request rather than as part
 of the request URI. Unlike POST, however the semantics of the FETCH
 method are more specifically defined.

1.2. PATCH and iPATCH

 PATCH is also specified for HTTP in [RFC5789]. Most of the
 motivation for PATCH described in [RFC5789] also applies here. iPATCH
 is the idempotent version of PATCH.

 The PUT method exists to overwrite a resource with completely new
 contents, and cannot be used to perform partial changes. When using
 PUT for partial changes, proxies and caches, and even clients and
 servers, may get confused as to the result of the operation. PATCH
 was not adopted in an early design stage of CoAP, however, it has
 become necessary with the arrival of applications that require
 partial updates to resources (e.g. [I-D.vanderstok-core-comi]).
 Using PATCH avoids transferring all data associated with a resource
 in case of modifications, thereby not burdening the constrained
 communication medium.

 This document relies on knowledge of the PATCH specification for HTTP
 [RFC5789]. This document provides extracts from [RFC5789] to make
 independent reading possible.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

1.4. Terminology and Acronyms

 This document uses terminology defined in [RFC5789] and [RFC7252].

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc7252

van der Stok, et al. Expires February 11, 2017 [Page 4]

Internet-Draft CoAP Fetch Patch August 2016

2. FETCH Method

 The CoAP FETCH method is used to obtain a representation of a
 resource, giving a number of request parameters. Unlike the CoAP GET
 method, which requests that a server return a representation of the
 resource identified by the effective request URI (as defined by
 [RFC7252]), the FETCH method is used by a client to ask the server to
 produce a representation as described by the request parameters
 (including the request options and the payload) based on the resource
 specified by the effective request URI. The payload returned in
 response to a FETCH cannot be assumed to be a complete representation
 of the resource identified by the effective request URI, i.e., it
 cannot be used by a cache as a payload to be returned by a GET
 request.

 Together with the request options, the body of the request (which may
 be constructed from multiple payloads using the block protocol
 [I-D.ietf-core-block]) defines the request parameters.
 Implementations MAY use a request body of any content type with the
 FETCH method; it is outside the scope of this document how
 information about admissible content types is obtained by the client
 (although we can hint that form relations ([I-D.hartke-core-apps])
 might be a preferred way).

 FETCH requests are both safe and idempotent with regards to the
 resource identified by the request URI. That is, the performance of
 a fetch is not intended to alter the state of the targeted resource.
 (However, while processing a search request, a server can be expected
 to allocate computing and memory resources or even create additional
 server resources through which the response to the search can be
 retrieved.)

 A successful response to a FETCH request is expected to provide some
 indication as to the final disposition of the requested operation.
 If a successful response includes a body payload, the payload is
 expected to describe the results of the FETCH operation.

 Depending on the response code as defined by [RFC7252], the response
 to a FETCH request is cacheable; the request body is part of the
 cache key. Specifically, 2.05 "Content" response codes, the
 responses for which are cacheable, are a usual way to respond to a
 FETCH request. (Note that this aspect differs markedly from
 [I-D.snell-search-method].) (Note also that caches that cannot use
 the request payload as part of the cache key will not be able to
 cache responses to FETCH requests at all.) The Max-Age option in the
 response has equivalent semantics to its use in a GET.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

van der Stok, et al. Expires February 11, 2017 [Page 5]

Internet-Draft CoAP Fetch Patch August 2016

 The semantics of the FETCH method change to a "conditional FETCH" if
 the request message includes an If-Match, or If-None-Match option
 ([RFC7252]). A conditional FETCH requests that the query be
 performed only under the circumstances described by the conditional
 option(s). It is important to note, however, that such conditions
 are evaluated against the state of the target resource itself as
 opposed to the results of the FETCH operation.

2.1. Response Codes

 FETCH for CoAP adopts the response codes as specified in sections 5.9
 and 12.1.2 of [RFC7252].

2.2. Option Numbers

 FETCH for CoAP adopts the option numbers as specified in sections
 5.10 and 12.2 of [RFC7252].

 Generally, options defined for GET act in an analogous way for FETCH.
 Two specific cases are called out in the rest of this section.

2.2.1. The Content-Format Option

 A FETCH request MUST include a Content-Format option to specify the
 media type and content encoding of the request body.

2.2.2. The ETag Option

 The ETag Option on a FETCH result has the same semantics as defined
 in Section 5.10.6 of [RFC7252]. In particular, its use as a response
 option describes the "tagged representation", which for FETCH is the
 same as the "selected representation". The FETCH payload is input to
 that selection process and therefore needs to be part of the cache
 key. Similarly, the use of ETag as a request option can elicit a
 2.03 Valid response if the representation associated with the ETag
 would still be selected by the FETCH request (including its payload).

2.3. Working with Observe

 The Observe option [RFC7641] can be used with a FETCH request as it
 can be used with a GET request.

2.4. Working with Block

 The Block1 option [I-D.ietf-core-block] can be used with a FETCH
 request as it would be used with a POST request; the Block2 option
 can then be used as with GET or POST.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7641

van der Stok, et al. Expires February 11, 2017 [Page 6]

Internet-Draft CoAP Fetch Patch August 2016

2.5. FETCH discussion

 One property of FETCH that may be non-obvious is that a FETCH request
 cannot be generated from a link alone, but also needs a way to
 generate the request payload. Again, form relations
 ([I-D.hartke-core-apps]) may be able to fill parts of this gap.

2.6. A Simple Example for FETCH

 The FETCH method needs a media type for its payload (as expressed by
 the Content-Format request option) that specifies the search query in
 a similar detail as is shown for the patch payload in the PATCH
 example in Section 3.1. ([I-D.snell-search-method] invents a "text/
 query" format based on some hypothetical SQL dialect for its
 examples.)

 The example below illustrates retrieval of a subset of a JSON object
 (the same object as used in Section 3.1). Using a hypothetical media
 type "application/example-map-keys+json" (with a Content-Format ID of
 NNN - not defined as this is just an example), the client specifies
 the items in the object that it wants: it supplies a JSON array
 giving the map keys for these items. A resource located at
 "coap://www.example.com/object" can be represented by a JSON document
 that we will consider as the target of the FETCH. The client wants
 to learn the contents of the single map key "foo" within this target:

 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 FETCH example: JSON document that might be returned by GET

 The example FETCH request specifies a single top-level member desired
 by giving its map key as the sole element of the "example-map-keys"
 payload:

 FETCH CoAP://www.example.com/object
 Content-Format: NNN (application/example-map-keys+json)
 Accept: application/json
 [
 "foo"
]

 FETCH example: Request

 The server returns a subset document with just the selected member:

van der Stok, et al. Expires February 11, 2017 [Page 7]

Internet-Draft CoAP Fetch Patch August 2016

 2.05 Content
 Content-Format: 50 (application/json)
 {
 "foo": ["bar","baz"]
 }

 FETCH example: Response with subset JSON document

 By the logic of this example, the requester could have entered more
 than one map key into the request payload array and would have
 received a more complete subset of the top-level JSON object that is
 representing the resource.

3. PATCH and iPATCH Methods

 The PATCH and iPATCH methods request that a set of changes described
 in the request payload is applied to the target resource of the
 request. The set of changes is represented in a format identified by
 a media type. If the Request-URI does not point to an existing
 resource, the server MAY create a new resource with that URI,
 depending on the patch document type (whether it can logically modify
 a null resource) and permissions, etc. Creation of a new resource
 would result in a 2.01 (Created) Response Code dependent on the patch
 document type.

 Restrictions to a PATCH or iPATCH request can be made by including
 the If-Match or If-None-Match options in the request (see

Section 5.10.8.1 and 5.10.8.2 of [RFC7252]). If the resource could
 not be created or modified, then an appropriate Error Response Code
 SHOULD be sent.

 The difference between the PUT and PATCH requests is documented in
 [RFC5789].

 The PATCH method is not safe and not idempotent, as with the HTTP
 PATCH method specified in [RFC5789].

 The iPATCH method is not safe but idempotent, as with the CoAP PUT
 method specified in [RFC7252], Section 5.8.3.

 A client can mark a request as idempotent by using the iPATCH method
 instead of the PATCH method. This is the only difference between the
 two. The indication of idempotence may enable the server to keep
 less state about the interaction; some constrained servers may only
 implement the iPATCH variant for this reason.

 PATCH and iPATCH are both atomic. The server MUST apply the entire
 set of changes atomically and never provide a partially modified

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc7252#section-5.8.3

van der Stok, et al. Expires February 11, 2017 [Page 8]

Internet-Draft CoAP Fetch Patch August 2016

 representation to a concurrently executed GET request. Given the
 constrained nature of the servers, most servers will only execute
 CoAP requests consecutively, thus preventing a concurrent partial
 overlapping of request modifications. Resuming, modifications MUST
 NOT be applied to the server state when an error occurs or only a
 partial execution is possible on the resources present in the server.

 The atomicity applies to a single server. When a PATCH or iPATCH
 request is multicast to a set of servers, each server can either
 execute all required modifications or not. It is not required that
 all servers execute all modifications or none. An Atomic Commit
 protocol that provides multiple server atomicity is out of scope.

 A PATCH or iPATCH response can invalidate a cache as with the PUT
 response. Caching behaviour as function of the successful (2.xx)
 response codes for PATCH or iPATCH are:

 o A 2.01 (Created) response invalidates any cache entry for the
 resource indicated by the Location-* Options; the payload is a
 representation of the action result.

 o A 2.04 (Changed) response invalidates any cache entry for the
 target resource; the payload is a representation of the action
 result.

 There is no guarantee that a resource can be modified with PATCH or
 iPATCH. Servers MUST ensure that a received PATCH body is
 appropriate for the type of resource identified by the target
 resource of the request.

 When a request is intended to effect a partial update of a given
 resource, clients cannot use PUT while supplying just the update, but
 are free to use PATCH or iPATCH.

3.1. Simple Examples for PATCH and iPATCH

 The example is taken over from [RFC6902], which specifies a JSON
 notation for PATCH operations. A resource located at
 coap://www.example.com/object contains a target JSON document.

https://datatracker.ietf.org/doc/html/rfc6902

van der Stok, et al. Expires February 11, 2017 [Page 9]

Internet-Draft CoAP Fetch Patch August 2016

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"replace", "path":"x-coord", "value":45}
]

 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 This example illustrates use of an idempotent modification to the
 x-coord member of the existing resource "object". The 2.04 (Changed)
 response code is conform with the CoAP PUT method.

 The same example using the Content-Format application/merge-
 patch+json from [RFC7396] looks like:

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 52 (application/merge-patch+json)
 { "x-coord":45}

 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

https://datatracker.ietf.org/doc/html/rfc7396

van der Stok, et al. Expires February 11, 2017 [Page 10]

Internet-Draft CoAP Fetch Patch August 2016

 The examples show the use of the iPATCH method, but the use of the
 PATCH method would have led to the same result. Below a non-
 idempotent modification is shown. Because the action is non-
 idempotent, iPATCH returns an error, while PATCH executes the action.

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET: CoAP 4.00 Bad Request
 Diagnostic payload: Patch format not idempotent

 JSON document final state is unchanged

 REQ: PATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","bar","baz"]
 }

3.2. Response Codes

 PATCH and iPATCH for CoAP adopt the response codes as specified in
 sections 5.9 and 12.1.2 of [RFC7252] and add 4.09 "Conflict" and 4.22
 "Unprocessable Entity" with the semantics specified in Section 3.4 of
 the present specification.

3.3. Option Numbers

 PATCH and iPATCH for CoAP adopt the option numbers as specified in
 sections 5.10 and 12.2 of [RFC7252].

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

van der Stok, et al. Expires February 11, 2017 [Page 11]

Internet-Draft CoAP Fetch Patch August 2016

3.4. Error Handling

 A PATCH or iPATCH request may fail under certain known conditions.
 These situations should be dealt with as expressed below.

 Malformed PATCH or iPATCH payload: If a server determines that the
 payload provided with a PATCH or iPATCH request is not properly
 formatted, it can return a 4.00 (Bad Request) CoAP error. The
 definition of a malformed payload depends upon the CoAP Content-
 Format specified with the request.

 Unsupported PATCH or iPATCH payload: In case a client sends payload
 that is inappropriate for the resource identified by the Request-
 URI, the server can return a 4.15 (Unsupported Content-Format)
 CoAP error. The server can determine if the payload is supported
 by checking the CoAP Content-Format specified with the request.

 Unprocessable request: This situation occurs when the payload of a
 PATCH request is determined as valid, i.e. well-formed and
 supported, however, the server is unable to or incapable of
 processing the request. The server can return a 4.22
 (Unprocessable Entity) CoAP error. More specific scenarios might
 include situations when:

 * the server has insufficient computing resources to complete the
 request successfully -- 4.13 (Request Entity Too Large) CoAP
 Response Code (see below),

 * the resource specified in the request becomes invalid by
 applying the payload -- 4.09 (Conflict) CoAP Response Code (see
 below)).

 In case there are more specific errors that provide more insight
 into the problem, then those should be used.

 Resource not found: The 4.04 (Not Found) error should be returned in
 case the payload of a PATCH request cannot be applied to a non-
 existent resource.

 Failed precondition: In case the client uses the conditional If-
 Match or If-None-Match option to define a precondition for the
 PATCH request, and that precondition fails, then the server can
 return the 4.12 (Precondition Failed) CoAP error.

 Request too large: If the payload of the PATCH request is larger
 than a CoAP server can process, then it can return the 4.13
 (Request Entity Too Large) CoAP error.

van der Stok, et al. Expires February 11, 2017 [Page 12]

Internet-Draft CoAP Fetch Patch August 2016

 Conflicting state: If the modification specified by a PATCH or
 iPATCH request causes the resource to enter an inconsistent state
 that the server cannot resolve, the server can return the 4.09
 (Conflict) CoAP response. The server SHOULD generate a payload
 that includes enough information for a user to recognize the
 source of the conflict. The server MAY return the actual resource
 state to provide the client with the means to create a new
 consistent resource state. Such a situation might be encountered
 when a structural modification is applied to a configuration data-
 store, but the structures being modified do not exist.

 Concurrent modification: Resource constrained devices might need to
 process requests in the order they are received. In case requests
 are received concurrently to modify the same resource but they
 cannot be queued, the server can return a 5.03 (Service
 unavailable) CoAP response code.

 Conflict handling failure: If the modification implies the
 reservation of resources or the waiting on conditions to become
 true, leading to a too long request execution time, the server can
 return 5.03 (service unavailable) response code.

 It is possible that other error situations, not mentioned here, are
 encountered by a CoAP server while processing the PATCH request. In
 these situations other appropriate CoAP status codes can also be
 returned.

4. Discussion

 Adding three new methods to CoAP's existing four may seem like a
 major change. However, both FETCH and the two PATCH variants fit
 well into the REST paradigm and have been anticipated on the HTTP
 side. Adding both a non-idempotent and an idempotent PATCH variant
 allows to keep interoperability with HTTP's PATCH method as well as
 the use/indication of an idempotent PATCH if that is possible, saving
 significant effort on the server side.

 Interestingly, the three new methods fit into the old table of
 methods with a surprising similarity in the idempotence and safety
 attributes:

van der Stok, et al. Expires February 11, 2017 [Page 13]

Internet-Draft CoAP Fetch Patch August 2016

 +------+--------+------+--------+------+------------+
 | Code | Name | Code | Name | safe | idempotent |
 +------+--------+------+--------+------+------------+
 | 0.01 | GET | 0.05 | FETCH | yes | yes |
 | 0.02 | POST | 0.06 | PATCH | no | no |
 | 0.03 | PUT | 0.07 | iPATCH | no | yes |
 | 0.04 | DELETE | | | no | yes |
 +------+--------+------+--------+------+------------+

5. Security Considerations

 This section analyses the possible threats to the CoAP FETCH and
 PATCH or iPATCH methods. It is meant to inform protocol and
 application developers about the security limitations of CoAP FETCH
 and PATCH or iPATCH as described in this document.

 The FETCH method is subject to the same general security
 considerations as all CoAP methods as described in [RFC7252].

 The security consideration of section 11 of [RFC7252] (and thus those
 of section 15 of [RFC2616]), as well as section 5 of [RFC5789], also
 apply.

 The security considerations for PATCH or iPATCH are nearly identical
 to the security considerations for PUT ([RFC7252]). The mechanisms
 used for PUT can be used for PATCH or iPATCH as well.

 PATCH or iPATCH are secured following the CoAP recommendations as
 specified in section 9 of [RFC7252]. When additional security
 techniques are standardized for CoAP, PATCH or iPATCH can also be
 (and need to be) secured by those new techniques.

6. IANA Considerations

 IANA is requested to add the following entries to the sub-registry
 "CoAP Method Codes":

 +------+--------+-----------+
 | Code | Name | Reference |
 +------+--------+-----------+
 | 0.05 | FETCH | [RFCthis] |
 | 0.06 | PATCH | [RFCthis] |
 | 0.07 | iPATCH | [RFCthis] |
 +------+--------+-----------+

 The FETCH method is idempotent and safe, and it returns the same
 response codes that GET can return, plus 4.15 "Unsupported Content-
 Format" with the same semantics as with POST.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-11
https://datatracker.ietf.org/doc/html/rfc2616#section-15
https://datatracker.ietf.org/doc/html/rfc5789#section-5
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-9

van der Stok, et al. Expires February 11, 2017 [Page 14]

Internet-Draft CoAP Fetch Patch August 2016

 The PATCH method is neither idempotent nor safe. It returns the same
 response codes that POST can return, plus 4.09 "Conflict" and 4.22
 "Unprocessable Entity" with the semantics specified in Section 3.4.

 The iPATCH method is identical to the PATCH method, except that it is
 idempotent.

 IANA is requested to add the following code to the sub-registry "CoAP
 response codes":

 +------+----------------------+-----------+
 | Code | Name | Reference |
 +------+----------------------+-----------+
 | 4.09 | Conflict | [RFCthis] |
 | 4.22 | Unprocessable Entity | [RFCthis] |
 +------+----------------------+-----------+

 IANA is requested to add entries to the sub-registry "CoAP Content-
 Formats", within the "CoRE Parameters" registry:

 +------------------------------+----------+----+-----------+
 | Media Type | Encoding | ID | Reference |
 +------------------------------+----------+----+-----------+
 | application/json-patch+json | | 51 | [RFC6902] |
 | application/merge-patch+json | | 52 | [RFC7396] |
 +------------------------------+----------+----+-----------+

7. Change log

 When published as a RFC, this section needs to be removed.

 Version 00 is a composition from draft-vanderstok-core-patch-03 and
draft-bormann-core-coap-fetch-00 and replaces these two drafts.

 Version 01 added an example for FETCH and is more explicit about some
 response codes and options.

 Upcoming version 02 addresses the WGLC comments.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/rfc7396
https://datatracker.ietf.org/doc/html/draft-vanderstok-core-patch-03
https://datatracker.ietf.org/doc/html/draft-bormann-core-coap-fetch-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

van der Stok, et al. Expires February 11, 2017 [Page 15]

Internet-Draft CoAP Fetch Patch August 2016

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, DOI 10.17487/RFC5789, March 2010,

 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-21 (work in progress), July 2016.

8.2. Informative References

 [RFC5323] Reschke, J., Ed., Reddy, S., Davis, J., and A. Babich,
 "Web Distributed Authoring and Versioning (WebDAV)
 SEARCH", RFC 5323, DOI 10.17487/RFC5323, November 2008,
 <http://www.rfc-editor.org/info/rfc5323>.

 [RFC6902] Bryan, P., Ed. and M. Nottingham, Ed., "JavaScript Object
 Notation (JSON) Patch", RFC 6902, DOI 10.17487/RFC6902,
 April 2013, <http://www.rfc-editor.org/info/rfc6902>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <http://www.rfc-editor.org/info/rfc7396>.

 [I-D.vanderstok-core-comi]
 Stok, P. and A. Bierman, "CoAP Management Interface",

draft-vanderstok-core-comi-09 (work in progress), March
 2016.

 [I-D.hartke-core-apps]
 Hartke, K., "CoRE Application Descriptions", draft-hartke-

core-apps-03 (work in progress), February 2016.

https://datatracker.ietf.org/doc/html/rfc2616
http://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc5789
http://www.rfc-editor.org/info/rfc5789
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-21
https://datatracker.ietf.org/doc/html/rfc5323
http://www.rfc-editor.org/info/rfc5323
https://datatracker.ietf.org/doc/html/rfc6902
http://www.rfc-editor.org/info/rfc6902
https://datatracker.ietf.org/doc/html/rfc7396
http://www.rfc-editor.org/info/rfc7396
https://datatracker.ietf.org/doc/html/draft-vanderstok-core-comi-09
https://datatracker.ietf.org/doc/html/draft-hartke-core-apps-03
https://datatracker.ietf.org/doc/html/draft-hartke-core-apps-03

van der Stok, et al. Expires February 11, 2017 [Page 16]

Internet-Draft CoAP Fetch Patch August 2016

 [I-D.snell-search-method]
 Reschke, J., Malhotra, A., and J. Snell, "HTTP SEARCH
 Method", draft-snell-search-method-00 (work in progress),
 April 2015.

Acknowledgements

 Klaus Hartke has pointed out some essential differences between CoAP
 and HTTP concerning PATCH, and found a number of problems in an
 earlier version of Section 2. We are grateful for discussions with
 Christian Amsuss, Andy Bierman, Timothy Carey, Paul Duffy, Matthias
 Kovatsch, Michel Veillette, Michael Verschoor, Thomas Watteyne, and
 Gengyu Wei. Christian Groves provided detailed comments during the
 Working-Group Last Call.

Authors' Addresses

 Peter van der Stok
 Consultant

 Email: consultancy@vanderstok.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Anuj Sehgal
 Consultant

 Email: anuj@iurs.org

https://datatracker.ietf.org/doc/html/draft-snell-search-method-00

van der Stok, et al. Expires February 11, 2017 [Page 17]

