
CoRE Working Group                                               E. Dijk
Internet-Draft                                         IoTconsultancy.nl
Obsoletes: 7390 (if approved)                                    C. Wang
Updates: 7252, 7641 (if approved)                           InterDigital
Intended status: Standards Track                               M. Tiloca
Expires: August 26, 2021                                         RISE AB
                                                       February 22, 2021

Group Communication for the Constrained Application Protocol (CoAP)
draft-ietf-core-groupcomm-bis-03

Abstract

   This document specifies the use of the Constrained Application
   Protocol (CoAP) for group communication, using UDP/IP multicast as
   the underlying data transport.  Both unsecured and secured CoAP group
   communication are specified.  Security is achieved by use of the
   Group Object Security for Constrained RESTful Environments (Group
   OSCORE) protocol.  The target application area of this specification
   is any group communication use cases that involve resource-
   constrained devices or networks.  This document replaces RFC7390,
   while it updates RFC7252 and RFC7641.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 26, 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

Dijk, et al.             Expires August 26, 2021                [Page 1]

https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78


Internet-Draft        Group Communication for CoAP         February 2021

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   4
1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   5

2.  Group Definition and Group Configuration  . . . . . . . . . .   5
2.1.  Group Definition  . . . . . . . . . . . . . . . . . . . .   5
2.1.1.  CoAP Group  . . . . . . . . . . . . . . . . . . . . .   5
2.1.2.  Application Group . . . . . . . . . . . . . . . . . .   6
2.1.3.  Security Group  . . . . . . . . . . . . . . . . . . .   6
2.1.4.  Relations Between Group Types . . . . . . . . . . . .   6

2.2.  Group Configuration . . . . . . . . . . . . . . . . . . .   9
2.2.1.  Group Naming  . . . . . . . . . . . . . . . . . . . .   9
2.2.2.  Group Creation and Membership . . . . . . . . . . . .  10
2.2.3.  Group Discovery . . . . . . . . . . . . . . . . . . .  11
2.2.4.  Group Maintenance . . . . . . . . . . . . . . . . . .  12

3.  CoAP Usage in Group Communication . . . . . . . . . . . . . .  13
3.1.  Request/Response Model  . . . . . . . . . . . . . . . . .  13
3.2.  Caching . . . . . . . . . . . . . . . . . . . . . . . . .  16
3.2.1.  Freshness Model . . . . . . . . . . . . . . . . . . .  17
3.2.2.  Validation Model  . . . . . . . . . . . . . . . . . .  17

3.3.  Port and URI Path Selection . . . . . . . . . . . . . . .  21
3.4.  Proxy Operation . . . . . . . . . . . . . . . . . . . . .  22
3.4.1.  Forward-Proxies . . . . . . . . . . . . . . . . . . .  22
3.4.2.  Reverse-Proxies . . . . . . . . . . . . . . . . . . .  24
3.4.3.  Caching . . . . . . . . . . . . . . . . . . . . . . .  25

3.5.  Congestion Control  . . . . . . . . . . . . . . . . . . .  30
3.6.  Observing Resources . . . . . . . . . . . . . . . . . . .  31
3.7.  Block-Wise Transfer . . . . . . . . . . . . . . . . . . .  33
3.8.  Transport . . . . . . . . . . . . . . . . . . . . . . . .  34
3.8.1.  UDP/IPv6 Multicast Transport  . . . . . . . . . . . .  34
3.8.2.  UDP/IPv4 Multicast Transport  . . . . . . . . . . . .  34
3.8.3.  6LoWPAN . . . . . . . . . . . . . . . . . . . . . . .  34

3.9.  Interworking with Other Protocols . . . . . . . . . . . .  35
3.9.1.  MLD/MLDv2/IGMP/IGMPv3 . . . . . . . . . . . . . . . .  35
3.9.2.  RPL . . . . . . . . . . . . . . . . . . . . . . . . .  36
3.9.3.  MPL . . . . . . . . . . . . . . . . . . . . . . . . .  36

4.  Unsecured Group Communication . . . . . . . . . . . . . . . .  37
5.  Secured Group Communication using Group OSCORE  . . . . . . .  37
5.1.  Secure Group Maintenance  . . . . . . . . . . . . . . . .  39

https://trustee.ietf.org/license-info


Dijk, et al.             Expires August 26, 2021                [Page 2]



Internet-Draft        Group Communication for CoAP         February 2021

5.2.  Caching of Responses at Proxies . . . . . . . . . . . . .  40
       5.2.1.  Using Deterministic Requests to Achieve Cachability .  40

5.2.2.  Validation of Responses . . . . . . . . . . . . . . .  41
6.  Security Considerations . . . . . . . . . . . . . . . . . . .  41
6.1.  CoAP NoSec Mode . . . . . . . . . . . . . . . . . . . . .  41
6.2.  Group OSCORE  . . . . . . . . . . . . . . . . . . . . . .  42
6.2.1.  Group Key Management  . . . . . . . . . . . . . . . .  42
6.2.2.  Source Authentication . . . . . . . . . . . . . . . .  43
6.2.3.  Countering Attacks  . . . . . . . . . . . . . . . . .  43

6.3.  Replay of Non-Confirmable Messages  . . . . . . . . . . .  45
6.4.  Use of CoAP No-Response Option  . . . . . . . . . . . . .  45
6.5.  6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . .  46
6.6.  Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . .  46
6.7.  Monitoring  . . . . . . . . . . . . . . . . . . . . . . .  47
6.7.1.  General Monitoring  . . . . . . . . . . . . . . . . .  47
6.7.2.  Pervasive Monitoring  . . . . . . . . . . . . . . . .  47

7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  48
7.1.  CoAP Option Numbers Registry  . . . . . . . . . . . . . .  48

8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  48
8.1.  Normative References  . . . . . . . . . . . . . . . . . .  48
8.2.  Informative References  . . . . . . . . . . . . . . . . .  51

Appendix A.  Use Cases  . . . . . . . . . . . . . . . . . . . . .  53
A.1.  Discovery . . . . . . . . . . . . . . . . . . . . . . . .  53
A.1.1.  Distributed Device Discovery  . . . . . . . . . . . .  53
A.1.2.  Distributed Service Discovery . . . . . . . . . . . .  54
A.1.3.  Directory Discovery . . . . . . . . . . . . . . . . .  54

A.2.  Operational Phase . . . . . . . . . . . . . . . . . . . .  55
A.2.1.  Actuator Group Control  . . . . . . . . . . . . . . .  55
A.2.2.  Device Group Status Request . . . . . . . . . . . . .  55
A.2.3.  Network-wide Query  . . . . . . . . . . . . . . . . .  55
A.2.4.  Network-wide / Group Notification . . . . . . . . . .  56

A.3.  Software Update . . . . . . . . . . . . . . . . . . . . .  56
Appendix B.  Document Updates . . . . . . . . . . . . . . . . . .  56
B.1.  Version -02 to -03  . . . . . . . . . . . . . . . . . . .  56
B.2.  Version -01 to -02  . . . . . . . . . . . . . . . . . . .  57
B.3.  Version -00 to -01  . . . . . . . . . . . . . . . . . . .  57

   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  57
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  58

1.  Introduction

   This document specifies group communication using the Constrained
   Application Protocol (CoAP) [RFC7252] together with UDP/IP multicast.
   CoAP is a RESTful communication protocol that is used in resource-
   constrained nodes, and in resource-constrained networks where packet
   sizes should be small.  This area of use is summarized as Constrained
   RESTful Environments (CoRE).

https://datatracker.ietf.org/doc/html/rfc7252


Dijk, et al.             Expires August 26, 2021                [Page 3]



Internet-Draft        Group Communication for CoAP         February 2021

   One-to-many group communication can be achieved in CoAP, by a client
   using UDP/IP multicast data transport to send multicast CoAP request
   messages.  In response, each server in the addressed group sends a
   response message back to the client over UDP/IP unicast.  Notable
   CoAP implementations supporting group communication include the
   framework "Eclipse Californium" 2.0.x [Californium] from the Eclipse
   Foundation and the "Implementation of CoAP Server & Client in Go"
   [Go-OCF] from the Open Connectivity Foundation (OCF).

   Both unsecured and secured CoAP group communication over UDP/IP
   multicast are specified in this document.  Security is achieved by
   using Group Object Security for Constrained RESTful Environments
   (Group OSCORE) [I-D.ietf-core-oscore-groupcomm], which in turn builds
   on Object Security for Constrained Restful Environments (OSCORE)
   [RFC8613].  This method provides end-to-end application-layer
   security protection of CoAP messages, by using CBOR Object Signing
   and Encryption (COSE)
   [I-D.ietf-cose-rfc8152bis-struct][I-D.ietf-cose-rfc8152bis-algs].

   All guidelines in [RFC7390] are updated by this document, which
   replaces and obsoletes [RFC7390].  Furthermore, this document updates
   [RFC7252], by specifying: a group request/response model; cachability
   of responses to group requests at proxies; a response validation
   model for responses to group requests; and the use of Group OSCORE
   [I-D.ietf-core-oscore-groupcomm] to achieve security for CoAP group
   communication.  Finally, this document also updates [RFC7641], by
   defining the multicast usage of the CoAP Observe Option for both the
   GET and FETCH methods.

   All sections in the body of this document are normative, while
   appendices are informative.  For additional background about use
   cases for CoAP group communication in resource-constrained devices
   and networks, see Appendix A.

1.1.  Scope

   For group communication, only solutions that use CoAP over UDP/IP
   multicast are in the scope of this document.  There are alternative
   methods to achieve group communication using CoAP, for example
   Publish-Subscribe [I-D.ietf-core-coap-pubsub] which uses a central
   broker server that CoAP clients access via unicast communication.
   These methods may be usable for the same or similar use cases as are
   targeted in this document.

   Furthermore, this document defines Group OSCORE
   [I-D.ietf-core-oscore-groupcomm] as the default group communication
   security solution for CoAP.  Security solutions for group
   communication and configuration other than Group OSCORE are not in

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641


Dijk, et al.             Expires August 26, 2021                [Page 4]



Internet-Draft        Group Communication for CoAP         February 2021

   scope.  General principles for secure group configuration are in
   scope.

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This specification requires readers to be familiar with CoAP
   terminology [RFC7252].  Terminology related to group communication is
   defined in Section 2.1.

   Furthermore, "Security material" refers to any security keys,
   counters or parameters stored in a device that are required to
   participate in secure group communication with other devices.

2.  Group Definition and Group Configuration

   In the following, different group types are first defined in
Section 2.1.  Then, Group configuration, including group creation and

   maintenance by an application, user or commissioning entity is
   considered in Section 2.2.

2.1.  Group Definition

   Three types of groups and their mutual relations are defined in this
   section: CoAP group, application group, and security group.

2.1.1.  CoAP Group

   A CoAP group is defined as a set of CoAP endpoints, where each
   endpoint is configured to receive CoAP multicast messages that are
   sent to the group's associated IP multicast address and UDP port.  An
   endpoint may be a member of multiple CoAP groups by subscribing to
   multiple IP multicast groups and/or listening on multiple UDP ports.
   Group membership(s) of an endpoint may dynamically change over time.
   A device sending a CoAP multicast message to a CoAP group is not
   necessarily itself a member of this CoAP group: it is a member only
   if it also has a CoAP endpoint listening on the group's associated IP
   multicast address and UDP port.  A CoAP group can be encoded within a
   Group URI.  This is defined as a CoAP URI that has the "coap" scheme
   and includes in the authority part either an IP multicast address or
   a group hostname (e.g., a Group Fully Qualified Domain Name (FQDN))
   that can be resolved to an IP multicast address.  A Group URI also

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252


Dijk, et al.             Expires August 26, 2021                [Page 5]



Internet-Draft        Group Communication for CoAP         February 2021

   contains an optional UDP port number in the authority part.  Group
   URIs follow the regular CoAP URI syntax (see Section 6 of [RFC7252]).

2.1.2.  Application Group

   Besides CoAP groups, that have relevance at the level of IP networks
   and CoAP endpoints, there are also application groups.  An
   application group is a set of CoAP server endpoints that share a
   common set of CoAP resources.  An endpoint may be a member of
   multiple application groups.  An application group has relevance at
   the application level - for example an application group could denote
   all lights in an office room or all sensors in a hallway.  A client
   endpoint that sends a group communication message to an application
   group is not necessarily itself a member of this application group.
   There can be a one-to-one or a one-to-many relation between a CoAP
   group and application group(s).  An application group identifier is
   optionally encoded explicitly in the CoAP request, for example as a
   name in the URI path.  If not explicitly encoded, the application
   group is implicitly derived by the receiver, based on information in
   the CoAP request.  See Section 2.2.1 for more details on identifying
   the application group.

2.1.3.  Security Group

   For secure group communication, a security group is required.  A
   security group is a group of endpoints that each store group security
   material, such that they can mutually exchange secured messages and
   verify secured messages.  So, a client endpoint needs to be a member
   of a security group in order to send a valid secured group
   communication message to this group.  An endpoint may be a member of
   multiple security groups.  There can be a one-to-one or a one-to-many
   relation between security groups and CoAP groups.  Also, there can be
   a one-to-one or a one-to-many relation between security groups and
   application groups.  A special security group named "NoSec"
   identifies group communication without any security at the transport
   layer nor at the CoAP layer.

2.1.4.  Relations Between Group Types

   Using the above group type definitions, a CoAP group communication
   message sent by an endpoint can be represented as a tuple that
   contains one instance of each group type:

   (application group, CoAP group, security group)

   A special note is appropriate about the possible relation between
   security groups and application groups.

https://datatracker.ietf.org/doc/html/rfc7252#section-6


Dijk, et al.             Expires August 26, 2021                [Page 6]



Internet-Draft        Group Communication for CoAP         February 2021

   On one hand, multiple application groups may use the same security
   group.  Thus, the same group security material is used to protect the
   messages targeting any of those application groups.  This has the
   benefit that typically less storage, configuration and updating are
   required for security material.  In this case, a CoAP endpoint is
   supposed to know the exact application group to refer to for each
   message that is sent or received, based on, e.g., the used server
   port number, the targeted resource, or the content and structure of
   the message payload.

   On the other hand, a single application group may use multiple
   security groups.  Thus, different messages targeting the resources of
   the application group can be protected with different security
   material.  This can be convenient, for example, if the security
   groups differ with respect to the cryptographic algorithms and
   related parameters they use.  In this case, a CoAP client can join
   just one of the security groups, based on what it supports and
   prefers, while a CoAP server in the application group would rather
   have to join all of them.

   Beyond this particular case, applications should be careful in
   associating a same application group to multiple security groups.  In
   particular, it is NOT RECOMMENDED to use different security groups to
   reflect different access policies for resources in a same application
   group.  That is, being a member of a security group actually grants
   access only to exchange secured messages and enables authentication
   of group members, while access control (authorization) to use
   resources in the application group belongs to a separate security
   domain.  It has to be separately enforced by leveraging the resource
   properties or through dedicated access control credentials assessed
   by separate means.

   Figure 1 summarizes the relations between the different types of
   groups described above in UML class diagram notation.  The class
   attributes in square brackets are optionally defined.



Dijk, et al.             Expires August 26, 2021                [Page 7]



Internet-Draft        Group Communication for CoAP         February 2021

    +------------------------+                 +--------------------+
    |   Application group    |                 |    CoAP group      |
    |........................|                 |....................|
    |                        |                 |                    |
    | [ - group name ]       +-----------------+ - IP mcast address |
    | [ - group identifier ] |  1...N       1  | - UDP port         |
    |                        |                 |                    |
    |                        |                 |                    |
    +-------------+----------+                 +---------+----------+
                  |  1...N                               |  1...N
                  |                                      |
                  |                                      |
                  |                                      |  1...N
                  |                           +----------+------------+
                  |                           |   Security group      |
                  |                           |.......................|
                  |                           |                       |
                  \---------------------------+ - Security group name |
                                       1...N  | - Security material   |
                                              |                       |
                                              +-----------------------+

              Figure 1: Relations Among Different Group Types

   Figure 2 provides a deployment example of the relations between the
   different types of groups.  It shows six CoAP servers (Srv1-Srv6) and
   their respective resources hosted (/resX).  There are three
   application groups (1, 2, 3) and two security groups (1, 2).
   Security Group 1 is used by both Application Group 1 and 2.  Three
   clients (Cli1, Cli2, Cli3) are configured with security material for
   Security Group 1.  Two clients (Cli2, Cli4) are configured with
   security material for Security Group 2.  All the shown application
   groups use the same CoAP group (not shown in the figure), i.e. one
   specific multicast IP address and UDP port on which all the shown
   resources are hosted for each server.



Dijk, et al.             Expires August 26, 2021                [Page 8]



Internet-Draft        Group Communication for CoAP         February 2021

  ________________________________    _________________________________
 /                                \  /                                 \
 |       +---------------------+  |  |  +---------------------+        |
 |       | Application Group 1 |  |  |  | Application Group 3 |  Cli2  |
 |       |                     |  |  |  |                     |        |
 | Cli1  | Srv1   Srv2   Srv3  |  |  |  | Srv5   Srv6         |  Cli4  |
 |       | /resA  /resA  /resA |  |  |  | /resC  /resC        |        |
 | Cli2  +---------------------+  |  |  | /resD  /resD        |        |
 |                                |  |  +---------------------+        |
 | Cli3     Security Group 1      |  |                                 |
 |                                |  |        Security Group 2         |
 |       +---------------------+  |  \_________________________________/
 |       | Application Group 2 |  |
 |       |                     |  |
 |       | Srv1   Srv4         |  |
 |       | /resB  /resB        |  |
 |       +---------------------+  |
 \________________________________/

           Figure 2: Deployment Example of Different Group Types

2.2.  Group Configuration

   The following defines how groups of different types are named,
   created, discovered and maintained.

2.2.1.  Group Naming

   A CoAP group is identified and named by the authority component in
   the Group URI, which includes host (possibly an IP multicast address
   literal) and an optional UDP port number.  It is recommended to
   configure an endpoint with an IP multicast address literal, instead
   of a hostname, when configuring a CoAP group membership.  This is
   because DNS infrastructure may not be deployed in many constrained
   networks.  In case a group hostname is configured, it can be uniquely
   mapped to an IP multicast address via DNS resolution - if DNS client
   functionality is available in the endpoint being configured and the
   DNS service is supported in the network.  Some examples of
   hierarchical CoAP group FQDN naming (and scoping) for a building
   control application are shown in Section 2.2 of [RFC7390].

   An application group can be named in many ways through different
   types of identifiers, such as numbers, URIs or other strings.  An
   application group name or identifier, if explicitly encoded in a CoAP
   request, is typically included in the path component or in the query
   component of a Group URI.  It may also be encoded using the Uri-Host
   Option [RFC7252] in case application group members implement a
   virtual CoAP server specific to that application group.  The

https://datatracker.ietf.org/doc/html/rfc7390#section-2.2
https://datatracker.ietf.org/doc/html/rfc7252


Dijk, et al.             Expires August 26, 2021                [Page 9]



Internet-Draft        Group Communication for CoAP         February 2021

   application group can then be identified by the value of the Uri-Host
   Option and each virtual server serves one specific application group.
   However, encoding the application group in the Uri-Host Option is not
   the preferred method because in this case the application group
   cannot be encoded in a Group URI, and also the Uri-Host Option is
   being used for another purpose than encoding the host part of a URI
   as intended by [RFC7252] - which is potentially confusing.

Appendix A of [I-D.ietf-core-resource-directory] shows an example
   registration of an application group into a Resource Directory (RD),
   along with the CoAP group it uses and the resources supported by the
   application group.  In this example an application group identifier
   is not explicitly encoded in the RD nor in CoAP requests made to the
   group, but it implicitly follows from the CoAP group used for the
   request.  So there is a one-to-one binding between the CoAP group and
   the application group.  The "NoSec" security group is used.

   A best practice for encoding application group into a Group URI is to
   use one URI path component to identify the application group and use
   the following URI paths component(s) to identify the resource within
   this application group.  For example, /<groupname>/res1 or
   /base/<groupname>/res1/res2 conform to this practice.  An application
   group identifier (like <groupname>) should be as short as possible
   when used in constrained networks.

   A security group is identified by a stable and invariant string used
   as group name, which is generally not related with other kinds of
   group identifiers, specific to the chosen security solution.  The
   "NoSec" security group name MUST be only used to represent the case
   of group communication without any security.  It is typically
   characterized by the absence of any security group name, identifier,
   or security-related data structures in the CoAP message.

2.2.2.  Group Creation and Membership

   To create a CoAP group, a configuring entity defines an IP multicast
   address (or hostname) for the group and optionally a UDP port number
   in case it differs from the default CoAP port 5683.  Then, it
   configures one or more devices as listeners to that IP multicast
   address, with a CoAP endpoint listening on the group's associated UDP
   port.  These endpoints/devices are the group members.  The
   configuring entity can be, for example, a local application with pre-
   configuration, a user, a software developer, a cloud service, or a
   local commissioning tool.  Also, the devices sending CoAP requests to
   the group in the role of CoAP client need to be configured with the
   same information, even though they are not necessarily group members.
   One way to configure a client is to supply it with a CoAP Group URI.
   The IETF does not define a mandatory, standardized protocol to
   accomplish CoAP group creation.  [RFC7390] defines an experimental

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7390


Dijk, et al.             Expires August 26, 2021               [Page 10]



Internet-Draft        Group Communication for CoAP         February 2021

   protocol for configuration of group membership for unsecured group
   communication, based on JSON-formatted configuration resources.  For
   IPv6 CoAP groups, common multicast address ranges that are used to
   configure group addresses from are ff1x::/16 and ff3x::/16.

   To create an application group, a configuring entity may configure a
   resource (name) or set of resources on CoAP endpoints, such that a
   CoAP request with Group URI sent by a configured CoAP client will be
   processed by one or more CoAP servers that have the matching URI path
   configured.  These servers are the application group members.

   To create a security group, a configuring entity defines an initial
   subset of the related security material.  This comprises a set of
   group properties including the cryptographic algorithms and
   parameters used in the group, as well as additional information
   relevant throughout the group life-cycle, such as the security group
   name and description.  This task MAY be entrusted to a dedicated
   administrator, that interacts with a Group Manager as defined in

Section 5.  After that, further security materials to protect group
   communications have to be generated, compatible with the specified
   group configuration.

   To participate in a security group, CoAP endpoints have to be
   configured with the group security material used to protect
   communications in the associated application/CoAP groups.  The part
   of the process that involves secure distribution of group security
   material MAY use standardized communication with a Group Manager as
   defined in Section 5.  For unsecure group communication using the
   "NoSec" security group, any CoAP endpoint may become a group member
   at any time: there is no configuring entity that needs to provide
   security material for this group, as there is no security material
   for it.  This means that group creation and membership cannot be
   tightly controlled for the "NoSec" group.

   The configuration of groups and membership may be performed at
   different moments in the life-cycle of a device; for example during
   product (software) creation, in the factory, at a reseller, on-site
   during first deployment, or on-site during a system reconfiguration
   operation.

2.2.3.  Group Discovery

   It is possible for CoAP endpoints to discover application groups as
   well as CoAP groups, by using the RD-Groups usage pattern of the CoRE
   Resource Directory (RD), as defined in Appendix A of
   [I-D.ietf-core-resource-directory].  In particular, an application
   group can be registered to the RD, specifying the reference IP
   multicast address, hence its associated CoAP group.  The registration



Dijk, et al.             Expires August 26, 2021               [Page 11]



Internet-Draft        Group Communication for CoAP         February 2021

   is typically performed by a Commissioning Tool.  Later on, CoAP
   endpoints can discover the registered application groups and related
   CoAP group, by using the lookup interface of the RD.

   CoAP endpoints can also discover application groups by performing a
   multicast discovery query using the /.well-known/core resource.  Such
   a request may be sent to a known CoAP group multicast address
   associated to application group(s), or to the All CoAP Nodes
   multicast address.

   When secure communication is provided with Group OSCORE (see
Section 5), the approach described in

   [I-D.tiloca-core-oscore-discovery] and also based on the RD can be
   used, in order to discover the security group to join.

   In particular, the responsible OSCORE Group Manager registers its own
   security groups to the RD, as links to its own corresponding
   resources for joining the security groups
   [I-D.ietf-ace-key-groupcomm-oscore].  Later on, CoAP endpoints can
   discover the registered security groups and related application
   groups, by using the lookup interface of the RD, and then join the
   security group through the respective Group Manager.

2.2.4.  Group Maintenance

   Maintenance of a group includes any necessary operations to cope with
   changes in a system, such as: adding group members, removing group
   members, changing group security material, reconfiguration of UDP
   port and/or IP multicast address, reconfiguration of the Group URI,
   renaming of application groups, splitting of groups, or merging of
   groups.

   For unsecured group communication (see Section 4) i.e. the "NoSec"
   security group, addition/removal of CoAP group members is simply done
   by configuring these devices to start/stop listening to the group IP
   multicast address on the group's UDP port.

   For secured group communication (see Section 5), the maintenance
   operations of the protocol Group OSCORE
   [I-D.ietf-core-oscore-groupcomm] MUST be implemented.  When using
   Group OSCORE, CoAP endpoints participating in group communication are
   also members of a corresponding OSCORE security group, and thus share
   common security material.  Additional related maintenance operations
   are discussed in Section 5.1.



Dijk, et al.             Expires August 26, 2021               [Page 12]



Internet-Draft        Group Communication for CoAP         February 2021

3.  CoAP Usage in Group Communication

   This section specifies the usage of CoAP in group communication, both
   unsecured and secured.  This includes additional support for protocol
   extensions, such as Observe (see Section 3.6) and block-wise transfer
   (see Section 3.7).

   How CoAP group messages are carried over various transport layers is
   the subject of Section 3.8.  Finally, Section 3.9 covers the
   interworking of CoAP group communication with other protocols that
   may operate in the same network.

3.1.  Request/Response Model

   A CoAP client is an endpoint able to transmit CoAP requests and
   receive CoAP responses.  Since the underlying UDP transport supports
   multiplexing by means of UDP port number, there can be multiple
   independent CoAP clients operational on a single host.  On each UDP
   port, an independent CoAP client can be hosted.  Each independent
   CoAP client sends requests that use the associated endpoint's UDP
   port number as the UDP source port of the request.

   All CoAP requests that are sent via IP multicast MUST be Non-
   confirmable; see Section 8.1 of [RFC7252].  The Message ID in an IP
   multicast CoAP message is used for optional message deduplication by
   both clients and servers, as detailed in Section 4.5 of [RFC7252].

   A server sends back a unicast response to the CoAP group request -
   but the server MAY suppress the response for various reasons given in

Section 8.2 of [RFC7252].  This document adds the requirement that a
   server SHOULD suppress the response in case of error or in case there
   is nothing useful to respond, unless the application related to a
   particular resource requires such a response to be made for that
   resource.  The unicast responses received by the CoAP client may be a
   mixture of success (e.g., 2.05 Content) and failure (e.g., 4.04 Not
   Found) codes, depending on the individual server processing results.

   The CoAP No-Response Option [RFC7967] can be used by a client to
   influence the default response suppression on the server side.  It is
   RECOMMENDED for a server to support this option only on selected
   resources where it is useful in the application context.  If the
   option is supported on a resource, it MUST override the default
   response suppression of that resource.

   Any default response suppression by a server SHOULD be performed
   consistently, as follows: if a request on a resource produces a
   particular Response Code and this response is not suppressed, then
   another request on the same resource that produces a response of the

https://datatracker.ietf.org/doc/html/rfc7252#section-8.1
https://datatracker.ietf.org/doc/html/rfc7252#section-4.5
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2
https://datatracker.ietf.org/doc/html/rfc7967


Dijk, et al.             Expires August 26, 2021               [Page 13]



Internet-Draft        Group Communication for CoAP         February 2021

   same Response Code class is also not suppressed.  For example, if a
   4.05 Method Not Allowed error response code is suppressed by default
   on a resource, then a 4.15 Unsupported Content-Format error response
   code is also suppressed by default for that resource.

   A CoAP client MAY repeat a multicast request using the same Token
   value and same Message ID value, in order to ensure that enough (or
   all) group members have been reached with the request.  This is
   useful in case a number of group members did not respond to the
   initial request and the client suspects that the request did not
   reach these group members.  However, in case one or more servers did
   receive the initial request but the response to that request was
   lost, this repeat does not help to retrieve the lost response(s) if
   the server(s) implement the optional Message ID based deduplication
   (Section 4.5 of [RFC7252]).

   A CoAP client MAY repeat a multicast request using the same Token
   value and a different Message ID, in which case all servers that
   received the initial request will again process the repeated request
   since it appears within a new CoAP message.  This is useful in case a
   client suspects that one or more response(s) to its original request
   were lost and the client needs to collect more, or even all,
   responses from group members, even if this comes at the cost of the
   overhead of certain group members responding twice (once to the
   original request, and once to the repeated request with different
   Message ID).

   The CoAP client can distinguish the origin of multiple server
   responses by the source IP address of the UDP message containing the
   CoAP response and/or any other available application-specific source
   identifiers contained in the CoAP response payload or CoAP response
   options, such as an application-level unique ID associated to the
   server.  If secure communication is provided with Group OSCORE (see

Section 5), additional security-related identifiers in the CoAP
   response enable the client to retrieve the right security material
   for decrypting each response and authenticating its source.

   While processing a response on the client, the source endpoint of the
   response is not matched to the destination endpoint of the request,
   since for a multicast request these will never match.  This is
   specified in Section 8.2 of [RFC7252].  It implies also that a server
   MAY respond from a UDP port number that differs from the destination
   UDP port number of the request, although a CoAP server normally
   SHOULD respond from the UDP port number that equals the destination
   port of the request - following the convention for UDP-based
   protocols.  In case a single client has sent multiple group requests
   and concurrent CoAP transactions are ongoing, the responses received
   by that client are matched to an active request using only the Token

https://datatracker.ietf.org/doc/html/rfc7252#section-4.5
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2


Dijk, et al.             Expires August 26, 2021               [Page 14]



Internet-Draft        Group Communication for CoAP         February 2021

   value.  Due to UDP level multiplexing, the UDP destination port of
   the response MUST match to the client endpoint's UDP port value, i.e.
   to the UDP source port of the client's request.

   For multicast CoAP requests, there are additional constraints on the
   reuse of Token values at the client, compared to the unicast case
   defined in [RFC7252] and updated by [I-D.ietf-core-echo-request-tag].
   Since for multicast CoAP the number of responses is not bound a
   priori, the client cannot use the reception of a response as a
   trigger to "free up" a Token value for reuse.  Reusing a Token value
   too early could lead to incorrect response/request matching on the
   client, and would be a protocol error.  Therefore, the time between
   reuse of Token values for different multicast requests MUST be
   greater than:

   MIN_TOKEN_REUSE_TIME = (NON_LIFETIME + MAX_LATENCY +
                           MAX_SERVER_RESPONSE_DELAY)

   where NON_LIFETIME and MAX_LATENCY are defined in Section 4.8 of
   [RFC7252].  This specification defines MAX_SERVER_RESPONSE_DELAY as
   in [RFC7390], that is: the expected maximum response delay over all
   servers that the client can send a multicast request to.  This delay
   includes the maximum Leisure time period as defined in Section 8.2 of
   [RFC7252].  However, CoAP does not define a time limit for the server
   response delay.  Using the default CoAP parameters, the Token reuse
   time MUST be greater than 250 seconds plus MAX_SERVER_RESPONSE_DELAY.
   A preferred solution to meet this requirement is to generate a new
   unique Token for every new multicast request, such that a Token value
   is never reused.  If a client has to reuse Token values for some
   reason, and also MAX_SERVER_RESPONSE_DELAY is unknown, then using
   MAX_SERVER_RESPONSE_DELAY = 250 seconds is a reasonable guideline.
   The time between Token reuses is in that case set to a value greater
   than MIN_TOKEN_REUSE_TIME = 500 seconds.

   When securing CoAP group communication with Group OSCORE
   [I-D.ietf-core-oscore-groupcomm], secure binding between requests and
   responses is ensured (see Section 5).  Thus, a client may reuse a
   Token value after it has been freed up, as discussed above for the
   multicast case and considering a reuse time greater than
   MIN_TOKEN_REUSE_TIME.  If an alternative security protocol for CoAP
   group communication is defined in the future which does not ensure
   secure binding between requests and responses, a client MUST follow
   the Token processing requirements as defined in
   [I-D.ietf-core-echo-request-tag].

   Another method to more easily meet the above constraint is to
   instantiate multiple CoAP clients at multiple UDP ports on the same
   host.  The Token values only have to be unique within the context of

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2


Dijk, et al.             Expires August 26, 2021               [Page 15]



Internet-Draft        Group Communication for CoAP         February 2021

   a single CoAP client, so using multiple clients can make it easier to
   meet the constraint.

   Since a client sending a multicast request with a Token T will accept
   multiple responses with the same Token T, it is possible in
   particular that the same server sends multiple responses with the
   same Token T back to the client.  For example, this server might not
   implement the optional CoAP message deduplication based on Message
   ID; or it might be acting out of specification as a malicious,
   compromised or faulty server.

   When this happens, the client normally processes at the CoAP layer
   each of those responses to the same request coming from the same
   server.  If the processing of a response is successful, the client
   delivers this response to the application as usual.

   Then, the application is in a better position to decide what to do,
   depending on the available context information.  For instance, it
   might accept and process all the responses from the same server, even
   if they are not Observe notifications (i.e., they do not include an
   Observe option).  Alternatively, the application might accept and
   process only one of those responses, such as the most recent one from
   that server, e.g. when this can trigger a change of state within the
   application.

3.2.  Caching

   CoAP endpoints that are members of a CoAP group MAY cache responses
   to a group request as defined in Section 5.6 of [RFC7252].  In
   particular, these same rules apply to determine the set of request
   options used as "Cache-Key".

   Furthermore, building on what is defined in Section 8.2.1 of
   [RFC7252]:

   o  A client sending a GET or FETCH group request over multicast MAY
      update a cache with the responses from the servers in the CoAP
      group.  Then, the client uses both cached-still-fresh and new
      responses as the result of the group request.

   o  A client sending a GET or FETCH group request over multicast MAY
      use a response received from a server, to satisfy a subsequent
      sent request intended to that server on the related unicast
      request URI.  In particular, the unicast request URI is obtained
      by replacing the authority part of the request URI with the
      transport-layer source address of the cached response message.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2.1
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2.1


Dijk, et al.             Expires August 26, 2021               [Page 16]



Internet-Draft        Group Communication for CoAP         February 2021

   o  A client MAY revalidate a cached response by making a GET or FETCH
      request on the related unicast request URI.

   Note that, in the presence of proxies, doing any of the above
   (optional) unicast requests requires the client to distinguish the
   different responses to a group request, as well as to distinguish the
   different origin servers that responded.  This in turn requires
   additional means to provide the client with information about the
   origin server of each response, as discussed in Section 3.4.3.

   The following subsections define the freshness model and validation
   model to use for cached responses, which update the models defined in

Section 5.6.1 and Section 5.6.2 of [RFC7252], respectively.

3.2.1.  Freshness Model

   For caching at endpoints, the same freshness model relying on the
   Max-Age Option as defined in Section 5.6.1 of [RFC7252] applies.

   For caching at proxies, the freshness model defined in Section 3.4.3
   of this specification applies.

3.2.2.  Validation Model

Section 5.6.2 of [RFC7252] defines a model to "validate" or
   "revalidate" responses stored in cache, hence enabling the
   suppression of responses that the client already has.

   This relies on the ETag Option defined in Section 5.10.6 of
   [RFC7252], with its usage limited to exchanges between a CoAP client
   and one CoAP server.  That is, Section 8.2.1 of [RFC7252] explicitly
   forbids using an ETag Option in requests sent over multicast, and
   leaves a mechanism to suppress responses for that case for further
   study.

   This section provides such a model to "validate" or "revalidate"
   responses that the client already has cached.  In particular, the
   group request can indicate entity-tag values separately for each CoAP
   server from which the client wishes to get a response revalidation,
   together with addressing information identifying that server.

   To this end, this specification defines the new Multi-ETag Option.
   Operations related to this validation model and using the new option
   are defined in Section 3.2.2.2 for the client side, and in

Section 3.2.2.3 for the server side.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.2
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.2
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2.1


Dijk, et al.             Expires August 26, 2021               [Page 17]



Internet-Draft        Group Communication for CoAP         February 2021

   The Multi-ETag Option has the properties summarized in Figure 3,
   which extends Table 4 of [RFC7252].  The Multi-ETag Option is
   elective, safe to forward, part of the cache key, and repeatable.

   The option is intended only for group requests, as directly sent to a
   CoAP group or to a CoAP proxy that forwards it to the CoAP group (see

Section 3.4).

     +------+---+---+---+---+------------+--------+--------+---------+
     | No.  | C | U | N | R | Name       | Format | Length | Default |
     +------+---+---+---+---+------------+--------+--------+---------+
     |      |   |   |   |   |            |        |        |         |
     | TBD1 |   |   |   | x | Multi-ETag |  (*)   |  any   | (none)  |
     |      |   |   |   |   |            |        |        |         |
     +------+---+---+---+---+------------+--------+--------+---------+
                C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

     (*) See below.

                     Figure 3: The Multi-ETag Option.

   The Multi-ETag Option has the same properties of the ETag Option
   defined in Section 5.10.6 of [RFC7252], but it differs in the format
   and length, as well as having a different reason for its
   repeatability.

   Each occurrence of the Multi-ETag Option targets exactly one of the
   servers in the CoAP group, from which the client wishes to get a
   response revalidation.  The option value is set to a CBOR sequence
   [RFC8742] composed of (1+M) elements, where:

   o  The first element specifies the addressing information of the
      corresponding server, encoded as defined in Section 3.2.2.1.

      This mirrors the format of the Multicast-Signaling option defined
      in Section 3 of [I-D.tiloca-core-groupcomm-proxy].  Thus, in the
      presence of a forward proxy supporting the mechanism defined in
      [I-D.tiloca-core-groupcomm-proxy], the client can seamlessly use
      the server addressing information obtained from the proxy, when
      this forwards back a response to a group request from that server.

   o  The following M elements are CBOR byte strings, each of which has
      as value an entity-tag value that the client wants to try against
      the corresponding server.

      The entity-tag values included in the Multi-ETag Option are
      subject to the same considerations for the entity-tag values used
      in an ETag Option (see Section 5.10.6 of [RFC7252]).

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc8742
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6


Dijk, et al.             Expires August 26, 2021               [Page 18]



Internet-Draft        Group Communication for CoAP         February 2021

   The Multi-ETag Option is of class E in terms of OSCORE processing
   (see Section 4.1 of [RFC8613]).

3.2.2.1.  Encoding of Server Addressing Information

   The first element of the CBOR sequence in the Multi-ETag Option value
   is set to the byte serialization of the CBOR array 'tp_info' defined
   in Section 2.2.1 of
   [I-D.tiloca-core-observe-multicast-notifications], including only the
   set of elements 'srv_addr'.

   In turn, the set includes the integer 'tp_id' identifying the used
   transport protocol, and further elements whose number, format and
   encoding depend on the value of 'tp_id'.

   When the Multi-ETag Option is used in group requests transported over
   UDP as in this specification, the 'tp_info' array includes the
   following elements, encoded as defined in Section 2.2.1.1 of
   [I-D.tiloca-core-observe-multicast-notifications].

   o  'tp_id': the CBOR integer with value 1 ("UDP"), from the "Value"
      column of the "Transport Protocol Identifiers" Registry defined in
      Section 14.4 of [I-D.tiloca-core-observe-multicast-notifications]

   o  'srv_host': a CBOR byte string, with value the unicast IP address
      of the server.  This element is tagged and identified by the CBOR
      tag 260 "Network Address (IPv4 or IPv6 or MAC Address)".

   o  'srv_port': as a CBOR unsigned integer or the CBOR simple value
      Null.  If it is a CBOR integer, it has as value the destination
      port number where to send individual requests intended to the
      server.  This element MAY be present.  If not included, the
      default port number 5683 is assumed.

   The CDDL notation [RFC8610] provided below describes the 'tp_info'
   CBOR array using the format above.

   tp_info = [
          tp_id : 1,             ; UDP as transport protocol
       srv_host : #6.260(bstr),  ; IP address where to reach the server
       srv_port : uint / null    ; Port number where to reach the server
   ]

3.2.2.2.  Processing on the Client Side

   Similar to what is defined in Section 5.6.2 of [RFC7252], the client
   may have one or more stored responses for a GET or FETCH group

https://datatracker.ietf.org/doc/html/rfc8613#section-4.1
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.2


Dijk, et al.             Expires August 26, 2021               [Page 19]



Internet-Draft        Group Communication for CoAP         February 2021

   request sent to the CoAP group, but cannot use any of them (e.g.
   because they are not fresh).

   In that case, the client can send a GET or FETCH group request, in
   order to give the origin servers an opportunity both to select a
   stored response to be used, and to update its freshness.  As in
   [RFC7252], this process is known as "validating" or "revalidating"
   the stored response.

   When sending such a group request, the endpoint SHOULD include one
   Multi-ETag Option for each server it wishes to revalidate the
   corresponding response with.  As defined in Section 3.2.2, the Multi-
   ETag Option can include multiple entity-tag values, each applicable
   to a stored response from the corresponding server for that group
   request.

   Specifically, in the same GET or FETCH group request:

   o  The client MUST NOT include one or more ETag Option(s) together
      with one or more Multi-ETag Option(s).

   o  The client MUST include only one Multi-ETag Option for each server
      it wishes to get a response revalidation from.

   o  The client SHOULD limit the number of Multi-ETag Options, hence
      limiting the number of servers as intended target of the
      revalidation process, and SHOULD rather spread revalidation with
      different sets of servers over different group requests.  Also,
      the client SHOULD limit the number of entity-tag values specified
      in each Multi-ETag Option, preferably indicating only one entity-
      tag value.

      This allows for limiting the overall size of the group request.
      As a guideline, the server addressing information can be 9-24
      bytes in size, while each entity-tag value can be 1-8 bytes in
      size.  Thus, a single Multi-ETag Option can be up to (24 + 8 * M)
      bytes in size, where M is the number of entity-tag values it
      includes.

   A 2.03 (Valid) response indicates that the stored response identified
   by the entity-tag given in the response's ETag Option can be reused,
   after updating the stored response as described in Section 5.9.1.3 of
   [RFC7252].  So the client can determine if any one of the stored
   representations from that server is current, without need to transfer
   the current resource representation again.

   Any other Response Code indicates that none of the stored responses
   from that server, identified in the Multi-ETag Option of the group

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9.1.3
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9.1.3


Dijk, et al.             Expires August 26, 2021               [Page 20]



Internet-Draft        Group Communication for CoAP         February 2021

   request, are suitable.  Instead, such response SHOULD be used to
   satisfy the request and MAY replace the stored response.

3.2.2.3.  Processing on the Server Side

   If a GET or FETCH request includes both one or more ETag Options
   together with one or more Multi-ETag Options, then the server MUST
   ignore all the included ETag and Multi-ETag Options.

   The server MUST ignore any Multi-ETag Option which is malformed, or
   included in a request that is neither GET nor FETCH, or which
   specifies addressing information not matching with its own endpoint
   address.

   The server considers only its pertaining Multi-ETag Option, i.e.
   specifying addressing information associated to its own endpoint.
   The server MUST ignore any pertaining Multi-ETag Option that occurs
   more than once.

   If the pertaining Multi-ETag Option specifies the CBOR simple value
   Null for the 'srv_port' element of 'tp_info' (see Section 3.2.2.1),
   the server MUST assume the default port number 5683.

   Then, the server can issue a 2.03 (Valid) response in place of a 2.05
   (Content) response, if one of the entity-tag values from the
   pertaining Multi-ETag Option is the entity-tag for the current
   resource representation, i.e. it is valid.  The 2.03 (Valid) response
   echoes this specific entity-tag within an ETag Option included in the
   response.

   The inclusion of an ETag Option in a response works as defined in
Section 5.6.10.1 of [RFC7252].

3.3.  Port and URI Path Selection

   A server that is a member of a CoAP group listens for CoAP messages
   on the group's IP multicast address, usually on the CoAP default UDP
   port 5683, or another non-default UDP port if configured.  Regardless
   of the method for selecting the port number, the same port number
   MUST be used across all CoAP servers that are members of a CoAP group
   and across all CoAP clients performing the requests to that group.

   The URI Path used in the request is preferably a path that is known
   to be supported across all group members.  However there are valid
   use cases where a request is known to be successful only for a subset
   of the CoAP group, for example only members of a specific application
   group, while those group members for which the request is
   unsuccessful (for example because they are outside the application

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.10.1


Dijk, et al.             Expires August 26, 2021               [Page 21]



Internet-Draft        Group Communication for CoAP         February 2021

   group) either ignore the multicast request or respond with an error
   status code.

   One way to create multiple CoAP groups is using different UDP ports
   with the same IP multicast address, in case the devices' network
   stack only supports a limited number of multicast address
   subscriptions.  However, it must be taken into account that this
   incurs additional processing overhead on each CoAP server
   participating in at least one of these groups: messages to groups
   that are not of interest to the node are only discarded at the higher
   transport (UDP) layer instead of directly at the network (IP) layer.
   Also, a constrained network may be additionally burdened in this case
   with multicast traffic that is eventually discarded at the UDP layer
   by most nodes.

   Port 5684 is reserved for DTLS-secured unicast CoAP and MUST NOT be
   used for any CoAP group communication.

   For a CoAP server node that supports resource discovery as defined in
Section 2.4 of [RFC7252], the default port 5683 MUST be supported

   (see Section 7.1 of [RFC7252]) for the "All CoAP Nodes" multicast
   group as detailed in Section 3.8.

3.4.  Proxy Operation

   This section defines how proxies operate in a group communication
   scenario.  In particular, Section 3.4.1 defines operations of
   forward-proxies, Section 3.4.2 defines operations of reverse-proxies,
   and Section 3.4.3 defines operations of proxies that employ a cache
   for responses to group requests.

3.4.1.  Forward-Proxies

   CoAP enables a client to request a forward-proxy to process a CoAP
   request on its behalf, as described in Section 5.7.2 and 8.2.2 of
   [RFC7252].  For this purpose, the client specifies either the request
   group URI as a string in the Proxy-URI Option or it uses the Proxy-
   Scheme Option with the group URI constructed from the usual Uri-*
   Options.  The forward-proxy then resolves the group URI to a
   destination CoAP group, multicasts the CoAP request, receives the
   responses and forwards all the individual (unicast) responses back to
   the client.

   However, there are certain issues and limitations with this approach:

   o  The CoAP client component that sent a unicast CoAP request to the
      proxy may be expecting only one (unicast) response, as usual for a
      CoAP unicast request.  Instead, it receives multiple (unicast)

https://datatracker.ietf.org/doc/html/rfc7252#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252#section-7.1
https://datatracker.ietf.org/doc/html/rfc7252


Dijk, et al.             Expires August 26, 2021               [Page 22]



Internet-Draft        Group Communication for CoAP         February 2021

      responses, potentially leading to fault conditions in the
      component or to discarding any received responses following the
      first one.  This issue may occur even if the application calling
      the CoAP client component is aware that the forward-proxy is going
      to execute a CoAP group URI request.

   o  Each individual CoAP response received by the client will appear
      to originate (based on its IP source address) from the CoAP Proxy,
      and not from the server that produced the response.  This makes it
      impossible for the client to identify the server that produced
      each response, unless the server identity is contained as a part
      of the response payload or inside a CoAP option in the response.

   o  The proxy does not know how many members there are in the CoAP
      group or how many group members will actually respond.  Also, the
      proxy does not know for how long to collect responses before it
      stops forwarding them to the client.  A CoAP client that is not
      using a Proxy might face the same problems in collecting responses
      to a multicast request.  However, the client itself would
      typically have application-specific rules or knowledge on how to
      handle this situation, while an application-agnostic CoAP Proxy
      would typically not have this knowledge.  For example, a CoAP
      client could monitor incoming responses and use this information
      to decide how long to continue collecting responses - which is
      something a proxy cannot do.

   A forward-proxying method using this approach and addressing the
   issues raised above is defined in [I-D.tiloca-core-groupcomm-proxy].

   An alternative solution is for the proxy to collect all the
   individual (unicast) responses to a CoAP group request and then send
   back only a single (aggregated) response to the client.  However,
   this solution brings up new issues:

   o  Like for the approach discussed above, the proxy does not know for
      how long to collect responses before sending back the aggregated
      response to the client.  Analogous considerations apply to this
      approach too, both on the client and proxy side.

   o  There is no default format defined in CoAP for aggregation of
      multiple responses into a single response.  Such a format could be
      standardized based on, for example, the multipart content-format
      [RFC8710].

   Due to the above issues, it is RECOMMENDED that a CoAP Proxy only
   processes a group URI request if it is explicitly enabled to do so.
   The default response (if the function is not explicitly enabled) to a
   group URI request is 5.01 Not Implemented.  Furthermore, a proxy

https://datatracker.ietf.org/doc/html/rfc8710


Dijk, et al.             Expires August 26, 2021               [Page 23]



Internet-Draft        Group Communication for CoAP         February 2021

   SHOULD be explicitly configured (e.g. by allow-listing and/or client
   authentication) to allow proxied CoAP multicast requests only from
   specific client(s).

   The operation of HTTP-to-CoAP proxies for multicast CoAP requests is
   specified in Section 8.4 and 10.1 of [RFC8075].  In this case, the
   "application/http" media type is used to let the proxy return
   multiple CoAP responses - each translated to a HTTP response - back
   to the HTTP client.  Of course, in this case the HTTP client sending
   a group URI to the proxy needs to be aware that it is going to
   receive this format, and needs to be able to decode it into the
   responses of multiple CoAP servers.  Also, the IP source address of
   each CoAP response cannot be determined anymore from the
   "application/http" response.  The HTTP client still identify the CoAP
   servers by other means such as application-specific information in
   the response payload.

3.4.2.  Reverse-Proxies

   CoAP enables the use of a reverse-proxy, as an endpoint that stands
   in for one or more other server(s), and satisfies requests on behalf
   of these, doing any necessary translations (see Section 5.7.3 of
   [RFC7252]).

   In a group communication scenario, a reverse-proxy can rely on its
   configuration and/or on information in a request from a client, in
   order to determine that the request has to be forwarded to a group of
   servers over IP multicast.  For example, specific resources on the
   reverse-proxy could be allocated, each to a specific application
   group and/or CoAP group.  Or alternatively, the application group
   and/or CoAP group in question could be encoded as URI path segments.
   The URI path encodings for a reverse-proxy may also use a URI mapping
   template as described in Section 5.4 of [RFC8075].

   Furthermore, the reverse-proxy can actually stand in for (and thus
   prevent to directly reach) only the whole set of servers in the
   group, or also for each of those individual servers (e.g. if acting
   as firewall).

   For a reverse-proxy that forwards a request to a group of servers
   over IP multicast, the same considerations as defined in

Section 5.7.3 of [RFC7252] hold, with the following additions:

   o  The three issues and limitations defined in Section 3.4.1 for a
      forward proxy apply to a reverse-proxy as well, and have to be
      addressed, e.g. using the signaling method defined in
      [I-D.tiloca-core-groupcomm-proxy] or other means.

https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.3
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.3
https://datatracker.ietf.org/doc/html/rfc8075#section-5.4
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.3


Dijk, et al.             Expires August 26, 2021               [Page 24]



Internet-Draft        Group Communication for CoAP         February 2021

   o  A reverse-proxy MAY have preconfigured time duration(s) that are
      used for the collecting of server responses and forwarding these
      back to the client.  These duration(s) may be set as global
      configuration or resource-specific configurations.  If there is
      such preconfiguration, then an explicit signaling of the time
      period in the client's request as defined in
      [I-D.tiloca-core-groupcomm-proxy] is not necessarily needed.

   o  A client that is configured to access a reverse-proxy resource
      (i.e. one that triggers a CoAP group communication request) SHOULD
      be configured also to handle potentially multiple responses with
      the same Token value caused by a single request.

      That is,the client needs to preserve the Token value used for the
      request also after the reception of the first response forwarded
      back by the proxy (see Section 3.1) and keep the request open to
      potential further responses with this Token.  This requirement can
      be met by a combination of client implementation and proper
      proxied group communication configuration on the client.

   o  A client might re-use a Token value in a valid new request to the
      reverse-proxy, while the reverse-proxy still has an ongoing group
      communication request for this client with the same Token value
      (i.e. its time period for response collection has not ended yet).

      If this happens, the reverse-proxy MUST stop the ongoing request
      and associated response forwarding, it MUST NOT forward the new
      request to the group of servers, and it MUST send a 4.00 Bad
      Request error response to the client.  The diagnostic payload of
      the error response SHOULD indicate to the client that the resource
      is a reverse-proxy resource, and that for this reason immediate
      Token re-use is not possible.

      If the reverse-proxy supports the signalling protocol of
      [I-D.tiloca-core-groupcomm-proxy] it can include a Multicast-
      Signaling Option in the error response to convey the reason for
      the error in a machine-readable way.

   For the operation of HTTP-to-CoAP reverse proxies, see the last
   paragraph of Section 3.4.1 which applies also to this case.

3.4.3.  Caching

   A proxy that supports forwarding of group requests and that employs a
   cache maintains the following two types of cache entry.

   o  The first type, "individual" cache entry, is associated to one
      server and stores one response from that server, regardless



Dijk, et al.             Expires August 26, 2021               [Page 25]



Internet-Draft        Group Communication for CoAP         February 2021

      whether it is a response to a unicast request or to a group
      request.

      A hit to this entry would be produced by a matching request
      intended to that server, i.e. to the corresponding unicast URI.

      When the response is a response to a unicast request to the
      server, the unicast URI is the same target URI used for the
      request.

      When the response is a response to a group request to the CoAP
      group, the unicast URI is obtained by replacing the authority part
      of the group URI in the group request with the transport-layer
      source address and port number of the response message.

   o  The second type, "aggregated" cache entry, is associated to the
      CoAP group, and stores all the responses that: the proxy has
      received as a response to a group request to that group; and that
      have been also forwarded back to the client that sent the group
      request.

      A hit to this entry would be produced by a matching group request
      intended to the CoAP group, i.e. to the corresponding group URI.

   When forwarding a group request to a CoAP group using the request's
   group URI and processing the responses, the proxy handles its cache
   entries as follows.  The same applies if the proxy spontaneously re-
   sends a group request to the CoAP group, in order to refresh an
   aggregated cache entry after its expiration or invalidation.

   1.  For each response to the group request which is received and also
       forwarded back to the client:

       *  The proxy creates or refreshes the individual cache entry
          associated to the origin server and for that response.  That
          is, the response is stored in the individual cache entry, and
          the lifetime of the cache entry is set to the lifetime of the
          response, as indicated by the Max-Age Option if present, or as
          the default value of 60 seconds otherwise (see Section 5.6.1
          of [RFC7252]).  This cache entry becomes immediately usable to
          serve requests from clients.

       *  The proxy adds the response to a temporary list L.

   2.  After stopping to forward the received responses back to the
       client:

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1


Dijk, et al.             Expires August 26, 2021               [Page 26]



Internet-Draft        Group Communication for CoAP         February 2021

       *  The proxy creates an aggregated cache entry associated to the
          group for that group request, if not existing yet.  In case of
          an existing entry to be refreshed, the proxy deletes all the
          responses stored in the entry.

       *  The proxy stores all the responses from the list L in the
          aggregated cache entry.

       *  The proxy sets the lifetime of the cache entry to the smallest
          lifetime among all the responses stored in the entry,
          determined in the same way as defined in step 1 above.

       *  The proxy sets the aggregated cache entry as usable to serve
          group requests from clients.

   When forwarding a request to an individual server using the
   associated unicast URI and processing its response, the proxy handles
   its cache entries as follows.  The same applies if the proxy
   spontaneously re-sends a unicast request to a single server, in order
   to refresh an individual cache entry after its expiration or
   invalidation.

   1.  The proxy creates or refreshes the individual cache entry
       associated to the origin server and for that response.  That is,
       the response is stored in the cache entry, and the lifetime of
       the cache entry is set to the lifetime of the response, as
       indicated by the Max-Age Option if present, or as the default
       value of 60 seconds otherwise (see Section 5.6.1 of [RFC7252]).
       This cache entry becomes immediately usable to serve requests
       from clients.

   2.  The proxy checks whether it has a non-expired and valid
       aggregated cache entry, such that a hit would be produced by a
       group request analogous to the forwarded unicast request.

       That is, such group request would be intended to the group URI of
       the CoAP group associated to the aggregated cache entry, rather
       than intended to the unicast URI of the forwarded request.

   3.  If an aggregated cache entry is found at the previous step:

       *  The proxy stores the received response in the aggregated cache
          entry, possibly replacing an already stored instance of that
          response from that origin server.

       *  The proxy sets as new lifetime of the aggregated cache entry
          the minimum value between the current lifetime of the cache
          entry and the lifetime of the just-stored response, as

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1


Dijk, et al.             Expires August 26, 2021               [Page 27]



Internet-Draft        Group Communication for CoAP         February 2021

          indicated by the Max-Age Option if present, or as the default
          value of 60 seconds otherwise (see Section 5.6.1 of
          [RFC7252]).

   Note that a proxy embedded in a router can monitor network control
   messages, hence learning when a new server has joined a CoAP group
   and is listening to the multicast IP address of that CoAP group.
   This information could be used to guide the proxy in refreshing an
   aggregated cache entry, by sending a request to the CoAP group over
   the group URI before the entry expires, and thus storing also a
   response from the newly joined server.

   Following the expiration or invalidation of a cache entry, as well as
   if wishing to refresh a cache entry, the proxy can directly interact
   with the servers in the CoAP group.  To this end, it takes the role
   of a CoAP client as defined in Section 3.2.  In particular, the proxy
   can perform revalidation of responses to group requests by using the
   Multi-ETag Option, as defined in Section 3.2.2.

   As further discussed in Section 5.2, additional means are required to
   enable cachability of responses at the proxy when communications in
   the group are secured with Group OSCORE
   [I-D.ietf-core-oscore-groupcomm].

3.4.3.1.  Validation of Responses to a Group Request

   A client can revalidate the full set of responses to a group request
   from the corresponding aggregated cache entry at the proxy.  To this
   end, this specification defines the new Group-ETag Option.

   The Group-ETag Option has the properties summarized in Figure 4,
   which extends Table 4 of [RFC7252].  The Group-ETag Option is
   elective, safe to forward, part of the cache key, and repeatable.

   The option is intended for group requests sent to a Forward-Proxy, as
   well as for the associated responses retrieved from the corresponding
   aggregated cache entry at the proxy.

     +------+---+---+---+---+------------+--------+--------+---------+
     | No.  | C | U | N | R | Name       | Format | Length | Default |
     +------+---+---+---+---+------------+--------+--------+---------+
     |      |   |   |   |   |            |        |        |         |
     | TBD2 |   |   |   | x | Group-ETag | opaque |  1-8   | (none)  |
     |      |   |   |   |   |            |        |        |         |
     +------+---+---+---+---+------------+--------+--------+---------+
                C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

                     Figure 4: The Group-ETag Option.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7252


Dijk, et al.             Expires August 26, 2021               [Page 28]



Internet-Draft        Group Communication for CoAP         February 2021

   The Group-ETag Option has the same properties of the ETag Option
   defined in Section 5.10.6 of [RFC7252].

   The Group-ETag Option is of class U in terms of OSCORE processing
   (see Section 4.1 of [RFC8613]).

   When providing 2.05 (Content) responses to a GET or FETCH group
   request from an aggregated cache entry, the proxy can include one
   Group-ETag Option, specifying the current entity-tag value associated
   to that cache entry.  Each of such responses MUST NOT include more
   than one Group-ETag Option.

   If the proxy supports this form of response revalidation, it MUST
   update the current entity-tag value associated to an aggregated cache
   entry, every time a response is added to that cache entry or replaces
   an already included response.

   When sending a GET or FETCH group request to the proxy, to be
   forwarded to a CoAP group, the client can include one or more Group-
   ETag Option(s).  Each option specifies one entity-tag value, as
   applicable to the aggregated cache entry for that group request.

   In case the group request hits an aggregated cache entry and its
   current entity-tag value matches with one of the entity-tag value(s)
   specified in the Group-ETag option(s), then the proxy replies with a
   single 2.03 (Valid) response.  This response has no payload and MUST
   include one Group-ETag Option, specifying the current entity-tag
   value of the aggregated cache entry.

   That is, the 2.03 (Valid) response from the proxy indicates that the
   stored responses idenfied by the entity-tag given in the response's
   Group-ETag Option can be reused, after updating each of them as
   described in Section 5.9.1.3 of [RFC7252].  In effect, the client can
   determine if any of the stored set of representations from the
   aggregated cache entry at the proxy is current, without needing to
   transfer any of them again.

   Note that, if a client triggers the proxy to perform forwarding of a
   group request (i.e., there is no hit of an aggregated cache entry),
   this will result in a new aggregated cache entry created at the
   proxy.  Then, the client cannot obtain an entity-tag value through a
   Group-ETag Option in any of the responses forwarded back by the
   proxy.

   In fact, the proxy will only have an assigned entity-tag value to
   provide after all responses have been forwarded back to that client,
   which is the moment that the new aggregated cache entry is eventually
   created.  However, when follow-up group requests from the same client

https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc8613#section-4.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9.1.3


Dijk, et al.             Expires August 26, 2021               [Page 29]



Internet-Draft        Group Communication for CoAP         February 2021

   or different clients are served from this aggregated cache entry, the
   proxy can include a Group-ETag Option in each returned response,
   specifying the current entity-tag for the aggregated cache entry.

3.5.  Congestion Control

   CoAP group requests may result in a multitude of responses from
   different nodes, potentially causing congestion.  Therefore, both the
   sending of IP multicast requests and the sending of the unicast CoAP
   responses to these multicast requests should be conservatively
   controlled.

   CoAP [RFC7252] reduces IP multicast-specific congestion risks through
   the following measures:

   o  A server may choose not to respond to an IP multicast request if
      there is nothing useful to respond to, e.g., error or empty
      response (see Section 8.2 of [RFC7252]).

   o  A server should limit the support for IP multicast requests to
      specific resources where multicast operation is required
      (Section 11.3 of [RFC7252]).

   o  An IP multicast request MUST be Non-confirmable (Section 8.1 of
      [RFC7252]).

   o  A response to an IP multicast request SHOULD be Non-confirmable
      (Section 5.2.3 of [RFC7252]).

   o  A server does not respond immediately to an IP multicast request
      and should first wait for a time that is randomly picked within a
      predetermined time interval called the Leisure (Section 8.2 of
      [RFC7252]).

   Additional guidelines to reduce congestion risks defined in this
   document are as follows:

   o  A server in a constrained network SHOULD only support group
      communication for resources that have a small representation
      (where the representation may be retrieved via a GET, FETCH or
      POST method in the request).  For example, "small" can be defined
      as a response payload limited to approximately 5% of the IP
      Maximum Transmit Unit (MTU) size, so that it fits into a single
      link-layer frame in case IPv6 over Low-Power Wireless Personal
      Area Networks (6LoWPAN, see Section 3.8.3) is used on the
      constrained network.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc7252#section-8.1
https://datatracker.ietf.org/doc/html/rfc7252#section-8.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.2.3
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2


Dijk, et al.             Expires August 26, 2021               [Page 30]



Internet-Draft        Group Communication for CoAP         February 2021

   o  A server SHOULD minimize the payload size of a response to a
      multicast GET or FETCH on "/.well-known/core" by using hierarchy
      in arranging link descriptions for the response.  An example of
      this is given in Section 5 of [RFC6690].

   o  A server MAY minimize the payload size of a response to a
      multicast GET or FETCH (e.g., on "/.well-known/core") by using
      CoAP block-wise transfers [RFC7959] in case the payload is long,
      returning only a first block of the CoRE Link Format description.
      For this reason, a CoAP client sending an IP multicast CoAP
      request to "/.well-known/core" SHOULD support block-wise
      transfers.  See also Section 3.7.

   o  A client SHOULD be configured to use CoAP groups with the smallest
      possible IP multicast scope that fulfills the application needs.
      As an example, site-local scope is always preferred over global
      scope IP multicast if this fulfills the application needs.
      Similarly, realm-local scope is always preferred over site-local
      scope if this fulfills the application needs.

3.6.  Observing Resources

   The CoAP Observe Option [RFC7641] is a protocol extension of CoAP,
   that allows a CoAP client to retrieve a representation of a resource
   and automatically keep this representation up-to-date over a longer
   period of time.  The client gets notified when the representation has
   changed.  [RFC7641] does not mention whether the Observe Option can
   be combined with CoAP multicast.

   This section updates [RFC7641] with the use of the Observe Option in
   a CoAP multicast GET request, and defines normative behavior for both
   client and server.  Consistent with Section 2.4 of [RFC8132], it is
   also possible to use the Observe Option in a CoAP multicast FETCH
   request.

   Multicast Observe is a useful way to start observing a particular
   resource on all members of a CoAP group at the same time.  Group
   members that do not have this particular resource or do not allow the
   GET or FETCH method on it will either respond with an error status -
   4.04 Not Found or 4.05 Method Not Allowed, respectively - or will
   silently suppress the response following the rules of Section 3.1,
   depending on server-specific configuration.

   A client that sends a multicast GET or FETCH request with the Observe
   Option MAY repeat this request using the same Token value and the
   same Observe Option value, in order to ensure that enough (or all)
   members of the CoAP group have been reached with the request.  This
   is useful in case a number of group members did not respond to the

https://datatracker.ietf.org/doc/html/rfc6690#section-5
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc8132#section-2.4


Dijk, et al.             Expires August 26, 2021               [Page 31]



Internet-Draft        Group Communication for CoAP         February 2021

   initial request.  The client MAY additionally use the same Message ID
   in the repeated request to avoid that group members that had already
   received the initial request would respond again.  Note that using
   the same Message ID in a repeated request will not be helpful in case
   of loss of a response message, since the server that responded
   already will consider the repeated request as a duplicate message.
   On the other hand, if the client uses a different, fresh Message ID
   in the repeated request, then all the group members that receive this
   new message will typically respond again, which increases the network
   load.

   A client that has sent a multicast GET or FETCH request with the
   Observe Option MAY follow up by sending a new unicast CON request
   with the same Token value and same Observe Option value to a
   particular server, in order to ensure that the particular server
   receives the request.  This is useful in case a specific group
   member, that was expected to respond to the initial group request,
   did not respond to the initial request.  In this case, the client
   MUST use a Message ID that differs from the initial multicast
   message.

   Furthermore, consistent with Section 3.3.1 of [RFC7641] and following
   its guidelines, a client MAY at any time send a new multicast GET or
   FETCH request with the same Token value and same Observe Option value
   as the original request.  This allows the client to verify that it
   has an up-to-date representation of an observed resource and/or to
   re-register its interest to observe a resource.

   In the above client behaviors, the Token value is kept identical to
   the initial request to avoid that a client is included in more than
   one entry in the list of observers (Section 4.1 of [RFC7641]).

   Before repeating a request as specified above, the client SHOULD wait
   for at least the expected round-trip time plus the Leisure time
   period defined in Section 8.2 of [RFC7252], to give the server time
   to respond.

   A server that receives a GET or FETCH request with the Observe
   Option, for which request processing is successful, SHOULD respond to
   this request and not suppress the response.  A server that adds a
   client to the list (as a new entry) of observers for a resource due
   to an Observe request MUST respond to this request and not suppress
   it.

   A server SHOULD have a mechanism to verify liveness of its observing
   clients and the continued interest of these clients in receiving the
   observe notifications.  This can be implemented by sending
   notifications occassionally using a Confirmable message.  See

https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7641#section-4.1
https://datatracker.ietf.org/doc/html/rfc7252#section-8.2


Dijk, et al.             Expires August 26, 2021               [Page 32]



Internet-Draft        Group Communication for CoAP         February 2021

Section 4.5 of [RFC7641] for details.  This requirement overrides the
   regular behavior of sending Non-Confirmable notifications in response
   to a Non-Confirmable request.

   A client can use the unicast cancellation methods of Section 3.6 of
   [RFC7641] and stop the ongoing observation of a particular resource
   on members of a CoAP group.  This can be used to remove specific
   observed servers, or even all servers in the group (using serial
   unicast to each known group member).  In addition, a client MAY
   explicitly deregister from all those servers at once, by sending a
   multicast GET or FETCH request that includes the Token value of the
   observation to be cancelled and includes an Observe Option with the
   value set to 1 (deregister).  In case not all the servers in the CoAP
   group received this deregistration request, either the unicast
   cancellation methods can be used at a later point in time or the
   multicast deregistration request MAY be repeated upon receiving
   another observe response from a server.

   For observing a group of servers through a CoAP-to-CoAP proxy, the
   limitations stated in Section 3.4 apply.  The method defined in
   [I-D.tiloca-core-groupcomm-proxy] enables group communication
   including resource observation through proxies and addresses those
   limitations.

3.7.  Block-Wise Transfer

Section 2.8 of [RFC7959] specifies how a client can use block-wise
   transfer (Block2 Option) in a multicast GET request to limit the size
   of the initial response of each server.  Consistent with Section 2.5
   of [RFC8132], the same can be done with a multicast FETCH request.

   The client has to use unicast for any further request, separately
   addressing each different server, in order to retrieve more blocks of
   the resource from that server, if any.  Also, a server (member of a
   targeted CoAP group) that needs to respond to a multicast request
   with a particularly large resource can use block-wise transfer
   (Block2 Option) at its own initiative, to limit the size of the
   initial response.  Again, a client would have to use unicast for any
   further requests to retrieve more blocks of the resource.

   A solution for multicast block-wise transfer using the Block1 Option
   is not specified in [RFC7959] nor in the present document.  Such a
   solution would be useful for multicast FETCH/PUT/POST/PATCH/iPATCH
   requests, to efficiently distribute a large request payload as
   multiple blocks to all members of a CoAP group.  Multicast usage of
   Block1 is non-trivial due to potential message loss (leading to
   missing blocks or missing confirmations), and potential diverging
   block size preferences of different members of the CoAP group.

https://datatracker.ietf.org/doc/html/rfc7641#section-4.5
https://datatracker.ietf.org/doc/html/rfc7641#section-3.6
https://datatracker.ietf.org/doc/html/rfc7641#section-3.6
https://datatracker.ietf.org/doc/html/rfc7959#section-2.8
https://datatracker.ietf.org/doc/html/rfc8132#section-2.5
https://datatracker.ietf.org/doc/html/rfc8132#section-2.5
https://datatracker.ietf.org/doc/html/rfc7959


Dijk, et al.             Expires August 26, 2021               [Page 33]



Internet-Draft        Group Communication for CoAP         February 2021

3.8.  Transport

   In this document only UDP is considered as a transport protocol, both
   over IPv4 and IPv6.  Therefore, [RFC8323] (CoAP over TCP, TLS, and
   WebSockets) is not in scope as a transport for group communication.

3.8.1.  UDP/IPv6 Multicast Transport

   CoAP group communication can use UDP over IPv6 as a transport
   protocol, provided that IPv6 multicast is enabled.  IPv6 multicast
   MAY be supported in a network only for a limited scope.  For example,

Section 3.9.2 describes the potential limited support of RPL for
   multicast, depending on how the protocol is configured.

   For a CoAP server node that supports resource discovery as defined in
Section 2.4 of [RFC7252], the default port 5683 MUST be supported as

   per Section 7.1 and 12.8 of [RFC7252] for the "All CoAP Nodes"
   multicast group.  An IPv6 CoAP server SHOULD support the "All CoAP
   Nodes" groups with at least link-local (2), admin-local (4) and site-
   local (5) scopes.  An IPv6 CoAP server on a 6LoWPAN node (see

Section 3.8.3) SHOULD also support the realm-local (3) scope.

   Note that a client sending an IPv6 multicast CoAP message to a port
   that is not supported by the server will not receive an ICMPv6 Port
   Unreachable error message from that server, because the server does
   not send it in this case, per Section 2.4 of [RFC4443].

3.8.2.  UDP/IPv4 Multicast Transport

   CoAP group communication can use UDP over IPv4 as a transport
   protocol, provided that IPv4 multicast is enabled.  For a CoAP server
   node that supports resource discovery as defined in Section 2.4 of
   [RFC7252], the default port 5683 MUST be supported as per Section 7.1
   and 12.8 of [RFC7252], for the "All CoAP Nodes" IPv4 multicast group.

   Note that a client sending an IPv4 multicast CoAP message to a port
   that is not supported by the server will not receive an ICMP Port
   Unreachable error message from that server, because the server does
   not send it in this case, per Section 3.2.2 of [RFC1122].

3.8.3.  6LoWPAN

   In 6LoWPAN [RFC4944] [RFC6282] networks, IPv6 packets (up to 1280
   bytes) may be fragmented into smaller IEEE 802.15.4 MAC frames (up to
   127 bytes), if the packet size requires this.  Every 6LoWPAN IPv6
   router that receives a multi-fragment packet reassembles the packet
   and refragments it upon transmission.  Since the loss of a single
   fragment implies the loss of the entire IPv6 packet, the performance

https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc7252#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc4443#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc1122#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282


Dijk, et al.             Expires August 26, 2021               [Page 34]



Internet-Draft        Group Communication for CoAP         February 2021

   in terms of packet loss and throughput of multi-fragment multicast
   IPv6 packets is typically far worse than the performance of single-
   fragment IPv6 multicast packets.  For this reason, a CoAP request
   sent over multicast in 6LoWPAN networks SHOULD be sized in such a way
   that it fits in a single IEEE 802.15.4 MAC frame, if possible.

   On 6LoWPAN networks, multicast groups can be defined with realm-local
   scope [RFC7346].  Such a realm-local group is restricted to the local
   6LoWPAN network/subnet.  In other words, a multicast request to that
   group does not propagate beyond the 6LoWPAN network segment where the
   request originated.  For example, a multicast discovery request can
   be sent to the realm-local "All CoAP Nodes" IPv6 multicast group (see

Section 3.8.1) in order to discover only CoAP servers on the local
   6LoWPAN network.

3.9.  Interworking with Other Protocols

3.9.1.  MLD/MLDv2/IGMP/IGMPv3

   CoAP nodes that are IP hosts (i.e., not IP routers) are generally
   unaware of the specific IP multicast routing/forwarding protocol
   being used in their network.  When such a host needs to join a
   specific (CoAP) multicast group, it requires a way to signal to IP
   multicast routers which IP multicast address(es) it needs to listen
   to.

   The MLDv2 protocol [RFC3810] is the standard IPv6 method to achieve
   this; therefore, this method SHOULD be used by members of a CoAP
   group to subscribe to its multicast IPv6 address, on IPv6 networks
   that support it.  CoAP server nodes then act in the role of MLD
   Multicast Address Listener.  MLDv2 uses link-local communication
   between Listeners and IP multicast routers.  Constrained IPv6
   networks that implement either RPL (see Section 3.9.2) or MPL (see

Section 3.9.3) typically do not support MLDv2 as they have their own
   mechanisms defined for subscribing to multicast groups.

   The IGMPv3 protocol [RFC3376] is the standard IPv4 method to signal
   multicast group subscriptions.  This SHOULD be used by members of a
   CoAP group to subscribe to its multicast IPv4 address on IPv4
   networks.

   The guidelines from [RFC6636] on the tuning of MLD for mobile and
   wireless networks may be useful when implementing MLD in constrained
   networks.

https://datatracker.ietf.org/doc/html/rfc7346
https://datatracker.ietf.org/doc/html/rfc3810
https://datatracker.ietf.org/doc/html/rfc3376
https://datatracker.ietf.org/doc/html/rfc6636


Dijk, et al.             Expires August 26, 2021               [Page 35]



Internet-Draft        Group Communication for CoAP         February 2021

3.9.2.  RPL

   RPL [RFC6550] is an IPv6 based routing protocol suitable for low-
   power, lossy networks (LLNs).  In such a context, CoAP is often used
   as an application protocol.

   If only RPL is used in a network for routing and its optional
   multicast support is disabled, there will be no IP multicast routing
   available.  Any IPv6 multicast packets in this case will not
   propagate beyond a single hop (to direct neighbors in the LLN).  This
   implies that any CoAP group request will be delivered to link-local
   nodes only, for any scope value >= 2 used in the IPv6 destination
   address.

   RPL supports (see Section 12 of [RFC6550]) advertisement of IP
   multicast destinations using Destination Advertisement Object (DAO)
   messages and subsequent routing of multicast IPv6 packets based on
   this.  It requires the RPL mode of operation to be 3 (Storing mode
   with multicast support).

   In this mode, RPL DAO can be used by a CoAP node that is either an
   RPL router or RPL Leaf Node, to advertise its CoAP group membership
   to parent RPL routers.  Then, RPL will route any IP multicast CoAP
   requests over multiple hops to those CoAP servers that are group
   members.

   The same DAO mechanism can be used to convey CoAP group membership
   information to an edge router (e.g., 6LBR), in case the edge router
   is also the root of the RPL Destination-Oriented Directed Acyclic
   Graph (DODAG).  This is useful because the edge router then learns
   which IP multicast traffic it needs to pass through from the backbone
   network into the LLN subnet, and which traffic not.  In LLNs, such
   ingress filtering helps to avoid congestion of the resource-
   constrained network segment, due to IP multicast traffic from the
   high-speed backbone IP network.

3.9.3.  MPL

   The Multicast Protocol for Low-Power and Lossy Networks (MPL)
   [RFC7731] can be used for propagation of IPv6 multicast packets
   throughout a defined network domain, over multiple hops.  MPL is
   designed to work in LLNs and can operate alone or in combination with
   RPL.  The protocol involves a predefined group of MPL Forwarders to
   collectively distribute IPv6 multicast packets throughout their MPL
   Domain.  An MPL Forwarder may be associated to multiple MPL Domains
   at the same time.  Non-Forwarders will receive IPv6 multicast packets
   from one or more of their neighboring Forwarders.  Therefore, MPL can
   be used to propagate a CoAP multicast request to all group members.

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6550#section-12
https://datatracker.ietf.org/doc/html/rfc7731


Dijk, et al.             Expires August 26, 2021               [Page 36]



Internet-Draft        Group Communication for CoAP         February 2021

   However, a CoAP multicast request to a group that originated outside
   of the MPL Domain will not be propagated by MPL - unless an MPL
   Forwarder is explicitly configured as an ingress point that
   introduces external multicast packets into the MPL Domain.  Such an
   ingress point could be located on an edge router (e.g., 6LBR).
   Methods to configure which multicast groups are to be propagated into
   the MPL Domain could be:

   o  Manual configuration on each ingress MPL Forwarder.

   o  MLDv2 protocol, which works only in case all CoAP servers joining
      a group are in link-local communication range of an ingress MPL
      Forwarder.  This is typically not the case on mesh networks.

   o  A new/custom protocol to register multicast groups at an ingress
      MPL Forwarder.  This could be for example a CoAP-based protocol
      offering multicast group subscription features similar to MLDv2.

4.  Unsecured Group Communication

   CoAP group communication can operate in CoAP NoSec (No Security)
   mode, without using application-layer and transport-layer security
   mechanisms.  The NoSec mode uses the "coap" scheme, and is defined in

Section 9 of [RFC7252].  The conceptual "NoSec" security group as
   defined in Section 2.1 is used for unsecured group communication.
   Before using this mode of operation, the security implications
   (Section 6.1) must be well understood.

5.  Secured Group Communication using Group OSCORE

   The application-layer protocol Object Security for Constrained
   RESTful Environments (OSCORE) [RFC8613] provides end-to-end
   encryption, integrity and replay protection of CoAP messages
   exchanged between two CoAP endpoints.  These can act both as CoAP
   Client as well as CoAP Server, and share an OSCORE Security Context
   used to protect and verify exchanged messages.  The use of OSCORE
   does not affect the URI scheme and OSCORE can therefore be used with
   any URI scheme defined for CoAP.

   OSCORE uses COSE
   [I-D.ietf-cose-rfc8152bis-struct][I-D.ietf-cose-rfc8152bis-algs] to
   perform encryption operations and protect a CoAP message carried in a
   COSE object, by using an Authenticated Encryption with Associated
   Data (AEAD) algorithm.  In particular, OSCORE takes as input an
   unprotected CoAP message and transforms it into a protected CoAP
   message transporting the COSE object.

https://datatracker.ietf.org/doc/html/rfc7252#section-9
https://datatracker.ietf.org/doc/html/rfc8613


Dijk, et al.             Expires August 26, 2021               [Page 37]



Internet-Draft        Group Communication for CoAP         February 2021

   OSCORE makes it possible to selectively protect different parts of a
   CoAP message in different ways, while still allowing intermediaries
   (e.g., CoAP proxies) to perform their intended funtionalities.  That
   is, some message parts are encrypted and integrity protected; other
   parts are only integrity protected to be accessible to, but not
   modifiable by, proxies; and some parts are kept as plain content to
   be both accessible to and modifiable by proxies.  Such differences
   especially concern the CoAP options included in the unprotected
   message.

   Group OSCORE [I-D.ietf-core-oscore-groupcomm] builds on OSCORE, and
   provides end-to-end security of CoAP messages exchanged between
   members of an OSCORE group, while fulfilling the same security
   requirements.

   In particular, Group OSCORE protects CoAP requests sent over IP
   multicast by a CoAP client, as well as multiple corresponding CoAP
   responses sent over IP unicast by different CoAP servers.  However,
   the same security material can also be used to protect CoAP requests
   sent over IP unicast to a single CoAP server in the OSCORE group, as
   well as the corresponding responses.

   Group OSCORE ensures source authentication of all messages exchanged
   within the OSCORE group, by means of two possible methods.

   The first method, called group mode, relies on digital signatures.
   That is, sender devices sign their outgoing messages using their own
   private key, and embed the signature in the protected CoAP message.

   The second method, called pairwise mode, relies on a symmetric key,
   which is derived from a pairwise shared secret computed from the
   asymmetric keys of the message sender and recipient.  This method is
   intended for one-to-one messages sent in the group, such as all
   responses individually sent by servers, as well as requests addressed
   to an individual server.

   A Group Manager is responsible for managing one or multiple OSCORE
   groups.  In particular, the Group Manager acts as repository of
   public keys of group members; manages, renews and provides security
   material in the group; and handles the join process of new group
   members.

   As defined in [I-D.ietf-ace-oscore-gm-admin], an administrator entity
   can interact with the Group Manager to create OSCORE groups and
   specify their configuration (see Section 2.2.2).  During the lifetime
   of the OSCORE group, the administrator can further interact with the
   Group Manager, in order to possibly update the group configuration
   and eventually delete the group.



Dijk, et al.             Expires August 26, 2021               [Page 38]



Internet-Draft        Group Communication for CoAP         February 2021

   As recommended in [I-D.ietf-core-oscore-groupcomm], a CoAP endpoint
   can join an OSCORE group by using the method described in
   [I-D.ietf-ace-key-groupcomm-oscore] and based on the ACE framework
   for Authentication and Authorization in constrained environments
   [I-D.ietf-ace-oauth-authz].

   A CoAP endpoint can discover OSCORE groups and retrieve information
   to join them through their respective Group Managers by using the
   method described in [I-D.tiloca-core-oscore-discovery] and based on
   the CoRE Resource Directory [I-D.ietf-core-resource-directory].

   If security is required, CoAP group communication as described in
   this specification MUST use Group OSCORE.  In particular, a CoAP
   group as defined in Section 2.1 and using secure group communication
   is associated to an OSCORE security group, which includes:

   o  All members of the CoAP group, i.e. the CoAP endpoints configured
      (also) as CoAP servers and listening to the group's multicast IP
      address on the group's UDP port.

   o  All further CoAP endpoints configured only as CoAP clients, that
      send (multicast) CoAP requests to the CoAP group.

5.1.  Secure Group Maintenance

   As part of group maintenance operations (see Section 2.2.4),
   additional key management operations are required for an OSCORE
   group, depending on the security requirements of the application (see

Section 6.2).  Specifically:

   o  Adding new members to a CoAP group or enabling new client-only
      endpoints to interact with that group require also that each of
      such members/endpoints join the corresponding OSCORE group.  By
      doing so, they are securely provided with the necessary
      cryptographic material.  In case backward security is needed, this
      also requires to first renew such material and distribute it to
      the current members/endpoints, before new ones are added and join
      the OSCORE group.

   o  In case forward security is needed, removing members from a CoAP
      group or stopping client-only endpoints from interacting with that
      group requires removing such members/endpoints from the
      corresponding OSCORE group.  To this end, new cryptographic
      material is generated and securely distributed only to the
      remaining members/endpoints.  This ensures that only the members/
      endpoints intended to remain are able to continue participating in
      secure group communication, while the evicted ones are not able
      to.



Dijk, et al.             Expires August 26, 2021               [Page 39]



Internet-Draft        Group Communication for CoAP         February 2021

   The key management operations mentioned above are entrusted to the
   Group Manager responsible for the OSCORE group
   [I-D.ietf-core-oscore-groupcomm], and it is RECOMMENDED to perform
   them according to the approach described in
   [I-D.ietf-ace-key-groupcomm-oscore].

5.2.  Caching of Responses at Proxies

   When using Group OSCORE to protect communications end-to-end between
   a client and multiple servers in the group, it is normally not
   possible for an intermediary proxy to cache protected responses.

   In fact, when starting from the same plain CoAP message, different
   clients generate different protected requests to send on the wire.
   This prevents different clients to generate potential cache hits, and
   thus makes response caching at the proxy pointless.

5.2.1.  Using Deterministic Requests to Achieve Cachability

   For application scenarios that require secure group communication, it
   is still possible to achieve cachability of responses at proxies, by
   using the approach defined in [I-D.amsuess-core-cachable-oscore]
   which is based on Deterministic Requests protected with the pairwise
   mode of Group OSCORE.  This approach is limited to group requests
   that are safe (in the RESTful sense) to process and do not yield side
   effects at the server.  As for any protected group request, it
   requires the clients and all the servers in the CoAP group to have
   already joined the correct OSCORE group.

   Starting from the same plain CoAP request, this allows different
   clients in the OSCORE group to deterministically generate a same
   request protected with Group OSCORE, which is sent to the proxy for
   being forwarded to the CoAP group.  The proxy can now effectively
   cache the resulting responses from the servers in the CoAP group,
   since the same plain CoAP request will result again in the same
   Deterministic Request and thus will produce a cache hit.

   When caching of Group OSCORE secured responses is enabled at the
   proxy, the same as defined in Section 3.4.3 applies, with respect to
   cache entries and their lifetimes.

   Note that different Deterministic Requests result in different cache
   entries at the proxy.  This includes the case where different plain
   group requests differ only in their set of Multi-ETag Options.

   That is, even though the servers would produce the same plain CoAP
   responses in reply to the different Deterministic Requests, those
   will result in different protected responses to each respective



Dijk, et al.             Expires August 26, 2021               [Page 40]



Internet-Draft        Group Communication for CoAP         February 2021

   Deterministic Request, and hence in different cache entries at the
   proxy.

   Thus, given a plain group request, a client needs to reuse the same
   set of Multi-ETag Options, in order to send that group request as a
   Deterministic Request that can actually produce a cache hit at the
   proxy.  However, while this would prevent the caching at the proxy to
   be inefficient and unnecessarily redundant, it would also limit the
   flexibility of end-to-end response revalidation for a client.

5.2.2.  Validation of Responses

   When directly interacting with the servers in the CoAP group to
   refresh its cache entries, the proxy cannot rely on response
   revalidation anymore.  In fact, responses protected with Group OSCORE
   cannot have 2.03 (Valid) as Outer Code.  Response revalidation
   remains possible end-to-end between the client and the servers in the
   group, by means of including inner ETag Option(s) or inner Multi-ETag
   Option(s).

   Finally, it is not possible for a client to revalidate responses to a
   group request from an aggregated cache entry at the proxy, by using
   the outer Group-ETag Option as defined in Section 3.4.3.1.  In fact,
   that would require the proxy to respond with an unprotected 2.03
   (Valid) response potentially.  However, success responses have to be
   protected with Group OSCORE, so cannot have 2.03 (Valid) as Outer
   Code.

6.  Security Considerations

   This section provides security considerations for CoAP group
   communication using IP multicast.

6.1.  CoAP NoSec Mode

   CoAP group communication, if not protected, is vulnerable to all the
   attacks mentioned in Section 11 of [RFC7252] for IP multicast.

   Thus, for sensitive and mission-critical applications (e.g., health
   monitoring systems and alarm monitoring systems), it is NOT
   RECOMMENDED to deploy CoAP group communication in NoSec mode.

   Without application-layer security, CoAP group communication SHOULD
   only be deployed in applications that are non-critical, and that do
   not involve or may have an impact on sensitive data and personal
   sphere.  These include, e.g., read-only temperature sensors deployed
   in non-sensitive environments, where the client reads out the values

https://datatracker.ietf.org/doc/html/rfc7252#section-11


Dijk, et al.             Expires August 26, 2021               [Page 41]



Internet-Draft        Group Communication for CoAP         February 2021

   but does not use the data to control actuators or to base an
   important decision on.

   Discovery of devices and resources is a typical use case where NoSec
   mode is applied, since the devices involved do not have yet
   configured any mutual security relations at the time the discovery
   takes place.

6.2.  Group OSCORE

   Group OSCORE provides end-to-end application-level security.  This
   has many desirable properties, including maintaining security
   assurances while forwarding traffic through intermediaries (proxies).
   Application-level security also tends to more cleanly separate
   security from the dynamics of group membership (e.g., the problem of
   distributing security keys across large groups with many members that
   come and go).

   For sensitive and mission-critical applications, CoAP group
   communication MUST be protected by using Group OSCORE as specified in
   [I-D.ietf-core-oscore-groupcomm].  The same security considerations
   from Section 10 of [I-D.ietf-core-oscore-groupcomm] hold for this
   specification.

6.2.1.  Group Key Management

   A key management scheme for secure revocation and renewal of group
   security material, namely group rekeying, should be adopted in OSCORE
   groups.  In particular, the key management scheme should preserve
   backward and forward security in the OSCORE group, if the application
   requires so (see Section 3.1 of [I-D.ietf-core-oscore-groupcomm]).

   Group policies should also take into account the time that the key
   management scheme requires to rekey the group, on one hand, and the
   expected frequency of group membership changes, i.e. nodes' joining
   and leaving, on the other hand.

   In fact, it may be desirable to not rekey the group upon every single
   membership change, in case members' joining and leaving are frequent,
   and at the same time a single group rekeying instance takes a non-
   negligible time to complete.

   In such a case, the Group Manager may consider to rekey the group,
   e.g., after a minimum number of nodes has joined or left the group
   within a pre-defined time interval, or according to communication
   patterns with predictable time intervals of network inactivity.  This
   would prevent paralyzing communications in the group, when a slow
   rekeying scheme is used and frequently invoked.



Dijk, et al.             Expires August 26, 2021               [Page 42]



Internet-Draft        Group Communication for CoAP         February 2021

   This comes at the cost of not continuously preserving backward and
   forward security, since group rekeying might not occur upon every
   single group membership change.  That is, most recently joined nodes
   would have access to the security material used prior to their join,
   and thus be able to access past group communications protected with
   that security material.  Similarly, until the group is rekeyed, most
   recently left nodes would preserve access to group communications
   protected with the retained security material.

6.2.2.  Source Authentication

   Both the group mode and the pairwise mode of Group OSCORE ensure
   source authentication of messages exchanged by CoAP endpoints through
   CoAP group communication.

   To this end, outgoing messages are either countersigned by the
   message sender endpoint with its own private key (group mode), or
   protected with a symmetric key, which is in turn derived using the
   asymmetric keys of the message sender and recipient (pairwise mode).

   Thus, both modes allow a recipient CoAP endpoint to verify that a
   message has actually been originated by a specific and identified
   member of the OSCORE group.

Appendix F of [I-D.ietf-core-oscore-groupcomm] discusses a number of
   cases where a recipient CoAP endpoint may skip the verification of
   countersignatures in messages protected with the group mode, possibly
   on a per-message basis.  However, this is NOT RECOMMENDED.  That is,
   a CoAP endpoint receiving a message secured with the group mode of
   Group OSCORE SHOULD always verify the countersignature.

6.2.3.  Countering Attacks

   As discussed below, Group OSCORE addresses a number of security
   attacks mentioned in Section 11 of [RFC7252], with particular
   reference to their execution over IP multicast.

   o  Since Group OSCORE provides end-to-end confidentiality and
      integrity of request/response messages, proxies in multicast
      settings cannot break message protection, and thus cannot act as
      man-in-the-middle beyond their legitimate duties (see Section 11.2
      of [RFC7252]).  In fact, intermediaries such as proxies are not
      assumed to have access to the OSCORE Security Context used by
      group members.  Also, with the notable addition of
      countersignatures for the group mode, Group OSCORE protects
      messages using the same procedure as OSCORE (see Sections 8.1 and
      8.3 of [I-D.ietf-core-oscore-groupcomm]), and especially processes

https://datatracker.ietf.org/doc/html/rfc7252#section-11
https://datatracker.ietf.org/doc/html/rfc7252#section-11.2
https://datatracker.ietf.org/doc/html/rfc7252#section-11.2


Dijk, et al.             Expires August 26, 2021               [Page 43]



Internet-Draft        Group Communication for CoAP         February 2021

      CoAP options according to the same classification in U/I/E
      classes.

   o  Group OSCORE protects against amplification attacks (see
Section 11.3 of [RFC7252]), which are made e.g. by injecting

      (small) requests over IP multicast from the (spoofed) IP address
      of a victim client, and thus triggering the transmission of
      several (much bigger) responses back to that client.  In fact,
      upon receiving a request over IP multicast as protected with Group
      OSCORE in group mode, a server is able to verify whether the
      request is fresh and originates from the alleged sender in the
      OSCORE group, by verifying the countersignature included in the
      request using the public key of that sender (see Section 8.2 of
      [I-D.ietf-core-oscore-groupcomm]).  Furthermore, as also discussed
      in Section 8 of [I-D.ietf-core-oscore-groupcomm], it is
      recommended that servers failing to decrypt and verify an incoming
      message do not send back any error message.

   o  Group OSCORE limits the impact of attacks based on IP spoofing
      also over IP multicast (see Section 11.4 of [RFC7252]).  In fact,
      requests and corresponding responses sent in the OSCORE group can
      be correctly generated only by legitimate group members.

      Within an OSCORE group, the shared symmetric-key security material
      strictly provides only group-level authentication (see
      Section 10.1 of [I-D.ietf-core-oscore-groupcomm]).  However,
      source authentication of messages is also ensured, both in the
      group mode by means of countersignatures (see Sections 8.1 and 8.3
      of [I-D.ietf-core-oscore-groupcomm]), and in the pairwise mode by
      using additionally derived pairwise keys (see Sections 9.1 and 9.3
      of [I-D.ietf-core-oscore-groupcomm]).  Thus, recipient endpoints
      can verify a message to be originated by the alleged, identifiable
      sender in the OSCORE group.

      Note that the server may additionally rely on the Echo Option for
      CoAP described in [I-D.ietf-core-echo-request-tag], in order to
      verify the aliveness and reachability of the client sending a
      request from a particular IP address.

   o  Group OSCORE does not require group members to be equipped with a
      good source of entropy for generating security material (see

Section 11.6 of [RFC7252]), and thus does not contribute to create
      an entropy-related attack vector against such (constrained) CoAP
      endpoints.  In particular, the symmetric keys used for message
      encryption and decryption are derived through the same HMAC-based
      HKDF scheme used for OSCORE (see Section 3.2 of [RFC8613]).
      Besides, the OSCORE Master Secret used in such derivation is
      securely generated by the Group Manager responsible for the OSCORE

https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc7252#section-11.4
https://datatracker.ietf.org/doc/html/rfc7252#section-11.6
https://datatracker.ietf.org/doc/html/rfc8613#section-3.2


Dijk, et al.             Expires August 26, 2021               [Page 44]



Internet-Draft        Group Communication for CoAP         February 2021

      group, and securely provided to the CoAP endpoints when they join
      the group.

   o  Group OSCORE prevents to make any single group member a target for
      subverting security in the whole OSCORE group (see Section 11.6 of
      [RFC7252]), even though all group members share (and can derive)
      the same symmetric-key security material used in the OSCORE group
      (see Section 10.1 of [I-D.ietf-core-oscore-groupcomm]).  In fact,
      source authentication is always ensured for exchanged CoAP
      messages, as verifiable to be originated by the alleged,
      identifiable sender in the OSCORE group.  This relies on including
      a countersignature computed with a node's individual private key
      (in the group mode), or on protecting messages with a pairwise
      symmetric key, which is in turn derived from the asymmetric keys
      of the sender and recipient CoAP endpoints (in the pairwise mode).

6.3.  Replay of Non-Confirmable Messages

   Since all requests sent over IP multicast are Non-confirmable, a
   client might not be able to know if an adversary has actually
   captured one of its transmitted requests and later re-injected it in
   the group as a replay to the server nodes.  In fact, even if the
   servers sent back responses to the replayed request, the client would
   typically not have a valid matching request active anymore so this
   attack would not accomplish anything in the client.

   If Group OSCORE is used, such a replay attack on the servers is
   prevented, since a client protects every different request with a
   different Sequence Number value, which is in turn included as Partial
   IV in the protected message and takes part in the construction of the
   AEAD cipher nonce.  Thus, a server would be able to detect the
   replayed request, by checking the conveyed Partial IV against its own
   replay window in the OSCORE Recipient Context associated to the
   client.

   This requires a server to have a synchronized, up to date view of the
   sequence number used by the client.  If such synchronization is lost,
   e.g. due to a reboot, or suspected so, the server should use one of
   the methods described in Appendix E of
   [I-D.ietf-core-oscore-groupcomm], such as the one based on the Echo
   Option for CoAP described in [I-D.ietf-core-echo-request-tag], in
   order to (re-)synchronize with the client's sequence number.

6.4.  Use of CoAP No-Response Option

   When CoAP group communication is used in CoAP NoSec (No Security)
   mode (see Section 4), the CoAP No-Response Option [RFC7967] could be
   misused by a malicious client to evoke as much responses from servers

https://datatracker.ietf.org/doc/html/rfc7252#section-11.6
https://datatracker.ietf.org/doc/html/rfc7252#section-11.6
https://datatracker.ietf.org/doc/html/rfc7967


Dijk, et al.             Expires August 26, 2021               [Page 45]



Internet-Draft        Group Communication for CoAP         February 2021

   to a multicast request as possible, by using the value '0' -
   Interested in all responses.  This even overrides the default
   behaviour of a CoAP server to suppress the response in case there is
   nothing of interest to respond with.  Therefore, this option can be
   used to perform an amplification attack.

   A proposed mitigation is to only allow this option to relax the
   standard suppression rules for a resource in case the option is sent
   by an authenticated client.  If sent by an unauthenticated client,
   the option can be used to expand the classes of responses suppressed
   compared to the default rules but not to reduce the classes of
   responses suppressed.

6.5.  6LoWPAN

   In a 6LoWPAN network, a multicast IPv6 packet may be fragmented prior
   to transmission.  A 6LoWPAN Router that forwards a fragmented packet
   may have a relatively high impact on the occupation of the wireless
   channel and may locally experience high memory load due to packet
   buffering.  For example, the MPL [RFC7731] protocol requires an MPL
   Forwarder to store the packet for a longer duration, to allow
   multiple forwarding transmissions to neighboring Forwarders.  If one
   or more of the fragments are not received correctly by an MPL
   Forwarder during its packet reassembly time window, the Forwarder
   discards all received fragments and at a future point in time it
   needs to receive again all the packet fragments (this time, possibly
   from another neighboring MPL Forwarder).

   For these reasons, a fragmented IPv6 multicast packet is a possible
   attack vector in a Denial of Service (DoS) amplification attack.  See

Section 11.3 of [RFC7252] for more details on amplification.  To
   mitigate the risk, applications sending multicast IPv6 requests to
   6LoWPAN hosted CoAP servers SHOULD limit the size of the request to
   avoid 6LoWPAN fragmentation of the request packet.  A 6LoWPAN Router
   or multicast forwarder SHOULD deprioritize forwarding for multi-
   fragment 6LoWPAN multicast packets.  Also, a 6LoWPAN Border Router
   SHOULD implement multicast packet filtering to prevent unwanted
   multicast traffic from entering a 6LoWPAN network from the outside.
   For example, it could filter out all multicast packet for which there
   is no known multicast listener on the 6LoWPAN network.  See

Section 3.9 for protocols that allow multicast listeners to signal
   which groups they would like to listen to.

6.6.  Wi-Fi

   In a home automation scenario using Wi-Fi, Wi-Fi security should be
   enabled to prevent rogue nodes from joining.  The Customer Premises
   Equipment (CPE) that enables access to the Internet should also have

https://datatracker.ietf.org/doc/html/rfc7731
https://datatracker.ietf.org/doc/html/rfc7252#section-11.3


Dijk, et al.             Expires August 26, 2021               [Page 46]



Internet-Draft        Group Communication for CoAP         February 2021

   its IP multicast filters set so that it enforces multicast scope
   boundaries to isolate local multicast groups from the rest of the
   Internet (e.g., as per [RFC6092]).  In addition, the scope of IP
   multicast transmissions and listeners should be site-local (5) or
   smaller.  For site-local scope, the CPE will be an appropriate
   multicast scope boundary point.

6.7.  Monitoring

6.7.1.  General Monitoring

   CoAP group communication can be used to control a set of related
   devices: for example, simultaneously turn on all the lights in a
   room.  This intrinsically exposes the group to some unique monitoring
   risks that devices not in a group are not as vulnerable to.  For
   example, assume an attacker is able to physically see a set of lights
   turn on in a room.  Then the attacker can correlate an observed CoAP
   group communication message to the observed coordinated group action
   - even if the CoAP message is (partly) encrypted.
   This will give the attacker side-channel information to plan further
   attacks (e.g., by determining the members of the group some network
   topology information may be deduced).

6.7.2.  Pervasive Monitoring

   A key additional threat consideration for group communication is
   pervasive monitoring [RFC7258].  CoAP group communication solutions
   that are built on top of IP multicast need to pay particular heed to
   these dangers.  This is because IP multicast is easier to intercept
   compared to IP unicast.  Also, CoAP traffic is typically used for the
   Internet of Things.  This means that CoAP multicast may be used for
   the control and monitoring of critical infrastructure (e.g., lights,
   alarms, HVAC, electrical grid, etc.) that may be prime targets for
   attack.

   For example, an attacker may attempt to record all the CoAP traffic
   going over a smart grid (i.e., networked electrical utility) and try
   to determine critical nodes for further attacks.  For example, the
   source node (controller) sends out CoAP group communication messages
   which easily identifies it as a controller.  CoAP multicast traffic
   is inherently more vulnerable compared to unicast, as the same packet
   may be replicated over many more links, leading to a higher
   probability of packet capture by a pervasive monitoring system.

   One mitigation is to restrict the scope of IP multicast to the
   minimal scope that fulfills the application need.  See the congestion
   control recommendations in the last bullet of

https://datatracker.ietf.org/doc/html/rfc6092
https://datatracker.ietf.org/doc/html/rfc7258


Dijk, et al.             Expires August 26, 2021               [Page 47]



Internet-Draft        Group Communication for CoAP         February 2021

Section 3.5 to minimize the scope.  Thus, for example, realm-local IP
   multicast scope is always preferred over site-local scope IP
   multicast if this fulfills the application needs.

   Even if all CoAP multicast traffic is encrypted/protected, an
   attacker may still attempt to capture this traffic and perform an
   off-line attack in the future.

7.  IANA Considerations

   This document has the following actions for IANA.

7.1.  CoAP Option Numbers Registry

   IANA is asked to enter the following option numbers to the "CoAP
   Option Numbers" registry defined in [RFC7252] within the "CoRE
   Parameters" registry.

                +--------+-------------+-----------------+
                | Number |    Name     |    Reference    |
                +--------+-------------+-----------------+
                |  TBD1  |  Multi-ETag | [This document] |
                +--------+-------------+-----------------+
                |  TBD2  |  Group-ETag | [This document] |
                +--------+-------------+-----------------+

8.  References

8.1.  Normative References

   [I-D.ietf-core-echo-request-tag]
              Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
              Request-Tag, and Token Processing", draft-ietf-core-echo-

request-tag-12 (work in progress), February 2021.

   [I-D.ietf-core-oscore-groupcomm]
              Tiloca, M., Selander, G., Palombini, F., Mattsson, J., and
              J. Park, "Group OSCORE - Secure Group Communication for
              CoAP", draft-ietf-core-oscore-groupcomm-11 (work in
              progress), February 2021.

   [I-D.ietf-cose-rfc8152bis-algs]
              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Initial Algorithms", draft-ietf-cose-rfc8152bis-algs-12
              (work in progress), September 2020.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-11
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-algs-12


Dijk, et al.             Expires August 26, 2021               [Page 48]



Internet-Draft        Group Communication for CoAP         February 2021

   [I-D.ietf-cose-rfc8152bis-struct]
              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Structures and Process", draft-ietf-cose-rfc8152bis-

struct-15 (work in progress), February 2021.

   [I-D.tiloca-core-observe-multicast-notifications]
              Tiloca, M., Hoeglund, R., Amsuess, C., and F. Palombini,
              "Observe Notifications as CoAP Multicast Responses",

draft-tiloca-core-observe-multicast-notifications-05 (work
              in progress), February 2021.

   [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122,
              DOI 10.17487/RFC1122, October 1989,
              <https://www.rfc-editor.org/info/rfc1122>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3376]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
              Thyagarajan, "Internet Group Management Protocol, Version
              3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
              <https://www.rfc-editor.org/info/rfc3376>.

   [RFC3810]  Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
              Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
              DOI 10.17487/RFC3810, June 2004,
              <https://www.rfc-editor.org/info/rfc3810>.

   [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
              Control Message Protocol (ICMPv6) for the Internet
              Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
              <https://www.rfc-editor.org/info/rfc4443>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <https://www.rfc-editor.org/info/rfc4944>.

   [RFC6282]  Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
              Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
              DOI 10.17487/RFC6282, September 2011,
              <https://www.rfc-editor.org/info/rfc6282>.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-15
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-15
https://datatracker.ietf.org/doc/html/draft-tiloca-core-observe-multicast-notifications-05
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3376
https://www.rfc-editor.org/info/rfc3376
https://datatracker.ietf.org/doc/html/rfc3810
https://www.rfc-editor.org/info/rfc3810
https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282


Dijk, et al.             Expires August 26, 2021               [Page 49]



Internet-Draft        Group Communication for CoAP         February 2021

   [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
              Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
              <https://www.rfc-editor.org/info/rfc6690>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [RFC7641]  Hartke, K., "Observing Resources in the Constrained
              Application Protocol (CoAP)", RFC 7641,
              DOI 10.17487/RFC7641, September 2015,
              <https://www.rfc-editor.org/info/rfc7641>.

   [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
              DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.

   [RFC8075]  Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
              E. Dijk, "Guidelines for Mapping Implementations: HTTP to
              the Constrained Application Protocol (CoAP)", RFC 8075,
              DOI 10.17487/RFC8075, February 2017,
              <https://www.rfc-editor.org/info/rfc8075>.

   [RFC8132]  van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
              FETCH Methods for the Constrained Application Protocol
              (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
              <https://www.rfc-editor.org/info/rfc8132>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.

   [RFC8613]  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.

   [RFC8742]  Bormann, C., "Concise Binary Object Representation (CBOR)
              Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020,
              <https://www.rfc-editor.org/info/rfc8742>.

https://datatracker.ietf.org/doc/html/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc8075
https://www.rfc-editor.org/info/rfc8075
https://datatracker.ietf.org/doc/html/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613
https://datatracker.ietf.org/doc/html/rfc8742
https://www.rfc-editor.org/info/rfc8742


Dijk, et al.             Expires August 26, 2021               [Page 50]



Internet-Draft        Group Communication for CoAP         February 2021

8.2.  Informative References

   [Californium]
              Eclipse Foundation, "Eclipse Californium", March 2019,
              <https://github.com/eclipse/californium/tree/2.0.x/

californium-core/src/main/java/org/eclipse/californium/
core>.

   [Go-OCF]   Open Connectivity Foundation (OCF), "Implementation of
              CoAP Server & Client in Go", March 2019,
              <https://github.com/go-ocf/go-coap>.

   [I-D.amsuess-core-cachable-oscore]
              Amsuess, C. and M. Tiloca, "Cachable OSCORE", draft-

amsuess-core-cachable-oscore-01 (work in progress),
              February 2021.

   [I-D.ietf-ace-key-groupcomm-oscore]
              Tiloca, M., Park, J., and F. Palombini, "Key Management
              for OSCORE Groups in ACE", draft-ietf-ace-key-groupcomm-

oscore-10 (work in progress), February 2021.

   [I-D.ietf-ace-oauth-authz]
              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-37
              (work in progress), February 2021.

   [I-D.ietf-ace-oscore-gm-admin]
              Tiloca, M., Hoeglund, R., Stok, P., Palombini, F., and K.
              Hartke, "Admin Interface for the OSCORE Group Manager",

draft-ietf-ace-oscore-gm-admin-02 (work in progress),
              February 2021.

   [I-D.ietf-core-coap-pubsub]
              Koster, M., Keranen, A., and J. Jimenez, "Publish-
              Subscribe Broker for the Constrained Application Protocol
              (CoAP)", draft-ietf-core-coap-pubsub-09 (work in
              progress), September 2019.

   [I-D.ietf-core-resource-directory]
              Amsuess, C., Shelby, Z., Koster, M., Bormann, C., and P.
              Stok, "CoRE Resource Directory", draft-ietf-core-resource-

directory-26 (work in progress), November 2020.

https://github.com/eclipse/californium/tree/2.0.x/californium-core/src/main/java/org/eclipse/californium/core
https://github.com/eclipse/californium/tree/2.0.x/californium-core/src/main/java/org/eclipse/californium/core
https://github.com/eclipse/californium/tree/2.0.x/californium-core/src/main/java/org/eclipse/californium/core
https://github.com/go-ocf/go-coap
https://datatracker.ietf.org/doc/html/draft-amsuess-core-cachable-oscore-01
https://datatracker.ietf.org/doc/html/draft-amsuess-core-cachable-oscore-01
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-37
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-gm-admin-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-26
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-26


Dijk, et al.             Expires August 26, 2021               [Page 51]



Internet-Draft        Group Communication for CoAP         February 2021

   [I-D.tiloca-core-groupcomm-proxy]
              Tiloca, M. and E. Dijk, "Proxy Operations for CoAP Group
              Communication", draft-tiloca-core-groupcomm-proxy-03 (work
              in progress), February 2021.

   [I-D.tiloca-core-oscore-discovery]
              Tiloca, M., Amsuess, C., and P. Stok, "Discovery of OSCORE
              Groups with the CoRE Resource Directory", draft-tiloca-

core-oscore-discovery-08 (work in progress), February
              2020.

   [RFC6092]  Woodyatt, J., Ed., "Recommended Simple Security
              Capabilities in Customer Premises Equipment (CPE) for
              Providing Residential IPv6 Internet Service", RFC 6092,
              DOI 10.17487/RFC6092, January 2011,
              <https://www.rfc-editor.org/info/rfc6092>.

   [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
              Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
              JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
              Low-Power and Lossy Networks", RFC 6550,
              DOI 10.17487/RFC6550, March 2012,
              <https://www.rfc-editor.org/info/rfc6550>.

   [RFC6636]  Asaeda, H., Liu, H., and Q. Wu, "Tuning the Behavior of
              the Internet Group Management Protocol (IGMP) and
              Multicast Listener Discovery (MLD) for Routers in Mobile
              and Wireless Networks", RFC 6636, DOI 10.17487/RFC6636,
              May 2012, <https://www.rfc-editor.org/info/rfc6636>.

   [RFC7258]  Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
              Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
              2014, <https://www.rfc-editor.org/info/rfc7258>.

   [RFC7346]  Droms, R., "IPv6 Multicast Address Scopes", RFC 7346,
              DOI 10.17487/RFC7346, August 2014,
              <https://www.rfc-editor.org/info/rfc7346>.

   [RFC7390]  Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
              the Constrained Application Protocol (CoAP)", RFC 7390,
              DOI 10.17487/RFC7390, October 2014,
              <https://www.rfc-editor.org/info/rfc7390>.

   [RFC7731]  Hui, J. and R. Kelsey, "Multicast Protocol for Low-Power
              and Lossy Networks (MPL)", RFC 7731, DOI 10.17487/RFC7731,
              February 2016, <https://www.rfc-editor.org/info/rfc7731>.

https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-03
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-discovery-08
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-discovery-08
https://datatracker.ietf.org/doc/html/rfc6092
https://www.rfc-editor.org/info/rfc6092
https://datatracker.ietf.org/doc/html/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://datatracker.ietf.org/doc/html/rfc6636
https://www.rfc-editor.org/info/rfc6636
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7346
https://www.rfc-editor.org/info/rfc7346
https://datatracker.ietf.org/doc/html/rfc7390
https://www.rfc-editor.org/info/rfc7390
https://datatracker.ietf.org/doc/html/rfc7731
https://www.rfc-editor.org/info/rfc7731


Dijk, et al.             Expires August 26, 2021               [Page 52]



Internet-Draft        Group Communication for CoAP         February 2021

   [RFC7967]  Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
              Bose, "Constrained Application Protocol (CoAP) Option for
              No Server Response", RFC 7967, DOI 10.17487/RFC7967,
              August 2016, <https://www.rfc-editor.org/info/rfc7967>.

   [RFC8323]  Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
              Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
              Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
              <https://www.rfc-editor.org/info/rfc8323>.

   [RFC8710]  Fossati, T., Hartke, K., and C. Bormann, "Multipart
              Content-Format for the Constrained Application Protocol
              (CoAP)", RFC 8710, DOI 10.17487/RFC8710, February 2020,
              <https://www.rfc-editor.org/info/rfc8710>.

Appendix A.  Use Cases

   To illustrate where and how CoAP-based group communication can be
   used, this section summarizes the most common use cases.  These use
   cases include both secured and non-secured CoAP usage.  Each
   subsection below covers one particular category of use cases for
   CoRE.  Within each category, a use case may cover multiple
   application areas such as home IoT, commercial building IoT (sensing
   and control), industrial IoT/control, or environmental sensing.

A.1.  Discovery

   Discovery of physical devices in a network, or discovery of
   information entities hosted on network devices, are operations that
   are usually required in a system during the phases of setup or
   (re)configuration.  When a discovery use case involves devices that
   need to interact without having been configured previously with a
   common security context, unsecured CoAP communication is typically
   used.  Discovery may involve a request to a directory server, which
   provides services to aid clients in the discovery process.  One
   particular type of directory server is the CoRE Resource Directory
   [I-D.ietf-core-resource-directory]; and there may be other types of
   directories that can be used with CoAP.

A.1.1.  Distributed Device Discovery

   Device discovery is the discovery and identification of networked
   devices - optionally only devices of a particular class, type, model,
   or brand.  Group communication is used for distributed device
   discovery, if a central directory server is not used.  Typically in
   distributed device discovery, a multicast request is sent to a
   particular address (or address range) and multicast scope of

https://datatracker.ietf.org/doc/html/rfc7967
https://www.rfc-editor.org/info/rfc7967
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/rfc8710
https://www.rfc-editor.org/info/rfc8710


Dijk, et al.             Expires August 26, 2021               [Page 53]



Internet-Draft        Group Communication for CoAP         February 2021

   interest, and any devices configured to be discoverable will respond
   back.  For the alternative solution of centralized device discovery a
   central directory server is accessed through unicast, in which case
   group communication is not needed.  This requires that the address of
   the central directory is either preconfigured in each device or
   configured during operation using a protocol.

   In CoAP, device discovery can be implemented by CoAP resource
   discovery requesting (GET) a particular resource that the sought
   device class, type, model or brand is known to respond to.  It can
   also be implemented using CoAP resource discovery (Section 7 of
   [RFC7252]) and the CoAP query interface defined in Section 4 of
   [RFC6690] to find these particular resources.  Also, a multicast GET
   request to /.well-known/core can be used to discover all CoAP
   devices.

A.1.2.  Distributed Service Discovery

   Service discovery is the discovery and identification of particular
   services hosted on network devices.  Services can be identified by
   one or more parameters such as ID, name, protocol, version and/or
   type.  Distributed service discovery involves group communication to
   reach individual devices hosting a particular service; with a central
   directory server not being used.

   In CoAP, services are represented as resources and service discovery
   is implemented using resource discovery (Section 7 of [RFC7252]) and
   the CoAP query interface defined in Section 4 of [RFC6690].

A.1.3.  Directory Discovery

   This use case is a specific sub-case of Distributed Service Discovery
   (Appendix A.1.2), in which a device needs to identify the location of
   a Directory on the network to which it can e.g. register its own
   offered services, or to which it can perform queries to identify and
   locate other devices/services it needs to access on the network.

Section 3.3 of [RFC7390] shows an example of discovering a CoRE
   Resource Directory using CoAP group communication.  As defined in
   [I-D.ietf-core-resource-directory], a resource directory is a web
   entity that stores information about web resources and implements
   REST interfaces for registration and lookup of those resources.  For
   example, a device can register itself to a resource directory to let
   it be found by other devices and/or applications.

https://datatracker.ietf.org/doc/html/rfc7252#section-7
https://datatracker.ietf.org/doc/html/rfc7252#section-7
https://datatracker.ietf.org/doc/html/rfc6690#section-4
https://datatracker.ietf.org/doc/html/rfc6690#section-4
https://datatracker.ietf.org/doc/html/rfc7252#section-7
https://datatracker.ietf.org/doc/html/rfc6690#section-4
https://datatracker.ietf.org/doc/html/rfc7390#section-3.3


Dijk, et al.             Expires August 26, 2021               [Page 54]



Internet-Draft        Group Communication for CoAP         February 2021

A.2.  Operational Phase

   Operational phase use cases describe those operations that occur most
   frequently in a networked system, during its operational lifetime and
   regular operation.  Regular usage is when the applications on
   networked devices perform the tasks they were designed for and
   exchange of application-related data using group communication
   occurs.  Processes like system reconfiguration, group changes,
   system/device setup, extra group security changes, etc. are not part
   of regular operation.

A.2.1.  Actuator Group Control

   Group communication can be beneficial to control actuators that need
   to act in synchrony, as a group, with strict timing (latency)
   requirements.  Examples are office lighting, stage lighting, street
   lighting, or audio alert/Public Address systems.  Sections 3.4 and
   3.5 of [RFC7390] show examples of lighting control of a group of
   6LoWPAN-connected lights.

A.2.2.  Device Group Status Request

   To properly monitor the status of systems, there may be a need for
   ad-hoc, unplanned status updates.  Group communication can be used to
   quickly send out a request to a (potentially large) number of devices
   for specific information.  Each device then responds back with the
   requested data.  Those devices that did not respond to the request
   can optionally be polled again via reliable unicast communication to
   complete the dataset.  The device group may be defined e.g. as "all
   temperature sensors on floor 3", or "all lights in wing B".  For
   example, it could be a status request for device temperature, most
   recent sensor event detected, firmware version, network load, and/or
   battery level.

A.2.3.  Network-wide Query

   In some cases a whole network or subnet of multiple IP devices needs
   to be queried for status or other information.  This is similar to
   the previous use case except that the device group is not defined in
   terms of its function/type but in terms of its network location.
   Technically this is also similar to distributed service discovery
   (Appendix A.1.2) where a query is processed by all devices on a
   network - except that the query is not about services offered by the
   device, but rather specific operational data is requested.

https://datatracker.ietf.org/doc/html/rfc7390


Dijk, et al.             Expires August 26, 2021               [Page 55]



Internet-Draft        Group Communication for CoAP         February 2021

A.2.4.  Network-wide / Group Notification

   In some cases a whole network, or subnet of multiple IP devices, or a
   specific target group needs to be notified of a status change or
   other information.  This is similar to the previous two use cases
   except that the recipients are not expected to respond with some
   information.  Unreliable notification can be acceptable in some use
   cases, in which a recipient does not respond with a confirmation of
   having received the notification.  In such a case, the receiving CoAP
   server does not have to create a CoAP response.  If the sender needs
   confirmation of reception, the CoAP servers can be configured for
   that resource to respond with a 2.xx success status after processing
   a notification request successfully.

A.3.  Software Update

   Multicast can be useful to efficiently distribute new software
   (firmware, image, application, etc.) to a group of multiple devices.
   In this case, the group is defined in terms of device type: all
   devices in the target group are known to be capable of installing and
   running the new software.  The software is distributed as a series of
   smaller blocks that are collected by all devices and stored in
   memory.  All devices in the target group are usually responsible for
   integrity verification of the received software; which can be done
   per-block or for the entire software image once all blocks have been
   received.  Due to the inherent unreliability of CoAP multicast, there
   needs to be a backup mechanism (e.g. implemented using CoAP unicast)
   by which a device can individually request missing blocks of a whole
   software image/entity.  Prior to multicast software update, the group
   of recipients can be separately notified that there is new software
   available and coming, using the above network-wide or group
   notification.

Appendix B.  Document Updates

   RFC EDITOR: PLEASE REMOVE THIS SECTION.

B.1.  Version -02 to -03

   o  Multiple responses from same server handled at the application.

   o  Clarifications about issues with forward-proxies.

   o  Operations for reverse-proxies.

   o  Caching of responses at proxies.

   o  Client-Server response revalidation, with Multi-ETag Option.



Dijk, et al.             Expires August 26, 2021               [Page 56]



Internet-Draft        Group Communication for CoAP         February 2021

   o  Client-Proxy response revalidation, with the Group-ETag Option.

B.2.  Version -01 to -02

   o  Clarified relation between security groups and application groups.

   o  Considered also FETCH for requests over IP multicast.

   o  More details on Observe re-registration.

   o  More details on Proxy intermediaries.

   o  More details on servers changing port number in the response.

   o  Usage of the Uri-Host Option to indicate an application group.

   o  Response suppression based on classes of error codes.

B.3.  Version -00 to -01

   o  Clarifications on group memberships for the different group types.

   o  Simplified description of Token reusage, compared to the unicast
      case.

   o  More details on the rationale for response suppression.

   o  Clarifications of creation and management of security groups.

   o  Clients more knowledgeable than proxies about stopping receiving
      responses.

   o  Cancellation of group observations.

   o  Clarification on multicast scope to use.

   o  Both the group mode and pairwise mode of Group OSCORE are
      considered.

   o  Updated security considerations.

   o  Editorial improvements.

Acknowledgments

   The authors sincerely thank Christian Amsuess, Carsten Bormann,
   Thomas Fossati, Rikard Hoeglund and Jim Schaad for their comments and
   feedback.



Dijk, et al.             Expires August 26, 2021               [Page 57]



Internet-Draft        Group Communication for CoAP         February 2021

   The work on this document has been partly supported by VINNOVA and
   the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-Home
   (Grant agreement 952652).

Authors' Addresses

   Esko Dijk
   IoTconsultancy.nl
   \________________\
   Utrecht
   Netherlands

   Email: esko.dijk@iotconsultancy.nl

   Chonggang Wang
   InterDigital
   1001 E Hector St, Suite 300
   Conshohocken  PA 19428
   United States

   Email: Chonggang.Wang@InterDigital.com

   Marco Tiloca
   RISE AB
   Isafjordsgatan 22
   Kista  SE-16440 Stockholm
   Sweden

   Email: marco.tiloca@ri.se



Dijk, et al.             Expires August 26, 2021               [Page 58]


