
Workgroup: CoRE Working Group

Published: 8 January 2020

Intended Status: Standards Track

Expires: 11 July 2020

Authors: K. Hartke

Ericsson

Constrained Resource Identifiers

Abstract

Constrained Resource Identifiers (CoRIs) are an alternate

serialization of Uniform Resource Identifiers (URIs) that encodes

the URI components in Concise Binary Object Representation (CBOR)

instead of a string of characters. This simplifies parsing,

reference resolution, and comparison of URIs in environments with

severe limitations on processing power, code size, and memory size.

Note to Readers

This note is to be removed before publishing as an RFC.

The issues list for this Internet-Draft can be found at <https://

github.com/core-wg/coral/labels/href>.

A reference implementation and a set of test vectors can be found at

<https://github.com/core-wg/coral/tree/master/binary/python>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 July 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Data Model

2.1. Options

2.2. Option Sequences

3. CBOR

4. Python

4.1. Reference Resolution

4.2. URI Recomposition

4.3. CoAP Encoding

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Change Log

Acknowledgements

Author's Address

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Uniform Resource Identifier (URI) references [RFC3986] are the

standard way to link to resources in hypertext formats such as HTML

[W3C.REC-html52-20171214] or the HTTP "Link" header field [RFC8288].

A URI reference is either a URI or a relative reference that must be

resolved against a base URI.

URI references are strings of characters chosen from the repertoire

of US-ASCII characters. The individual components of a URI reference

are delimited by a number of reserved characters, which necessitates

the use of percent-encoding when these reserved characters are used

in a non-delimiting function. One component can also contain special

dot-segments that affect how the component is to be interpreted. The

resolution of URI references involves parsing the character string

into its components, combining those components with the components

of a base URI, merging path components, removing dot-segments, and

recomposing the result back into a character string.

Overall, the proper processing of URIs is quite complicated. This

can be a problem in particular in constrained environments

[RFC7228], where devices often have severe code size limitations. As

a result, many implementations in these environments choose to

support only an ad-hoc, informally-specified, bug-ridden, non-

interoperable subset of half of the URI standard.

This document introduces Constrained Resource Identifier (CoRI)

references, an alternate serialization of URI references that

encodes the URI components in Concise Binary Object Representation

(CBOR) [RFC7049] instead of a string of characters. Assuming an

implementation of CBOR is already present on a device, typical

operations on URI references such as parsing, reference resolution,

and comparison can be implemented more easily than for character

strings. A full implementation that covers all corner cases is

intended to be implementable in a relatively small amount of code.

As a result of the simplification, CoRI references are not capable

of expressing all URI references permitted by the syntax of RFC

3986. (Hence the "constrained" in "Constrained Resource

Identifiers".) The supported subset includes all Constrained

Application Protocol (CoAP) URIs [RFC7252], most Hypertext Transfer

Protocol (HTTP) URIs [RFC7230], and many other URIs that function as

resource locators.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

¶

scheme

host.name

host.ip

port

path.type

0

1

2

3

4

5

6

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Terms defined in this document appear in cursive where they are

introduced.

2. Data Model

The data model for CoRI references is very similar to the

serialization of the request URI in CoAP messages [RFC7252]: The

components of a URI reference are encoded as a sequence of options,

where each path segment and query parameter becomes its own option.

Every option consists of an option number identifying the type of

option (scheme, host name, path segment, etc.) and an option value.

2.1. Options

The following types of options are defined:

Specifies the URI scheme. The option value can be any Unicode

string matching the "scheme" rule described in Section 3.1 of RFC

3986 [RFC3986], excluding uppercase letters.

Specifies the host of the URI authority as a registered name. The

option value can be any Unicode string matching the

specifications of the URI scheme.

Specifies the host of the URI authority as an IPv4 address or an

IPv6 address. The option value is a byte string with a length of

either 4 or 16 bytes, respectively.

Specifies the port number of the URI authority. The option value

is an integer in the range from 0 to 65535.

Specifies the type of the URI path for reference resolution. The

option value is an integer in the range from 0 to 127, named as

follows:

absolute-path

append-relation

append-path

relative-path

relative-path-1up

relative-path-2up

relative-path-3up

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7

127

path

query

fragment

relative-path-4up

...

relative-path-124up

Specifies one segment of the URI path. The option value can be

any Unicode string with the exception of "." and "..". This

option can occur more than once.

Specifies one argument of the URI query. The option value can be

any Unicode string. This option can occur more than once.

Specifies the fragment identifier. The option value can be any

Unicode string.

No percent-encoding is performed in option values.

2.2. Option Sequences

Figure 1: Structure of a Well-Formed Sequence of Options

A sequence of options is considered well-formed if:

the sequence of options is empty or starts with a "scheme",

"host.name", "host.ip", "port", "path.type", "path", "query", or

"fragment" option;

any "scheme" option is followed by either a "host.name" or a

"host.ip" option;

any "host.name" option is followed by a "port" option;

any "host.ip" option is followed by a "port" option;

any "port" option is followed by a "path", "query", or "fragment"

option or is at the end of the sequence;

¶

¶

¶

¶

¶

¶

¶

 _ host.name _

____ scheme __/ ___ port _

 \ ________/ __ host.ip __/ / \

 __________________________/ ________/

 \ / ________ _________

 \ / / \ / \

 __________ path.type ____ path _/___ query _/__ fragment __

 ___________/ ________/ _________/ __________/

¶

*

¶

*

¶

* ¶

* ¶

*

¶

resolve(href, base)

relative(href, base)

recompose(href)

any "path.type" option is followed by a "path", "query", or

"fragment" option or is at the end of the sequence;

any "path" option is followed by a "path", "query", or "fragment"

option or is at the end of the sequence;

any "query" option is followed by a "query" or "fragment" option

or is at the end of the sequence; and

any "fragment" option is at the end of the sequence.

A well-formed sequence of options is considered absolute if the

sequence of options starts with a "scheme" option.

A well-formed sequence of options is considered relative if the

sequence of options is empty or starts with an option other than a

"scheme" option.

An absolute sequence of options is considered normalized if the

result of resolving the sequence of options against any base is

equal to the input. (It doesn't matter what base it is resolved

against, since it is already absolute.)

The following operations can be performed on a sequence of options:

Resolves a well-formed sequence of options `href` against an

absolute sequence of options `base`. This operation MUST be

performed by applying any algorithm that is functionally

equivalent to the reference implementation in Section 4.1 of this

document.

Makes an absolute sequence of options `href` relative to an

absolute sequence of options `base`. This operation MUST be

performed by applying any algorithm that returns a sequence of

options such that `resolve(relative(h, b), b)` is equal to `h`

given the same `b`.

Recomposes a URI from an absolute sequence of options `href`.

This operation MUST be performed by applying any algorithm that

is functionally equivalent to the reference implementation in

Section 4.2 of this document.

To reduce variability, it is RECOMMENDED to uppercase the letters

in the hexadecimal notation when percent-encoding octets

[RFC3986] and to follow the recommendations of Section 4 of RFC

5952 for the text representation of IPv6 addresses [RFC5952].

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

decompose(str)

coap(href)

Decomposes a URI `str` into a sequence of options. This operation

MUST be performed by applying any algorithm that returns a

sequence of options such that `recompose(decompose(x))` is

equivalent to `x`.

Constructs CoAP options from an absolute, normalized sequence of

options. This operation MUST be performed by recomposing the

sequence of options to a URI (as described above) and decomposing

the URI into CoAP options (as specified in Section 6.4 of RFC

7252). A concise implementation of this algorithm is illustrated

in Section 4.3 of this document.

3. CBOR

In Concise Binary Object Representation (CBOR) [RFC7049], a sequence

of options is encoded as an array that contains the option numbers

and option values in alternating order.

The structure can be described in the Concise Data Definition

Language (CDDL) [RFC8610] as follows:

CoRI = [?(scheme: 1, text .regexp "[a-z][a-z0-9+.-]*"),

 ?(host.name: 2, text //

 host.ip: 3, bytes .size 4 / bytes .size 16),

 ?(port: 4, 0..65535),

 ?(path.type: 5, 0..127),

 *(path: 6, text),

 *(query: 7, text),

 ?(fragment: 8, text)]

Examples:

[1, "coap",

 3, h'C6336401',

 4, 5683,

 6, ".well-known",

 6, "core"]

¶

¶

¶

¶

¶

¶

¶

[5, 0,

 6, ".well-known",

 6, "core",

 7, "rt=temperature-c"]

4. Python

In Python, a sequence of options is encoded as a list of tuples,

where each tuple contains one option number and one option value.

¶

¶

The following Python 3.6 code illustrates how to check a sequence of

options for being well-formed, absolute, and relative.¶

<CODE BEGINS>

import enum

class Option(enum.IntEnum):

 _BEGIN = 0

 SCHEME = 1

 HOST_NAME = 2

 HOST_IP = 3

 PORT = 4

 PATH_TYPE = 5

 PATH = 6

 QUERY = 7

 FRAGMENT = 8

 _END = 9

class PathType(enum.IntEnum):

 ABSOLUTE_PATH = 0

 APPEND_RELATION = 1

 APPEND_PATH = 2

 RELATIVE_PATH = 3

 RELATIVE_PATH_1UP = 4

 RELATIVE_PATH_2UP = 5

 RELATIVE_PATH_3UP = 6

 RELATIVE_PATH_4UP = 7

_TRANSITIONS = ([Option.SCHEME, Option.HOST_NAME, Option.HOST_IP,

 Option.PORT, Option.PATH_TYPE, Option.PATH, Option.QUERY,

 Option.FRAGMENT, Option._END],

 [Option.HOST_NAME, Option.HOST_IP],

 [Option.PORT],

 [Option.PORT],

 [Option.PATH, Option.QUERY, Option.FRAGMENT, Option._END],

 [Option.PATH, Option.QUERY, Option.FRAGMENT, Option._END],

 [Option.PATH, Option.QUERY, Option.FRAGMENT, Option._END],

 [Option.QUERY, Option.FRAGMENT, Option._END],

 [Option._END])

def is_well_formed(href):

 previous = Option._BEGIN

 for option, _ in href:

 if option not in _TRANSITIONS[previous]:

 return False

 previous = option

 if Option._END not in _TRANSITIONS[previous]:

 return False

 return True

def is_absolute(href):

 return is_well_formed(href) and \

 (len(href) != 0 and href[0][0] == Option.SCHEME)

def is_relative(href):

 return is_well_formed(href) and \

 (len(href) == 0 or href[0][0] != Option.SCHEME)

<CODE ENDS>

Examples:

[(Option.SCHEME, 'coap'),

 (Option.HOST_IP, b'\xC6\x33\x64\x01'),

 (Option.PORT, 5683),

 (Option.PATH, '.well-known'),

 (Option.PATH, 'core')]

[(Option.PATH_TYPE, PathType.ABSOLUTE_PATH),

 (Option.PATH, '.well-known'),

 (Option.PATH, 'core'),

 (Option.QUERY, 'rt=temperature-c')]

¶

¶

¶

¶

4.1. Reference Resolution

The following Python 3.6 code defines how to resolve a sequence of

options that might be relative to a given base.¶

<CODE BEGINS>

def resolve(base, href, relation=0):

 if not is_absolute(base) or not is_well_formed(href):

 return None

 result = []

 option = Option.FRAGMENT

 if len(href) != 0:

 option = href[0][0]

 if option == Option.HOST_IP:

 option = Option.HOST_NAME

 elif option == Option.PATH_TYPE:

 type = href[0][1]

 href = href[1:]

 elif option == Option.PATH:

 type = PathType.RELATIVE_PATH

 option = Option.PATH_TYPE

 if option != Option.PATH_TYPE or type == PathType.ABSOLUTE_PATH:

 _copy_until(base, result, option)

 else:

 _copy_until(base, result, Option.QUERY)

 if type == PathType.APPEND_RELATION:

 _append_and_normalize(result, Option.PATH, str(relation))

 while type > PathType.APPEND_PATH:

 if len(result) == 0 or result[-1][0] != Option.PATH:

 break

 del result[-1]

 type -= 1

 _copy_until(href, result, Option._END)

 _append_and_normalize(result, Option._END, None)

 return result

def _copy_until(input, output, end):

 for option, value in input:

 if option >= end:

 break

 _append_and_normalize(output, option, value)

def _append_and_normalize(output, option, value):

 if option > Option.PATH:

 if len(output) >= 2 and \

 output[-1] == (Option.PATH, '') and (

 output[-2][0] < Option.PATH_TYPE or (

 output[-2][0] == Option.PATH_TYPE and

 output[-2][1] == PathType.ABSOLUTE_PATH)):

 del output[-1]

 if option > Option.FRAGMENT:

 return

 output.append((option, value))

<CODE ENDS>

¶

4.2. URI Recomposition

The following Python 3.6 code defines how to recompose a URI from an

absolute sequence of options.¶

<CODE BEGINS>

def recompose(href):

 if not is_absolute(href):

 return None

 result = ''

 no_path = True

 first_query = True

 for option, value in href:

 if option == Option.SCHEME:

 result += value + ':'

 elif option == Option.HOST_NAME:

 result += '//' + _encode_reg_name(value)

 elif option == Option.HOST_IP:

 result += '//' + _encode_ip_address(value)

 elif option == Option.PORT:

 result += ':' + _encode_port(value)

 elif option == Option.PATH:

 result += '/' + _encode_path_segment(value)

 no_path = False

 elif option == Option.QUERY:

 if no_path:

 result += '/'

 no_path = False

 result += '?' if first_query else '&'

 result += _encode_query_argument(value)

 first_query = False

 elif option == Option.FRAGMENT:

 if no_path:

 result += '/'

 no_path = False

 result += '#' + _encode_fragment(value)

 if no_path:

 result += '/'

 no_path = False

 return result

def _encode_reg_name(s):

 return ''.join(c if _is_reg_name_char(c)

 else _encode_pct(c) for c in s)

def _encode_ip_address(b):

 if len(b) == 4:

 return '.'.join(str(c) for c in b)

 elif len(b) == 16:

 return '[' + ... + ']' # see RFC 5952

def _encode_port(p):

 return str(p)

def _encode_path_segment(s):

 return ''.join(c if _is_segment_char(c)

 else _encode_pct(c) for c in s)

def _encode_query_argument(s):

 return ''.join(c if _is_query_char(c) and c not in '&'

 else _encode_pct(c) for c in s)

def _encode_fragment(s):

 return ''.join(c if _is_fragment_char(c)

 else _encode_pct(c) for c in s)

def _encode_pct(s):

 return ''.join('%{0:0>2X}'.format(c) for c in s.encode('utf-8'))

def _is_reg_name_char(c):

 return _is_unreserved(c) or _is_sub_delim(c)

def _is_segment_char(c):

 return _is_pchar(c)

def _is_query_char(c):

 return _is_pchar(c) or c in '/?'

def _is_fragment_char(c):

 return _is_pchar(c) or c in '/?'

def _is_pchar(c):

 return _is_unreserved(c) or _is_sub_delim(c) or c in ':@'

def _is_unreserved(c):

 return _is_alpha(c) or _is_digit(c) or c in '-._~'

def _is_alpha(c):

 return c in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' + \

 'abcdefghijklmnopqrstuvwxyz'

def _is_digit(c):

 return c in '0123456789'

def _is_sub_delim(c):

 return c in '!$&\'()*+,;='

<CODE ENDS>

¶

4.3. CoAP Encoding

The following Python 3.6 code illustrates how to construct CoAP

options from an absolute sequence of options. For simplicity, the

code does not omit CoAP options with their default value.¶

<CODE BEGINS>

def coap(href, to_proxy=False):

 if not is_absolute(href):

 return None

 result = b''

 previous = 0

 for option, value in href:

 if option == Option.SCHEME:

 pass

 elif option == Option.HOST_NAME:

 opt = 3 # Uri-Host

 val = value.encode('utf-8')

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 elif option == Option.HOST_IP:

 opt = 3 # Uri-Host

 if len(value) == 4:

 val = '.'.join(str(c) for c in value).encode('utf-8')

 elif len(value) == 16:

 val = b'[' + ... + b']' # see RFC 5952

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 elif option == Option.PORT:

 opt = 7 # Uri-Port

 val = value.to_bytes((value.bit_length() + 7) // 8, 'big')

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 elif option == Option.PATH:

 opt = 11 # Uri-Path

 val = value.encode('utf-8')

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 elif option == Option.QUERY:

 opt = 15 # Uri-Query

 val = value.encode('utf-8')

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 elif option == Option.FRAGMENT:

 pass

 if to_proxy:

 (option, value) = href[0]

 opt = 39 # Proxy-Scheme

 val = value.encode('utf-8')

 result += _encode_coap_option(opt - previous, val)

 previous = opt

 return result

def _encode_coap_option(delta, value):

 length = len(value)

 delta_nibble = _encode_coap_option_nibble(delta)

 length_nibble = _encode_coap_option_nibble(length)

 result = bytes([delta_nibble << 4 | length_nibble])

 if delta_nibble == 13:

 delta -= 13

 result += bytes([delta])

 elif delta_nibble == 14:

 delta -= 256 + 13

 result += bytes([delta >> 8, delta & 255])

 if length_nibble == 13:

 length -= 13

 result += bytes([length])

 elif length_nibble == 14:

 length -= 256 + 13

 result += bytes([length >> 8, length & 255])

 result += value

 return result

def _encode_coap_option_nibble(n):

 if n < 13:

 return n

 elif n < 256 + 13:

 return 13

 elif n < 65536 + 256 + 13:

 return 14

<CODE ENDS>

5. Security Considerations

Parsers must operate on input that is assumed to be untrusted. This

means that parsers MUST fail gracefully in the face of malicious

inputs. Additionally, parsers MUST be prepared to deal with resource

exhaustion (e.g., resulting from the allocation of big data items)

or exhaustion of the call stack (stack overflow). See Section 8 of

RFC 7049 [RFC7049] for security considerations relating to CBOR.

The security considerations discussed in Section 7 of RFC 3986

[RFC3986] also apply to Constrained Resource Identifiers.

6. IANA Considerations

This document has no IANA actions.

7. References

7.1. Normative References

¶

¶

¶

¶

[RFC2119]

[RFC3986]

[RFC7049]

[RFC8174]

[RFC8610]

[RFC5952]

[RFC7228]

[RFC7230]

[RFC7252]

[RFC8288]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

7.2. Informative References

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6

Address Text Representation", RFC 5952, DOI 10.17487/

RFC5952, August 2010, <https://www.rfc-editor.org/info/

rfc5952>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288

[W3C.REC-html52-20171214]
Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

Changes from -01 to -02:

Changed the syntax of schemes to exclude upper case characters.

Minor editorial improvements.

Changes from -00 to -01:

None.

Acknowledgements

Thanks to Christian Amsüss, Ari Keranen, Jim Schaad, and Dave

Thaler for helpful comments and discussions that have shaped the

document.

Author's Address

Klaus Hartke

Ericsson

Torshamnsgatan 23

16483 Stockholm

Sweden

Email: klaus.hartke@ericsson.com

¶

¶

* ¶

* ¶

¶

* ¶

¶

https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214
mailto:klaus.hartke@ericsson.com

	Constrained Resource Identifiers
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Data Model
	2.1. Options
	2.2. Option Sequences

	3. CBOR
	4. Python
	4.1. Reference Resolution
	4.2. URI Recomposition
	4.3. CoAP Encoding

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Change Log
	Acknowledgements
	Author's Address

