
Workgroup: CoRE Working Group

Internet-Draft: draft-ietf-core-href-07

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: C. Bormann, Ed.

Universität Bremen TZI

H. Birkholz

Fraunhofer SIT

Constrained Resource Identifiers

Abstract

The Constrained Resource Identifier (CRI) is a complement to the

Uniform Resource Identifier (URI) that serializes the URI components

in Concise Binary Object Representation (CBOR) instead of a sequence

of characters. This simplifies parsing, comparison and reference

resolution in environments with severe limitations on processing

power, code size, and memory size.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/. Source

for this draft and an issue tracker can be found at https://

github.com/core-wg/href

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://github.com/core-wg/href
https://github.com/core-wg/href
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Constraints

2.1. Constraints by example

2.2. Constraints not expressed by the data model

3. Creation and Normalization

4. Comparison

5. CRI References

5.1. CBOR Serialization

5.2. Ingesting and encoding a CRI Reference

5.3. Reference Resolution

6. Relationship between CRIs, URIs and IRIs

6.1. Converting CRIs to URIs

7. Implementation Status

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. CDDL specification

Appendix B. Change Log

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

The Uniform Resource Identifier (URI) [RFC3986] and its most common

usage, the URI reference, are the Internet standard for linking to

resources in hypertext formats such as HTML [W3C.REC-

html52-20171214] or the HTTP "Link" header field [RFC8288].

A URI reference is a sequence of characters chosen from the

repertoire of US-ASCII characters. The individual components of a

URI reference are delimited by a number of reserved characters,

which necessitates the use of a character escape mechanism called

"percent-encoding" when these reserved characters are used in a non-

¶

¶

https://trustee.ietf.org/license-info

delimiting function. The resolution of URI references involves

parsing a character sequence into its components, combining those

components with the components of a base URI, merging path

components, removing dot-segments, and recomposing the result back

into a character sequence.

Overall, the proper handling of URI references is quite intricate.

This can be a problem especially in constrained environments

[RFC7228], where nodes often have severe code size and memory size

limitations. As a result, many implementations in such environments

support only an ad-hoc, informally-specified, bug-ridden, non-

interoperable subset of half of RFC 3986.

This document defines the Constrained Resource Identifier (CRI) by

constraining URIs to a simplified subset and serializing their

components in Concise Binary Object Representation (CBOR) [RFC8949]

instead of a sequence of characters. This allows typical operations

on URI references such as parsing, comparison and reference

resolution (including all corner cases) to be implemented in a

comparatively small amount of code.

As a result of simplification, however, CRIs are not capable of

expressing all URIs permitted by the generic syntax of RFC 3986

(hence the "constrained" in "Constrained Resource Identifier"). The

supported subset includes all URIs of the Constrained Application

Protocol (CoAP) [RFC7252], most URIs of the Hypertext Transfer

Protocol (HTTP) [RFC7230], Uniform Resource Names (URNs) [RFC8141],

and other similar URIs. The exact constraints are defined in Section

2.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this specification, the term "byte" is used in its now customary

sense as a synonym for "octet".

Terms defined in this document appear in cursive where they are

introduced (rendered in plain text as the new term surrounded by

underscores).

2. Constraints

A Constrained Resource Identifier consists of the same five

components as a URI: scheme, authority, path, query, and fragment.

The components are subject to the following constraints:

¶

¶

¶

¶

¶

¶

¶

¶

C1.

C2.

C3.

C4.

C5.

C6.

C7.

C8.

C9.

The scheme name can be any Unicode string (see Definition D80

in [Unicode]) that matches the syntax of a URI scheme (see

Section 3.1 of [RFC3986], which constrains schemes to ASCII)

and is lowercase (see Definition D139 in [Unicode]). The

scheme is always present.

An authority is always a host identified by an IP address or

registered name, along with optional port information. User

information is not supported.

Alternatively, the authority can be absent; the two cases for

this defined in Section 3.3 of [RFC3986] are modeled by two

different values used in place of an absent authority:

the path can begin with a root ("/", as when the

authority is present), or

the path can be rootless.

An IP address can be either an IPv4 address or an IPv6

address, optionally with a zone identifier [RFC6874]. Future

versions of IP are not supported.

A registered name is a sequence of one or more labels, which,

when joined with dots (".") in between them, result in a

Unicode string that is lowercase and in Unicode Normalization

Form C (NFC) (see Definition D120 in [Unicode]). (The syntax

may be further restricted by the scheme.)

A port is always an integer in the range from 0 to 65535.

Ports outside this range, empty ports (port subcomponents with

no digits, see Section 3.2.3 of [RFC3986]), or ports with

redundant leading zeros, are not supported.

The port is omitted if and only if the port would be the same

as the scheme's default port (provided the scheme is defining

such a default port) or the scheme is not using ports.

A path consists of zero or more path segments. A path must not

consist of a single zero-length path segment, which is

considered equivalent to a path of zero path segments.

A path segment can be any Unicode string that is in NFC, with

the exception of the special "." and ".." complete path

segments. It can be the zero-length string. No special

constraints are placed on the first path segment.

A query always consists of one or more query parameters. A

query parameter can be any Unicode string that is in NFC. It

¶

¶

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.1
https://rfc-editor.org/rfc/rfc3986#section-3.3
https://rfc-editor.org/rfc/rfc3986#section-3.2.3

C10.

C11.

C12.

is often in the form of a "key=value" pair. When converting a

CRI to a URI, query parameters are separated by an ampersand

("&") character. (This matches the structure and encoding of

the target URI in CoAP requests.) Queries are optional; there

is a difference between an absent query and a single query

parameter that is the empty string.

A fragment identifier can be any Unicode string that is in

NFC. Fragment identifiers are optional; there is a difference

between an absent fragment identifier and a fragment

identifier that is the empty string.

The syntax of registered names, path segments, query

parameters, and fragment identifiers may be further restricted

and sub-structured by the scheme. There is no support,

however, for escaping sub-delimiters that are not intended to

be used in a delimiting function.

When converting a CRI to a URI, any character that is outside

the allowed character range or is a delimiter in the URI

syntax is percent-encoded. For CRIs, percent-encoding always

uses the UTF-8 encoding form (see Definition D92 in [Unicode])

to convert the character to a sequence of bytes (that is then

converted to a sequence of %HH triplets).

2.1. Constraints by example

While most URIs in everyday use can be converted to CRIs and back to

URIs matching the input after syntax-based normalization of the URI,

these URIs illustrate the constraints by example:

https://host%ffname, https://example.com/x?data=%ff

All URI components must, after percent decoding, be valid UTF-8

encoded text. Bytes that are not valid UTF-8 show up, for

example, in BitTorrent web seeds.

https://example.com/component%3bone;component%3btwo, http://

example.com/component%3dequals

While delimiters can be used in an escaped and unescaped form in

URIs with generally distinct meanings, CRIs only support one

escapable delimiter character per component, which is the

delimiter by which the component is split up in the CRI.

Note that the separators . (for authority parts), / (for paths),

& (for query parameters) are special in that they are syntactic

delimiters of their respective components in CRIs. Thus, the

following examples are convertible to CRIs:

¶

¶

¶

¶

¶

* ¶

¶

*

¶

¶

¶

https://interior%2edot/

https://example.com/path%2fcomponent/second-component

https://example.com/x?ampersand=%26&questionmark=?

https://alice@example.com/

The user information can not be expressed in CRIs.

URIs with an authority but a completely empty path (eg. http://

example.com)

CRIs with an authority component always produce at least a slash

in the path component.

For generic schemes, the conversion of scheme://example.com to a

CRI is impossible because no CRI produces a URI with an authority

not followed by a slash following the rules of Section 6.1. Most

schemes do not distinguish between the empty path and the path

containing a single slash when an authority is set (as

recommended in [RFC3986]). For these schemes, that equivalence

allows converting even the slash-less URI to a CRI (which, when

converted back, produces a slash after the authority).

2.2. Constraints not expressed by the data model

There are syntactically valid CRIs and CRI references that can not

be converted into a URI or URI reference, respectively.

For CRI references, this is acceptable -- they can be resolved still

and result in a valid CRI that can be converted back. (An example of

this is [0, ["p"]] which appends a slash and the path segment "p" to

its base).

(Full) CRIs that do not correspond to a valid URI are not valid on

their own, and can not be used. Normatively they are characterized

by the Section 6.1 process producing a valid and syntax-normalized

URI. For easier understanding, they are listed here:

CRIs (and CRI references) containing a path component "." or

"..".

These would be removed by the remove_dot_segments algorithm of

[RFC3986], and thus never produce a normalized URI after

resolution.

(In CRI references, the discard value is used to afford segment

removal, and with "." being an unreserved character, expressing

¶

¶

¶

* ¶

¶

*

¶

¶

¶

¶

¶

¶

*

¶

¶

them as "%2e" and "%2e%2e" is not even viable, let alone

practical).

CRIs without authority whose path starts with two or more empty

segments.

When converted to URIs, these would violate the requirement that

in absence of an authority, a URI's path can not begin with two

slash characters, and they would be indistinguishable from a URI

with a shorter path and a present but empty authority component.

3. Creation and Normalization

In general, resource identifiers are created on the initial creation

of a resource with a certain resource identifier, or the initial

exposition of a resource under a particular resource identifier.

A Constrained Resource Identifier SHOULD be created by the naming

authority that governs the namespace of the resource identifier (see

also [RFC8820]). For example, for the resources of an HTTP origin

server, that server is responsible for creating the CRIs for those

resources.

The naming authority MUST ensure that any CRI created satisfies the

constraints defined in Section 2. The creation of a CRI fails if the

CRI cannot be validated to satisfy all of the constraints.

If a naming authority creates a CRI from user input, it MAY apply

the following (and only the following) normalizations to get the CRI

more likely to validate:

map the scheme name to lowercase (C1);

map the registered name to NFC (C4) and split it on embedded

dots;

elide the port if it is the default port for the scheme (C6);

elide a single zero-length path segment (C7);

map path segments, query parameters and the fragment identifier

to NFC (C8, C9, C10).

Once a CRI has been created, it can be used and transferred without

further normalization. All operations that operate on a CRI SHOULD

rely on the assumption that the CRI is appropriately pre-normalized.

(This does not contradict the requirement that when CRIs are

transferred, recipients must operate on as-good-as untrusted input

and fail gracefully in the face of malicious inputs.)

¶

*

¶

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

4. Comparison

One of the most common operations on CRIs is comparison: determining

whether two CRIs are equivalent, without dereferencing the CRIs

(using them to access their respective resource(s)).

Determination of equivalence or difference of CRIs is based on

simple component-wise comparison. If two CRIs are identical

component-by-component (using code-point-by-code-point comparison

for components that are Unicode strings) then it is safe to conclude

that they are equivalent.

This comparison mechanism is designed to minimize false negatives

while strictly avoiding false positives. The constraints defined in

Section 2 imply the most common forms of syntax- and scheme-based

normalizations in URIs, but do not comprise protocol-based

normalizations that require accessing the resources or detailed

knowledge of the scheme's dereference algorithm. False negatives can

be caused, for example, by CRIs that are not appropriately pre-

normalized and by resource aliases.

When CRIs are compared to select (or avoid) a network action, such

as retrieval of a representation, fragment components (if any)

should be excluded from the comparison.

5. CRI References

The most common usage of a Constrained Resource Identifier is to

embed it in resource representations, e.g., to express a hyperlink

between the represented resource and the resource identified by the

CRI.

This section defines the serialization of CRIs in Concise Binary

Object Representation (CBOR) [RFC8949]. To reduce representation

size, CRIs are not serialized directly. Instead, CRIs are indirectly

referenced through CRI references. These take advantage of

hierarchical locality and provide a very compact encoding. The CBOR

serialization of CRI references is specified in Section 5.1.

The only operation defined on a CRI reference is reference

resolution: the act of transforming a CRI reference into a CRI. An

application MUST implement this operation by applying the algorithm

specified in Section 5.3 (or any algorithm that is functionally

equivalent to it).

The reverse operation of transforming a CRI into a CRI reference is

unspecified; implementations are free to use any algorithm as long

as reference resolution of the resulting CRI reference yields the

original CRI. Notably, a CRI reference is not required to satisfy

¶

¶

¶

¶

¶

¶

¶

all of the constraints of a CRI; the only requirement on a CRI

reference is that reference resolution MUST yield the original CRI.

When testing for equivalence or difference, applications SHOULD NOT

directly compare CRI references; the references should be resolved

to their respective CRI before comparison.

5.1. CBOR Serialization

A CRI reference is encoded as a CBOR array [RFC8949], with the

structure as described in the Concise Data Definition Language

(CDDL) [RFC8610] as follows:

; not expressed in this CDDL spec: trailing nulls to be left off

CRI-Reference = [

 ((scheme / null, authority / no-authority)

 // discard), ; relative reference

 path / null,

 query / null,

 fragment / null

]

scheme = scheme-name / scheme-id

scheme-name = text .regexp "[a-z][a-z0-9+.-]*"

scheme-id = (COAP / COAPS / HTTP / HTTPS / other-scheme)

 .within nint

COAP = -1 COAPS = -2 HTTP = -3 HTTPS = -4

other-scheme = nint .feature "scheme-id-extension"

no-authority = NOAUTH-NOSLASH / NOAUTH-LEADINGSLASH

NOAUTH-NOSLASH = null

NOAUTH-LEADINGSLASH = true

authority = [host, ?port]

host = (host-name // host-ip)

host-name = (*text) ; lowercase, NFC labels

host-ip = (bytes .size 4 //

 (bytes .size 16, ?zone-id))

zone-id = text

port = 0..65535

discard = DISCARD-ALL / 0..127

DISCARD-ALL = true

path = [*text]

query = [*text]

fragment = text

¶

¶

¶

¶

This CDDL specification is simplified for exposition and needs to be

augmented by the following rule for interchange: Trailing null

values are removed, and two leading null values (scheme and

authority both not given) are represented by using the discard

alternative instead. A complete CDDL specification is given in

Appendix A.

The rules scheme, authority, path, query, fragment correspond to the

(sub-)components of a CRI, as described in Section 2, with the

addition of the discard section. The discard section can be used

when neither a scheme nor an authority is present. It then expresses

path prefixes such as "/", "./", "../", "../../", etc. The exact

semantics of the section values are defined by Section 5.3.

Most URI references that Section 4.2 of [RFC3986] calls "relative

references" (i.e., references that need to undergo a resolution

process to obtain a URI) correspond to the CRI form that starts with

discard. The exception are relative references with an authority

(called a "network-path reference" in Section 4.2 of [RFC3986]),

which in CRI references never carry a discard section (the value of

discard defaults to true).

The structure of a CRI is visualized using the somewhat limited

means of a railroad diagram below.

cri-reference:

scheme authority

discard

path query fragment

This visualization does not go into the details of the elements.

Examples:

[-1, / scheme -- equivalent to "coap" /

 [h'C6336401', / host /

 61616], / port /

 [".well-known", / path /

 "core"]

]

[true, / discard /

 [".well-known", / path /

 "core"],

 ["rt=temperature-c"]] / query /

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-4.2
https://rfc-editor.org/rfc/rfc3986#section-4.2

A CRI reference is considered well-formed if it matches the CDDL

structure.

A CRI reference is considered absolute if it is well-formed and the

sequence of sections starts with a non-null scheme.

A CRI reference is considered relative if it is well-formed and the

sequence of sections is empty or starts with a section other than

those that would constitute a scheme.

5.2. Ingesting and encoding a CRI Reference

From an abstract point of view, a CRI Reference is a data structure

with six sections:

scheme, authority, discard, path, query, fragment

Each of these sections can be unset ("null"), except for discard,

which is always an unsigned number or true. If scheme and/or

authority are non-null, discard must be true.

When ingesting a CRI Reference that is in the transfer form, those

sections are filled in from the transfer form (unset sections are

filled with null), and the following steps are performed:

If the array is entirely empty, replace it with [0].

If discard is present in the transfer form (i.e., the outer array

starts with true or an unsigned number), set scheme and authority

to null.

If scheme and/or authority are present in the transfer form

(i.e., the outer array starts with null, a text string, or a

negative integer), set discard to true.

Upon encoding the abstract form into the transfer form, the inverse

processing is performed: If scheme and/or authority are not null,

the discard value is not transferred (it must be true in this case).

If they are both null, they are both left out and only discard is

transferred. Trailing null values are removed from the array. As a

special case, an empty array is sent in place for a remaining [0]

(URI "").

5.3. Reference Resolution

The term "relative" implies that a "base CRI" exists against which

the relative reference is applied. Aside from fragment-only

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

CRI to URI

URI to CRI

references, relative references are only usable when a base CRI is

known.

The following steps define the process of resolving any well-formed

CRI reference against a base CRI so that the result is a CRI in the

form of an absolute CRI reference:

Establish the base CRI of the CRI reference and express it in

the form of an abstract absolute CRI reference.

Initialize a buffer with the sections from the base CRI.

If the value of discard is true in the CRI reference, replace

the path in the buffer with the empty array, unset query and

fragment, and set a true authority to null. If the value of

discard is an unsigned number, remove as many elements from the

end of the path array; if it is non-zero, unset query and

fragment. Set discard to true in the buffer.

If the path section is set in the CRI reference, append all

elements from the path array to the array in the path section

in the buffer; unset query and fragment.

Apart from the path and discard, copy all non-null sections

from the CRI reference to the buffer in sequence; unset

fragment if query is non-null and thus copied.

Return the sections in the buffer as the resolved CRI.

6. Relationship between CRIs, URIs and IRIs

CRIs are meant to replace both Uniform Resource Identifiers (URIs)

[RFC3986] and Internationalized Resource Identifiers (IRIs)

[RFC3987] in constrained environments [RFC7228]. Applications in

these environments may never need to use URIs and IRIs directly,

especially when the resource identifier is used simply for

identification purposes or when the CRI can be directly converted

into a CoAP request.

However, it may be necessary in other environments to determine the

associated URI or IRI of a CRI, and vice versa. Applications can

perform these conversions as follows:

A CRI is converted to a URI as specified in Section 6.1.

The method of converting a URI to a CRI is unspecified;

implementations are free to use any algorithm as long as

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

6. ¶

¶

¶

¶

CRI to IRI

IRI to CRI

scheme

authority

converting the resulting CRI back to a URI yields an equivalent

URI.

A CRI can be converted to an IRI by first converting it to a URI

as specified in Section 6.1, and then converting the URI to an

IRI as described in Section 3.2 of [RFC3987].

An IRI can be converted to a CRI by first converting it to a URI

as described in Section 3.1 of [RFC3987], and then converting the

URI to a CRI as described above.

Everything in this section also applies to CRI references, URI

references and IRI references.

6.1. Converting CRIs to URIs

Applications MUST convert a CRI reference to a URI reference by

determining the components of the URI reference according to the

following steps and then recomposing the components to a URI

reference string as specified in Section 5.3 of [RFC3986].

If the CRI reference contains a scheme section, the scheme

component of the URI reference consists of the value of that

section. Otherwise, the scheme component is unset.

If the CRI reference contains a host-name or host-ip item, the

authority component of the URI reference consists of a host

subcomponent, optionally followed by a colon (":") character and

a port subcomponent. Otherwise, the authority component is unset.

The host subcomponent consists of the value of the host-name or

host-ip item.

The host-name is turned into a single string by joining the

elements separated by dots ("."). Any character in the value of a

host-name item that is not in the set of unreserved characters

(Section 2.3 of [RFC3986]) or "sub-delims" (Section 2.2 of

[RFC3986]) MUST be percent-encoded.

The value of a host-ip item MUST be represented as a string that

matches the "IPv4address" or "IP-literal" rule (Section 3.2.2 of

[RFC3986]). Any zone-id is appended to the string, separated by

"%25" as defined in Section 2 of [RFC6874], or as specified in a

successor zone-id specification document; this also leads to a

modified "IP-literal" rule as specified in these documents.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3987#section-3.2
https://rfc-editor.org/rfc/rfc3987#section-3.1
https://rfc-editor.org/rfc/rfc3986#section-5.3
https://rfc-editor.org/rfc/rfc3986#section-2.3
https://rfc-editor.org/rfc/rfc3986#section-2.2
https://rfc-editor.org/rfc/rfc3986#section-3.2.2
https://rfc-editor.org/rfc/rfc6874#section-2

path

query

If the CRI reference contains a port item, the port subcomponent

consists of the value of that item in decimal notation.

Otherwise, the colon (":") character and the port subcomponent

are both omitted.

If the CRI reference contains a discard item of value true, the

path component is prefixed by a slash ("/") character. If it

contains a discard item of value 0 and the path item is present,

the conversion fails. Otherwise, the path component is prefixed

by as many "../" components as the discard value minus one

indicates.

If the discard item is not present and the CRI reference contains

an authority that is true, the path component of the URI

reference is prefixed by the zero-length string. Otherwise, the

path component is prefixed by a slash ("/") character.

If the CRI reference contains one or more path items, the prefix

is followed by the value of each item, separated by a slash ("/")

character.

Any character in the value of a path item that is not in the set

of unreserved characters or "sub-delims" or a colon (":") or

commercial at ("@") character MUST be percent-encoded.

If the authority component is present (not null or true) and the

path component does not match the "path-abempty" rule

(Section 3.3 of [RFC3986]), the conversion fails.

If the authority component is not present, but the scheme

component is, and the path component does not match the "path-

absolute", "path-rootless" (authority == true) or "path-empty"

rule (Section 3.3 of [RFC3986]), the conversion fails.

If neither the authority component nor the scheme component are

present, and the path component does not match the "path-

absolute", "path-noscheme" or "path-empty" rule (Section 3.3 of

[RFC3986]), the conversion fails.

If the CRI reference contains one or more query items, the query

component of the URI reference consists of the value of each

item, separated by an ampersand ("&") character. Otherwise, the

query component is unset.

Any character in the value of a query item that is not in the set

of unreserved characters or "sub-delims" or a colon (":"),

commercial at ("@"), slash ("/") or question mark ("?") character

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.3
https://rfc-editor.org/rfc/rfc3986#section-3.3
https://rfc-editor.org/rfc/rfc3986#section-3.3

fragment

[RFC2119]

[RFC3986]

MUST be percent-encoded. Additionally, any ampersand character

("&") in the item value MUST be percent-encoded.

If the CRI reference contains a fragment item, the fragment

component of the URI reference consists of the value of that

item. Otherwise, the fragment component is unset.

Any character in the value of a fragment item that is not in the

set of unreserved characters or "sub-delims" or a colon (":"),

commercial at ("@"), slash ("/") or question mark ("?") character

MUST be percent-encoded.

7. Implementation Status

With the exception of the authority=true fix and host-names split

into labels, CRIs are implemented in https://gitlab.com/chrysn/

micrurus.

8. Security Considerations

Parsers of CRI references must operate on input that is assumed to

be untrusted. This means that parsers MUST fail gracefully in the

face of malicious inputs. Additionally, parsers MUST be prepared to

deal with resource exhaustion (e.g., resulting from the allocation

of big data items) or exhaustion of the call stack (stack overflow).

See Section 10 of [RFC8949] for additional security considerations

relating to CBOR.

The security considerations discussed in Section 7 of [RFC3986] and

Section 8 of [RFC3987] for URIs and IRIs also apply to CRIs.

9. IANA Considerations

This document has no IANA actions.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-10
https://rfc-editor.org/rfc/rfc3986#section-7
https://rfc-editor.org/rfc/rfc3987#section-8
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[RFC3987]

[RFC6874]

[RFC8174]

[RFC8610]

[RFC8949]

[Unicode]

[RFC7228]

[RFC7230]

[RFC7252]

[RFC8141]

Duerst, M. and M. Suignard, "Internationalized Resource

Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,

January 2005, <https://www.rfc-editor.org/info/rfc3987>.

Carpenter, B., Cheshire, S., and R. Hinden, "Representing

IPv6 Zone Identifiers in Address Literals and Uniform

Resource Identifiers", RFC 6874, DOI 10.17487/RFC6874,

February 2013, <https://www.rfc-editor.org/info/rfc6874>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

The Unicode Consortium, "The Unicode Standard, Version

13.0.0", ISBN 978-1-936213-26-9, March 2020, <https://

www.unicode.org/versions/Unicode13.0.0/>.

10.2. Informative References

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Saint-Andre, P. and J. Klensin, "Uniform Resource Names

(URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,

<https://www.rfc-editor.org/info/rfc8141>.

https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc6874
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.unicode.org/versions/Unicode13.0.0/
https://www.unicode.org/versions/Unicode13.0.0/
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8141

[RFC8288]

[RFC8820]

[W3C.REC-html52-20171214]

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

Nottingham, M., "URI Design and Ownership", BCP 190, RFC

8820, DOI 10.17487/RFC8820, June 2020, <https://www.rfc-

editor.org/info/rfc8820>.

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Appendix A. CDDL specification

The full CDDL specification is somewhat redundant internally in

order to express trailing null suppression.¶

https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8820
https://www.rfc-editor.org/info/rfc8820
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214

; expressing null suppression

CRI-Reference = [

 ?(((scheme, (authority / null / true)

 // (null, authority))

 // discard), ; relative reference

 ?((path / null, query / null, fragment) //

 (path / null, query) //

 path)

)

]

scheme = scheme-name / scheme-id

scheme-name = text .regexp "[a-z][a-z0-9+.-]*"

scheme-id = (COAP / COAPS / HTTP / HTTPS / other-scheme)

 .within nint

COAP = -1 COAPS = -2 HTTP = -3 HTTPS = -4

other-scheme = nint .feature "scheme-id-extension"

authority = [host, ?port]

host = (host-name // host-ip)

host-name = (*text) ; lowercase, NFC labels

host-ip = (bytes .size 4 //

 (bytes .size 16, ?zone-id))

zone-id = text

port = 0..65535

discard = true / 0..127

path = [*text]

query = [*text]

fragment = text

Appendix B. Change Log

This section is to be removed before publishing as an RFC.

Changes from -05 to -06

rework authority:

split reg-names at dots;

add optional zone identifiers [RFC6874] to IP addresses

Changes from -04 to -05

Simplify CBOR structure.

¶

¶

¶

* ¶

- ¶

- ¶

¶

* ¶

Add implementation status section.

Changes from -03 to -04:

Minor editorial improvements.

Renamed path.type/path-type to discard.

Renamed option to section, substructured into items.

Simplied the table "resolution-variables".

Use the CBOR structure inspired by Jim Schaad's proposals.

Changes from -02 to -03:

Expanded the set of supported schemes (#3).

Specified creation, normalization and comparison (#9).

Clarified the default value of the path.type option (#33).

Removed the append-relation path.type option (#41).

Renumbered the remaining path.types.

Renumbered the option numbers.

Restructured the document.

Minor editorial improvements.

Changes from -01 to -02:

Changed the syntax of schemes to exclude upper case characters

(#13).

Minor editorial improvements (#34 #37).

Changes from -00 to -01:

None.

Acknowledgements

CRIs were developed by Klaus Hartke for use in the Constrained

RESTful Application Language (CoRAL). The current author team is

completing this work with a view to achieve good integration with

the potential use cases, both inside and outside of CoRAL.

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

¶

* ¶

¶

Thanks to Christian Amsüss, Ari Keränen, Jim Schaad and Dave Thaler

for helpful comments and discussions that have shaped the document.

Contributors

Klaus Hartke

Ericsson

Torshamnsgatan 23

SE-16483 Stockholm

Sweden

Email: klaus.hartke@ericsson.com

Authors' Addresses

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

¶

mailto:klaus.hartke@ericsson.com
tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:henk.birkholz@sit.fraunhofer.de

	Constrained Resource Identifiers
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Constraints
	2.1. Constraints by example
	2.2. Constraints not expressed by the data model

	3. Creation and Normalization
	4. Comparison
	5. CRI References
	5.1. CBOR Serialization
	5.2. Ingesting and encoding a CRI Reference
	5.3. Reference Resolution

	6. Relationship between CRIs, URIs and IRIs
	6.1. Converting CRIs to URIs

	7. Implementation Status
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. CDDL specification
	Appendix B. Change Log
	Acknowledgements
	Contributors
	Authors' Addresses

