
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Standards Track S. Loreto
Expires: June 1, 2017 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 Nokia
 E. Dijk
 Philips Lighting
 November 28, 2016

Guidelines for HTTP-to-CoAP Mapping Implementations
draft-ietf-core-http-mapping-17

Abstract

 This document provides reference information for implementing a
 cross-protocol network proxy that performs translation from the HTTP
 protocol to CoAP (Constrained Application Protocol). This will
 enable an HTTP client to access resources on a CoAP server through
 the proxy. This document describes how an HTTP request is mapped to
 a CoAP request, and then how a CoAP response is mapped back to an
 HTTP response. This includes guidelines for status code, URI, and
 media type mappings, as well as additional interworking advice.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 1, 2017.

Castellani, et al. Expires June 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP-to-CoAP Mapping November 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. HTTP-to-CoAP Proxy . 5
4. Use Cases . 6
5. URI Mapping . 7
5.1. URI Terminology . 8
5.2. Null Mapping . 8
5.3. Default Mapping . 8
5.3.1. Optional Scheme Omission 9
5.3.2. Encoding Caveats 9

5.4. URI Mapping Template 9
5.4.1. Simple Form . 10
5.4.2. Enhanced Form . 11

5.5. Discovery . 13
5.5.1. Examples . 13

6. Media Type Mapping . 15
6.1. Overview . 15
6.2. 'application/coap-payload' Media Type 16
6.3. Loose Media Type Mapping 17
6.4. Media Type to Content Format Mapping Algorithm 18
6.5. Content Transcoding 19
6.5.1. General . 19
6.5.2. CoRE Link Format 20
6.5.3. Diagnostic Messages 20

7. Response Code Mapping . 21
8. Additional Mapping Guidelines 23
8.1. Caching and Congestion Control 23
8.2. Cache Refresh via Observe 24
8.3. Use of CoAP Blockwise Transfer 24
8.4. CoAP Multicast . 25
8.5. Timeouts . 26

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Castellani, et al. Expires June 1, 2017 [Page 2]

Internet-Draft HTTP-to-CoAP Mapping November 2016

9. IANA Considerations . 26
9.1. New 'core.hc' Resource Type 26
9.2. New 'coap-payload' Internet Media Type 26

10. Security Considerations 28
10.1. Multicast . 29
10.2. Traffic Overflow . 29
10.3. Handling Secured Exchanges 30
10.4. URI Mapping . 30

11. Acknowledgments . 31
12. References . 31
12.1. Normative References 31
12.2. Informative References 33

Appendix A. Media Type Mapping Source Code 34
Appendix B. Change Log . 38

 Authors' Addresses . 43

1. Introduction

 CoAP (Constrained Application Protocol) [RFC7252] has been designed
 with the twofold aim to be an application protocol specialized for
 constrained environments and to be easily used in Representational
 State Transfer (REST) [Fielding] based architectures such as the Web.
 The latter goal has led to defining CoAP to easily interoperate with
 HTTP [RFC7230] through an intermediary proxy which performs cross-
 protocol conversion.

Section 10 of [RFC7252] describes the fundamentals of the CoAP-to-
 HTTP and the HTTP-to-CoAP cross-protocol mapping process. However,
 [RFC7252] focuses on the basic mapping of request methods and simple
 response code mapping between HTTP and CoAP, while leaving many
 details of the cross-protocol proxy for future definition.
 Therefore, a primary goal of this document is to define a consistent
 set of guidelines that an HTTP-to-CoAP proxy implementation should
 adhere to. The key benefit to adhering to such guidelines is to
 reduce variation between proxy implementations, thereby increasing
 interoperability between an HTTP client and a CoAP server independent
 of the proxy that implements the cross-protocol mapping. (For
 example, a proxy conforming to these guidelines made by vendor A can
 be easily replaced by a proxy from vendor B that also conforms to the
 guidelines without breaking API semantics.)

 This document describes HTTP mappings that apply to protocol elements
 defined in the base CoAP specification [RFC7252]. It is up to CoAP
 protocol extensions (new methods, response codes, options, content-
 formats) to describe their own HTTP mappings, if applicable.

 The rest of this document is organized as follows:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Castellani, et al. Expires June 1, 2017 [Page 3]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o Section 2 defines proxy terminology;

 o Section 3 introduces the HTTP-to-CoAP proxy;

 o Section 4 lists use cases in which HTTP clients need to contact
 CoAP servers;

 o Section 5 introduces a null, default, and advanced HTTP-to-CoAP
 URI mapping syntax;

 o Section 6 describes how to map HTTP media types to CoAP content
 formats and vice versa;

 o Section 7 describes how to map CoAP responses to HTTP responses;

 o Section 8 describes additional mapping guidelines related to
 caching, congestion, timeouts, etc.;

 o Section 10 discusses possible security impact of HTTP-to-CoAP
 protocol mapping.

2. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This specification requires readers to be familiar with the
 vocabulary and concepts discussed in [RFC7228], in particular, the
 terms "Constrained Nodes" and "Constrained Networks". In addition,
 this specification makes use of the following terms:

 HC Proxy
 A proxy performing a cross-protocol mapping, in the context of
 this document an HTTP-to-CoAP (HC) mapping. Specifically, the HC
 Proxy acts as an HTTP server and a CoAP client. The HC Proxy can
 take on the role of a Forward, Reverse or Interception Proxy.

 Forward Proxy (or Forward HC Proxy)
 A message forwarding agent that is selected by the HTTP client,
 usually via local configuration rules, to receive requests for
 some type(s) of absolute URI and to attempt to satisfy those
 requests via translation to the protocol indicated by the
 absolute URI. The user decides (is willing) to use the proxy as
 the forwarding/de-referencing agent for a predefined subset of
 the URI space. In [RFC7230] this is called a Proxy. [RFC7252]
 defines Forward-Proxy similarly.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252

Castellani, et al. Expires June 1, 2017 [Page 4]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Reverse Proxy (or Reverse HC Proxy)
 As in [RFC7230], a receiving agent that acts as a layer above
 some other server(s) and translates the received requests to the
 underlying server's protocol. A Reverse HC Proxy behaves as an
 origin (HTTP) server on its connection from the HTTP client. The
 HTTP client uses the "origin-form" (Section 5.3.1 of [RFC7230])
 as a request-target URI. (Note that a Reverse Proxy appears to
 an HTTP client as an origin server while a Forward Proxy does
 not. So, when communicating with a Reverse Proxy a client may be
 unaware it is communicating with a proxy at all.)

 Interception Proxy (or Interception HC Proxy)
 As in [RFC3040], a proxy that receives inbound HTTP traffic flows
 through the process of traffic redirection, transparent to the
 HTTP client.

3. HTTP-to-CoAP Proxy

 An HC Proxy is accessed by an HTTP client that needs to fetch a
 resource on a CoAP server. The HC Proxy handles the HTTP request by
 mapping it to the equivalent CoAP request, which is then forwarded to
 the appropriate CoAP server. The received CoAP response is then
 mapped to an appropriate HTTP response and finally sent back to the
 originating HTTP client.

Section 10.2 of [RFC7252] defines basic normative requirements on
 HTTP-to-CoAP mapping. This document provides additional details and
 guidelines for the implementation of an HC Proxy.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc7252#section-10.2

Castellani, et al. Expires June 1, 2017 [Page 5]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Constrained Network
 .-------------------.
 / .------. \
 / | CoAP | \
 / |server| \
 || '------' ||
 || ||
 .--------. HTTP Request .------------. CoAP Req .------. ||
 | HTTP |---------------->|HTTP-to-CoAP|----------->| CoAP | ||
 | Client |<----------------| Proxy |<-----------|Server| ||
 '--------' HTTP Response '------------' CoAP Resp '------' ||
 || || | |
 || .------. ||
 || | CoAP | ||
 \ |server| .------. /
 \ '------' | CoAP | /
 \ |server| /
 \ '------' /
 '-----------------'

 Figure 1: HTTP-To-CoAP Proxy Deployment Scenario

 Figure 1 illustrates an example deployment scenario. There, an HC
 Proxy is located at the boundary of the Constrained Network domain
 and acts as an Application Layer Gateway (ALG) that allows only a
 very specific type of traffic (i.e., authorized inbound HTTP requests
 and their associated outbound CoAP responses) to pass through. All
 other kinds of traffic are segregated within the respective network
 segments.

4. Use Cases

 To illustrate a few situations in which HTTP to CoAP protocol
 translation may be used, three use cases are described below.

 1. Legacy building control application without CoAP: A building
 control application that uses HTTP but not CoAP can check the
 status of CoAP sensors and/or control actuators via an HC Proxy.

 2. Making sensor data available to 3rd parties on the Web: For
 demonstration or public interest purposes, an HC Proxy may be
 configured to expose the contents of a CoAP sensor to the world
 via the web (HTTP and/or HTTPS). Some sensors may only accept
 secure 'coaps' requests, therefore the proxy is configured to
 translate requests to those devices accordingly. The HC Proxy is
 furthermore configured to only pass through GET requests in order
 to protect the constrained network.

Castellani, et al. Expires June 1, 2017 [Page 6]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 3. Smartphone and home sensor: A smartphone can access directly a
 CoAP home sensor using a mutually authenticated 'https' request,
 provided its home router runs an HC Proxy and is configured with
 the appropriate certificate. An HTML5 [W3C.REC-html5-20141028]
 application on the smartphone can provide a friendly UI using the
 standard (HTTP) networking functions of HTML5.

 A key point in the above use cases is the expected nature of the URI
 to be used by the HTTP client initiating the HTTP request to the HC
 Proxy. Specifically, in use case #1, there will be no 'coap' or
 'coaps' related information embedded in the HTTP URI as it is a
 legacy HTTP client sending the request. Use case #2 is also expected
 to be similar. In contrast, in use case #3, it is likely that the
 HTTP client will specifically embed 'coap' or 'coaps' related
 information in the HTTP URI of the HTTP request to the HC Proxy.

5. URI Mapping

 Though, in principle, a CoAP URI could be directly used by an HTTP
 client to de-reference a CoAP resource through an HC Proxy, the
 reality is that all major web browsers, networking libraries and
 command line tools do not allow making HTTP requests using URIs with
 a scheme 'coap' or 'coaps'.

 Thus, there is a need for web applications to embed or "pack" a CoAP
 URI into an HTTP URI so that it can be (non-destructively)
 transported from the HTTP client to the HC Proxy. The HC Proxy can
 then "unpack" the CoAP URI and finally de-reference it via a CoAP
 request to the target Server.

 URI Mapping is the term used in this document to describe the process
 through which the URI of a CoAP resource is transformed into an HTTP
 URI so that:

 o The requesting HTTP client can handle it;

 o The receiving HC Proxy can extract the intended CoAP URI
 unambiguously.

 To this end, the remainder of this section will identify:

 o The default mechanism to map a CoAP URI into an HTTP URI;

 o The URI template format to express a class of CoAP-HTTP URI
 mapping functions;

 o The discovery mechanism based on CoRE Link Format [RFC6690]
 through which clients of an HC Proxy can dynamically learn about

https://datatracker.ietf.org/doc/html/rfc6690

Castellani, et al. Expires June 1, 2017 [Page 7]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 the supported URI Mapping Template(s), as well as the URI where
 the HC Proxy function is anchored.

5.1. URI Terminology

 In the remainder of this section, the following terms will be used
 with a distinctive meaning:

 HC Proxy URI:
 URI which refers to the HC Proxy function. It conforms to
 syntax defined in Section 2.7 of [RFC7230].

 Target CoAP URI:
 URI which refers to the (final) CoAP resource that has to be
 de-referenced. It conforms to syntax defined in Section 6 of
 [RFC7252]. Specifically, its scheme is either 'coap' or
 'coaps'.

 Hosting HTTP URI:
 URI that conforms to syntax in Section 2.7 of [RFC7230]. Its
 authority component refers to an HC Proxy, whereas path and/
 or query component(s) embed the information used by an HC
 Proxy to extract the Target CoAP URI.

5.2. Null Mapping

 The null mapping is the case where there is no Target CoAP URI
 appended to the HC Proxy URI. In other words, it is a "pure" HTTP
 URI that is sent to the HC Proxy. This would typically occur in
 situations like Use Case #1 described in Section 4, and the Proxy
 would typically be a Reverse Proxy. In this scenario, the HC Proxy
 will determine through its own private algorithms what the Target
 CoAP URI should be.

5.3. Default Mapping

 The default mapping is for the Target CoAP URI to be appended as-is
 (with the only caveat discussed in Section 5.3.2) to the HC Proxy
 URI, to form the Hosting HTTP URI. This is the Effective Request URI
 (see Section 5.5 of [RFC7230]) that will then be sent by the HTTP
 client in the HTTP request to the HC Proxy.

 For example: given an HC Proxy URI https://p.example.com/hc/ and a
 Target CoAP URI coap://s.example.com/light, the resulting Hosting
 HTTP URI would be https://p.example.com/hc/coap://s.example.com/
 light.

https://datatracker.ietf.org/doc/html/rfc7230#section-2.7
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7230#section-2.7
https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

Castellani, et al. Expires June 1, 2017 [Page 8]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Provided a correct Target CoAP URI, the Hosting HTTP URI resulting
 from the default mapping will be a syntactically valid HTTP URI.
 Furthermore, the Target CoAP URI can always be extracted
 unambiguously from the Hosting HTTP URI.

 There is no default for the HC Proxy URI. Therefore, it is either
 known in advance, e.g., as a configuration preset, or dynamically
 discovered using the mechanism described in Section 5.5.

 The default URI mapping function SHOULD be implemented and SHOULD be
 activated by default in an HC Proxy, unless there are valid reasons
 (e.g., application specific) to use a different mapping function.

5.3.1. Optional Scheme Omission

 When constructing a Hosting HTTP URI by embedding a Target CoAP URI,
 the scheme (i.e., 'coap' or 'coaps'), the scheme component delimiter
 (":"), and the double slash ("//") preceding the authority MAY be
 omitted if a local default - not defined by this document - applies.
 If no prior mutual agreement exists between the client and the HC
 Proxy, then a Target CoAP URI without the scheme component is
 syntactically incorrect, and therefore:

 o It MUST NOT be emitted by clients;

 o It MUST elicit a suitable client error status (i.e., 4xx) by the
 HC Proxy.

5.3.2. Encoding Caveats

 When the authority of the Target CoAP URI is given as an IPv6address,
 then the surrounding square brackets must be percent-encoded in the
 Hosting HTTP URI, in order to comply with the syntax defined in

Section 3.3. of [RFC3986] for a URI path segment. E.g.:
 coap://[2001:db8::1]/light?on becomes
 https://p.example.com/hc/coap://%5B2001:db8::1%5D/light?on. (Note
 that the percent-encoded square brackets shall be reverted to their
 non-percent-encoded form when the HC Proxy unpacks the Target CoAP
 URI.)

 Everything else can be safely copied verbatim from the Target CoAP
 URI to the Hosting HTTP URI.

5.4. URI Mapping Template

 This section defines a format for the URI template [RFC6570] used by
 an HC Proxy to inform its clients about the expected syntax for the
 Hosting HTTP URI. This will then be used by the HTTP client to

https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc6570

Castellani, et al. Expires June 1, 2017 [Page 9]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 construct the Effective Request URI to be sent in the HTTP request to
 the HC Proxy.

 When instantiated, a URI Mapping Template is always concatenated to
 an HC Proxy URI provided by the HC Proxy via discovery (see

Section 5.5), or by other means.

 A simple form (Section 5.4.1) and an enhanced form (Section 5.4.2)
 are provided to fit different users' requirements.

 Both forms are expressed as level 2 URI templates [RFC6570] to take
 care of the expansion of values that are allowed to include reserved
 URI characters. The syntax of all URI formats is specified in this
 section in Augmented Backus-Naur Form (ABNF) [RFC5234].

5.4.1. Simple Form

 The simple form MUST be used for mappings where the Target CoAP URI
 is going to be copied (using rules of Section 5.3.2) at some fixed
 position into the Hosting HTTP URI.

 The "tu" template variable is intended to be used in a template
 definition to represent a Target CoAP URI:

 tu = [("coap:" / "coaps:") "//"] host [":" port] path-abempty
 ["?" query]

 Note that the same considerations as in Section 5.3.1 apply, in that
 the CoAP scheme may be omitted from the Hosting HTTP URI.

5.4.1.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 https://p.example.com/hc/ as the HC Proxy URI. Note that these
 examples all define mapping templates that deviate from the default
 template of Section 5.3 in order to illustrate the use of the above
 template variables.

 1. Target CoAP URI is a query argument of the Hosting HTTP URI:

https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc5234

Castellani, et al. Expires June 1, 2017 [Page 10]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 ?target_uri={+tu}

 coap://s.example.com/light

 => https://p.example.com/hc/?target_uri=coap://s.example.com/light

 whereas

 coaps://s.example.com/light

 => https://p.example.com/hc/?target_uri=coaps://s.example.com/light

 2. Target CoAP URI in the path component of the Hosting HTTP URI:

 forward/{+tu}

 coap://s.example.com/light

 => https://p.example.com/hc/forward/coap://s.example.com/light

 whereas

 coaps://s.example.com/light

 => https://p.example.com/hc/forward/coaps://s.example.com/light

 3. Target CoAP URI is a query argument of the Hosting HTTP URI;
 client decides to omit the scheme because a default is agreed
 beforehand between client and proxy:

 ?coap_uri={+tu}

 coap://s.example.com/light

 => https://p.example.com/hc/?coap_uri=s.example.com/light

5.4.2. Enhanced Form

 The enhanced form can be used to express more sophisticated mappings
 of the Target CoAP URI into the Hosting HTTP URI, i.e., mappings that
 do not fit into the simple form.

Castellani, et al. Expires June 1, 2017 [Page 11]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 There MUST be at most one instance of each of the following template
 variables in a template definition:

 s = "coap" / "coaps" ; from [RFC7252], Sections 6.1 and 6.2
 hp = host [":" port] ; from [RFC3986], Sections 3.2.2 and 3.2.3
 p = path-abempty ; from [RFC3986], Section 3.3
 q = query ; from [RFC3986], Section 3.4
 qq = ["?" query] ; qq is empty if and only if 'query' is empty

 The qq form is used when the path and the (optional) query components
 are to be copied verbatim from the Target CoAP URI into the Hosting
 HTTP URI, i.e., as "{+p}{+qq}". Instead, the q form is used when the
 query and path are mapped as separate entities, e.g., as in
 "coap_path={+p}&coap_query={+q}".

5.4.2.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 https://p.example.com/hc/ as the HC Proxy URI.

 1. Target CoAP URI components in path segments, and optional query
 in query component:

 {+s}/{+hp}{+p}{+qq}

 coap://s.example.com/light

 => https://p.example.com/hc/coap/s.example.com/light

 whereas

 coap://s.example.com/light?on

 => https://p.example.com/hc/coap/s.example.com/light?on

 2. Target CoAP URI components split in individual query arguments:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Castellani, et al. Expires June 1, 2017 [Page 12]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 ?s={+s}&hp={+hp}&p={+p}&q={+q}

 coap://s.example.com/light

 => https://p.example.com/hc/?s=coap&hp=s.example.com&p=/light&q=

 whereas

 coaps://s.example.com/light?on

 => https://p.example.com/hc/?s=coaps&hp=s.example.com&p=/light&q=on

5.5. Discovery

 In order to accommodate site-specific needs while allowing third
 parties to discover the proxy function, the HC Proxy SHOULD publish
 information related to the location and syntax of the HC Proxy
 function using the CoRE Link Format [RFC6690] interface.

 To this aim a new Resource Type, "core.hc", is defined in this
 document. It can be used as the value for the "rt" attribute in a
 query to the /.well-known/core in order to locate the URI where the
 HC Proxy function is anchored, i.e., the HC Proxy URI.

 Along with it, the new target attribute "hct" is defined in this
 document. This attribute MAY be returned in a "core.hc" link to
 provide the URI Mapping Template associated with the mapping
 resource. The default template given in Section 5.3, i.e., {+tu},
 MUST be assumed if no "hct" attribute is found in the returned link.
 If a "hct" attribute is present in the returned link, then a client
 MUST use it to create the Hosting HTTP URI.

 The URI mapping SHOULD be discoverable (as specified in [RFC6690]) on
 both the HTTP and the CoAP side of the HC Proxy, with one important
 difference: on the CoAP side the link associated with the "core.hc"
 resource needs an explicit anchor referring to the HTTP origin
 [RFC6454], while on the HTTP interface the link context is already
 the HTTP origin carried in the request's Host header, and doesn't
 have to be made explicit.

5.5.1. Examples

 o The first example exercises the CoAP interface and assumes that
 the default template, {+tu}, is used. For example, a smartphone
 may discover the public HC Proxy before leaving the home network.
 Then when outside the home network, the smartphone will be able to
 query the appropriate home sensor.

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6454

Castellani, et al. Expires June 1, 2017 [Page 13]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc/>;anchor="https://p.example.com";rt="core.hc"

 o The second example - also on the CoAP side of the HC Proxy - uses
 a custom template, i.e., one where the CoAP URI is carried inside
 the query component, thus the returned link carries the URI
 template to be used in an explicit "hct" attribute:

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc/>;anchor="https://p.example.com";
 rt="core.hc";hct="?uri={+tu}"

 On the HTTP side, link information can be serialized in more than one
 way:

 o using the 'application/link-format' content type:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format
 Content-Length: 18

 </hc/>;rt="core.hc"

 o using the 'application/link-format+json' content type as defined
 in [I-D.ietf-core-links-json]:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format+json
 Content-Length: 31

 [{"href":"/hc/","rt":"core.hc"}]

Castellani, et al. Expires June 1, 2017 [Page 14]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o using the Link header:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Link: </hc/>;rt="core.hc"

6. Media Type Mapping

6.1. Overview

 An HC Proxy needs to translate HTTP media types (Section 3.1.1.1 of
 [RFC7231]) and content encodings (Section 3.1.2.2 of [RFC7231]) into
 CoAP content formats (Section 12.3 of [RFC7252]) and vice versa.

 Media type translation can happen in GET, PUT or POST requests going
 from HTTP to CoAP, and in 2.xx (i.e., successful) responses going
 from CoAP to HTTP. Specifically, PUT and POST need to map both the
 Content-Type and Content-Encoding HTTP headers into a single CoAP
 Content-Format option, whereas GET needs to map Accept and Accept-
 Encoding HTTP headers into a single CoAP Accept option. To generate
 the HTTP response, the CoAP Content-Format option is mapped back to a
 suitable HTTP Content-Type and Content-Encoding combination.

 An HTTP request carrying a Content-Type and Content-Encoding
 combination which the HC Proxy is unable to map to an equivalent CoAP
 Content-Format, SHALL elicit a 415 (Unsupported Media Type) response
 by the HC Proxy.

 On the content negotiation side, failure to map Accept and Accept-*
 headers SHOULD be silently ignored: the HC Proxy SHOULD therefore
 forward as a CoAP request with no Accept option. The HC Proxy thus
 disregards the Accept/Accept-* header fields by treating the response
 as if it is not subject to content negotiation, as mentioned in
 Sections 5.3.* of [RFC7231]. However, an HC Proxy implementation is
 free to attempt mapping a single Accept header in a GET request to
 multiple CoAP GET requests, each with a single Accept option, which
 are then tried in sequence until one succeeds. Note that an HTTP
 Accept */* MUST be mapped to a CoAP request without Accept option.

 While the CoAP to HTTP direction has always a well-defined mapping
 (with the exception examined in Section 6.2), the HTTP to CoAP
 direction is more problematic because the source set, i.e.,
 potentially 1000+ IANA registered media types, is much bigger than

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2.2
https://datatracker.ietf.org/doc/html/rfc7252#section-12.3
https://datatracker.ietf.org/doc/html/rfc7231

Castellani, et al. Expires June 1, 2017 [Page 15]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 the destination set, i.e., the mere 6 values initially defined in
Section 12.3 of [RFC7252].

 Depending on the tight/loose coupling with the application(s) for
 which it proxies, the HC Proxy could implement different media type
 mappings.

 When tightly coupled, the HC Proxy knows exactly which content
 formats are supported by the applications, and can be strict when
 enforcing its forwarding policies in general, and the media type
 mapping in particular.

 On the other hand, when the HC Proxy is a general purpose ALG, being
 too strict could significantly reduce the amount of traffic that it
 would be able to successfully forward. In this case, the "loose"
 media type mapping detailed in Section 6.3 MAY be implemented.

 The latter grants more evolution of the surrounding ecosystem, at the
 cost of allowing more attack surface. In fact, as a result of such
 strategy, payloads would be forwarded more liberally across the
 unconstrained/constrained network boundary of the communication path.

6.2. 'application/coap-payload' Media Type

 If the HC Proxy receives a CoAP response with a Content-Format that
 it does not recognize (e.g., because the value has been registered
 after the proxy has been deployed, or the CoAP server uses an
 experimental value which is not registered), then the HC Proxy SHALL
 return a generic "application/coap-payload" media type with numeric
 parameter "cf" as defined in Section 9.2.

 For example, the CoAP content format '60' ("application/cbor") would
 be represented by "application/coap-payload;cf=60", if the HC Proxy
 doesn't recognize the content format '60'.

 A HTTP client may use the media type "application/coap-payload" as a
 means to send a specific content format to a CoAP server via an HC
 Proxy if the client has determined that the HC Proxy does not
 directly support the type mapping it needs. This case may happen
 when dealing for example with newly registered, yet to be registered,
 or experimental CoAP content formats. However, unless explicitly
 configured to allow pass-through of unknown content formats, the HC
 Proxy SHOULD NOT forward requests carrying a Content-Type or Accept
 header with an "application/coap-payload", and return an appropriate
 client error instead.

https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Castellani, et al. Expires June 1, 2017 [Page 16]

Internet-Draft HTTP-to-CoAP Mapping November 2016

6.3. Loose Media Type Mapping

 By structuring the type information in a super-class (e.g., "text")
 followed by a finer grained sub-class (e.g., "html"), and optional
 parameters (e.g., "charset=utf-8"), Internet media types provide a
 rich and scalable framework for encoding the type of any given
 entity.

 This approach is not applicable to CoAP, where Content Formats
 conflate an Internet media type (potentially with specific
 parameters) and a content encoding into one small integer value.

 To remedy this loss of flexibility, we introduce the concept of a
 "loose" media type mapping, where media types that are
 specializations of a more generic media type can be aliased to their
 super-class and then mapped (if possible) to one of the CoAP content
 formats. For example, "application/soap+xml" can be aliased to
 "application/xml", which has a known conversion to CoAP. In the
 context of this "loose" media type mapping, "application/octet-
 stream" can be used as a fallback when no better alias is found for a
 specific media type.

 Table 1 defines the default lookup table for the "loose" media type
 mapping. It is expected that an implementation can refine it either
 given application-specific knowledge, or because new Content-Formats
 are defined. Given an input media type, the table returns its best
 generalized media type using the most specific match i.e., the table
 entries are compared to the input in top to bottom order until an
 entry matches.

 +-----------------------------+--------------------------+
 | Internet media type pattern | Generalized media type |
 +-----------------------------+--------------------------+
 | application/*+xml | application/xml |
 | application/*+json | application/json |
 | application/*+cbor | application/cbor |
 | text/xml | application/xml |
 | text/* | text/plain |
 | */* | application/octet-stream |
 +-----------------------------+--------------------------+

 Table 1: Media type generalization lookup table

 The "loose" media type mapping is an OPTIONAL feature.
 Implementations supporting this kind of mapping should provide a
 flexible way to define the set of media type generalizations allowed.

Castellani, et al. Expires June 1, 2017 [Page 17]

Internet-Draft HTTP-to-CoAP Mapping November 2016

6.4. Media Type to Content Format Mapping Algorithm

 This section defines the algorithm used to map an HTTP Internet media
 type to its correspondent CoAP content format; it can be used as a
 building block for translating HTTP Content-Type and Accept headers
 into CoAP Content-Format and Accept Options.

 The algorithm uses an IANA-maintained table, "CoAP Content-Formats",
 as established by Section 12.3 of [RFC7252] plus, possibly, any
 locally defined extension of it. Optionally, the table and lookup
 mechanism described in Section 6.3 can be used if the implementation
 chooses so.

 Note that the algorithm assumes an "identity" Content-Encoding and
 expects the resource body has been already successfully content-
 decoded or transcoded to the desired format.

 In the following (Figure 2):

 o media_type is the media type to translate;

 o coap_cf_registry is a lookup table matching the CoAP Content
 Format Registry;

 o loose_mapper is an optional lookup table describing the loose
 media type mappings (e.g., the one defined in Table 1);

 The full source code is provided in Appendix A.

https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Castellani, et al. Expires June 1, 2017 [Page 18]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 def mt2cf(media_type, encoding=None,
 coap_cf_registry=CoAPContentFormatRegistry(),
 loose_mapper=None):
 """Return a CoAP Content-Format given an Internet Media Type and
 its optional encoding. The current (as of 2016/10/24) CoAP
 Content Format Registry is supplied by default. An optional
 'loose-mapping' implementation can be supplied by the caller."""
 assert media_type is not None
 assert coap_cf_registry is not None

 # Lookup the CoAP Content-Formats registry
 content_format = coap_cf_registry.lookup(media_type, encoding)

 # If an exact match is not found and a loose mapper has been
 # supplied, try to use it to get a media type with which to
 # re-try the CoAP Content-Formats registry lookup.
 if content_format is None and loose_mapper is not None:
 content_format = coap_cf_registry.lookup(
 loose_mapper.lookup(media_type), encoding)

 return content_format

 Figure 2

6.5. Content Transcoding

6.5.1. General

 Payload content transcoding is an OPTIONAL feature. Implementations
 supporting this feature should provide a flexible way to define the
 set of transcodings allowed.

 The HC Proxy might decide to transcode the received representation to
 a different (compatible) format when an optimized version of a
 specific format exists. For example, a XML-encoded resource could be
 transcoded to Efficient XML Interchange (EXI) format, or a JSON-
 encoded resource into CBOR [RFC7049], effectively achieving
 compression without losing any information.

 However, there are a few important factors to keep in mind when
 enabling a transcoding function:

 1. Maliciously crafted inputs coming from the HTTP side might
 inflate in size (see for example Section 4.2 of [RFC7049]),
 therefore creating a security threat for both the HC Proxy and
 the target resource;

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7049#section-4.2

Castellani, et al. Expires June 1, 2017 [Page 19]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 2. Transcoding can lose information in non-obvious ways. For
 example, encoding a XML document using schema-informed EXI
 encoding leads to a loss of information when the destination does
 not know the exact schema version used by the encoder. That
 means that whenever the HC Proxy transcodes an application/XML to
 application/EXI in-band metadata could be lost.

 3. When content-type is mapped, there is a risk that the content
 with the destination type would have malware not active in the
 source type.

 It is crucial that these risks are well understood and carefully
 weighed against the actual benefits before deploying the transcoding
 function.

6.5.2. CoRE Link Format

 The CoRE Link Format [RFC6690] is a set of links (i.e., URIs and
 their formal relationships) which is carried as content payload in a
 CoAP response. These links usually include CoAP URIs that might be
 translated by the HC Proxy to the correspondent HTTP URIs using the
 implemented URI mapping function (see Section 5). Such a process
 would inspect the forwarded traffic and attempt to re-write the body
 of resources with an application/link-format media type, mapping the
 embedded CoAP URIs to their HTTP counterparts. Some potential issues
 with this approach are:

 1. The client may be interested in retrieving original (unaltered)
 CoAP payloads through the HC Proxy, not modified versions.

 2. Tampering with payloads is incompatible with resources that are
 integrity protected (although this is a problem with transcoding
 in general).

 3. The HC Proxy needs to fully understand [RFC6690] syntax and
 semantics, otherwise there is an inherent risk to corrupt the
 payloads.

 Therefore, CoRE Link Format payload should only be transcoded at the
 risk and discretion of the proxy implementer.

6.5.3. Diagnostic Messages

 CoAP responses may, in certain error cases, contain a diagnostic
 message in the payload explaining the error situation, as described
 in Section 5.5.2 of [RFC7252]. If present, the CoAP response
 diagnostic payload SHOULD be copied in the HTTP response body. The
 CoAP diagnostic message MUST NOT be copied into the HTTP reason-

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252#section-5.5.2

Castellani, et al. Expires June 1, 2017 [Page 20]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 phrase, since it potentially contains CR-LF characters which are
 incompatible with HTTP reason-phrase syntax.

7. Response Code Mapping

 Table 2 defines the HTTP response status codes to which each CoAP
 response code SHOULD be mapped. Multiple appearances of a HTTP
 status code in the second column indicates multiple equivalent HTTP
 responses are possible based on the same CoAP response code,
 depending on the conditions cited in the Notes (third column and text
 below table).

 +-------------------------------+----------------------------+------+
 | CoAP Response Code | HTTP Status Code | Note |
 +-------------------------------+----------------------------+------+
2.01 Created	201 Created	1
2.02 Deleted	200 OK	2
	204 No Content	2
2.03 Valid	304 Not Modified	3
	200 OK	4
2.04 Changed	200 OK	2
	204 No Content	2
2.05 Content	200 OK	
2.31 Continue	N/A	10
4.00 Bad Request	400 Bad Request	
4.01 Unauthorized	403 Forbidden	5
4.02 Bad Option	400 Bad Request	6
4.02 Bad Option	500 Internal Server Error	6
4.03 Forbidden	403 Forbidden	
4.04 Not Found	404 Not Found	
4.05 Method Not Allowed	400 Bad Request	7
4.06 Not Acceptable	406 Not Acceptable	
4.08 Request Entity Incomplt.	N/A	10
4.12 Precondition Failed	412 Precondition Failed	
4.13 Request Ent. Too Large	413 Payload Too Large	11
4.15 Unsupported Content-Fmt.	415 Unsupported Media Type	
5.00 Internal Server Error	500 Internal Server Error	
5.01 Not Implemented	501 Not Implemented	
5.02 Bad Gateway	502 Bad Gateway	
5.03 Service Unavailable	503 Service Unavailable	8
5.04 Gateway Timeout	504 Gateway Timeout	
5.05 Proxying Not Supported	502 Bad Gateway	9
 +-------------------------------+----------------------------+------+

 Table 2: CoAP-HTTP Response Code Mappings

 Notes:

Castellani, et al. Expires June 1, 2017 [Page 21]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 1. A CoAP server may return an arbitrary format payload along with
 this response. If present, this payload MUST be returned as
 entity in the HTTP 201 response. Section 7.3.2 of [RFC7231]
 does not put any requirement on the format of the entity. (In
 the past, [RFC2616] did.)

 2. The HTTP code is 200 or 204 respectively for the case that a
 CoAP server returns a payload or not. [RFC7231] Section 5.3
 requires code 200 in case a representation of the action result
 is returned for DELETE/POST/PUT, and code 204 if not. Hence, a
 proxy MUST transfer any CoAP payload contained in a CoAP 2.02
 response to the HTTP client using a 200 OK response.

 3. HTTP code 304 (Not Modified) is sent if the HTTP client
 performed a conditional HTTP request and the CoAP server
 responded with 2.03 (Valid) to the corresponding CoAP validation
 request. Note that Section 4.1 of [RFC7232] puts some
 requirements on header fields that must be present in the HTTP
 304 response.

 4. A 200 response to a CoAP 2.03 occurs only when the HC Proxy, for
 efficiency reasons, is running a local cache. An unconditional
 HTTP GET which produces a cache-hit, could trigger a re-
 validation (i.e., a conditional GET) on the CoAP side. The
 proxy receiving 2.03 updates the freshness of its cached
 representation and returns it to the HTTP client.

 5. A HTTP 401 Unauthorized (Section 3.1 of [RFC7235]) response is
 not applicable because there is no equivalent in CoAP of WWW-
 Authenticate which is mandatory in a HTTP 401 response.

 6. If the proxy has a way to determine that the Bad Option is due
 to the straightforward mapping of a client request header into a
 CoAP option, then returning HTTP 400 (Bad Request) is
 appropriate. In all other cases, the proxy MUST return HTTP 500
 (Internal Server Error) stating its inability to provide a
 suitable translation to the client's request.

 7. A CoAP 4.05 (Method Not Allowed) response SHOULD normally be
 mapped to a HTTP 400 (Bad Request) code, because the HTTP 405
 response would require specifying the supported methods - which
 are generally unknown. In this case the HC Proxy SHOULD also
 return a HTTP reason-phrase in the HTTP status line that starts
 with the string "CoAP server returned 4.05" in order to
 facilitate troubleshooting. However, if the HC Proxy has more
 granular information about the supported methods for the
 requested resource (e.g., via a Resource Directory
 ([I-D.ietf-core-resource-directory])) then it MAY send back a

https://datatracker.ietf.org/doc/html/rfc7231#section-7.3.2
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3
https://datatracker.ietf.org/doc/html/rfc7232#section-4.1
https://datatracker.ietf.org/doc/html/rfc7235#section-3.1

Castellani, et al. Expires June 1, 2017 [Page 22]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 HTTP 405 (Method Not Allowed) with a properly filled in "Allow"
 response-header field (Section 7.4.1 of [RFC7231]).

 8. The value of the HTTP "Retry-After" response-header field is
 taken from the value of the CoAP Max-Age Option, if present.

 9. This CoAP response can only happen if the proxy itself is
 configured to use a CoAP forward-proxy (Section 5.7 of
 [RFC7252]) to execute some, or all, of its CoAP requests.

 10. Only used in CoAP blockwise transfer [RFC7959] between HC Proxy
 and CoAP server; never translated into a HTTP response.

 11. Only returned to the HTTP client if the HC Proxy was unable to
 successfully complete the request by retrying it with CoAP
 blockwise transfer; see Section 8.3.

8. Additional Mapping Guidelines

8.1. Caching and Congestion Control

 An HC Proxy should cache CoAP responses, and reply whenever
 applicable with a cached representation of the requested resource.

 If the HTTP client drops the connection after the HTTP request was
 made, an HC Proxy should wait for the associated CoAP response and
 cache it if possible. Subsequent requests to the HC Proxy for the
 same resource can use the result present in cache, or, if a response
 has still to come, the HTTP requests will wait on the open CoAP
 request.

 According to [RFC7252], a proxy must limit the number of outstanding
 requests to a given CoAP server to NSTART. To limit the amount of
 aggregate traffic to a constrained network, the HC Proxy should also
 put a limit on the number of concurrent CoAP requests pending on the
 same constrained network; further incoming requests may either be
 queued or dropped (returning 503 Service Unavailable). This limit
 and the proxy queueing/dropping behavior should be configurable.

 Highly volatile resources that are being frequently requested may be
 observed [RFC7641] by the HC Proxy to keep their cached
 representation fresh while minimizing the amount of CoAP traffic in
 the constrained network (see Section 8.2).

https://datatracker.ietf.org/doc/html/rfc7231#section-7.4.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641

Castellani, et al. Expires June 1, 2017 [Page 23]

Internet-Draft HTTP-to-CoAP Mapping November 2016

8.2. Cache Refresh via Observe

 There are cases where using the CoAP observe protocol [RFC7641] to
 handle proxy cache refresh is preferable to the validation mechanism
 based on ETag as defined in [RFC7252]. Such scenarios include sleepy
 CoAP nodes - with possibly high variance in requests' distribution -
 which would greatly benefit from a server-driven cache update
 mechanism. Ideal candidates for CoAP observe are also crowded or
 very low throughput networks, where reduction of the total number of
 exchanged messages is an important requirement.

 This subsection aims at providing a practical evaluation method to
 decide whether refreshing a cached resource R is more efficiently
 handled via ETag validation or by establishing an observation on R.
 The idea being that the HC Proxy proactively installs an observation
 on a "popular enough" resource and actively monitors:

 a. Its update pattern on the CoAP side; and

 b. The request pattern on the HTTP side;

 and uses the formula below to determine whether the observation
 should be kept alive or shut down.

 Let T_R be the mean time between two client requests to resource R,
 let T_C be the mean time between two representation changes of R, and
 let M_R be the mean number of CoAP messages per second exchanged to
 and from resource R. If we assume that the initial cost for
 establishing the observation is negligible, an observation on R
 reduces M_R if and only if T_R < 2*T_C with respect to using ETag
 validation, that is if and only if the mean arrival rate of requests
 for resource R is greater than half the change rate of R.

 When observing the resource R, M_R is always upper bounded by 2/T_C.

8.3. Use of CoAP Blockwise Transfer

 An HC Proxy SHOULD support CoAP blockwise transfers [RFC7959] to
 allow transport of large CoAP payloads while avoiding excessive link-
 layer fragmentation in constrained networks, and to cope with small
 datagram buffers in CoAP endpoints as described in [RFC7252]
 Section 4.6.

 An HC Proxy SHOULD attempt to retry a payload-carrying CoAP PUT or
 POST request with blockwise transfer if the destination CoAP server
 responded with 4.13 (Request Entity Too Large) to the original
 request. An HC Proxy SHOULD attempt to use blockwise transfer when
 sending a CoAP PUT or POST request message that is larger than

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252#section-4.6
https://datatracker.ietf.org/doc/html/rfc7252#section-4.6

Castellani, et al. Expires June 1, 2017 [Page 24]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 BLOCKWISE_THRESHOLD bytes. The value of BLOCKWISE_THRESHOLD is
 implementation-specific; for example, it can be:

 o Calculated based on a known or typical UDP datagram buffer size
 for CoAP endpoints, or

 o Set to N times the known size of a link-layer frame in a
 constrained network where e.g., N=5, or

 o Preset to a known IP MTU value, or

 o Set to a known Path MTU value.

 The value BLOCKWISE_THRESHOLD, or the parameters from which it is
 calculated, should be configurable in a proxy implementation. The
 maximum block size the proxy will attempt to use in CoAP requests
 should also be configurable.

 The HC Proxy SHOULD detect CoAP endpoints not supporting blockwise
 transfers. This can be done by checking for a 4.02 (Bad Option)
 response returned by an endpoint in response to a CoAP request with a
 Block* Option, and subsequent absence of the 4.02 in response to the
 same request without Block* Options. This allows the HC Proxy to be
 more efficient, not attempting repeated blockwise transfers to CoAP
 servers that do not support it.

8.4. CoAP Multicast

 An HC Proxy MAY support CoAP multicast. If it does, the HC Proxy
 sends out a multicast CoAP request if the Target CoAP URI's authority
 is a multicast IP literal or resolves to a multicast IP address. If
 the HC Proxy does not support CoAP multicast, it SHOULD respond 403
 (Forbidden) to any valid HTTP request that maps to a CoAP multicast
 request.

 Details related to supporting CoAP multicast are currently out of
 scope of this document since in a proxy scenario an HTTP client
 typically expects to receive a single response, not multiple.
 However, an HC Proxy that implements CoAP multicast may include
 application-specific functions to aggregate multiple CoAP responses
 into a single HTTP response. We suggest using the "application/http"
 internet media type (Section 8.3.2 of [RFC7230]) to enclose a set of
 one or more HTTP response messages, each representing the mapping of
 one CoAP response.

 For further considerations related to the handling of multicast
 requests, see Section 10.1.

https://datatracker.ietf.org/doc/html/rfc7230#section-8.3.2

Castellani, et al. Expires June 1, 2017 [Page 25]

Internet-Draft HTTP-to-CoAP Mapping November 2016

8.5. Timeouts

 If the CoAP server takes a long time in responding, the HTTP client
 or any other proxy in between may timeout. Further discussion of
 timeouts in HTTP is available in Section 6.2.4 of [RFC7230].

 An HC Proxy MUST define an internal timeout for each pending CoAP
 request, because the CoAP server may silently die before completing
 the request. Assuming the Proxy uses confirmable CoAP requests, such
 timeout value T SHOULD be at least

 T = MAX_RTT + MAX_SERVER_RESPONSE_DELAY

 where MAX_RTT is defined in [RFC7252] and MAX_SERVER_RESPONSE_DELAY
 is defined in [RFC7390].

9. IANA Considerations

9.1. New 'core.hc' Resource Type

 This document registers a new Resource Type (rt=) Link Target
 Attribute, 'core.hc', in the "Resource Type (rt=) Link Target
 Attribute Values" subregistry under the "Constrained RESTful
 Environments (CoRE) Parameters" registry.

 Attribute Value: core.hc

 Description: HTTP to CoAP mapping base resource.

 Reference: See Section 5.5.

9.2. New 'coap-payload' Internet Media Type

 This document defines the "application/coap-payload" media type with
 a single parameter "cf". This media type represents any payload that
 a CoAP message can carry, having a content format that can be
 identified by an integer in range 0-65535 corresponding to a CoAP
 Content-Format parameter ([RFC7252], Section 12.3). The parameter
 "cf" is the integer defining the CoAP content format.

 Type name: application

 Subtype name: coap-payload

 Required parameters: cf (CoAP Content-Format integer in range 0-65535
 denoting the content format of the CoAP payload carried, as defined
 by the "CoAP Content-Formats" subregistry that is part of the
 "Constrained RESTful Environments (CoRE) Parameters" registry.)

https://datatracker.ietf.org/doc/html/rfc7230#section-6.2.4
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Castellani, et al. Expires June 1, 2017 [Page 26]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Optional parameters: None

 Encoding considerations: Common use is BINARY. The specific CoAP
 content format encoding considerations for the selected Content-
 Format (cf parameter) apply. The encoding can vary based on the
 value of the cf parameter.

 Security considerations: The specific CoAP content format security
 considerations for the selected Content-Format (cf parameter) apply.

 Interoperability considerations: This media type can never be used
 directly in CoAP messages because there are no means available to
 encode the mandatory 'cf' parameter in CoAP.

 Published specification: (this I-D - TBD)

 Applications that use this media type: HTTP-to-CoAP Proxies.

 Fragment identifier considerations: CoAP does not support URI
 fragments; therefore a CoAP payload fragment cannot be identified.
 Fragments are not applicable for this media type.

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information:

 Esko Dijk ("esko@ieee.org")

 Intended usage: COMMON

 Restrictions on usage:

 An application (or user) can only use this media type if it has to
 represent a CoAP payload of which the specified CoAP Content-Format
 is an unrecognized number; such that a proper translation directly to
 the equivalent HTTP media type is not possible.

 Author: CoRE WG

 Change controller: IETF

Castellani, et al. Expires June 1, 2017 [Page 27]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Provisional registration: No

10. Security Considerations

 The security considerations in Section 9.2 of [RFC7230] apply in full
 to the HC Proxy. This section discusses security aspects and
 requirements that are specific to the deployment and operation of an
 HC Proxy.

 An HC Proxy located at the boundary of a constrained network is an
 easy single point of failure for reducing availability. As such,
 special care should be taken in designing, developing and operating
 it, keeping in mind that, in most cases, it has fewer limitations
 than the constrained devices it is serving. In particular, its
 quality of implementation and operation - i.e., use of current
 software development practices, careful selection of third party
 libraries, sane configuration defaults, an expedited way to upgrade a
 running instance - are all essential attributes of the HC Proxy.

 The correctness of request parsing in general (including any content
 transcoding), and of URI translation in particular, is essential to
 the security of the HC Proxy function. This is especially true when
 the internal network hosts devices with genuinely limited
 capabilities. For this purpose, see also Sections 9.3, 9.4, 9.5 and
 9.6 of [RFC7230] for well-known issues related to HTTP request
 parsing and Section 11.1 of [RFC7252] for an overview of CoAP
 specific concerns related to URI processing - in particular, the
 potential impact on access control mechanisms that are based on URIs.

 An HC Proxy MUST implement TLS with PSK [RFC4279] and SHOULD
 implement TLS [RFC5246] with support for client authentication using
 X.509 certificates. A prerequisite of the latter is the availability
 of a Certification Authority (CA) to issue suitable certificates.
 Although this can be a challenging requirement in certain application
 scenarios, it is worth noting that there exist open-source tools
 (e.g., [OpenSSL]) that can be used to set up and operate an
 application-specific CA.

 By default, the HC Proxy MUST authenticate all incoming requests
 prior to forwarding them to the CoAP server. This default behavior
 MAY be explicitly disabled by an administrator.

 The following subparagraphs categorize and discuss a set of specific
 security issues related to the translation, caching and forwarding
 functionality exposed by an HC Proxy.

https://datatracker.ietf.org/doc/html/rfc7230#section-9.2
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252#section-11.1
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246

Castellani, et al. Expires June 1, 2017 [Page 28]

Internet-Draft HTTP-to-CoAP Mapping November 2016

10.1. Multicast

 Multicast requests impose a non-trivial cost on the constrained
 network and endpoints and might be exploited as a DoS attack vector
 (see also Section 10.2). From a privacy perspective, they can be
 used to gather detailed information about the resources hosted in the
 constrained network. For example, an outsider that is able to
 successfully query the /.well-known/core could obtain a comprehensive
 list of the target's home appliances and devices. From a security
 perspective, they can be used to carry out a network reconnaissance
 attack to gather information about possible vulnerabilities that
 could be exploited at a later point in time. For these reasons, it
 is RECOMMENDED that requests to multicast resources are access
 controlled with a default-deny policy. It is RECOMMENDED that the
 requestor of a multicast resource be strongly authenticated. If
 privacy and / or security are first class requirements, for example
 whenever the HTTP request transits through the public Internet, the
 request SHOULD be transported over a mutually authenticated and
 encrypted TLS connection.

10.2. Traffic Overflow

 Due to the typically constrained nature of CoAP nodes, particular
 attention should be given to the implementation of traffic reduction
 mechanisms (see Section 8.1), because an inefficient proxy
 implementations can be targeted by unconstrained Internet attackers.
 Bandwidth or complexity involved in such attacks is very low.

 An amplification attack to the constrained network may be triggered
 by a multicast request generated by a single HTTP request which is
 mapped to a CoAP multicast resource, as discussed in Section 11.3 of
 [RFC7252].

 The risk likelihood of this amplification technique is higher than an
 amplification attack carried out by a malicious constrained device
 (e.g., ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
 a multicast destination [RFC4732]) since it does not require direct
 access to the constrained network.

 The feasibility of this attack, which disrupts availability of the
 targeted CoAP server, can be limited by access controlling the
 exposed multicast resources, so that only known/authorized users can
 access such URIs.

https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc4732

Castellani, et al. Expires June 1, 2017 [Page 29]

Internet-Draft HTTP-to-CoAP Mapping November 2016

10.3. Handling Secured Exchanges

 An HTTP request can be sent to the HC Proxy over a secured
 connection. However, there may not always exist a secure connection
 mapping to CoAP. For example, a secure distribution method for
 multicast traffic is complex and may not be implemented (see
 [RFC7390]).

 An HC Proxy should implement rules for security context translations.
 For example, all 'https' unicast requests are translated to 'coaps'
 requests, or 'https' requests are translated to unsecured 'coap'
 requests. Another rule could specify the security policy and
 parameters used for DTLS sessions [RFC7925]. Such rules will largely
 depend on the application and network context in which the HC Proxy
 operates. These rules should be configurable.

 It is RECOMMENDED that, by default, accessing a 'coaps' URI is only
 allowed from a corresponding 'https' URI.

 By default, an HC Proxy SHOULD reject any secured CoAP client request
 (i.e., one with a 'coaps' scheme) if there is no configured security
 policy mapping. This recommendation may be relaxed in case the
 destination network is believed to be secured by other means.
 Assuming that CoAP nodes are isolated behind a firewall as in the HC
 Proxy deployment shown in Figure 1, the HC Proxy may be configured to
 translate the incoming HTTPS request using plain CoAP (NoSec mode).

10.4. URI Mapping

 The following risks related to the URI mapping described in Section 5
 and its use by HC Proxy have been identified:

 DoS attack on the constrained/CoAP network.
 Mitigation: by default deny any Target CoAP URI whose authority is
 (or maps to) a multicast address. Then explicitly white-list
 multicast resources/authorities that are allowed to be de-
 referenced. See also Section 8.4.

 Leaking information on the constrained/CoAP network resources and
 topology.
 Mitigation: by default deny any Target CoAP URI (especially
 /.well-known/core is a resource to be protected), and then
 explicitly white-list resources that are allowed to be seen from
 outside.

 The internal CoAP Target resource is totally transparent from
 outside.

https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7925

Castellani, et al. Expires June 1, 2017 [Page 30]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 Mitigation: implement an HTTPS-only interface, which makes the
 Target CoAP URI totally opaque to a passive attacker.

11. Acknowledgments

 An initial version of Table 2 in Section 7 has been provided in
 revision -05 of the CoRE CoAP I-D. Special thanks to Peter van der
 Stok for countless comments and discussions on this document that
 contributed to its current structure and text.

 Thanks to Abhijan Bhattacharyya, Alexey Melnikov, Brian Frank,
 Carsten Bormann, Christian Amsuess, Christian Groves, Cullen
 Jennings, Dorothy Gellert, Francesco Corazza, Francis Dupont, Hannes
 Tschofenig, Jaime Jimenez, Kathleen Moriarty, Kepeng Li, Kerry Lynn,
 Klaus Hartke, Larry Masinter, Linyi Tian, Michele Rossi, Michele
 Zorzi, Nicola Bui, Peter Saint-Andre, Sean Leonard, Spencer Dawkins,
 Stephen Farrell, Suresh Krishnan, Zach Shelby for helpful comments
 and discussions that have shaped the document.

 The research leading to these results has received funding from the
 European Community's Seventh Framework Programme [FP7/2007-2013]
 under grant agreement n.251557.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",

RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <http://www.rfc-editor.org/info/rfc4279>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4279
http://www.rfc-editor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234

Castellani, et al. Expires June 1, 2017 [Page 31]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
http://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959

Castellani, et al. Expires June 1, 2017 [Page 32]

Internet-Draft HTTP-to-CoAP Mapping November 2016

12.2. Informative References

 [Fielding]
 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", PhD
 Dissertation, University of California, Irvine,
 ISBN 0-599-87118-0, 2000.

 [I-D.ietf-core-links-json]
 Li, K., Rahman, A., and C. Bormann, "Representing CoRE
 Formats in JSON and CBOR", draft-ietf-core-links-json-06
 (work in progress), July 2016.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-09
 (work in progress), October 2016.

 [OpenSSL] The OpenSSL Project, , "ca - sample minimal CA
 application", 1998-2016,
 <https://www.openssl.org/docs/manmaster/man1/ca.html>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040,
 DOI 10.17487/RFC3040, January 2001,
 <http://www.rfc-editor.org/info/rfc3040>.

 [RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
 Denial-of-Service Considerations", RFC 4732,
 DOI 10.17487/RFC4732, December 2006,
 <http://www.rfc-editor.org/info/rfc4732>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-links-json-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-09
https://www.openssl.org/docs/manmaster/man1/ca.html
https://datatracker.ietf.org/doc/html/rfc2616
http://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc3040
http://www.rfc-editor.org/info/rfc3040
https://datatracker.ietf.org/doc/html/rfc4732
http://www.rfc-editor.org/info/rfc4732
https://datatracker.ietf.org/doc/html/rfc6454
http://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049

Castellani, et al. Expires June 1, 2017 [Page 33]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7390] Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
 the Constrained Application Protocol (CoAP)", RFC 7390,
 DOI 10.17487/RFC7390, October 2014,
 <http://www.rfc-editor.org/info/rfc7390>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <http://www.rfc-editor.org/info/rfc7925>.

 [W3C.REC-html5-20141028]
 Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
 Navara, E., O'Connor, E., and S. Pfeiffer, "HTML5", W3C
 Recommendation REC-html5-20141028, 2014,
 <http://www.w3.org/TR/2014/REC-html5-20141028>.

Appendix A. Media Type Mapping Source Code

#!/usr/bin/env python

import unittest
import re

class CoAPContentFormatRegistry(object):
 """Map an Internet media type (and optional inherent encoding) to a
 CoAP content format.
 """
 TEXT_PLAIN = 0
 LINK_FORMAT = 40
 XML = 41
 OCTET_STREAM = 42
 EXI = 47
 JSON = 50
 CBOR = 60
 GROUP_JSON = 256

http://www.iana.org/assignments/core-parameters/core-parameters.xhtml
as of 2016/10/24.
 LOOKUP_TABLE = {
 ("text/plain;charset=utf-8", None): TEXT_PLAIN,

https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7390
http://www.rfc-editor.org/info/rfc7390
https://datatracker.ietf.org/doc/html/rfc7925
http://www.rfc-editor.org/info/rfc7925
http://www.w3.org/TR/2014/REC-html5-20141028
http://www.iana.org/assignments/core-parameters/core-parameters.xhtml

Castellani, et al. Expires June 1, 2017 [Page 34]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 ("application/link-format", None): LINK_FORMAT,
 ("application/xml", None): XML,
 ("application/octet-stream", None): OCTET_STREAM,
 ("application/exi", None): EXI,
 ("application/json", None): JSON,
 ("application/cbor", None): CBOR,
 ("application/coap-group+json", "utf-8"): GROUP_JSON,
 }

 def lookup(self, media_type, encoding):
 """Return the CoAP Content Format matching the supplied
 media type (and optional encoding), or None if no
 match can be found."""
 return CoAPContentFormatRegistry.LOOKUP_TABLE.get(
 (media_type, encoding), None)

class LooseMediaTypeMapper(object):
 # Order matters in this table: more specific types have higher rank
 # compared to less specific types.
 # This code only performs a shallow validation of acceptable
 # characters, and assumes overall validation of media type and
 # subtype has been done beforehand.
 LOOKUP_TABLE = [
 (re.compile("application/.+\+xml$"), "application/xml"),
 (re.compile("application/.+\+json$"), "application/json"),
 (re.compile("application/.+\+cbor$"), "application/cbor"),
 (re.compile("text/xml$"), "application/xml"),
 (re.compile("text/[a-z\.\-\+]+$"), "text/plain;charset=utf-8"),
 (re.compile("[a-z]+/[a-z\.\-\+]+$"), "application/octet-stream")
]

 def lookup(self, media_type):
 """Return the best loose media type match available using
 the contents of LOOKUP_TABLE."""
 for entry in LooseMediaTypeMapper.LOOKUP_TABLE:
 if entry[0].match(media_type) is not None:
 return entry[1]
 return None

def mt2cf(media_type, encoding=None,
 coap_cf_registry=CoAPContentFormatRegistry(),
 loose_mapper=None):
 """Return a CoAP Content-Format given an Internet Media Type and
 its optional encoding. The current (as of 2016/10/24) CoAP
 Content Format Registry is supplied by default. An optional
 'loose-mapping' implementation can be supplied by the caller."""

Castellani, et al. Expires June 1, 2017 [Page 35]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 assert media_type is not None
 assert coap_cf_registry is not None

 # Lookup the CoAP Content-Formats registry
 content_format = coap_cf_registry.lookup(media_type, encoding)

 # If an exact match is not found and a loose mapper has been
 # supplied, try to use it to get a media type with which to
 # re-try the CoAP Content-Formats registry lookup.
 if content_format is None and loose_mapper is not None:
 content_format = coap_cf_registry.lookup(
 loose_mapper.lookup(media_type), encoding)

 return content_format

class TestMT2CF(unittest.TestCase):

 def testMissingContentType(self):
 with self.assertRaises(AssertionError):
 mt2cf(None)

 def testMissingContentFormatRegistry(self):
 with self.assertRaises(AssertionError):
 mt2cf(None, coap_cf_registry=None)

 def testTextPlain(self):
 self.assertEqual(mt2cf("text/plain;charset=utf-8"),
 CoAPContentFormatRegistry.TEXT_PLAIN)

 def testLinkFormat(self):
 self.assertEqual(mt2cf("application/link-format"),
 CoAPContentFormatRegistry.LINK_FORMAT)

 def testXML(self):
 self.assertEqual(mt2cf("application/xml"),
 CoAPContentFormatRegistry.XML)

 def testOctetStream(self):
 self.assertEqual(mt2cf("application/octet-stream"),
 CoAPContentFormatRegistry.OCTET_STREAM)

 def testEXI(self):
 self.assertEqual(mt2cf("application/exi"),
 CoAPContentFormatRegistry.EXI)

 def testJSON(self):
 self.assertEqual(mt2cf("application/json"),

Castellani, et al. Expires June 1, 2017 [Page 36]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 CoAPContentFormatRegistry.JSON)

 def testCBOR(self):
 self.assertEqual(mt2cf("application/cbor"),
 CoAPContentFormatRegistry.CBOR)

 def testCoAPGroupJSON(self):
 self.assertEqual(mt2cf("application/coap-group+json",
 "utf-8"),
 CoAPContentFormatRegistry.GROUP_JSON)

 def testUnknownMediaType(self):
 self.assertFalse(mt2cf("unknown/media-type"))

 def testLooseXML1(self):
 self.assertEqual(
 mt2cf(
 "application/somesubtype+xml",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.XML)

 def testLooseXML2(self):
 self.assertEqual(
 mt2cf(
 "text/xml",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.XML)

 def testLooseJSON(self):
 self.assertEqual(
 mt2cf(
 "application/somesubtype+json",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.JSON)

 def testLooseCBOR(self):
 self.assertEqual(
 mt2cf(
 "application/somesubtype+cbor",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.CBOR)

 def testLooseText(self):
 self.assertEqual(
 mt2cf(
 "text/somesubtype",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.TEXT_PLAIN)

Castellani, et al. Expires June 1, 2017 [Page 37]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 def testLooseUnknown(self):
 self.assertEqual(
 mt2cf(
 "application/somesubtype-of-some-sort+format",
 loose_mapper=LooseMediaTypeMapper()),
 CoAPContentFormatRegistry.OCTET_STREAM)

 def testLooseInvalidStartsWithNonAlpha(self):
 self.assertFalse(
 mt2cf(
 " application/somesubtype",
 loose_mapper=LooseMediaTypeMapper()))

 def testLooseInvalidEndsWithUnexpectedChar(self):
 self.assertFalse(
 mt2cf(
 "application/somesubtype ",
 loose_mapper=LooseMediaTypeMapper()))

 def testLooseInvalidUnexpectedCharInTheMiddle(self):
 self.assertFalse(
 mt2cf(
 "application /somesubtype",
 loose_mapper=LooseMediaTypeMapper()))

 def testLooseInvalidNoSubType1(self):
 self.assertFalse(
 mt2cf(
 "application",
 loose_mapper=LooseMediaTypeMapper()))

 def testLooseInvalidNoSubType2(self):
 self.assertFalse(
 mt2cf(
 "application/",
 loose_mapper=LooseMediaTypeMapper()))

if __name__ == "__main__":
 unittest.main(verbosity=2)

Appendix B. Change Log

 [Note to RFC Editor: Please remove this section before publication.]

 Changes from ietf-16 to ietf-17:

 o Intended status from Informational to Standards Track;

Castellani, et al. Expires June 1, 2017 [Page 38]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o Stephen Farrell's DISCUSS

 o Added 2.31 and 4.08 CoAP response codes to the Response Code
 Mapping table.

 o Editorial fixes

 Changes from ietf-15 to ietf-16 (Apps-Dir review):

 o Larry Masinter's comments.

 Changes from ietf-14 to ietf-15 (IESG review):

 o Kathleen Moriarty's DISCUSS and COMMENT;

 o Stephen Farrell's COMMENT;

 o Suresh Krishnan DISCUSS;

 o Spencer Dawkins' DISCUSS and COMMENT;

 Changes from ietf-13 to ietf-14:

 o Addressed Gen-ART and AD review comments.

 Changes from ietf-12 to ietf-13 (Christian Amsuess' comments):

 o More missing slashes in URI mapping template examples.

 Changes from ietf-11 to ietf-12 (2nd WGLC):

 o Addressed a few editorial issues (including a clarification on
 when to use qq vs q in the URI mapping template).

 o Fixed missing slash in one template example.

 o Added para about the need for future CoAP protocol elements to
 define their own HTTP mappings.

 Changes from ietf-10 to ietf-11 (Chair review):

 o Removed cu/su distinction from the URI mapping template.

 o Addressed a few editorial issues.

 Changes from ietf-09 to ietf-10:

Castellani, et al. Expires June 1, 2017 [Page 39]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o Addressed Ticket #401 - Clarified that draft covers not only
 Reverse HC Proxy but that many parts also apply to Forward and
 Interception Proxies.

 o Clarified that draft concentrates on the HTTP-to-CoAP mapping
 direction (i.e., the HC Proxy is an HTTP server and a CoAP
 client).

 o Clarified the "null mapping" case where no CoAP URI information is
 embedded in the HTTP request URI.

 o Moved multicast related security text to the "Security
 Considerations" to consolidate all security information in one
 location.

 o Removed references to "placement" of proxy (e.g., server-side vs
 client-side) as is confusing and provides little added value.

 o Fixed version numbers on references that were corrupted in last
 revision due to outdated xml2rfc conversion tool local cache.

 o Various editorial improvements.

 Changes from ietf-08 to ietf-09:

 o Clean up requirements language as per Klaus' comment.

 Changes from ietf-07 to ietf-08:

 o Addressed WGLC review comments from Klaus Hartke as per the
 correspondence of March 9, 2016 on the CORE WG mailing list.

 Changes from ietf-06 to ietf-07:

 o Addressed Ticket #384 - Section 5.4.1 describes briefly
 (informative) how to discover CoAP resources from an HTTP client.

 o Addressed Ticket #378 - For HTTP media type to CoAP content format
 mapping and vice versa: a new draft (TBD) may be proposed in CoRE
 which describes an approach for automatic updating of the media
 type mapping. This was noted in Section 6.1 but is otherwise
 outside the scope of this draft.

 o Addressed Ticket #377 - Added IANA section that defines a new HTTP
 media type "application/coap-payload" and created new Section 6.2
 on how to use it.

Castellani, et al. Expires June 1, 2017 [Page 40]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o Addressed Ticket #376 - Updated Table 2 (and corresponding note 7)
 to indicate that a CoAP 4.05 (Method Not Allowed) Response Code
 should be mapped to an HTTP 400 (Bad Request).

 o Added note to comply to ABNF when translating CoAP diagnostic
 payload to reason-phrase in Section 6.5.3.

 Changes from ietf-05 to ietf-06:

 o Fully restructured the draft, bringing introductory text more to
 the front and allocating main sections to each of the key topics;
 addressing Ticket #379;

 o Addressed Ticket #382, fix of enhanced form URI template
 definition of q in Section 5.3.2;

 o Addressed Ticket #381, found a mapping 4.01 to 401 Unauthorized in
Section 7;

 o Addressed Ticket #380 (Add IANA registration for "core.hc"
 Resource Type) in Section 9;

 o Addressed Ticket #376 (CoAP 4.05 response can't be translated to
 HTTP 405 by HC Proxy) in Section 7 by use of empty 'Allow' header;

 o Removed details on the pros and cons of HC Proxy placement
 options;

 o Addressed review comments of Carsten Bormann;

 o Clarified failure in mapping of HTTP Accept headers (Section 6.3);

 o Clarified detection of CoAP servers not supporting blockwise
 (Section 8.3);

 o Changed CoAP request timeout min value to MAX_RTT +
 MAX_SERVER_RESPONSE_DELAY (Section 8.6);

 o Added security section item (Section 10.3) related to use of CoAP
 blockwise transfers;

 o Many editorial improvements.

 Changes from ietf-04 to ietf-05:

 o Addressed Ticket #366 (Mapping of CoRE Link Format payloads to be
 valid in HTTP Domain?) in Section 6.3.3.2 (Content Transcoding -
 CORE Link Format);

Castellani, et al. Expires June 1, 2017 [Page 41]

Internet-Draft HTTP-to-CoAP Mapping November 2016

 o Addressed Ticket #375 (Add requirement on mapping of CoAP
 diagnostic payload) in Section 6.3.3.3 (Content Transcoding -
 Diagnostic Messages);

 o Addressed comment from Yusuke (http://www.ietf.org/mail-
archive/web/core/current/msg05491.html) in Section 6.3.3.1

 (Content Transcoding - General);

 o Various editorial improvements.

 Changes from ietf-03 to ietf-04:

 o Expanded use case descriptions in Section 4;

 o Fixed/enhanced discovery examples in Section 5.4.1;

 o Addressed Ticket #365 (Add text on media type conversion by HTTP-
 CoAP proxy) in new Section 6.3.1 (Generalized media type mapping)
 and new Section 6.3.2 (Content translation);

 o Updated HTTPBis WG draft references to recently published RFC
 numbers.

 o Various editorial improvements.

 Changes from ietf-02 to ietf-03:

 o Closed Ticket #351 "Add security implications of proposed default
 HTTP-CoAP URI mapping";

 o Closed Ticket #363 "Remove CoAP scheme in default HTTP-CoAP URI
 mapping";

 o Closed Ticket #364 "Add discovery of HTTP-CoAP mapping
 resource(s)".

 Changes from ietf-01 to ietf-02:

 o Selection of single default URI mapping proposal as proposed to WG
 mailing list 2013-10-09.

 Changes from ietf-00 to ietf-01:

 o Added URI mapping proposals to Section 4 as per the Email
 proposals to WG mailing list from Esko.

http://www.ietf.org/mail-archive/web/core/current/msg05491.html
http://www.ietf.org/mail-archive/web/core/current/msg05491.html

Castellani, et al. Expires June 1, 2017 [Page 42]

Internet-Draft HTTP-to-CoAP Mapping November 2016

Authors' Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

 Akbar Rahman
 InterDigital Communications, LLC
 1000 Sherbrooke Street West
 Montreal H3A 3G4
 Canada

 Phone: +1 514 585 0761
 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 Nokia
 3 Ely Road
 Milton, Cambridge CB24 6DD
 UK

 Email: thomas.fossati@nokia.com

 Esko Dijk
 Philips Lighting
 High Tech Campus 7
 Eindhoven 5656 AE
 The Netherlands

 Email: esko.dijk@philips.com

Castellani, et al. Expires June 1, 2017 [Page 43]

