
CoRE Working Group M. Boucadair
Internet-Draft Orange
Intended status: Standards Track J. Shallow
Expires: November 22, 2021 May 21, 2021

Constrained Application Protocol (CoAP) Block-Wise Transfer Options
Supporting Robust Transmission
draft-ietf-core-new-block-13

Abstract

 This document specifies alternative Constrained Application Protocol
 (CoAP) Block-Wise transfer options: Q-Block1 and Q-Block2 Options.

 These options are similar to, but distinct from, the CoAP Block1 and
 Block2 Options defined in RFC 7959. Q-Block1 and Q-Block2 Options
 are not intended to replace Block1 and Block2 Options, but rather
 have the goal of supporting Non-confirmable messages for large
 amounts of data with fewer packet interchanges. Also, the Q-Block1
 and Q-Block2 Options support faster recovery should any of the blocks
 get lost in transmission.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 22, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Boucadair & Shallow Expires November 22, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Quick Block-Wise Transfer Options May 2021

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Alternative CoAP Block-Wise Transfer Options 5
3.1. CoAP Response Code (4.08) Usage 7
3.2. Applicability Scope 7

4. The Q-Block1 and Q-Block2 Options 8
4.1. Properties of Q-Block1 and Q-Block2 Options 8
4.2. Structure of Q-Block1 and Q-Block2 Options 10
4.3. Using the Q-Block1 Option 11
4.4. Using the Q-Block2 Option 15
4.5. Using Observe Option 17
4.6. Using Size1 and Size2 Options 17
4.7. Using Q-Block1 and Q-Block2 Options Together 18
4.8. Using Q-Block2 Option With Multicast 18

5. The Use of 4.08 (Request Entity Incomplete) Response Code . . 18
6. The Use of Tokens . 19
7. Congestion Control for Unreliable Transports 20
7.1. Confirmable (CON) . 20
7.2. Non-confirmable (NON) 20

8. Caching Considerations 24
9. HTTP-Mapping Considerations 25
10. Examples with Non-confirmable Messages 25
10.1. Q-Block1 Option . 26
10.1.1. A Simple Example 26
10.1.2. Handling MAX_PAYLOADS Limits 26
10.1.3. Handling MAX_PAYLOADS with Recovery 27
10.1.4. Handling Recovery with Failure 28

10.2. Q-Block2 Option . 29
10.2.1. A Simple Example 29
10.2.2. Handling MAX_PAYLOADS Limits 30
10.2.3. Handling MAX_PAYLOADS with Recovery 31
10.2.4. Handling Recovery using M-bit Set 32

10.3. Q-Block1 and Q-Block2 Options 33
10.3.1. A Simple Example 33
10.3.2. Handling MAX_PAYLOADS Limits 34
10.3.3. Handling Recovery 35

11. Security Considerations 37
12. IANA Considerations . 38
12.1. CoAP Option Numbers Registry 38

Boucadair & Shallow Expires November 22, 2021 [Page 2]

Internet-Draft Quick Block-Wise Transfer Options May 2021

12.2. Media Type Registration 38
12.3. CoAP Content-Formats Registry 39

13. References . 40
13.1. Normative References 40
13.2. Informative References 41

Appendix A. Examples with Confirmable Messages 42
A.1. Q-Block1 Option . 42
A.2. Q-Block2 Option . 44

Appendix B. Examples with Reliable Transports 46
B.1. Q-Block1 Option . 46
B.2. Q-Block2 Option . 46

 Acknowledgements . 47
 Authors' Addresses . 47

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252], although
 inspired by HTTP, was designed to use UDP instead of TCP. The
 message layer of CoAP over UDP includes support for reliable
 delivery, simple congestion control, and flow control. CoAP supports
 two message types (Section 1.2 of [RFC7252]): Confirmable (CON) and
 Non-confirmable (NON) messages. Unlike NON messages, every CON
 message will elicit an acknowledgement or a reset.

 The CoAP specification recommends that a CoAP message should fit
 within a single IP packet (i.e., avoid IP fragmentation). To handle
 data records that cannot fit in a single IP packet, [RFC7959]
 introduced the concept of block-wise transfer and the companion CoAP
 Block1 and Block2 Options. However, this concept is designed to work
 exclusively with Confirmable messages (Section 1 of [RFC7959]). Note
 that the block-wise transfer was further updated by [RFC8323] for use
 over TCP, TLS, and WebSockets.

 The CoAP Block1 and Block2 Options work well in environments where
 there are no, or minimal, packet losses. These options operate
 synchronously, i.e., each individual block has to be requested. A
 CoAP endpoint can only ask for (or send) the next block when the
 transfer of the previous block has completed. Packet transmission
 rate, and hence block transmission rate, is controlled by Round Trip
 Times (RTTs).

 There is a requirement for blocks of data larger than a single IP
 datagram to be transmitted under network conditions where there may
 be asymmetrical transient packet loss (e.g., acknowledgment responses
 may get dropped). An example is when a network is subject to a
 Distributed Denial of Service (DDoS) attack and there is a need for
 DDoS mitigation agents relying upon CoAP to communicate with each
 other (e.g., [RFC8782][I-D.ietf-dots-telemetry]). As a reminder,

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-1.2
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959#section-1
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc8782

Boucadair & Shallow Expires November 22, 2021 [Page 3]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 [RFC7959] recommends the use of CON responses to handle potential
 packet loss. However, such a recommendation does not work with a
 flooded pipe DDoS situation (e.g., [RFC8782]).

 This document introduces the CoAP Q-Block1 and Q-Block2 Options which
 allow block-wise transfer to work with series of Non-confirmable
 messages, instead of lock-stepping using Confirmable messages
 (Section 3). In other words, this document provides a missing piece
 of [RFC7959], namely the support of block-wise transfer using Non-
 confirmable where an entire body of data can be transmitted without
 the requirement that intermediate acknowledgments be received from
 the peer (but recovery is available should it be needed).

 Similar to [RFC7959], this specification does not remove any of the
 constraints posed by the base CoAP specification [RFC7252] it is
 strictly layered on top of.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers should be familiar with the terms and concepts defined in
 [RFC7252], [RFC7959], and [RFC8132]. Particularly, the document uses
 the following key concepts:

 Token: is used to match responses to requests independently from the
 underlying messages (Section 5.3.1 of [RFC7252]).

 ETag: is used as a resource-local identifier for differentiating
 between representations of the same resource that vary over time
 (Section 5.10.6 of [RFC7252]).

 The terms "payload" and "body" are defined in [RFC7959]. The term
 "payload" is thus used for the content of a single CoAP message
 (i.e., a single block being transferred), while the term "body" is
 used for the entire resource representation that is being transferred
 in a block-wise fashion.

 Request-Tag refers to an option that allows a CoAP server to match
 message fragments belonging to the same request
 [I-D.ietf-core-echo-request-tag].

 MAX_PAYLOADS is the maximum number of payloads that can be
 transmitted at any one time.

https://datatracker.ietf.org/doc/html/rfc8782
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7959

Boucadair & Shallow Expires November 22, 2021 [Page 4]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 MAX_PAYLOADS_SET is the set of blocks identified by block numbers
 that, when divided by MAX_PAYLOADS, have the same numeric result.
 For example, if MAX_PAYLOADS is set to '10', a MAX_PAYLOADS_SET could
 be blocks #0 to #9, #10 to #19, etc. Depending on the overall data
 size, there could be fewer than MAX_PAYLOADS blocks in the final
 MAX_PAYLOADS_SET.

3. Alternative CoAP Block-Wise Transfer Options

 This document introduces the CoAP Q-Block1 and Q-Block2 Options.
 These options are designed to work in particular with NON requests
 and responses.

 Using NON messages, faster transmissions can occur as all the blocks
 can be transmitted serially (akin to fragmented IP packets) without
 having to wait for a response or next request from the remote CoAP
 peer. Recovery of missing blocks is faster in that multiple missing
 blocks can be requested in a single CoAP message. Even if there is
 asymmetrical packet loss, a body can still be sent and received by
 the peer whether the body comprises a single or multiple payloads,
 assuming no recovery is required.

 A CoAP endpoint can acknowledge all or a subset of the blocks.
 Concretely, the receiving CoAP endpoint either informs the CoAP
 sender endpoint of successful reception or reports on all blocks in
 the body that have not yet been received. The CoAP sender endpoint
 will then retransmit only the blocks that have been lost in
 transmission.

 Note that similar transmission rate benefits can be applied to
 Confirmable messages if the value of NSTART is increased from 1
 (Section 4.7 of [RFC7252]). However, the use of Confirmable messages
 will not work effectively if there is asymmetrical packet loss. Some
 examples with Confirmable messages are provided in Appendix A.

 There is little, if any, benefit of using these options with CoAP
 running over a reliable connection [RFC8323]. In this case, there is
 no differentiation between CON and NON as they are not used. Some
 examples using a reliable transport are provided in Appendix B.

 Q-Block1 and Q-Block2 Options are similar in operation to the CoAP
 Block1 and Block2 Options, respectively. They are not a replacement
 for them, but have the following benefits:

 o They can operate in environments where packet loss is highly
 asymmetrical.

https://datatracker.ietf.org/doc/html/rfc7252#section-4.7
https://datatracker.ietf.org/doc/html/rfc8323

Boucadair & Shallow Expires November 22, 2021 [Page 5]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 o They enable faster transmissions of sets of blocks of data with
 fewer packet interchanges.

 o They support faster recovery should any of the blocks get lost in
 transmission.

 o They support sending an entire body using NON messages without
 requiring that an intermediate response be received from the peer.

 There are the following disadvantages over using CoAP Block1 and
 Block2 Options:

 o Loss of lock-stepping so payloads are not always received in the
 correct (block ascending) order.

 o Additional congestion control measures need to be put in place for
 NON messages (Section 7.2).

 o To reduce the transmission times for CON transmission of large
 bodies, NSTART needs to be increased from 1, but this affects
 congestion control and incurs a requirement to re-tune other
 parameters (Section 4.7 of [RFC7252]). Such tuning is out of
 scope of this document.

 o Mixing of NON and CON during requests/responses using Q-Block is
 not supported.

 o The Q-Block Options do not support stateless operation/random
 access.

 o Proxying of Q-Block is limited to caching full representations.

 o There is no multicast support.

 Q-Block1 and Q-Block2 Options can be used instead of Block1 and
 Block2 Options when the different transmission properties are
 required. If the new options are not supported by a peer, then
 transmissions can fall back to using Block1 and Block2 Options
 (Section 4.1).

 The deviations from Block1 and Block2 Options are specified in
Section 4. Pointers to appropriate [RFC7959] sections are provided.

 The specification refers to the base CoAP methods defined in
Section 5.8 of [RFC7252] and the new CoAP methods, FETCH, PATCH, and

 iPATCH introduced in [RFC8132].

https://datatracker.ietf.org/doc/html/rfc7252#section-4.7
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252#section-5.8
https://datatracker.ietf.org/doc/html/rfc8132

Boucadair & Shallow Expires November 22, 2021 [Page 6]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 The No-Response Option [RFC7967] was considered but was abandoned as
 it does not apply to Q-Block2 responses. A unified solution is
 defined in the document.

3.1. CoAP Response Code (4.08) Usage

 This document adds a media type for the 4.08 (Request Entity
 Incomplete) response defining an additional message format for
 reporting on payloads using the Q-Block1 Option that are not received
 by the server.

 See Section 5 for more details.

3.2. Applicability Scope

 The block-wise transfer specified in [RFC7959] covers the general
 case using Confirmable messages, but falls short in situations where
 packet loss is highly asymmetrical or there is no need for an
 acknowledgement. In other words, there is a need for Non-confirmable
 support.

 The mechanism specified in this document provides roughly similar
 features to the Block1/Block2 Options. It provides additional
 properties that are tailored towards the intended use case of Non-
 confirmable transmission. Concretely, this mechanism primarily
 targets applications such as DDoS Open Threat Signaling (DOTS) that
 cannot use CON requests/responses because of potential packet loss
 and that support application-specific mechanisms to assess whether
 the remote peer is not overloaded and thus is able to process the
 messages sent by a CoAP endpoint (e.g., DOTS heartbeats in

Section 4.7 of [RFC8782]). Other use cases are when an application
 sends data but has no need for an acknowledgement of receipt and, any
 data transmission loss is not critical.

 The mechanism includes guards to prevent a CoAP agent from
 overloading the network by adopting an aggressive sending rate.
 These guards MUST be followed in addition to the existing CoAP
 congestion control as specified in Section 4.7 of [RFC7252]. See

Section 7 for more details.

 Any usage outside the primary use case of Non-confirmable with block
 transfers should be carefully weighed against the potential loss of
 interoperability with generic CoAP applications (See the
 disadvantages listed in Section 3). It is hoped that the experience
 gained with this mechanism can feed future extensions of the block-
 wise mechanism that will both be generally applicable and serve this
 particular use case.

https://datatracker.ietf.org/doc/html/rfc7967
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8782#section-4.7
https://datatracker.ietf.org/doc/html/rfc7252#section-4.7

Boucadair & Shallow Expires November 22, 2021 [Page 7]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 It is not recommended that these options are used in a NoSec security
 mode (Section 9 of [RFC7252]) as the source endpoint needs to be
 trusted. Using OSCORE [RFC8613] does provide a security context and,
 hence, a trust of the source endpoint that prepared the inner OSCORE
 content. However, even with OSCORE, using a NoSec security mode with
 these options may still be inadequate, for reasons discussed in

Section 11.

4. The Q-Block1 and Q-Block2 Options

4.1. Properties of Q-Block1 and Q-Block2 Options

 The properties of the Q-Block1 and Q-Block2 Options are shown in
 Table 1. The formatting of this table follows the one used in
 Table 4 of [RFC7252] (Section 5.10). The C, U, N, and R columns
 indicate the properties Critical, UnSafe, NoCacheKey, and Repeatable
 defined in Section 5.4 of [RFC7252]. Only Critical and UnSafe
 columns are marked for the Q-Block1 Option. Critical, UnSafe, and
 Repeatable columns are marked for the Q-Block2 Option. As these
 options are UnSafe, NoCacheKey has no meaning and so is marked with a
 dash.

 +--------+---+---+---+---+--------------+--------+--------+---------+
 | Number | C | U | N | R | Name | Format | Length | Default |
 +========+===+===+===+===+==============+========+========+=========+
 | TBA1 | x | x | - | | Q-Block1 | uint | 0-3 | (none) |
 | TBA2 | x | x | - | x | Q-Block2 | uint | 0-3 | (none) |
 +--------+---+---+---+---+--------------+--------+--------+---------+

 Table 1: CoAP Q-Block1 and Q-Block2 Option Properties

 The Q-Block1 and Q-Block2 Options can be present in both the request
 and response messages. The Q-Block1 Option pertains to the request
 payload and the Q-Block2 Option pertains to the response payload.
 When the Content-Format Option is present together with the Q-Block1
 or Q-Block2 Option, the option applies to the body not to the payload
 (i.e., it must be the same for all payloads of the same body).

 The Q-Block1 Option is useful with the payload-bearing, e.g., POST,
 PUT, FETCH, PATCH, and iPATCH requests and their responses.

 The Q-Block2 Option is useful, e.g., with GET, POST, PUT, FETCH,
 PATCH, and iPATCH requests and their payload-bearing responses
 (response codes 2.01, 2.02, 2.04, and 2.05) (Section 5.5 of
 [RFC7252]).

 A CoAP endpoint (or proxy) MUST support either both or neither of the
 Q-Block1 and Q-Block2 Options.

https://datatracker.ietf.org/doc/html/rfc7252#section-9
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.4
https://datatracker.ietf.org/doc/html/rfc7252#section-5.5
https://datatracker.ietf.org/doc/html/rfc7252#section-5.5

Boucadair & Shallow Expires November 22, 2021 [Page 8]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 If the Q-Block1 Option is present in a request or the Q-Block2 Option
 is returned in a response, this indicates a block-wise transfer and
 describes how this specific block-wise payload forms part of the
 entire body being transferred. If it is present in the opposite
 direction, it provides additional control on how that payload will be
 formed or was processed.

 To indicate support for Q-Block2 responses, the CoAP client MUST
 include the Q-Block2 Option in a GET or similar request (FETCH, for
 example), the Q-Block2 Option in a PUT or similar request (POST, for
 example), or the Q-Block1 Option in a PUT or similar request so that
 the server knows that the client supports this Q-Block functionality
 should it need to send back a body that spans multiple payloads.
 Otherwise, the server would use the Block2 Option (if supported) to
 send back a message body that is too large to fit into a single IP
 packet [RFC7959].

 How a client decides whether it needs to include a Q-Block1 or
 Q-Block2 Option can be driven by a local configuration parameter,
 triggered by an application (DOTS, for example), etc. Such
 considerations are out of the scope of the document.

 Implementation of the Q-Block1 and Q-Block2 Options is intended to be
 optional. However, when it is present in a CoAP message, it MUST be
 processed (or the message rejected). Therefore, Q-Block1 and
 Q-Block2 Options are identified as Critical options.

 With CoAP over UDP, the way a request message is rejected for
 critical options depends on the message type. A Confirmable message
 with an unrecognized critical option is rejected with a 4.02 (Bad
 Option) response (Section 5.4.1 of [RFC7252]). A Non-confirmable
 message with an unrecognized critical option is either rejected with
 a Reset message or just silently ignored (Sections 5.4.1 and 4.3 of
 [RFC7252]). To reliably get a rejection message, it is therefore
 REQUIRED that clients use a Confirmable message for determining
 support for Q-Block1 and Q-Block2 Options. This CON message can be
 sent under the base CoAP congestion control setup specified in

Section 4.7 of [RFC7252] (that is, NSTART does not need to be
 increased (Section 7.1)).

 The Q-Block1 and Q-Block2 Options are unsafe to forward. That is, a
 CoAP proxy that does not understand the Q-Block1 (or Q-Block2) Option
 must reject the request or response that uses either option (See

Section 5.7.1 of [RFC7252]).

 The Q-Block2 Option is repeatable when requesting retransmission of
 missing blocks, but not otherwise. Except that case, any request

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.7
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.1

Boucadair & Shallow Expires November 22, 2021 [Page 9]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 carrying multiple Q-Block1 (or Q-Block2) Options MUST be handled
 following the procedure specified in Section 5.4.5 of [RFC7252].

 The Q-Block1 and Q-Block2 Options, like the Block1 and Block2
 Options, are of both class E and class U for OSCORE processing
 (Table 2). The Q-Block1 (or Q-Block2) Option MAY be an Inner or
 Outer option (Section 4.1 of [RFC8613]). The Inner and Outer values
 are therefore independent of each other. The Inner option is
 encrypted and integrity protected between clients and servers, and
 provides message body identification in case of end-to-end
 fragmentation of requests. The Outer option is visible to proxies
 and labels message bodies in case of hop-by-hop fragmentation of
 requests.

 +--------+-----------------+---+---+
 | Number | Name | E | U |
 +========+=================+===+===+
 | TBA1 | Q-Block1 | x | x |
 | TBA2 | Q-Block2 | x | x |
 +--------+-----------------+---+---+
 Table 2: OSCORE Protection of Q-Block1 and Q-Block2 Options

 Note that if Q-Block1 or Q-Block2 Options are included in a packet as
 Inner options, Block1 or Block2 Options MUST NOT be included as Inner
 options. Similarly, there MUST NOT be a mix of Q-Block and Block for
 the Outer options. Messages that do not adhere with this behavior
 MUST be rejected with 4.02 (Bad Option). Q-Block and Block Options
 can be mixed across Inner and Outer options as these are handled
 independently of each other. For clarity, if OSCORE is not being
 used, there MUST NOT be a mix of Q-Block and Block Options in the
 same packet.

4.2. Structure of Q-Block1 and Q-Block2 Options

 The structure of Q-Block1 and Q-Block2 Options follows the structure
 defined in Section 2.2 of [RFC7959].

 There is no default value for the Q-Block1 and Q-Block2 Options.
 Absence of one of these options is equivalent to an option value of 0
 with respect to the value of block number (NUM) and more bit (M) that
 could be given in the option, i.e., it indicates that the current
 block is the first and only block of the transfer (block number is
 set to 0, M is unset). However, in contrast to the explicit value 0,
 which would indicate a size of the block (SZX) of 0, and thus a size
 value of 16 bytes, there is no specific explicit size implied by the
 absence of the option -- the size is left unspecified. (As for any
 uint, the explicit value 0 is efficiently indicated by a zero-length

https://datatracker.ietf.org/doc/html/rfc7252#section-5.4.5
https://datatracker.ietf.org/doc/html/rfc8613#section-4.1
https://datatracker.ietf.org/doc/html/rfc7959#section-2.2

Boucadair & Shallow Expires November 22, 2021 [Page 10]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 option; this, therefore, is different in semantics from the absence
 of the option).

4.3. Using the Q-Block1 Option

 The Q-Block1 Option is used when the client wants to send a large
 amount of data to the server using the POST, PUT, FETCH, PATCH, or
 iPATCH methods where the data and headers do not fit into a single
 packet.

 When Q-Block1 Option is used, the client MUST include a Request-Tag
 Option [I-D.ietf-core-echo-request-tag]. The Request-Tag value MUST
 be the same for all of the requests for the body of data that is
 being transferred. The Request-Tag is opaque, but the client MUST
 ensure that it is unique for every different body of transmitted
 data.

 Implementation Note: It is suggested that the client treats the
 Request-Tag as an unsigned integer of 8 bytes in length. An
 implementation may want to consider limiting this to 4 bytes to
 reduce packet overhead size. The initial Request-Tag value should
 be randomly generated and then subsequently incremented by the
 client whenever a new body of data is being transmitted between
 peers.

Section 4.6 discusses the use of Size1 Option.

 For Confirmable transmission, the server continues to acknowledge
 each packet, but a response is not required (whether separate or
 piggybacked) until successful receipt of the body by the server. For
 Non-confirmable transmission, no response is required until either
 the successful receipt of the body by the server or a timer expires
 with some of the payloads having not yet arrived. In the latter
 case, a "retransmit missing payloads" response is needed. For
 reliable transports (e.g., [RFC8323]), a response is not required
 until successful receipt of the body by the server.

 Each individual message that carries a block of the body is treated
 as a new request (Section 6).

 The client MUST send the payloads in order of increasing block
 number, starting from zero, until the body is complete (subject to
 any congestion control (Section 7)). Any missing payloads requested
 by the server must in addition be separately transmitted with
 increasing block numbers.

 The following Response Codes are used:

https://datatracker.ietf.org/doc/html/rfc8323

Boucadair & Shallow Expires November 22, 2021 [Page 11]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 2.01 (Created)

 This Response Code indicates successful receipt of the entire body
 and that the resource was created. The token to use MUST be one
 of the tokens that were received in a request for this block-wise
 exchange. However, it is desirable to provide the one used in the
 last received request, since that will aid any troubleshooting.
 The client should then release all of the tokens used for this
 body. Note that the last received payload might not be the one
 with the highest block number.

 2.02 (Deleted)

 This Response Code indicates successful receipt of the entire body
 and that the resource was deleted when using POST (Section 5.8.2
 [RFC7252]). The token to use MUST be one of the tokens that were
 received in a request for this block-wise exchange. However, it
 is desirable to provide the one used in the last received request.
 The client should then release all of the tokens used for this
 body.

 2.04 (Changed)

 This Response Code indicates successful receipt of the entire body
 and that the resource was updated. The token to use MUST be one
 of the tokens that were received in a request for this block-wise
 exchange. However, it is desirable to provide the one used in the
 last received request. The client should then release all of the
 tokens used for this body.

 2.05 (Content)

 This Response Code indicates successful receipt of the entire
 FETCH request body (Section 2 of [RFC8132]) and that the
 appropriate representation of the resource is being returned. The
 token to use MUST be one of the tokens that were received in a
 request for this block-wise exchange. However, it is desirable to
 provide the one used in the last received request.

 If the FETCH request includes the Observe Option, then the server
 MUST use the same token as used for the 2.05 (Content) response
 for returning any Observe triggered responses so that the client
 can match them up.

 The client should then release all of the tokens used for this
 body apart from the one used for tracking an observed resource.

 2.31 (Continue)

https://datatracker.ietf.org/doc/html/rfc7252#section-5.8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-5.8.2
https://datatracker.ietf.org/doc/html/rfc8132#section-2

Boucadair & Shallow Expires November 22, 2021 [Page 12]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 This Response Code can be used to indicate that all of the blocks
 up to and including the Q-Block1 Option block NUM (all having the
 M bit set) have been successfully received. The token to use MUST
 be one of the tokens that were received in a request for this
 latest MAX_PAYLOADS_SET block-wise exchange. However, it is
 desirable to provide the one used in the last received request.

 The client should then release all of the tokens used for this
 MAX_PAYLOADS_SET.

 A response using this Response Code MUST NOT be generated for
 every received Q-Block1 Option request. It SHOULD only be
 generated when all the payload requests are Non-confirmable and a
 MAX_PAYLOADS_SET has been received by the server. More details
 about the motivations for this optimization are discussed in

Section 7.2.

 This Response Code SHOULD NOT be generated for CON as this may
 cause duplicated payloads to unnecessarily be sent.

 4.00 (Bad Request)

 This Response Code MUST be returned if the request does not
 include a Request-Tag Option or a Size1 Option but does include a
 Q-Block1 option.

 4.02 (Bad Option)

 This Response Code MUST be returned for a Confirmable request if
 the server does not support the Q-Block Options. Note that a
 reset message may be sent in case of Non-confirmable request.

 4.08 (Request Entity Incomplete)

 As a reminder, this Response Code returned without Content-Type
 "application/missing-blocks+cbor-seq" (Section 12.3) is handled as
 in Section 2.9.2 [RFC7959].

 This Response Code returned with Content-Type "application/
 missing-blocks+cbor-seq" indicates that some of the payloads are
 missing and need to be resent. The client then retransmits the
 individual missing payloads using the same Request-Tag, Size1,
 and, Q-Block1 Option to specify the same NUM, SZX, and M bit as
 sent initially in the original, but not received, packet.

 The Request-Tag value to use is determined by taking the token in
 the 4.08 (Request Entity Incomplete) response, locating the
 matching client request, and then using its Request-Tag.

https://datatracker.ietf.org/doc/html/rfc7959#section-2.9.2

Boucadair & Shallow Expires November 22, 2021 [Page 13]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 The token to use in the 4.08 (Request Entity Incomplete) response
 MUST be one of the tokens that were received in a request for this
 block-wise body exchange. However, it is desirable to provide the
 one used in the last received request. See Section 5 for further
 information.

 If the server has not received all the blocks of a body, but one
 or more NON payloads have been received, it SHOULD wait for
 NON_RECEIVE_TIMEOUT (Section 7.2) before sending a 4.08 (Request
 Entity Incomplete) response.

 4.13 (Request Entity Too Large)

 This Response Code can be returned under similar conditions to
 those discussed in Section 2.9.3 of [RFC7959].

 This Response Code can be returned if there is insufficient space
 to create a response PDU with a block size of 16 bytes (SZX = 0)
 to send back all the response options as appropriate. In this
 case, the Size1 Option is not included in the response.

 Further considerations related to the transmission timings of 4.08
 (Request Entity Incomplete) and 2.31 (Continue) Response Codes are
 discussed in Section 7.2.

 If a server receives payloads with different Request-Tags for the
 same resource, it should continue to process all the bodies as it has
 no way of determining which is the latest version, or which body, if
 any, the client is terminating the transmission for.

 If the client elects to stop the transmission of a complete body, and
 absent any local policy, the client MUST "forget" all tracked tokens
 associated with the body's Request-Tag so that a reset message is
 generated for the invalid token in the 4.08 (Request Entity
 Incomplete) response. The server on receipt of the reset message
 SHOULD delete the partial body.

 If the server receives a duplicate block with the same Request-Tag,
 it MUST ignore the payload of the packet, but MUST still respond as
 if the block was received for the first time.

 A server SHOULD maintain a partial body (missing payloads) for
 NON_PARTIAL_TIMEOUT (Section 7.2).

https://datatracker.ietf.org/doc/html/rfc7959#section-2.9.3

Boucadair & Shallow Expires November 22, 2021 [Page 14]

Internet-Draft Quick Block-Wise Transfer Options May 2021

4.4. Using the Q-Block2 Option

 In a request for any block number, the M bit unset indicates the
 request is just for that block. If the M bit is set, this has
 different meanings based on the NUM value:

 NUM is zero: This is a request for the entire body.

 'NUM modulo MAX_PAYLOADS' is zero, while NUM is not zero: This is
 used to confirm that the current MAX_PAYLOADS_SET (the latest
 block having block number NUM-1) has been successfully received
 and that, upon receipt of this request, the server can continue to
 send the next MAX_PAYLOADS_SET (the first block having block
 number NUM). This is the 'Continue' Q-Block-2 and conceptually
 has the same usage (i.e., continue sending the next set of data)
 as the use of 2.31 (Continue) for Q-Block1.

 Any other value of NUM: This is a request for that block and for all
 of the remaining blocks in the current MAX_PAYLOADS_SET.

 If the request includes multiple Q-Block2 Options and these options
 overlap (e.g., combination of M being set (this and later blocks) and
 being unset (this individual block)) resulting in an individual block
 being requested multiple times, the server MUST only send back one
 instance of that block. This behavior is meant to prevent
 amplification attacks.

 The payloads sent back from the server as a response MUST all have
 the same ETag (Section 5.10.6 of [RFC7252]) for the same body. The
 server MUST NOT use the same ETag value for different representations
 of a resource.

 The ETag is opaque, but the server MUST ensure that it is unique for
 every different body of transmitted data.

 Implementation Note: It is suggested that the server treats the
 ETag as an unsigned integer of 8 bytes in length. An
 implementation may want to consider limiting this to 4 bytes to
 reduce packet overhead size. The initial ETag value should be
 randomly generated and then subsequently incremented by the server
 whenever a new body of data is being transmitted between peers.

Section 4.6 discusses the use of Size2 Option.

 The client may elect to request any detected missing blocks or just
 ignore the partial body. This decision is implementation specific.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6

Boucadair & Shallow Expires November 22, 2021 [Page 15]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 For NON payloads, the client SHOULD wait NON_RECEIVE_TIMEOUT
 (Section 7.2) after the last received payload before requesting
 retransmission of any missing blocks. Retransmission is requested by
 issuing a GET, POST, PUT, FETCH, PATCH, or iPATCH request that
 contains one or more Q-Block2 Options that define the missing
 block(s). Generally the M bit on the Q-Block2 Option(s) SHOULD be
 unset, although the M bit MAY be set to request this and later blocks
 from this MAX_PAYLOADS_SET, see Section 10.2.4 for an example of this
 in operation. Further considerations related to the transmission
 timing for missing requests are discussed in Section 7.2.

 The missing block numbers requested by the client MUST have an
 increasing block number in each additional Q-Block2 Option with no
 duplicates. The server SHOULD respond with a 4.00 (Bad Request) to
 requests not adhering to this behavior. Note that the ordering
 constraint is meant to force the client to check for duplicates and
 remove them. This also helps with troubleshooting.

 If the client receives a duplicate block with the same ETag, it MUST
 silently ignore the payload.

 A client SHOULD maintain a partial body (missing payloads) for
 NON_PARTIAL_TIMEOUT (Section 7.2) or as defined by the Max-Age Option
 (or its default of 60 seconds (Section 5.6.1 of [RFC7252])),
 whichever is the less. On release of the partial body, the client
 should then release all of the tokens used for this body apart from
 the token that is used to track a resource that is being observed.

 The ETag Option should not be used in the request for missing blocks
 as the server could respond with a 2.03 (Valid) response with no
 payload. It can be used in the request if the client wants to check
 the freshness of the locally cached body response.

 The server SHOULD maintain a cached copy of the body when using the
 Q-Block2 Option to facilitate retransmission of any missing payloads.

 If the server detects part way through a body transfer that the
 resource data has changed and the server is not maintaining a cached
 copy of the old data, then the transmission is terminated. Any
 subsequent missing block requests MUST be responded to using the
 latest ETag and Size2 Option values with the updated data.

 If the server responds during a body update with a different ETag
 Option value (as the resource representation has changed), then the
 client should treat the partial body with the old ETag as no longer
 being fresh. The client may then request all of the new data by
 specifying Q-Block2 with block number '0' and the M bit set.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1

Boucadair & Shallow Expires November 22, 2021 [Page 16]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 If the server transmits a new body of data (e.g., a triggered Observe
 notification) with a new ETag to the same client as an additional
 response, the client should remove any partially received body held
 for a previous ETag for that resource as it is unlikely the missing
 blocks can be retrieved.

 If there is insufficient space to create a response PDU with a block
 size of 16 bytes (SZX = 0) to send back all the response options as
 appropriate, a 4.13 (Request Entity Too Large) is returned without
 the Size1 Option.

 For Confirmable traffic, the server typically acknowledges the
 initial request using an ACK with a piggybacked payload, and then
 sends the subsequent payloads of the MAX_PAYLOADS_SET as CON
 responses. These CON responses are individually ACKed by the client.
 The server will detect failure to send a packet and SHOULD terminate
 the body transfer, but the client can issue, after a
 MAX_TRANSMIT_SPAN delay, a separate GET, POST, PUT, FETCH, PATCH, or
 iPATCH for any missing blocks as needed.

4.5. Using Observe Option

 For a request that uses Q-Block1, the Observe value [RFC7641] MUST be
 the same for all the payloads of the same body. This includes any
 missing payloads that are retransmitted.

 For a response that uses Q-Block2, the Observe value MUST be the same
 for all the payloads of the same body. This is different from Block2
 usage where the Observe value is only present in the first block
 (Section 3.4 of [RFC7959]). This includes payloads transmitted
 following receipt of the 'Continue' Q-Block2 Option (Section 4.4) by
 the server. If a missing payload is requested by a client, then both
 the request and response MUST NOT include the Observe Option.

4.6. Using Size1 and Size2 Options

Section 4 of [RFC7959] defines two CoAP options: Size1 for indicating
 the size of the representation transferred in requests and Size2 for
 indicating the size of the representation transferred in responses.

 For Q-Block1 and Q-Block2 Options, the Size1 or Size2 Option values
 MUST exactly represent the size of the data on the body so that any
 missing data can easily be determined.

 The Size1 Option MUST be used with the Q-Block1 Option when used in a
 request and MUST be present in all payloads of the request,
 preserving the same value. The Size2 Option MUST be used with the

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959#section-3.4
https://datatracker.ietf.org/doc/html/rfc7959#section-4

Boucadair & Shallow Expires November 22, 2021 [Page 17]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Q-Block2 Option when used in a response and MUST be present in all
 payloads of the response, preserving the same value.

4.7. Using Q-Block1 and Q-Block2 Options Together

 The behavior is similar to the one defined in Section 3.3 of
 [RFC7959] with Q-Block1 substituted for Block1 and Q-Block2 for
 Block2.

4.8. Using Q-Block2 Option With Multicast

 Servers MUST ignore multicast requests that contain the Q-Block2
 Option. As a reminder, Block2 Option can be used as stated in

Section 2.8 of [RFC7959].

5. The Use of 4.08 (Request Entity Incomplete) Response Code

 4.08 (Request Entity Incomplete) Response Code has a new Content-Type
 "application/missing-blocks+cbor-seq" used to indicate that the
 server has not received all of the blocks of the request body that it
 needs to proceed. Such messages must not be treated by the client as
 a fatal error.

 Likely causes are the client has not sent all blocks, some blocks
 were dropped during transmission, or the client has sent them
 sufficiently long ago that the server has already discarded them.

 The new data payload of the 4.08 (Request Entity Incomplete) response
 with Content-Type set to "application/missing-blocks+cbor-seq" is
 encoded as a CBOR Sequence [RFC8742]. It comprises one or more
 missing block numbers encoded as CBOR unsigned integers [RFC8949].
 The missing block numbers MUST be unique in each 4.08 (Request Entity
 Incomplete) response when created by the server; the client MUST
 ignore any duplicates in the same 4.08 (Request Entity Incomplete)
 response.

 The Content-Format Option (Section 5.10.3 of [RFC7252]) MUST be used
 in the 4.08 (Request Entity Incomplete) response. It MUST be set to
 "application/missing-blocks+cbor-seq" (Section 12.3).

 The Concise Data Definition Language [RFC8610] (and see Section 4.1
 [RFC8742]) for the data describing these missing blocks is as
 follows:

https://datatracker.ietf.org/doc/html/rfc7959#section-3.3
https://datatracker.ietf.org/doc/html/rfc7959#section-3.3
https://datatracker.ietf.org/doc/html/rfc7959#section-2.8
https://datatracker.ietf.org/doc/html/rfc8742
https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.3
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8742#section-4.1
https://datatracker.ietf.org/doc/html/rfc8742#section-4.1

Boucadair & Shallow Expires November 22, 2021 [Page 18]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 ; This defines an array, the elements of which are to be used
 ; in a CBOR Sequence:
 payload = [+ missing-block-number]
 ; A unique block number not received:
 missing-block-number = uint

 Figure 1: Structure of the Missing Blocks Payload

 This CDDL syntax MUST be followed.

 It is desirable that the token to use for the response is the token
 that was used in the last block number received so far with the same
 Request-Tag value. Note that the use of any received token with the
 same Request-Tag would be acceptable, but providing the one used in
 the last received payload will aid any troubleshooting. The client
 will use the token to determine what was the previously sent request
 to obtain the Request-Tag value that was used.

 If the size of the 4.08 (Request Entity Incomplete) response packet
 is larger than that defined by Section 4.6 [RFC7252], then the number
 of reported missing blocks MUST be limited so that the response can
 fit into a single packet. If this is the case, then the server can
 send subsequent 4.08 (Request Entity Incomplete) responses containing
 the missing other blocks on receipt of a new request providing a
 missing payload with the same Request-Tag.

 The missing blocks MUST be reported in ascending order without any
 duplicates. The client SHOULD silently drop 4.08 (Request Entity
 Incomplete) responses not adhering with this behavior.

 Implementation Note: Consider limiting the number of missing
 payloads to MAX_PAYLOADS to minimize congestion control being
 needed. The CBOR sequence does not include any array wrapper.

 The 4.08 (Request Entity Incomplete) with Content-Type "application/
 missing-blocks+cbor-seq" SHOULD NOT be used when using Confirmable
 requests or a reliable connection [RFC8323] as the client will be
 able to determine that there is a transmission failure of a
 particular payload and hence that the server is missing that payload.

6. The Use of Tokens

 Each new request generally uses a new Token (and sometimes must, see
 Section 4 of [I-D.ietf-core-echo-request-tag]). Additional responses
 to a request all use the token of the request they respond to.

 Implementation Note: By using 8-byte tokens, it is possible to
 easily minimize the number of tokens that have to be tracked by

https://datatracker.ietf.org/doc/html/rfc7252#section-4.6
https://datatracker.ietf.org/doc/html/rfc8323

Boucadair & Shallow Expires November 22, 2021 [Page 19]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 clients, by keeping the bottom 32 bits the same for the same body
 and the upper 32 bits containing the current body's request number
 (incrementing every request, including every re-transmit). This
 allows the client to be alleviated from keeping all the per-
 request-state, e.g., in Section 3 of [RFC8974]. However, if using
 NoSec, Section 5.2 of [RFC8974] needs to be considered for
 security implications.

7. Congestion Control for Unreliable Transports

 The transmission of all the blocks of a single body over an
 unreliable transport MUST either all be Confirmable or all be Non-
 confirmable. This is meant to simplify the congestion control
 procedure.

 As a reminder, there is no need for CoAP-specific congestion control
 for reliable transports [RFC8323].

7.1. Confirmable (CON)

 Congestion control for CON requests and responses is specified in
Section 4.7 of [RFC7252]. In order to benefit from faster

 transmission rates, NSTART will need to be increased from 1.
 However, the other CON congestion control parameters will need to be
 tuned to cover this change. This tuning is not specified in this
 document, given that the applicability scope of the current
 specification assumes that all requests and responses using Q-Block1
 and Q-Block2 will be Non-confirmable (Section 3.2) apart from the
 initial Q-Block functionality negotiation.

 Following the failure to transmit a packet due to packet loss after
 MAX_TRANSMIT_SPAN time (Section 4.8.2 of [RFC7252]), it is
 implementation specific as to whether there should be any further
 requests for missing data.

7.2. Non-confirmable (NON)

 This document introduces new parameters MAX_PAYLOADS, NON_TIMEOUT,
 NON_RECEIVE_TIMEOUT, NON_MAX_RETRANSMIT, NON_PROBING_WAIT, and
 NON_PARTIAL_TIMEOUT primarily for use with NON (Table 3).

 MAX_PAYLOADS should be configurable with a default value of 10. Both
 CoAP endpoints MUST have the same value (otherwise there will be
 transmission delays in one direction) and the value MAY be negotiated
 between the endpoints to a common value by using a higher level
 protocol (out of scope of this document). This is the maximum number
 of payloads that can be transmitted at any one time.

https://datatracker.ietf.org/doc/html/rfc8974#section-3
https://datatracker.ietf.org/doc/html/rfc8974#section-5.2
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc7252#section-4.7
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.2

Boucadair & Shallow Expires November 22, 2021 [Page 20]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Note: The default value of 10 is chosen for reasons similar to
 those discussed in Section 5 of [RFC6928], especially given the
 target application discussed in Section 3.2.

 NON_TIMEOUT is the period of delay between sending MAX_PAYLOADS_SET
 for the same body. By default, NON_TIMEOUT has the same value as
 ACK_TIMEOUT (Section 4.8 of [RFC7252]).

 NON_RECEIVE_TIMEOUT is the initial time to wait for a missing payload
 before requesting retransmission for the first time. Every time the
 missing payload is re-requested, the time to wait value doubles. The
 time to wait is calculated as:

 Time-to-Wait = NON_RECEIVE_TIMEOUT * (2 ** (Re-Request-Count - 1))

 NON_RECEIVE_TIMEOUT has a default value of twice NON_TIMEOUT.
 NON_RECEIVE_TIMEOUT MUST always be greater than NON_TIMEOUT by at
 least one second so that the sender of the payloads has the
 opportunity to start sending the next MAX_PAYLOADS_SET before the
 receiver times out.

 NON_MAX_RETRANSMIT is the maximum number of times a request for the
 retransmission of missing payloads can occur without a response from
 the remote peer. After this occurs, the local endpoint SHOULD
 consider the body stale, remove any body, and release Tokens and
 Request-Tag on the client (or the ETag on the server). By default,
 NON_MAX_RETRANSMIT has the same value as MAX_RETRANSMIT (Section 4.8
 of [RFC7252]).

 NON_PROBING_WAIT is used to limit the potential wait needed when
 using PROBING_RATE. By default, NON_PROBING_WAIT is computed in the
 same way as EXCHANGE_LIFETIME (Section 4.8.2 of [RFC7252]) but with
 ACK_TIMEOUT and MAX_RETRANSMIT substituted with NON_TIMEOUT and
 NON_MAX_RETRANSMIT, respectively:

 NON_PROBING_WAIT = NON_TIMEOUT * ((2 ** NON_MAX_RETRANSMIT) - 1) *
 ACK_RANDOM_FACTOR + (2 * MAX_LATENCY) + NON_TIMEOUT

 NON_PARTIAL_TIMEOUT is used for expiring partially received bodies.
 By default, NON_PARTIAL_TIMEOUT is computed in the same way as
 EXCHANGE_LIFETIME (Section 4.8.2 of [RFC7252]). This default value
 is calculated in the same way as NON_PROBING_WAIT.

https://datatracker.ietf.org/doc/html/rfc6928#section-5
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.2

Boucadair & Shallow Expires November 22, 2021 [Page 21]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 +---------------------+---------------+
 | Parameter Name | Default Value |
 +=====================+===============+
 | MAX_PAYLOADS | 10 |
 | NON_MAX_RETRANSMIT | 4 |
 | NON_TIMEOUT | 2 s |
 | NON_RECEIVE_TIMEOUT | 4 s |
 | NON_PROBING_WAIT | 247 s |
 | NON_PARTIAL_TIMEOUT | 247 s |
 +---------------------+---------------+

 Table 3: Congestion Control Parameters

 The PROBING_RATE parameter in CoAP indicates the average data rate
 that must not be exceeded by a CoAP endpoint in sending to a peer
 endpoint that does not respond. A single body will be subjected to
 PROBING_RATE (Section 4.7 of [RFC7252]), not the individual packets.
 If the wait time between sending bodies that are not being responded
 to based on PROBING_RATE exceeds NON_PROBING_WAIT, then the wait time
 is limited to NON_PROBING_WAIT.

 Note: For the particular DOTS application, PROBING_RATE and other
 transmission parameters are negotiated between peers. Even when
 not negotiated, the DOTS application uses customized defaults as
 discussed in Section 4.5.2 of [RFC8782]. Note that MAX_PAYLOADS,
 NON_MAX_RETRANSMIT, NON_TIMEOUT, NON_PROBING_WAIT, and
 NON_PARTIAL_TIMEOUT can be negotiated between DOTS peers, e.g., as
 per [I-D.bosh-dots-quick-blocks]. When explicit values are
 configured for NON_PROBING_WAIT and NON_PARTIAL_TIMEOUT, these
 values are used without applying any jitter.

 Each NON 4.08 (Request Entity Incomplete) response is subject to
 PROBING_RATE.

 Each NON GET or FETCH request using a Q-Block2 Option is subject to
 PROBING_RATE.

 As the sending of many payloads of a single body may itself cause
 congestion, after transmission of every MAX_PAYLOADS_SET of a single
 body, a delay MUST be introduced of NON_TIMEOUT before sending the
 next MAX_PAYLOADS_SET unless a 'Continue' is received from the peer
 for the current MAX_PAYLOADS_SET, in which case the next
 MAX_PAYLOADS_SET MAY start transmission immediately.

 Note: Assuming 1500-byte packets and the MAX_PAYLOADS_SET having
 10 payloads, this corresponds to 1500 * 10 * 8 = 120 Kbits. With
 a maximum delay of 2 seconds between MAX_PAYLOADS_SET, this
 indicates an average speed requirement of 60 Kbps for a single

https://datatracker.ietf.org/doc/html/rfc7252#section-4.7
https://datatracker.ietf.org/doc/html/rfc8782#section-4.5.2

Boucadair & Shallow Expires November 22, 2021 [Page 22]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 body should there be no responses. This transmission rate is
 further reduced by being subject to PROBING_RATE.

 The sending of a set of missing blocks of a body is restricted to
 those in a MAX_PAYLOADS_SET at a time. In other words, a NON_TIMEOUT
 delay is still observed between each MAX_PAYLOAD_SET.

 For Q-Block1 Option, if the server responds with a 2.31 (Continue)
 Response Code for the latest payload sent, then the client can
 continue to send the next MAX_PAYLOADS_SET without any further delay.
 If the server responds with a 4.08 (Request Entity Incomplete)
 Response Code, then the missing payloads SHOULD be retransmitted
 before going into another NON_TIMEOUT delay prior to sending the next
 set of payloads.

 For the server receiving NON Q-Block1 requests, it SHOULD send back a
 2.31 (Continue) Response Code on receipt of all of the
 MAX_PAYLOADS_SET to prevent the client unnecessarily delaying. If
 not all of the MAX_PAYLOADS_SET were received, the server SHOULD
 delay for NON_RECEIVE_TIMEOUT (exponentially scaled based on the
 repeat request count for a payload) before sending the 4.08 (Request
 Entity Incomplete) Response Code for the missing payload(s). If all
 of the MAX_PAYLOADS_SET were received and a 2.31 (Continue) had been
 sent, but no more payloads were received for NON_RECEIVE_TIMEOUT
 (exponentially scaled), the server SHOULD send a 4.08 (Request Entity
 Incomplete) response detailing the missing payloads after the block
 number that was indicated in the sent 2.31 (Continue). If the
 repeated response count of the 4.08 (Request Entity Incomplete)
 exceeds NON_MAX_RETRANSMIT, the server SHOULD discard the partial
 body and stop requesting the missing payloads.

 It is likely that the client will start transmitting the next
 MAX_PAYLOADS_SET before the server times out on waiting for the last
 of the previous MAX_PAYLOADS_SET. On receipt of a payload from the
 next MAX_PAYLOADS_SET, the server SHOULD send a 4.08 (Request Entity
 Incomplete) Response Code indicating any missing payloads from any
 previous MAX_PAYLOADS_SET. Upon receipt of the 4.08 (Request Entity
 Incomplete) Response Code, the client SHOULD send the missing
 payloads before continuing to send the remainder of the
 MAX_PAYLOADS_SET and then go into another NON_TIMEOUT delay prior to
 sending the next MAX_PAYLOADS_SET.

 For the client receiving NON Q-Block2 responses, it SHOULD send a
 'Continue' Q-Block2 request (Section 4.4) for the next
 MAX_PAYLOADS_SET on receipt of all of the MAX_PAYLOADS_SET, to
 prevent the server unnecessarily delaying. Otherwise the client
 SHOULD delay for NON_RECEIVE_TIMEOUT (exponentially scaled based on
 the repeat request count for a payload), before sending the request

Boucadair & Shallow Expires November 22, 2021 [Page 23]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 for the missing payload(s). If the repeat request count for a
 missing payload exceeds NON_MAX_RETRANSMIT, the client SHOULD discard
 the partial body and stop requesting the missing payloads.

 The server SHOULD recognize the 'Continue' Q-Block2 request as a
 continue request and just continue the transmission of the body
 (including Observe Option, if appropriate for an unsolicited
 response) rather than as a request for the remaining missing blocks.

 It is likely that the server will start transmitting the next
 MAX_PAYLOADS_SET before the client times out on waiting for the last
 of the previous MAX_PAYLOADS_SET. Upon receipt of a payload from the
 new MAX_PAYLOADS_SET, the client SHOULD send a request indicating any
 missing payloads from any previous MAX_PAYLOADS_SET. Upon receipt of
 such request, the server SHOULD send the missing payloads before
 continuing to send the remainder of the MAX_PAYLOADS_SET and then go
 into another NON_TIMEOUT delay prior to sending the next
 MAX_PAYLOADS_SET.

 The client does not need to acknowledge the receipt of the entire
 body.

 Note: If there is asymmetric traffic loss causing responses to
 never get received, a delay of NON_TIMEOUT after every
 transmission of MAX_PAYLOADS_SET will be observed. The endpoint
 receiving the body is still likely to receive the entire body.

8. Caching Considerations

 Caching block based information is not straight forward in a proxy.
 For Q-Block1 and Q-Block2 Options, for simplicity it is expected that
 the proxy will reassemble the body (using any appropriate recovery
 options for packet loss) before passing on the body to the
 appropriate CoAP endpoint. This does not preclude an implementation
 doing a more complex per payload caching, but how to do this is out
 of the scope of this document. The onward transmission of the body
 does not require the use of the Q-Block1 or Q-Block2 Options as these
 options may not be supported in that link. This means that the proxy
 must fully support the Q-Block1 and Q-Block2 Options.

 How the body is cached in the CoAP client (for Q-Block1
 transmissions) or the CoAP server (for Q-Block2 transmissions) is
 implementation specific.

 As the entire body is being cached in the proxy, the Q-Block1 and
 Q-Block2 Options are removed as part of the block assembly and thus
 do not reach the cache.

Boucadair & Shallow Expires November 22, 2021 [Page 24]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 For Q-Block2 responses, the ETag Option value is associated with the
 data (and onward transmitted to the CoAP client), but is not part of
 the cache key.

 For requests with Q-Block1 Option, the Request-Tag Option is
 associated with the build up of the body from successive payloads,
 but is not part of the cache key. For the onward transmission of the
 body using CoAP, a new Request-Tag SHOULD be generated and used.
 Ideally this new Request-Tag should replace the client's request
 Request-Tag.

 It is possible that two or more CoAP clients are concurrently
 updating the same resource through a common proxy to the same CoAP
 server using Q-Block1 (or Block1) Option. If this is the case, the
 first client to complete building the body causes that body to start
 transmitting to the CoAP server with an appropriate Request-Tag
 value. When the next client completes building the body, any
 existing partial body transmission to the CoAP server is terminated
 and the new body representation transmission starts with a new
 Request-Tag value. Note that it cannot be assumed that the proxy
 will always receive a complete body from a client.

 A proxy that supports Q-Block2 Option MUST be prepared to receive a
 GET or similar request indicating one or more missing blocks. The
 proxy will serve from its cache the missing blocks that are available
 in its cache in the same way a server would send all the appropriate
 Q-Block2 responses. If a body matching the cache key is not
 available in the cache, the proxy MUST request the entire body from
 the CoAP server using the information in the cache key.

 How long a CoAP endpoint (or proxy) keeps the body in its cache is
 implementation specific (e.g., it may be based on Max-Age).

9. HTTP-Mapping Considerations

 As a reminder, the basic normative requirements on HTTP/CoAP mappings
 are defined in Section 10 of [RFC7252]. The implementation
 guidelines for HTTP/CoAP mappings are elaborated in [RFC8075].

 The rules defined in Section 5 of [RFC7959] are to be followed.

10. Examples with Non-confirmable Messages

 This section provides some sample flows to illustrate the use of
 Q-Block1 and Q-Block2 Options with NON. Examples with CON are
 provided in Appendix A.

https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7959#section-5

Boucadair & Shallow Expires November 22, 2021 [Page 25]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 The examples in the following subsections assume MAX_PAYLOADS is set
 to 10 and NON_MAX_RETRANSMIT is set to 4.

 Figure 2 lists the conventions that are used in the following
 subsections.

 T: Token value
 O: Observe Option value
 M: Message ID
 RT: Request-Tag
 ET: ETag
 QB1: Q-Block1 Option values NUM/More/Size
 QB2: Q-Block2 Option values NUM/More/Size
 Size: Actual block size encoded in SZX
 \: Trimming long lines
 [[]]: Comments
 -->X: Message loss (request)
 X<--: Message loss (response)
 ...: Passage of time
 Payload N: Corresponds to the CoAP message that conveys
 a block number (N-1) of a given block-wise exchange.

 Figure 2: Notations Used in the Figures

10.1. Q-Block1 Option

10.1.1. A Simple Example

 Figure 3 depicts an example of a NON PUT request conveying Q-Block1
 Option. All the blocks are received by the server.

 CoAP CoAP
 Client Server
 | |
 +--------->| NON PUT /path M:0x81 T:0xc0 RT=9 QB1:0/1/1024
 +--------->| NON PUT /path M:0x82 T:0xc1 RT=9 QB1:1/1/1024
 +--------->| NON PUT /path M:0x83 T:0xc2 RT=9 QB1:2/1/1024
 +--------->| NON PUT /path M:0x84 T:0xc3 RT=9 QB1:3/0/1024
 |<---------+ NON 2.04 M:0xf1 T:0xc3
 | ... |

 Figure 3: Example of NON Request with Q-Block1 Option (Without Loss)

10.1.2. Handling MAX_PAYLOADS Limits

 Figure 4 depicts an example of a NON PUT request conveying Q-Block1
 Option. The number of payloads exceeds MAX_PAYLOADS. All the blocks
 are received by the server.

Boucadair & Shallow Expires November 22, 2021 [Page 26]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON PUT /path M:0x01 T:0xf1 RT=10 QB1:0/1/1024
 +--------->| NON PUT /path M:0x02 T:0xf2 RT=10 QB1:1/1/1024
 +--------->| [[Payloads 3 - 9 not detailed]]
 +--------->| NON PUT /path M:0x0a T:0xfa RT=10 QB1:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET receipt acknowledged by server]]
 |<---------+ NON 2.31 M:0x81 T:0xfa
 +--------->| NON PUT /path M:0x0b T:0xfb RT=10 QB1:10/0/1024
 |<---------+ NON 2.04 M:0x82 T:0xfb
 | ... |

 Figure 4: Example of MAX_PAYLOADS NON Request with Q-Block1 Option
 (Without Loss)

10.1.3. Handling MAX_PAYLOADS with Recovery

 Consider now a scenario where a new body of data is to be sent by the
 client, but some blocks are dropped in transmission as illustrated in
 Figure 5.

 CoAP CoAP
 Client Server
 | |
 +--------->| NON PUT /path M:0x11 T:0xe1 RT=11 QB1:0/1/1024
 +--->X | NON PUT /path M:0x12 T:0xe2 RT=11 QB1:1/1/1024
 +--------->| [[Payloads 3 - 8 not detailed]]
 +--------->| NON PUT /path M:0x19 T:0xe9 RT=11 QB1:8/1/1024
 +--->X | NON PUT /path M:0x1a T:0xea RT=11 QB1:9/1/1024
 [[Some of MAX_PAYLOADS_SET have been received]]
 | ... |
 [[NON_TIMEOUT (client) delay expires]]
 | [[Client starts sending next MAX_PAYLOAD_SET]]
 +--->X | NON PUT /path M:0x1b T:0xeb RT=11 QB1:10/1/1024
 +--------->| NON PUT /path M:0x1c T:0xec RT=11 QB1:11/1/1024
 | |

 Figure 5: Example of MAX_PAYLOADS NON Request with Q-Block1 Option
 (With Loss)

 On seeing a payload from the next MAX_PAYLOAD_SET, the server
 realizes that some blocks are missing from the previous
 MAX_PAYLOADS_SET and asks for the missing blocks in one go
 (Figure 6). It does so by indicating which blocks from the previous
 MAX_PAYLOADS_SET have not been received in the data portion of the
 response (Section 5). The token used in the response should be the

Boucadair & Shallow Expires November 22, 2021 [Page 27]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 token that was used in the last received payload. The client can
 then derive the Request-Tag by matching the token with the sent
 request.

 CoAP CoAP
 Client Server
 | |
 |<---------+ NON 4.08 M:0x91 T:0xec [Missing 1,9]
 | [[Client responds with missing payloads]]
 +--------->| NON PUT /path M:0x1d T:0xed RT=11 QB1:1/1/1024
 +--------->| NON PUT /path M:0x1e T:0xee RT=11 QB1:9/1/1024
 | [[Client continues sending next MAX_PAYLOAD_SET]]
 +--------->| NON PUT /path M:0x1f T:0xef RT=11 QB1:12/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[The server realizes a block is still missing and asks
 | for the missing one]]
 |<---------+ NON 4.08 M:0x92 T:0xef [Missing 10]
 +--------->| NON PUT /path M:0x20 T:0xf0 RT=11 QB1:10/1/1024
 |<---------+ NON 2.04 M:0x93 T:0xf0
 | ... |

 Figure 6: Example of NON Request with Q-Block1 Option (Blocks
 Recovery)

10.1.4. Handling Recovery with Failure

 Figure 7 depicts an example of a NON PUT request conveying Q-Block1
 Option where recovery takes place, but eventually fails.

Boucadair & Shallow Expires November 22, 2021 [Page 28]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON PUT /path M:0x91 T:0xd0 RT=12 QB1:0/1/1024
 +--->X | NON PUT /path M:0x92 T:0xd1 RT=12 QB1:1/1/1024
 +--------->| NON PUT /path M:0x93 T:0xd2 RT=12 QB1:2/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[The server realizes a block is missing and asks
 | for the missing one. Retry #1]]
 |<---------+ NON 4.08 M:0x01 T:0xd2 [Missing 1]
 | ... |
 [[2 * NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[The server realizes a block is still missing and asks
 | for the missing one. Retry #2]]
 |<---------+ NON 4.08 M:0x02 T:0xd2 [Missing 1]
 | ... |
 [[4 * NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[The server realizes a block is still missing and asks
 | for the missing one. Retry #3]]
 |<---------+ NON 4.08 M:0x03 T:0xd2 [Missing 1]
 | ... |
 [[8 * NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[The server realizes a block is still missing and asks
 | for the missing one. Retry #4]]
 |<---------+ NON 4.08 M:0x04 T:0xd2 [Missing 1]
 | ... |
 [[16 * NON_RECEIVE_TIMEOUT (server) delay expires]]
 | [[NON_MAX_RETRANSMIT exceeded. Server stops requesting
 | for missing blocks and releases partial body]]
 | ... |

 Figure 7: Example of NON Request with Q-Block1 Option (With Eventual
 Failure)

10.2. Q-Block2 Option

 These examples include the Observe Option to demonstrate how that
 option is used. Note that the Observe Option is not required for
 Q-Block2; the observe detail can thus be ignored.

10.2.1. A Simple Example

 Figure 8 illustrates the example of Q-Block2 Option. The client
 sends a NON GET carrying Observe and Q-Block2 Options. The Q-Block2
 Option indicates a block size hint (1024 bytes). This request is
 replied to by the server using four (4) blocks that are transmitted
 to the client without any loss. Each of these blocks carries a

Boucadair & Shallow Expires November 22, 2021 [Page 29]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Q-Block2 Option. The same process is repeated when an Observe is
 triggered, but no loss is experienced by any of the notification
 blocks.

 CoAP CoAP
 Client Server
 | |
 +--------->| NON GET /path M:0x01 T:0xc0 O:0 QB2:0/1/1024
 |<---------+ NON 2.05 M:0xf1 T:0xc0 O:1220 ET=19 QB2:0/1/1024
 |<---------+ NON 2.05 M:0xf2 T:0xc0 O:1220 ET=19 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xf3 T:0xc0 O:1220 ET=19 QB2:2/1/1024
 |<---------+ NON 2.05 M:0xf4 T:0xc0 O:1220 ET=19 QB2:3/0/1024
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0xf5 T:0xc0 O:1221 ET=20 QB2:0/1/1024
 |<---------+ NON 2.05 M:0xf6 T:0xc0 O:1221 ET=20 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xf7 T:0xc0 O:1221 ET=20 QB2:2/1/1024
 |<---------+ NON 2.05 M:0xf8 T:0xc0 O:1221 ET=20 QB2:3/0/1024
 | ... |

 Figure 8: Example of NON Notifications with Q-Block2 Option (Without
 Loss)

10.2.2. Handling MAX_PAYLOADS Limits

 Figure 9 illustrates the same as Figure 8 but this time has eleven
 (11) payloads which exceeds MAX_PAYLOADS. There is no loss
 experienced.

Boucadair & Shallow Expires November 22, 2021 [Page 30]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON GET /path M:0x01 T:0xf0 O:0 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x81 T:0xf0 O:1234 ET=21 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x82 T:0xf0 O:1234 ET=21 QB2:1/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 |<---------+ NON 2.05 M:0x8a T:0xf0 O:1234 ET=21 QB2:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by client using
 | 'Continue' Q-Block2]]
 +--------->| NON GET /path M:0x02 T:0xf1 QB2:10/1/1024
 |<---------+ NON 2.05 M:0x8b T:0xf0 O:1234 ET=21 QB2:10/0/1024
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0x91 T:0xf0 O:1235 ET=22 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x92 T:0xf0 O:1235 ET=22 QB2:1/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 |<---------+ NON 2.05 M:0x9a T:0xf0 O:1235 ET=22 QB2:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by client using
 | 'Continue' Q-Block2]]
 +--------->| NON GET /path M:0x03 T:0xf2 QB2:10/1/1024
 |<---------+ NON 2.05 M:0x9b T:0xf0 O:1235 ET=22 QB2:10/0/1024
 [[Body has been received]]
 | ... |

 Figure 9: Example of NON Notifications with Q-Block2 Option (Without
 Loss)

10.2.3. Handling MAX_PAYLOADS with Recovery

 Figure 10 shows the example of an Observe that is triggered but for
 which some notification blocks are lost. The client detects the
 missing blocks and requests their retransmission. It does so by
 indicating the blocks that are missing as one or more Q-Block2
 Options.

Boucadair & Shallow Expires November 22, 2021 [Page 31]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0xa1 T:0xf0 O:1236 ET=23 QB2:0/1/1024
 | X<---+ NON 2.05 M:0xa2 T:0xf0 O:1236 ET=23 QB2:1/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 | X<---+ NON 2.05 M:0xaa T:0xf0 O:1236 ET=23 QB2:9/1/1024
 [[Some of MAX_PAYLOADS_SET have been received]]
 | ... |
 [[NON_TIMEOUT (server) delay expires]]
 | [[Server sends next MAX_PAYLOAD_SET]]
 |<---------+ NON 2.05 M:0xab T:0xf0 O:1236 ET=23 QB2:10/0/1024
 | [[On seeing a payload from the next MAX_PAYLOAD_SET,
 | Client realizes blocks are missing and asks for the
 | missing ones in one go]]
 +--------->| NON GET /path M:0x04 T:0xf3 QB2:1/0/1024\
 | | QB2:9/0/1024
 | X<---+ NON 2.05 M:0xac T:0xf3 ET=23 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xad T:0xf3 ET=23 QB2:9/1/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (client) delay expires]]
 | [[Client realizes block is still missing and asks for
 | missing block]]
 +--------->| NON GET /path M:0x05 T:0xf4 QB2:1/0/1024
 |<---------+ NON 2.05 M:0xae T:0xf4 ET=23 QB2:1/1/1024
 [[Body has been received]]
 | ... |

 Figure 10: Example of NON Notifications with Q-Block2 Option (Blocks
 Recovery)

10.2.4. Handling Recovery using M-bit Set

 Figure 11 shows the example of an Observe that is triggered but only
 the first two notification blocks reach the client. In order to
 retrieve the missing blocks, the client sends a request with a single
 Q-Block2 Option with the M bit set.

Boucadair & Shallow Expires November 22, 2021 [Page 32]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0xb1 T:0xf0 O:1237 ET=24 QB2:0/1/1024
 |<---------+ NON 2.05 M:0xb2 T:0xf0 O:1237 ET=24 QB2:1/1/1024
 | X<---+ NON 2.05 M:0xb3 T:0xf0 O:1237 ET=24 QB2:2/1/1024
 | X<---+ [[Payloads 4 - 9 not detailed]]
 | X<---+ NON 2.05 M:0xb9 T:0xf0 O:1237 ET=24 QB2:9/1/1024
 [[Some of MAX_PAYLOADS_SET have been received]]
 | ... |
 [[NON_TIMEOUT (server) delay expires]]
 | [[Server sends next MAX_PAYLOAD_SET]]
 | X<---+ NON 2.05 M:0xba T:0xf0 O:1237 ET=24 QB2:10/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (client) delay expires]]
 | [[Client realizes blocks are missing and asks for the
 | missing ones in one go by setting the M bit]]
 +--------->| NON GET /path M:0x06 T:0xf5 QB2:2/1/1024
 |<---------+ NON 2.05 M:0xbb T:0xf5 ET=24 QB2:2/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 |<---------+ NON 2.05 M:0xc2 T:0xf5 ET=24 QB2:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by client using 'Continue'
 | Q-Block2]]
 +--------->| NON GET /path M:0x87 T:0xf6 QB2:10/1/1024
 |<---------+ NON 2.05 M:0xc3 T:0xf0 O:1237 ET=24 QB2:10/0/1024
 [[Body has been received]]
 | ... |

 Figure 11: Example of NON Notifications with Q-Block2 Option (Blocks
 Recovery with M bit Set)

10.3. Q-Block1 and Q-Block2 Options

10.3.1. A Simple Example

 Figure 12 illustrates the example of a FETCH using both Q-Block1 and
 Q-Block2 Options along with an Observe Option. No loss is
 experienced.

Boucadair & Shallow Expires November 22, 2021 [Page 33]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON FETCH /path M:0x10 T:0x90 O:0 RT=30 QB1:0/1/1024
 +--------->| NON FETCH /path M:0x11 T:0x91 O:0 RT=30 QB1:1/1/1024
 +--------->| NON FETCH /path M:0x12 T:0x93 O:0 RT=30 QB1:2/0/1024
 |<---------+ NON 2.05 M:0x60 T:0x93 O:1320 ET=90 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x61 T:0x93 O:1320 ET=90 QB2:1/1/1024
 |<---------+ NON 2.05 M:0x62 T:0x93 O:1320 ET=90 QB2:2/1/1024
 |<---------+ NON 2.05 M:0x63 T:0x93 O:1320 ET=90 QB2:3/0/1024
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0x64 T:0x93 O:1321 ET=91 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x65 T:0x93 O:1321 ET=91 QB2:1/1/1024
 |<---------+ NON 2.05 M:0x66 T:0x93 O:1321 ET=91 QB2:2/1/1024
 |<---------+ NON 2.05 M:0x67 T:0x93 O:1321 ET=91 QB2:3/0/1024
 | ... |

 Figure 12: Example of NON FETCH with Q-Block1 and Q-Block2 Options
 (Without Loss)

10.3.2. Handling MAX_PAYLOADS Limits

 Figure 13 illustrates the same as Figure 12 but this time has eleven
 (11) payloads in both directions which exceeds MAX_PAYLOADS. There
 is no loss experienced.

Boucadair & Shallow Expires November 22, 2021 [Page 34]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON FETCH /path M:0x30 T:0xa0 O:0 RT=10 QB1:0/1/1024
 +--------->| NON FETCH /path M:0x31 T:0xa1 O:0 RT=10 QB1:1/1/1024
 +--------->| [[Payloads 3 - 9 not detailed]]
 +--------->| NON FETCH /path M:0x39 T:0xa9 O:0 RT=10 QB1:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by server]]
 |<---------+ NON 2.31 M:0x80 T:0xa9
 +--------->| NON FETCH /path M:0x3a T:0xaa O:0 RT=10 QB1:10/0/1024
 |<---------+ NON 2.05 M:0x81 T:0xaa O:1334 ET=21 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x82 T:0xaa O:1334 ET=21 QB2:1/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 |<---------+ NON 2.05 M:0x8a T:0xaa O:1334 ET=21 QB2:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by client using
 | 'Continue' Q-Block2]]
 +--------->| NON FETCH /path M:0x3b T:0xab QB2:10/1/1024
 |<---------+ NON 2.05 M:0x8b T:0xaa O:1334 ET=21 QB2:10/0/1024
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0x8c T:0xaa O:1335 ET=22 QB2:0/1/1024
 |<---------+ NON 2.05 M:0x8d T:0xaa O:1335 ET=22 QB2:1/1/1024
 |<---------+ [[Payloads 3 - 9 not detailed]]
 |<---------+ NON 2.05 M:0x95 T:0xaa O:1335 ET=22 QB2:9/1/1024
 [[MAX_PAYLOADS_SET has been received]]
 | [[MAX_PAYLOADS_SET acknowledged by client using
 | 'Continue' Q-Block2]]
 +--------->| NON FETCH /path M:0x3c T:0xac QB2:10/1/1024
 |<---------+ NON 2.05 M:0x96 T:0xaa O:1335 ET=22 QB2:10/0/1024
 [[Body has been received]]
 | ... |

 Figure 13: Example of NON FETCH with Q-Block1 and Q-Block2 Options
 (Without Loss)

 Note that as 'Continue' was used, the server continues to use the
 same token (0xaa) since the 'Continue' is not being used as a request
 for a new set of packets, but rather is being used to instruct the
 server to continue its transmission (Section 7.2).

10.3.3. Handling Recovery

 Consider now a scenario where some blocks are lost in transmission as
 illustrated in Figure 14.

Boucadair & Shallow Expires November 22, 2021 [Page 35]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON FETCH /path M:0x50 T:0xc0 O:0 RT=31 QB1:0/1/1024
 +--->X | NON FETCH /path M:0x51 T:0xc1 O:0 RT=31 QB1:1/1/1024
 +--->X | NON FETCH /path M:0x52 T:0xc2 O:0 RT=31 QB1:2/1/1024
 +--------->| NON FETCH /path M:0x53 T:0xc3 O:0 RT=31 QB1:3/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (server) delay expires]]

 Figure 14: Example of NON FETCH with Q-Block1 and Q-Block2 Options
 (With Loss)

 The server realizes that some blocks are missing and asks for the
 missing blocks in one go (Figure 15). It does so by indicating which
 blocks have not been received in the data portion of the response.
 The token used in the response is the token that was used in the last
 received payload. The client can then derive the Request-Tag by
 matching the token with the sent request.

 CoAP CoAP
 Client Server
 | |
 |<---------+ NON 4.08 M:0xa0 T:0xc3 [Missing 1,2]
 | [[Client responds with missing payloads]]
 +--------->| NON FETCH /path M:0x54 T:0xc4 O:0 RT=31 QB1:1/1/1024
 +--------->| NON FETCH /path M:0x55 T:0xc5 O:0 RT=31 QB1:2/1/1024
 | [[Server received FETCH body,
 | starts transmitting response body]]
 |<---------+ NON 2.05 M:0xa1 T:0xc3 O:1236 ET=23 QB2:0/1/1024
 | X<---+ NON 2.05 M:0xa2 T:0xc3 O:1236 ET=23 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xa3 T:0xc3 O:1236 ET=23 QB2:2/1/1024
 | X<---+ NON 2.05 M:0xa4 T:0xc3 O:1236 ET=23 QB2:3/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (client) delay expires]]
 | |

 Figure 15: Example of NON Request with Q-Block1 Option (Server
 Recovery)

 The client realizes that not all the payloads of the response have
 been returned. The client then asks for the missing blocks in one go
 (Figure 16). Note that, following Section 2.7 of [RFC7959], the
 FETCH request does not include the Q-Block1 or any payload.

https://datatracker.ietf.org/doc/html/rfc7959#section-2.7

Boucadair & Shallow Expires November 22, 2021 [Page 36]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| NON FETCH /path M:0x56 T:0xc6 RT=31 QB2:1/0/1024\
 | | QB2:3/0/1024
 | [[Server receives FETCH request for missing payloads,
 | starts transmitting missing blocks]]
 | X<---+ NON 2.05 M:0xa5 T:0xc6 ET=23 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xa6 T:0xc6 ET=23 QB2:3/0/1024
 | ... |
 [[NON_RECEIVE_TIMEOUT (client) delay expires]]
 | [[Client realizes block is still missing and asks for
 | missing block]]
 +--------->| NON FETCH /path M:0x57 T:0xc7 RT=31 QB2:1/0/1024
 | [[Server receives FETCH request for missing payload,
 | starts transmitting missing block]]
 |<---------+ NON 2.05 M:0xa7 T:0xc7 ET=23 QB2:1/1/1024
 [[Body has been received]]
 | ... |
 | [[Observe triggered]]
 |<---------+ NON 2.05 M:0xa8 T:0xc3 O:1337 ET=24 QB2:0/1/1024
 | X<---+ NON 2.05 M:0xa9 T:0xc3 O:1337 ET=24 QB2:1/1/1024
 |<---------+ NON 2.05 M:0xaa T:0xc3 O:1337 ET=24 QB2:2/0/1024
 [[NON_RECEIVE_TIMEOUT (client) delay expires]]
 | [[Client realizes block is still missing and asks for
 | missing block]]
 +--------->| NON FETCH /path M:0x58 T:0xc8 RT=31 QB2:1/0/1024
 | [[Server receives FETCH request for missing payload,
 | starts transmitting missing block]]
 |<---------+ NON 2.05 M:0xa7 T:0xc8 ET=24 QB2:1/1/1024
 [[Body has been received]]
 | ... |

 Figure 16: Example of NON Request with Q-Block1 Option (Client
 Recovery)

11. Security Considerations

 Security considerations discussed in Section 7 of [RFC7959] should be
 taken into account.

 Security considerations discussed in Sections 11.3 and 11.4 of
 [RFC7252] should be taken into account.

 OSCORE provides end-to-end protection of all information that is not
 required for proxy operations and requires that a security context is
 set up (Section 3.1 of [RFC8613]). It can be trusted that the source
 endpoint is legitimate even if NoSec security mode is used. However,

https://datatracker.ietf.org/doc/html/rfc7959#section-7
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613#section-3.1

Boucadair & Shallow Expires November 22, 2021 [Page 37]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 an intermediary node can modify the unprotected outer Q-Block1 and/or
 Q-Block2 Options to cause a Q-Block transfer to fail or keep
 requesting all the blocks by setting the M bit and, thus, causing
 attack amplification. As discussed in Section 12.1 of [RFC8613],
 applications need to consider that certain message fields and
 messages types are not protected end-to-end and may be spoofed or
 manipulated. Therefore, it is NOT RECOMMENDED to use the NoSec
 security mode if either the Q-Block1 or Q-Block2 Options is used.

 If OSCORE is not used, it is also NOT RECOMMENDED to use the NoSec
 security mode if either the Q-Block1 or Q-Block2 Options is used.

 If NoSec is being used, Section D.5 of [RFC8613] discusses the
 security analysis and considerations for unprotected message fields
 even if OSCORE is not being used.

 Security considerations related to the use of Request-Tag are
 discussed in Section 5 of [I-D.ietf-core-echo-request-tag].

12. IANA Considerations

 RFC Editor Note: Please replace [RFCXXXX] with the RFC number to be
 assigned to this document.

12.1. CoAP Option Numbers Registry

 IANA is requested to add the following entries to the "CoAP Option
 Numbers" sub-registry [Options] defined in [RFC7252] within the
 "Constrained RESTful Environments (CoRE) Parameters" registry:

 +--------+------------------+-----------+
 | Number | Name | Reference |
 +========+==================+===========+
 | TBA1 | Q-Block1 | [RFCXXXX] |
 | TBA2 | Q-Block2 | [RFCXXXX] |
 +--------+------------------+-----------+

 Table 4: CoAP Q-Block1 and Q-Block2 Option Numbers

 This document suggests 19 (TBA1) and 31 (TBA2) as values to be
 assigned for the new option numbers.

12.2. Media Type Registration

 This document requests IANA to register the "application/missing-
 blocks+cbor-seq" media type in the "Media Types" registry
 [IANA-MediaTypes]. This registration follows the procedures
 specified in [RFC6838]:

https://datatracker.ietf.org/doc/html/rfc8613#section-12.1
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6838

Boucadair & Shallow Expires November 22, 2021 [Page 38]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Type name: application

 Subtype name: missing-blocks+cbor-seq

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Must be encoded as a CBOR
 sequence [RFC8742], as defined in Section 4 of [RFCXXXX].

 Security considerations: See Section 10 of [RFCXXXX].

 Interoperability considerations: N/A

 Published specification: [RFCXXXX]

 Applications that use this media type: Data serialization and
 deserialization. In particular, the type is used by applications
 relying upon block-wise transfers, allowing a server to specify
 non-received blocks and request for their retransmission, as
 defined in Section 4 of [RFCXXXX].

 Fragment identifier considerations: N/A

 Additional information: N/A

 Person & email address to contact for further information: IETF,
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: See Authors' Addresses section.

 Change controller: IESG

 Provisional registration? No

12.3. CoAP Content-Formats Registry

 This document requests IANA to register the following CoAP Content-
 Format for the "application/missing-blocks+cbor-seq" media type in
 the "CoAP Content-Formats" registry [Format], defined in [RFC7252],
 within the "Constrained RESTful Environments (CoRE) Parameters"
 registry:

https://datatracker.ietf.org/doc/html/rfc8742
https://datatracker.ietf.org/doc/html/rfc7252

Boucadair & Shallow Expires November 22, 2021 [Page 39]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 o Media Type: application/missing-blocks+cbor-seq
 o Encoding: -
 o Id: TBA3
 o Reference: [RFCXXXX]

 This document suggests 272 (TBA3) as a value to be assigned for the
 new content format number.

13. References

13.1. Normative References

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J. P., and G. Selander, "CoAP:
 Echo, Request-Tag, and Token Processing", draft-ietf-core-

echo-request-tag-12 (work in progress), February 2021.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/info/rfc8075>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc8075
https://www.rfc-editor.org/info/rfc8075

Boucadair & Shallow Expires November 22, 2021 [Page 40]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/info/rfc8132>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8742] Bormann, C., "Concise Binary Object Representation (CBOR)
 Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020,
 <https://www.rfc-editor.org/info/rfc8742>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

13.2. Informative References

 [Format] "CoAP Content-Formats", <https://www.iana.org/assignments/
core-parameters/core-parameters.xhtml#content-formats>.

 [I-D.bosh-dots-quick-blocks]
 Boucadair, M. and J. Shallow, "Distributed Denial-of-
 Service Open Threat Signaling (DOTS) Signal Channel
 Configuration Attributes for Faster Block Transmission",

draft-bosh-dots-quick-blocks-01 (work in progress),
 January 2021.

https://datatracker.ietf.org/doc/html/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613
https://datatracker.ietf.org/doc/html/rfc8742
https://www.rfc-editor.org/info/rfc8742
https://datatracker.ietf.org/doc/html/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
https://datatracker.ietf.org/doc/html/draft-bosh-dots-quick-blocks-01

Boucadair & Shallow Expires November 22, 2021 [Page 41]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 [I-D.ietf-dots-telemetry]
 Boucadair, M., Reddy, T., Doron, E., Chen, M., and J.
 Shallow, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Telemetry", draft-ietf-dots-telemetry-15
 (work in progress), December 2020.

 [IANA-MediaTypes]
 IANA, "Media Types",
 <https://www.iana.org/assignments/media-types>.

 [Options] "CoAP Option Numbers", <https://www.iana.org/assignments/
core-parameters/core-parameters.xhtml#option-numbers>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC7967] Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
 Bose, "Constrained Application Protocol (CoAP) Option for
 No Server Response", RFC 7967, DOI 10.17487/RFC7967,
 August 2016, <https://www.rfc-editor.org/info/rfc7967>.

 [RFC8782] Reddy.K, T., Ed., Boucadair, M., Ed., Patil, P.,
 Mortensen, A., and N. Teague, "Distributed Denial-of-
 Service Open Threat Signaling (DOTS) Signal Channel
 Specification", RFC 8782, DOI 10.17487/RFC8782, May 2020,
 <https://www.rfc-editor.org/info/rfc8782>.

 [RFC8974] Hartke, K. and M. Richardson, "Extended Tokens and
 Stateless Clients in the Constrained Application Protocol
 (CoAP)", RFC 8974, DOI 10.17487/RFC8974, January 2021,
 <https://www.rfc-editor.org/info/rfc8974>.

Appendix A. Examples with Confirmable Messages

 The following examples assume NSTART has been increased to 3.

 The notations provided in Figure 2 are used in the following
 subsections.

A.1. Q-Block1 Option

 Let's now consider the use of Q-Block1 Option with a CON request as
 shown in Figure 17. All the blocks are acknowledged (ACK).

https://datatracker.ietf.org/doc/html/draft-ietf-dots-telemetry-15
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#option-numbers
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#option-numbers
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc7967
https://www.rfc-editor.org/info/rfc7967
https://datatracker.ietf.org/doc/html/rfc8782
https://www.rfc-editor.org/info/rfc8782
https://datatracker.ietf.org/doc/html/rfc8974
https://www.rfc-editor.org/info/rfc8974

Boucadair & Shallow Expires November 22, 2021 [Page 42]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 CoAP CoAP
 Client Server
 | |
 +--------->| CON PUT /path M:0x01 T:0xf0 RT=10 QB1:0/1/1024
 +--------->| CON PUT /path M:0x02 T:0xf1 RT=10 QB1:1/1/1024
 +--------->| CON PUT /path M:0x03 T:0xf2 RT=10 QB1:2/1/1024
 [[NSTART(3) limit reached]]
 |<---------+ ACK 0.00 M:0x01
 +--------->| CON PUT /path M:0x04 T:0xf3 RT=10 QB1:3/0/1024
 |<---------+ ACK 0.00 M:0x02
 |<---------+ ACK 0.00 M:0x03
 |<---------+ ACK 2.04 M:0x04
 | |

 Figure 17: Example of CON Request with Q-Block1 Option (Without Loss)

 Now, suppose that a new body of data is to be sent but with some
 blocks dropped in transmission as illustrated in Figure 18. The
 client will retry sending blocks for which no ACK was received.

 CoAP CoAP
 Client Server
 | |
 +--------->| CON PUT /path M:0x05 T:0xf4 RT=11 QB1:0/1/1024
 +--->X | CON PUT /path M:0x06 T:0xf5 RT=11 QB1:1/1/1024
 +--->X | CON PUT /path M:0x07 T:0xf6 RT=11 QB1:2/1/1024
 [[NSTART(3) limit reached]]
 |<---------+ ACK 0.00 M:0x05
 +--------->| CON PUT /path M:0x08 T:0xf7 RT=11 QB1:3/1/1024
 |<---------+ ACK 0.00 M:0x08
 | ... |
 [[ACK_TIMEOUT (client) for M:0x06 delay expires]]
 | [[Client retransmits packet]]
 +--------->| CON PUT /path M:0x06 T:0xf5 RT=11 QB1:1/1/1024
 [[ACK_TIMEOUT (client) for M:0x07 delay expires]]
 | [[Client retransmits packet]]
 +--->X | CON PUT /path M:0x07 T:0xf6 RT=11 QB1:2/1/1024
 |<---------+ ACK 0.00 M:0x06
 | ... |
 [[ACK_TIMEOUT exponential backoff (client) delay expires]]
 | [[Client retransmits packet]]
 +--->X | CON PUT /path M:0x07 T:0xf6 RT=11 QB1:2/1/1024
 | ... |
 [[Either body transmission failure (acknowledge retry timeout)
 or successfully transmitted.]]

 Figure 18: Example of CON Request with Q-Block1 Option (Blocks
 Recovery)

Boucadair & Shallow Expires November 22, 2021 [Page 43]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 It is up to the implementation as to whether the application process
 stops trying to send this particular body of data on reaching
 MAX_RETRANSMIT for any payload, or separately tries to initiate the
 new transmission of the payloads that have not been acknowledged
 under these adverse traffic conditions.

 If there is likely to be the possibility of transient network losses,
 then the use of NON should be considered.

A.2. Q-Block2 Option

 An example of the use of Q-Block2 Option with Confirmable messages is
 shown in Figure 19.

Boucadair & Shallow Expires November 22, 2021 [Page 44]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Client Server
 | |
 +--------->| CON GET /path M:0x01 T:0xf0 O:0 QB2:0/1/1024
 |<---------+ ACK 2.05 M:0x01 T:0xf0 O:1234 ET=21 QB2:0/1/1024
 |<---------+ CON 2.05 M:0xe1 T:0xf0 O:1234 ET=21 QB2:1/1/1024
 |<---------+ CON 2.05 M:0xe2 T:0xf0 O:1234 ET=21 QB2:2/1/1024
 |<---------+ CON 2.05 M:0xe3 T:0xf0 O:1234 ET=21 QB2:3/0/1024
 |--------->+ ACK 0.00 M:0xe1
 |--------->+ ACK 0.00 M:0xe2
 |--------->+ ACK 0.00 M:0xe3
 | ... |
 | [[Observe triggered]]
 |<---------+ CON 2.05 M:0xe4 T:0xf0 O:1235 ET=22 QB2:0/1/1024
 |<---------+ CON 2.05 M:0xe5 T:0xf0 O:1235 ET=22 QB2:1/1/1024
 |<---------+ CON 2.05 M:0xe6 T:0xf0 O:1235 ET=22 QB2:2/1/1024
 [[NSTART(3) limit reached]]
 |--------->+ ACK 0.00 M:0xe4
 |<---------+ CON 2.05 M:0xe7 T:0xf0 O:1235 ET=22 QB2:3/0/1024
 |--------->+ ACK 0.00 M:0xe5
 |--------->+ ACK 0.00 M:0xe6
 |--------->+ ACK 0.00 M:0xe7
 | ... |
 | [[Observe triggered]]
 |<---------+ CON 2.05 M:0xe8 T:0xf0 O:1236 ET=23 QB2:0/1/1024
 | X<---+ CON 2.05 M:0xe9 T:0xf0 O:1236 ET=23 QB2:1/1/1024
 | X<---+ CON 2.05 M:0xea T:0xf0 O:1236 ET=23 QB2:2/1/1024
 [[NSTART(3) limit reached]]
 |--------->+ ACK 0.00 M:0xe8
 |<---------+ CON 2.05 M:0xeb T:0xf0 O:1236 ET=23 QB2:3/0/1024
 |--------->+ ACK 0.00 M:0xeb
 | ... |
 [[ACK_TIMEOUT (server) for M:0xe9 delay expires]]
 | [[Server retransmits packet]]
 |<---------+ CON 2.05 M:0xe9 T:0xf0 O:1236 ET=23 QB2:1/1/1024
 [[ACK_TIMEOUT (server) for M:0xea delay expires]]
 | [[Server retransmits packet]]
 | X<---+ CON 2.05 M:0xea T:0xf0 O:1236 ET=23 QB2:2/1/1024
 |--------->+ ACK 0.00 M:0xe9
 | ... |
 [[ACK_TIMEOUT exponential backoff (server) delay expires]]
 | [[Server retransmits packet]]
 | X<---+ CON 2.05 M:0xea T:0xf0 O:1236 ET=23 QB2:2/1/1024
 | ... |
 [[Either body transmission failure (acknowledge retry timeout)
 or successfully transmitted.]]

 Figure 19: Example of CON Notifications with Q-Block2 Option

Boucadair & Shallow Expires November 22, 2021 [Page 45]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 It is up to the implementation as to whether the application process
 stops trying to send this particular body of data on reaching
 MAX_RETRANSMIT for any payload, or separately tries to initiate the
 new transmission of the payloads that have not been acknowledged
 under these adverse traffic conditions.

 If there is likely to be the possibility of transient network losses,
 then the use of NON should be considered.

Appendix B. Examples with Reliable Transports

 The notations provided in Figure 2 are used in the following
 subsections.

B.1. Q-Block1 Option

 Let's now consider the use of Q-Block1 Option with a reliable
 transport as shown in Figure 20. There is no acknowledgment of
 packets at the CoAP layer, just the final result.

 CoAP CoAP
 Client Server
 | |
 +--------->| PUT /path T:0xf0 RT=10 QB1:0/1/1024
 +--------->| PUT /path T:0xf1 RT=10 QB1:1/1/1024
 +--------->| PUT /path T:0xf2 RT=10 QB1:2/1/1024
 +--------->| PUT /path T:0xf3 RT=10 QB1:3/0/1024
 |<---------+ 2.04
 | |

 Figure 20: Example of Reliable Request with Q-Block1 Option

 If there is likely to be the possibility of transient network losses,
 then the use of unreliable transport with NON should be considered.

B.2. Q-Block2 Option

 An example of the use of Q-Block2 Option with a reliable transport is
 shown in Figure 21.

Boucadair & Shallow Expires November 22, 2021 [Page 46]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Client Server
 | |
 +--------->| GET /path T:0xf0 O:0 QB2:0/1/1024
 |<---------+ 2.05 T:0xf0 O:1234 ET=21 QB2:0/1/1024
 |<---------+ 2.05 T:0xf0 O:1234 ET=21 QB2:1/1/1024
 |<---------+ 2.05 T:0xf0 O:1234 ET=21 QB2:2/1/1024
 |<---------+ 2.05 T:0xf0 O:1234 ET=21 QB2:3/0/1024
 | ... |
 | [[Observe triggered]]
 |<---------+ 2.05 T:0xf0 O:1235 ET=22 QB2:0/1/1024
 |<---------+ 2.05 T:0xf0 O:1235 ET=22 QB2:1/1/1024
 |<---------+ 2.05 T:0xf0 O:1235 ET=22 QB2:2/1/1024
 |<---------+ 2.05 T:0xf0 O:1235 ET=22 QB2:3/0/1024
 | ... |

 Figure 21: Example of Notifications with Q-Block2 Option

 If there is likely to be the possibility of network transient losses,
 then the use of unreliable transport with NON should be considered.

Acknowledgements

 Thanks to Achim Kraus, Jim Schaad, and Michael Richardson for their
 comments.

 Special thanks to Christian Amsuess, Carsten Bormann, and Marco
 Tiloca for their suggestions and several reviews, which improved this
 specification significantly. Thanks to Francesca Palombini for the
 AD review.

 Thanks to Pete Resnick for the Gen-ART review, Colin Perkins for the
 Tsvart review, and Emmanuel Baccelli for the Iotdir review. Thanks
 to Martin Duke, Eric Vyncke, Benjamin Kaduk, Roman Danyliw, John
 Scudder, and Lars Eggert for the IESG review.

 Some text from [RFC7959] is reused for readers convenience.

Authors' Addresses

 Mohamed Boucadair
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

https://datatracker.ietf.org/doc/html/rfc7959

Boucadair & Shallow Expires November 22, 2021 [Page 47]

Internet-Draft Quick Block-Wise Transfer Options May 2021

 Jon Shallow
 United Kingdom

 Email: supjps-ietf@jpshallow.com

Boucadair & Shallow Expires November 22, 2021 [Page 48]

