
CoRE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: June 22, 2017 Ericsson AB
 L. Seitz
 SICS Swedish ICT
 December 19, 2016

Object Security of CoAP (OSCOAP)
draft-ietf-core-object-security-01

Abstract

 This memo defines Object Security of CoAP (OSCOAP), a method for
 application layer protection of message exchanges with the
 Constrained Application Protocol (CoAP), using the CBOR Object
 Signing and Encryption (COSE) format. OSCOAP provides end-to-end
 encryption, integrity and replay protection to CoAP payload, options,
 and header fields, as well as a secure binding between CoAP request
 and response messages. The use of OSCOAP is signaled with the CoAP
 option Object-Security, also defined in this memo.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 22, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Selander, et al. Expires June 22, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. The Object-Security Option 5
3. The Security Context . 6
3.1. Security Context Definition 6
3.2. Derivation of Security Context Parameters 8
3.2.1. Derivation of Sender Key/IV, Recipient Key/IV 10
3.2.2. Context Identifier 11
3.2.3. Sender ID and Recipient ID 11
3.2.4. Sequence Numbers and Replay Window 11

4. Protected CoAP Message Fields 11
4.1. CoAP Payload . 12
4.2. CoAP Header . 12
4.3. CoAP Options . 13
4.3.1. Class E Options 15
4.3.2. Class A Options 17

5. The COSE Object . 17
5.1. Plaintext . 19
5.2. Additional Authenticated Data 19

6. Protecting CoAP Messages 21
6.1. Replay and Freshness Protection 21
6.2. Protecting the Request 22
6.3. Verifying the Request 23
6.4. Protecting the Response 24
6.5. Verifying the Response 25

7. Security Considerations 26
8. Privacy Considerations 28
9. IANA Considerations . 28
9.1. CoAP Option Numbers Registry 28
9.2. COSE Header Parameters Registry 29
9.3. Media Type Registrations 29
9.4. CoAP Content Format Registration 30

10. Acknowledgments . 31
11. References . 31
11.1. Normative References 31
11.2. Informative References 32

Appendix A. Overhead . 33
A.1. Length of the Object-Security Option 33
A.2. Size of the COSE Object 33

Selander, et al. Expires June 22, 2017 [Page 2]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

A.3. Message Expansion . 34
A.4. Example . 35

Appendix B. Examples . 36
B.1. Secure Access to Sensor 36
B.2. Secure Subscribe to Sensor 38

Appendix C. Object Security of Content (OSCON) 39
C.1. Overhead OSCON . 40
C.2. MAC Only . 41
C.3. Signature Only . 42
C.4. Authenticated Encryption with Additional Data (AEAD) . . 43
C.5. Symmetric Encryption with Asymmetric Signature (SEAS) . . 43

 Authors' Addresses . 44

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a web
 application protocol, designed for constrained nodes and networks
 [RFC7228]. CoAP specifies the use of proxies for scalability and
 efficiency. At the same time CoAP references DTLS [RFC6347] for
 security. Proxy operations on CoAP messages require DTLS to be
 terminated at the proxy. The proxy therefore not only has access to
 the data required for performing the intended proxy functionality,
 but is also able to eavesdrop on, or manipulate any part of the CoAP
 payload and metadata, in transit between client and server. The
 proxy can also inject, delete, or reorder packages without being
 protected or detected by DTLS.

 This memo defines Object Security of CoAP (OSCOAP), a data object
 based security protocol, protecting CoAP message exchanges end-to-
 end, across intermediary nodes. An analysis of end-to-end security
 for CoAP messages through intermediary nodes is performed in
 [I-D.hartke-core-e2e-security-reqs], this specification addresses the
 forwarding case.

 The solution provides an in-layer security protocol for CoAP which
 does not depend on underlying layers and is therefore favorable for
 providing security for "CoAP over foo", e.g. CoAP messages passing
 over both unreliable and reliable transport
 [I-D.ietf-core-coap-tcp-tls], CoAP over IEEE 802.15.4 IE
 [I-D.bormann-6lo-coap-802-15-ie].

 OSCOAP builds on CBOR Object Signing and Encryption (COSE)
 [I-D.ietf-cose-msg], providing end-to-end encryption, integrity, and
 replay protection. The use of OSCOAP is signaled with the CoAP
 option Object-Security, also defined in this memo. The solution
 transforms an unprotected CoAP message into a protected CoAP message
 in the following way: the unprotected CoAP message is protected by
 including payload (if present), certain options, and header fields in

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc6347

Selander, et al. Expires June 22, 2017 [Page 3]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 a COSE object. The message fields that have been encrypted are
 removed from the message whereas the Object-Security option and the
 COSE object are added. We call the result the "protected" CoAP
 message. Thus OSCOAP is a security protocol based on the exchange of
 protected CoAP messages (see Figure 1).

 Client Server
 | request: |
 | GET example.com |
 | [Header, Token, Options:{..., |
 | Object-Security:COSE object}] |
 +-->|
 | response: |
 | 2.05 (Content) |
 | [Header, Token, Options:{..., |
 | Object-Security:-}, Payload:COSE object] |
 |<--+
 | |

 Figure 1: Sketch of OSCOAP

 OSCOAP provides protection of CoAP payload, certain options, and
 header fields, as well as a secure binding between CoAP request and
 response messages. OSCOAP provides replay protection, but like DTLS,
 OSCOAP only provides relative freshness in the sense that the
 sequence numbers allows a recipient to determine the relative order
 of messages. For applications having stronger demands on freshness
 (e.g. control of actuators), OSCOAP needs to be augmented with
 mechanisms providing absolute freshness
 [I-D.mattsson-core-coap-actuators].

 OSCOAP may be used in extremely constrained settings, where DTLS
 cannot be supported. Alternatively, OSCOAP can be combined with
 DTLS, thereby enabling end-to-end security of CoAP payload, in
 combination with hop-by-hop protection of the entire CoAP message,
 during transport between end-point and intermediary node. Examples
 of the use of OSCOAP are given in Appendix B.

 The message protection provided by OSCOAP can alternatively be
 applied only to the payload of individual messages. We call this
 object security of content (OSCON) and it is defined in Appendix C.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These

https://datatracker.ietf.org/doc/html/rfc2119

Selander, et al. Expires June 22, 2017 [Page 4]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 words may also appear in this document in lowercase, absent their
 normative meanings.

 Readers are expected to be familiar with the terms and concepts
 described in [RFC7252] and [RFC7641]. Readers are also expected to
 be familiar with [RFC7049] and understand
 [I-D.greevenbosch-appsawg-cbor-cddl]. Terminology for constrained
 environments, such as "constrained device", "constrained-node
 network", is defined in [RFC7228].

2. The Object-Security Option

 The Object-Security option indicates that OSCOAP is used to protect
 the CoAP message exchange. The protection is achieved by means of a
 COSE object included in the protected CoAP message, as detailed in

Section 5.

 The Object-Security option is critical, safe to forward, part of the
 cache key, and not repeatable. Figure 2 illustrates the structure of
 the Object-Security option.

 A CoAP proxy SHOULD NOT cache a response to a request with an Object-
 Security option, since the response is only applicable to the
 original client's request. The Object-Security option is included in
 the cache key for backward compatibility with proxies not recognizing
 the Object-Security option. The effect of this is that messages with
 the Object-Security option will never generate cache hits. To
 further prevent caching, a Max-Age option with value zero SHOULD be
 added to the protected CoAP responses.

 +-----+---+---+---+---+-----------------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+-----------------+--------+--------|
 | TBD | x | | | | Object-Security | opaque | 0- |
 +-----+---+---+---+---+-----------------+--------+--------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 2: The Object-Security Option

 The length of the Object-Security option depends on whether the
 unprotected message allows payload, on the set of options that are
 included in the unprotected message, the length of the integrity tag,
 and the length of the information identifying the security context.

 o If the unprotected message allows payload, then the COSE object is
 the payload of the protected message (see Section 6.2 and

Section 6.4), and the Object-Security option has length zero. An
 endpoint receiving a CoAP message with payload, that also contains

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228

Selander, et al. Expires June 22, 2017 [Page 5]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 a non-empty Object-Security option SHALL treat it as malformed and
 reject it.

 o If the unprotected message does not allow payload, then the COSE
 object is the value of the Object-Security option and the length
 of the Object-Security option is equal to the size of the COSE
 object. An endpoint receiving a CoAP message without payload,
 that also contains an empty Object-Security option SHALL treat it
 as malformed and reject it.

 Note that according to [RFC7252], new Methods and Response Codes
 should specify if the payload is optional, required or not allowed
 (Section 12.1.2) in the message, and in case this is not defined the
 sender must not include a payload (Section 5.5). Thus, in this case,
 the COSE object MUST be the value of the Object-Security option.

 More details about the message overhead caused by the Object-Security
 option are given in Appendix A.

3. The Security Context

 OSCOAP uses COSE with an Authenticated Encryption with Additional
 Data (AEAD) algorithm. The specification requires that client and
 server establish a security context to apply to the COSE objects
 protecting the CoAP messages. In this section we define the security
 context, and also specify how to derive the initial security contexts
 in client and server based on common shared secret and a key
 derivation function (KDF).

3.1. Security Context Definition

 The security context is the set of information elements necessary to
 carry out the cryptographic operations in OSCOAP. Each security
 context is identified by a Context Identifier. A Context Identifier
 that is no longer in use can be reassigned to a new security context.

 For each endpoint, the security context is composed by a "Common
 Context", a "Sender Context" and a "Recipient Context". The
 endpoints protect messages to send using the Sender Context and
 verify messages received using the Recipient Context, both contexts
 being derived from the Common Context and other data. Each endpoint
 has a unique ID used to derive its Sender Context, this identifier is
 called "Sender ID". The Recipient Context is derived with the other
 endpoint's ID, which is called "Recipient ID". The Recipient ID is
 thus the ID of the endpoint from which a CoAP message is received.
 In communication between two endpoints, the Sender Context of one
 endpoint matches the Recipient Context of the other endpoint, and
 vice versa. Thus the two security contexts identified by the same

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires June 22, 2017 [Page 6]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Context Identifiers in the two endpoints are not the same, but they
 are partly mirrored. Retrieval and use of the security context are
 shown in Figure 3."

 .-Cid = Cid1-. .-Cid = Cid1-.
 | Common, | | Common, |
 | Sender, | | Recipient,|
 | Recipient | | Sender |
 '------------' '------------'
 Client Server
 | |
 Retrieve context for | request: |
 target resource | [Token = Token1, |
 Protect request with | Cid = Cid1, ...] |
 Sender Context +---------------------->| Retrieve context with
 | | Cid = Cid1
 | | Verify request with
 | | Recipient Context
 | response: | Protect response with
 | [Token = Token1, ...] | Sender Context
 Retrieve context with |<----------------------+
 Token = Token1 | |
 Verify request with | |
 Recipient Context | |

 Figure 3: Retrieval and use of the Security Context

 The Common Context contains the following parameters:

 o Context Identifier (Cid). Variable length byte string that
 identifies the security context. Its value is immutable once the
 security context is established.

 o Algorithm (Alg). Value that identifies the COSE AEAD algorithm to
 use for encryption. Its value is immutable once the security
 context is established.

 o Base Key (master_secret). Variable length, uniformly random byte
 string containing the key used to derive traffic keys and IVs.
 Its value is immutable once the security context is established.

 The Sender Context contains the following parameters:

 o Sender ID. Variable length byte string identifying the endpoint
 itself. Its value is immutable once the security context is
 established.

Selander, et al. Expires June 22, 2017 [Page 7]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 o Sender Key. Byte string containing the symmetric key to protect
 messages to send. Length is determined by Algorithm. Its value
 is immutable once the security context is established.

 o Sender IV. Byte string containing the fixed context IV
 [I-D.ietf-cose-msg]) to protect messages to send. Length is
 determined by Algorithm. Its value is immutable once the security
 context is established.

 o Sender Sequence Number. Non-negative integer enumerating the COSE
 objects that the endpoint sends using the context. Used as
 partial IV [I-D.ietf-cose-msg] to generate unique nonces for the
 AEAD. Maximum value is determined by Algorithm.

 The Recipient Context contains the following parameters:

 o Recipient ID. Variable length byte string identifying the
 endpoint messages are received from. Its value is immutable once
 the security context is established.

 o Recipient Key. Byte string containing the symmetric key to verify
 messages received. Length is determined by the Algorithm. Its
 value is immutable once the security context is established.

 o Recipient IV. Byte string containing the context IV to verify
 messages received. Length is determined by Algorithm. Its value
 is immutable once the security context is established.

 o Recipient Replay Window. The replay protection window for
 messages received.

 The 3-tuple (Cid, Sender ID, Partial IV) is called Transaction
 Identifier (Tid), and SHALL be unique for each Base Key. The Tid is
 used as a unique challenge in the COSE object of the protected CoAP
 request. The Tid is part of the Additional Authenticated Data (AAD,
 see Section 5) of the protected CoAP response message, which is how
 responses are bound to requests.

3.2. Derivation of Security Context Parameters

 This section describes how to derive the initial parameters in the
 security context, given a small set of input parameters. We also
 give indications on how applications should select the input
 parameters.

 The following input parameters SHALL be pre-established:

 o Context Identifier (Cid)

Selander, et al. Expires June 22, 2017 [Page 8]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 o Base Key (master_secret)

 o AEAD Algorithm (Alg)

 * Default is AES-CCM-64-64-128 (value 12)

 The following input parameters MAY be pre-established:

 o Sender ID

 * Defaults are 0x00 for the endpoint intially being client, and
 0x01 for the endpoint initially being server

 o Recipient ID

 * Defaults are 0x01 for the endpoint intially being client, and
 0x00 for the endpoint initially being server

 o Key Derivation Function (KDF)

 * Default is HKDF SHA-256

 o Replay Window Size

 * Default is 64

 The endpoints MAY interchange the CoAP client and server roles while
 maintaining the same security context. When this happens, the former
 server still protects the message to send using the Sender Context,
 and verifies the message received using its Recipient Context. The
 same is also true for the former client. The endpoints MUST NOT
 change the Sender/Recipient ID. In other words, changing the roles
 does not change the set of keys to be used.

 The input parameters are included unchanged in the security context.
 From the input parameters, the following parameters are derived:

 o Sender Key, Sender IV, Sender Sequence Number

 o Recipient Key, Recipient IV, Recipient Sequence Number

 The EDHOC protocol [I-D.selander-ace-cose-ecdhe] enables the
 establishment of input parameters with the property of forward
 secrecy, and negotiation of KDF and AEAD, it thus provides all
 necessary pre-requisite steps for using OSCOAP as defined here.

Selander, et al. Expires June 22, 2017 [Page 9]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

3.2.1. Derivation of Sender Key/IV, Recipient Key/IV

 Given the input parameters, the client and server can derive all the
 other parameters in the security context. The derivation procedure
 described here MUST NOT be executed more than once using the same
 master_secret and Cid. The same master_secret SHOULD NOT be used with
 more than one Cid.

 The KDF MUST be one of the HKDF [RFC5869] algorithms defined in COSE.
 The KDF HKDF SHA-256 is mandatory to implement. The security context
 parameters Sender Key/IV, Recipient Key/IV SHALL be derived using
 HKDF, and consists of the composition of the HKDF-Extract and HKDF-
 Expand steps ({{RFC5869}):

 output parameter = HKDF(master_secret, salt, info, output_length),

 where:

 o master_secret is defined above

 o salt is a string of zeros of the length of the hash function
 output in octets

 o info is a serialized CBOR array consisting of:

 info = [
 cid : bstr,
 id : bstr,
 alg : int,
 out_type : tstr,
 out_len : uint
]

 - id is the Sender ID or Recipient ID

 - out_type is "Key" or "IV"

 - out_len is the key/IV size of the AEAD algorithm

 o output_length is the size of the AEAD key/IV in bytes encoded as
 an 8-bit unsigned integer

 For example, if the algorithm AES-CCM-64-64-128 (see Section 10.2 in
 [I-D.ietf-cose-msg]) is used, output_length for the keys is 128 bits
 and output_length for the IVs is 56 bits.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires June 22, 2017 [Page 10]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

3.2.2. Context Identifier

 As mentioned, Cid is pre-established. How this is done is
 application specific, but it is RECOMMENDED that the application uses
 64-bits long pseudo-random Cids, in order to have globally unique
 Context Identifiers. Cid SHOULD be unique in the sets of all
 security contexts used by all the endpoints. If it is not the case,
 it is the role of the application to specify how to handle
 collisions.

 If the application has total control of both clients and servers,
 shorter unique Cids MAY be used. Note that Cids of different lengths
 can be used by different clients and that e.g. a Cid with the value
 0x00 is different from the Cid with the value 0x0000.

 In the same phase during which the Cid is established in the
 endpoint, the application informs the endpoint what resources can be
 accessed using the corresponding security contexts. Resources that
 are accessed with OSCOAP are called "protected" resources. The set
 of resources that can be accessed using a certain security context is
 decided by the application (resource, host, etc.). The client SHALL
 save the association resource-Cid, in order to be able to retrieve
 the correct security context to access a protected resource. The
 server SHALL save the association resource-Cid, in order to determine
 whether a particular resource may be accessed using a certain Cid.

3.2.3. Sender ID and Recipient ID

 The Sender ID and Recipient ID SHALL be unique in the set of all
 endpoints using the same security context. Collisions may lead to
 the loss of both confidentiality and integrity. If random IDs are
 used, they MUST be long enough so that the probability of collisions
 is negligible.

3.2.4. Sequence Numbers and Replay Window

 The Sender Sequence Number is initialized to 0. The Recipient Replay
 Window is initiated as described in Section 4.1.2.6 of [RFC6347].

4. Protected CoAP Message Fields

 OSCOAP transforms an unprotected CoAP message into a protected CoAP
 message, and vice versa. This section defines how the unprotected
 CoAP message fields are protected. OSCOAP protects as much of the
 unprotected CoAP message as possible, while still allowing forward
 proxy operations [I-D.hartke-core-e2e-security-reqs].

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6

Selander, et al. Expires June 22, 2017 [Page 11]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 This section also outlines how the message fields are processed and
 transferred, a detailed description is provided in Section 6.
 Message fields of the unprotected CoAP message are either transferred
 in the header/options part of the protected CoAP message, or in the
 plaintext of the COSE object. Depending on which, the location of
 the message field in the protected CoAP message is called "outer" or
 "inner":

 o Inner message field = message field included in the plaintext of
 the COSE object of the protected CoAP message (see Section 5.1)

 o Outer message field = message field included in the header or
 options part of the protected CoAP message

 The inner message fields are encrypted and integrity protected by the
 COSE object. The outer message fields are sent in plain text but may
 be integrity protected by including the message field values in the
 AAD of the COSE object (see Section 5.2).

 Note that, even though the message formats are slightly different,
 OSCOAP complies with CoAP over unreliable transport [RFC7252] as well
 as CoAP over reliable transport [I-D.ietf-core-coap-tcp-tls].

4.1. CoAP Payload

 The CoAP Payload SHALL be encrypted and integrity protected, and thus
 is an inner message field.

 The sending endpoint writes the payload of the unprotected CoAP
 message into the plaintext of the COSE object (see Section 6.2 and

Section 6.4).

 The receiving endpoint verifies and decrypts the COSE object, and
 recreates the payload of the unprotected CoAP message (see

Section 6.3 and Section 6.5).

4.2. CoAP Header

 Many CoAP header fields are required to be read and changed during a
 normal message exchange or when traversing a proxy and thus cannot be
 protected between the endpoints, e.g. CoAP message layer fields such
 as Message ID.

 The CoAP header field Code MUST be sent in plaintext to support
 RESTful processing, but MUST be integrity protected to prevent an
 intermediary from changing, e.g. from GET to DELETE. The CoAP
 version number SHALL be integrity protected to prevent potential
 future version-based attacks. Note that while the version number is

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires June 22, 2017 [Page 12]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 not sent in each CoAP message over reliable transport
 [I-D.ietf-core-coap-tcp-tls], its value is known to client and
 server.

 Other CoAP header fields SHALL neither be integrity protected nor
 encrypted. The CoAP header fields are thus outer message fields.

 The sending endpoint SHALL copy the header fields from the
 unprotected CoAP message to the protected CoAP message. The
 receiving endpoint SHALL copy the header fields from the protected
 CoAP message to the unprotected CoAP message. Both sender and
 receiver inserts the CoAP version number and header field Code in the
 AAD of the COSE object (see section Section 5.2).

4.3. CoAP Options

 As with the message fields described in the previous sections, CoAP
 options may be encrypted and integrity protected, integrity protected
 only, or neither encrypted nor integrity protected.

 Most options are encrypted and integrity protected (see Figure 4),
 and thus inner message fields. But to allow certain proxy
 operations, some options have outer values and require special
 processing. Indeed, certain options may or must have both an inner
 value and a potentially different outer value, where the inner value
 is intended for the destination endpoint and the outer value is
 intended for the proxy.

Selander, et al. Expires June 22, 2017 [Page 13]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 +----+---+---+---+---+----------------+--------+--------+---+---+
 | No.| C | U | N | R | Name | Format | Length | E | A |
 +----+---+---+---+---+----------------+--------+--------+---+---+
 | 1 | x | | | x | If-Match | opaque | 0-8 | x | |
 | 3 | x | x | - | | Uri-Host | string | 1-255 | | x |
 | 4 | | | | x | ETag | opaque | 1-8 | x | |
 | 5 | x | | | | If-None-Match | empty | 0 | x | |
 | 6 | | x | - | | Observe | uint | 0-3 | * | |
 | 7 | x | x | - | | Uri-Port | uint | 0-2 | | x |
 | 8 | | | | x | Location-Path | string | 0-255 | x | |
 | 11 | x | x | - | x | Uri-Path | string | 0-255 | x | |
 | 12 | | | | | Content-Format | uint | 0-2 | x | |
 | 14 | | x | - | | Max-Age | uint | 0-4 | * | |
 | 15 | x | x | - | x | Uri-Query | string | 0-255 | x | |
 | 17 | x | | | | Accept | uint | 0-2 | x | |
 | 20 | | | | x | Location-Query | string | 0-255 | x | |
 | 23 | x | x | - | - | Block2 | uint | 0-3 | * | |
 | 27 | x | x | - | - | Block1 | uint | 0-3 | * | |
 | 28 | | | x | | Size2 | unit | 0-4 | * | |
 | 35 | x | x | - | | Proxy-Uri | string | 1-1034 | | * |
 | 39 | x | x | - | | Proxy-Scheme | string | 1-255 | | x |
 | 60 | | | x | | Size1 | uint | 0-4 | * | |
 +----+---+---+---+---+----------------+--------+--------+---+---+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt and Integrity Protect, A=Integrity Protect, *=Special

 Figure 4: Protection of CoAP Options

 A summary of how options are protected and processed is shown in
 Figure 4. The CoAP options are partitioned into two classes:

 o E - options which are encrypted and integrity protected, and

 o A - options which are only integrity protected.

 Options within each class are protected and processed in a similar
 way, but certain options which require special processing as
 described in the subsections and indicated by a '*' in Figure 4.

 Unless specified otherwise, CoAP options not listed in Figure 4 SHALL
 be encrypted and integrity protected and processed as class E
 options.

 Specifications of new CoAP options SHOULD specify how they are
 processed with OSCOAP. New COAP options SHOULD be of class E and
 SHOULD NOT have outer options unless a forwarding proxy needs to read
 an option value. If a certain option is both inner and outer, the

Selander, et al. Expires June 22, 2017 [Page 14]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 two values SHOULD NOT be the same, unless a proxy is required by
 specification to be able to read the end-to-end value.

4.3.1. Class E Options

 For options in class E (see Figure 4) the option value in the
 unprotected CoAP message, if present, SHALL be encrypted and
 integrity protected between the endpoints, and thus is not visible to
 or possible to change by intermediary nodes. Hence the actions
 resulting from the use of such options is analogous to communicating
 in a protected manner with the endpoint. For example, a client using
 an ETag option will not be served by a proxy.

 The sending endpoint SHALL write the class E option from the
 unprotected CoAP message into the plaintext of the COSE object (see

Section 6.2 and Section 6.4).

 Except for the special options described in the subsections, the
 sending endpoint SHALL NOT use the outer options of class E.
 However, note that an intermediary may, legimitimately or not, add,
 change or remove the value of an outer option.

 Execept for the Block options Section 4.3.1.3, the receiving endpoint
 SHALL discard any outer options of class E from the protected CoAP
 message and SHALL replace it with the value from the COSE object when
 present (see Section 6.3 and Section 6.5).

4.3.1.1. Max-Age

 An inner Max-Age option is used as defined in [RFC7252] taking into
 account that it is not accessible to proxies.

 Since OSCOAP binds CoAP responses to requests, a cached response
 would not be possible to use for any other request. Therefore, there
 SHOULD be an outer Max-Age option with value zero to prevent caching
 of responses (see Section 5.6.1 of [RFC7252]).

 The outer Max-Age option SHALL NOT be encrypted and SHALL NOT be
 integrity protected.

4.3.1.2. Observe

 The Observe option as used here targets the requirements on
 forwarding of [I-D.hartke-core-e2e-security-reqs] (Section 2.2.1.2).

 An inner Observe option is used between endpoints. In order for a
 proxy to support forwarding of notifications, there SHALL be an outer
 Observe option. To simplify the processing in the server, the outer

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1

Selander, et al. Expires June 22, 2017 [Page 15]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 option SHOULD have the same value as the inner Observe option. The
 outer Observe option MAY have different values than the inner, but
 the order of the different values is SHALL be the same as for the
 inner Observe option.

 The outer Observe option SHALL neither be encrypted nor integrity
 protected.

4.3.1.3. The Block Options

 The Block options (Block1, Block2, Size1 and Size2) MAY be either
 only inner options, only outer options or both inner and outer
 options. The inner and outer options are processed independently.

 The inner block options are used for endpoint-to-endpoint secure
 fragmentation of payload into blocks and protection of information
 about the fragmentation (block number, last block, etc.).
 Additionally, a proxy may arbitrarily do fragmentation operations on
 the protected CoAP message, adding outer block options that are not
 intended to be verified by any endpoint or proxy.

 There SHALL be a security policy defining a maximum unfragmented
 message size for inner Block options such that messages exceeding
 this size SHALL be fragmented by the sending endpoint.

 In addition to the processing defined for the inner Block options
 inherent to class E options, the AEAD Tag from each block SHALL be
 included in the calculation of the Tag for the next block (see

Section 5.2), so that each block in the order being sent can be
 verified as it arrives.

 The protected CoAP message may be fragmented by the sending endpoint
 or proxy as defined in [RFC7959], in which case the outer Block
 options are being used. The outer Block options SHALL neither be
 encrypted nor integrity protected.

 An endpoint receiving a message with an outer Block option SHALL
 first process this option according to [RFC7959], until all blocks of
 the protected CoAP message has been received, or the cumulated
 message size of the exceeds the maximum unfragmented message size.
 In the latter case the message SHALL be discarded. In the former
 case, the processing of the protected CoAP message continues as
 defined in this document (see Section 6.3 and Section 6.5).

 If the unprotected CoAP message contains Block options, the receiving
 endpoint processes this according to {{RFC7959}.

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires June 22, 2017 [Page 16]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

4.3.2. Class A Options

 Options in this class are used to support forward proxy operations.
 Class A options SHALL only have outer values and SHALL NOT be
 encrypted. In order for the destination endpoint to verify the Uri,
 class A options SHALL be integrity protected.

 Uri-Host, Uri-Port, Proxy-Scheme and Proxy-Uri are class A options.
 When Uri-Host, Uri-Port, Proxy-Scheme options are present, Proxy-Uri
 is not used [RFC7252]. Proxy-Uri is processed like the other class A
 options after a pre-processing step (see Section 4.3.2.1.

 Except for Proxi-Uri, the sending endpoint SHALL copy the class A
 option from the unprotected CoAP message to the protected CoAP
 message. The class A options are inserted in the AAD of the COSE
 object (see unencrypted-Uri Section 5.2).

4.3.2.1. Proxy-Uri

 Proxy-Uri, when present, is split by OSCOAP into class A options and
 privacy sensitive class E options, which are processed accordingly.
 When Proxy-Uri is used in the unprotected CoAP message, Uri-* are not
 present [RFC7252].

 The sending endpoint SHALL first decompose the Proxy-Uri value of the
 unprotected CoAP message into the unencrypted-Uri (Section 5.2) and
 Uri-Path/Query options according to section 6.4 of [RFC7252].

 Uri-Path and Uri-Query are class E options and SHALL be protected and
 processed as if obtained from the unprotected CoAP message, see

Section 4.3.1.

 The value of the Proxy-Uri option of the protected CoAP message SHALL
 be replaced with unencrypted-Uri and SHALL be protected and processed
 as a class A option, see Section 4.3.2.

5. The COSE Object

 This section defines how to use the COSE format [I-D.ietf-cose-msg]
 to wrap and protect data in the unprotected CoAP message. OSCOAP
 uses the COSE_Encrypt0 structure with an Authenticated Encryption
 with Additional Data (AEAD) algorithm.

 The AEAD algorithm AES-CCM-64-64-128 defined in Section 10.2 of
 [I-D.ietf-cose-msg] is mandatory to implement. For AES-CCM-64-64-128
 the length of Sender Key and Recipient Key SHALL be 128 bits, the
 length of nonce, Sender IV, and Recipient IV SHALL be 7 bytes, and
 the maximum Sequence Number SHALL be 2^56-1. The nonce is

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4

Selander, et al. Expires June 22, 2017 [Page 17]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 constructed as described in Section 3.1 of [I-D.ietf-cose-msg], i.e.
 by padding the Partial IV (Sequence Number) with zeroes and XORing it
 with the context IV (Sender IV or Recipient IV).

 Since OSCOAP only makes use of a single COSE structure, there is no
 need to explicitly specify the structure, and OSCOAP uses the
 untagged version of the COSE_Encrypt0 structure (Section 2. of
 [I-D.ietf-cose-msg]). If the COSE object has a different structure,
 the recipient MUST reject the message, treating it as malformed.

 OSCOAP introduces a new COSE Header Parameter, the Sender Identifier:

 sid: This parameter is used to identify the sender of the message.
 Applications MUST NOT assume that 'sid' values are unique. This
 is not a security critical field. For this reason, it can be
 placed in the unprotected headers bucket.

 +------+-------+------------+----------------+-------------------+
 | name | label | value type | value registry | description |
 +------+-------+------------+----------------+-------------------+
 | sid | TBD | bstr | | Sender Identifier |
 +------+-------+------------+----------------+-------------------+

 Table 1: Additional COSE Header Parameter

 We denote by Plaintext the data that is encrypted and integrity
 protected, and by Additional Authenticated Data (AAD) the data that
 is integrity protected only, in the COSE object.

 The fields of COSE_Encrypt0 structure are defined as follows (see
 example in Appendix C.4).

 o The "Headers" field is formed by:

 * The "protected" field, which SHALL include:

 + The "Partial IV" parameter. The value is set to the Sender
 Sequence Number. The Partial IV is a byte string (type:
 bstr), and SHOULD be of minimum length needed to encode the
 sequence number.

 + The "kid" parameter. The value is set to the Context
 Identifier (see Section 3). This parameter is optional if
 the message is a CoAP response.

 + Optionally, the parameter called "sid", defined below. The
 value is set to the Sender ID (see Section 3). Note that

Selander, et al. Expires June 22, 2017 [Page 18]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 since this parameter is sent in clear, privacy issues SHOULD
 be considered by the application defining the Sender ID.

 * The "unprotected" field, which SHALL be empty.

 o The "ciphertext" field is computed from the Plaintext (see
Section 5.1) and the Additional Authenticated Data (AAD) (see
Section 5.2) and encoded as a byte string (type: bstr), following

 Section 5.2 of [I-D.ietf-cose-msg].

5.1. Plaintext

 The Plaintext is formatted as a CoAP message without Header (see
 Figure 5) consisting of:

 o all CoAP Options present in the unprotected message which are
 encrypted (see Section 4), in the order as given by the Option
 number (each Option with Option Header including delta to previous
 included encrypted option); and

 o the CoAP Payload, if present, and in that case prefixed by the
 one-byte Payload Marker (0xFF).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Options to Encrypt (if any) ... ~
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ... ~
 +-+
 (only if there
 is payload)

 Figure 5: Plaintext

5.2. Additional Authenticated Data

 The Additional Authenticated Data ("Enc_structure") as described is
 Section 5.3 of [I-D.ietf-cose-msg] includes:

 o the "context" parameter, which has value "Encrypted"

 o the "protected" parameter, which includes the "protected" part of
 the "Headers" field;

 o the "external_aad" is a serialized CBOR array Figure 6 where the
 exact content is different in requests (external_aad_req) and
 repsonses (external_aad_resp). It contains:

Selander, et al. Expires June 22, 2017 [Page 19]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 * ver: uint, contains the CoAP version number, as defined in
Section 3 of [RFC7252]

 * code: uint, contains is the CoAP Code of the unprotected CoAP
 message, as defined in Section 3 of [RFC7252].

 * alg: int, contains the Algorithm from the security context used
 for the exchange (see Section 3.1);

 * unencrypted-uri: tstr with tag URI, contains the part of the
 URI which is not encrypted, and is composed of the request
 scheme (Proxy-Scheme if present), Uri-Host and Uri-Port (if
 present) options according to the method described in

Section 6.5 of [RFC7252], if the message is a CoAP request;

 * cid : bstr, contains the cid for the request (which is same as
 the cid for the response).

 * id : bstr, is the identifier for the endpoint sending the
 request and verifying the response; which means that for the
 endpoint sending the response, the id has value Recipient ID,
 while for the endpoint receiving the response, id has the value
 Sender ID.

 * seq : bstr, is the value of the "Partial IV" in the COSE object
 of the request (see Section 5).

 * tag-previous-block: bstr, contains the AEAD Tag of the message
 containing the previous block in the sequence, as enumerated by
 Block1 in the case of a request and Block2 in the case of a
 response, if the message is fragmented using a block option
 [RFC7959].

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires June 22, 2017 [Page 20]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 external_aad = external_aad_req / external_aad_resp

 external_aad_req = [
 ver : uint,
 code : uint,
 alg : int,
 unencrypted-uri : uri,
 ? tag-previous-block : bstr
]

 external_aad_resp = [
 ver : uint,
 code : uint,
 alg : int,
 cid : bstr,
 id : bstr,
 seq : bstr,
 ? tag-previous-block : bstr
]

 Figure 6: External AAD (external_aad)

 The encryption process is described in Section 5.3 of
 [I-D.ietf-cose-msg].

6. Protecting CoAP Messages

6.1. Replay and Freshness Protection

 In order to protect from replay of messages and verify freshness, a
 CoAP endpoint SHALL maintain a Sender Sequence Number and a Recipient
 Replay Window in the security context. An endpoint uses the Sender
 Sequence Number to protect messages to send and the Recipient Replay
 Window to verify received messages, as described in Section 3.

 A receiving endpoint SHALL verify that the Sequence Number (Partial
 IV) received in the COSE object has not been received before in the
 security context identified by the Cid. The size of the Replay Window
 depends on the use case and lower protocol layers. In case of
 reliable and ordered transport, the recipient MAY just store the last
 received sequence number and require that newly received Sequence
 Numbers equals the last received Recipient Sequence Number + 1.

 The receiving endpoint SHALL reject messages with a sequence number
 greater than the maximum value of the Partial IV. This maximum value
 is algorithm specific, for example for AES-CCM-64-64-128 it is
 2^56-1.

Selander, et al. Expires June 22, 2017 [Page 21]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 OSCOAP responses are verified to match a prior request, by including
 the unique transaction identifier (Tid as defined in Section 3) of
 the request in the Additional Authenticated Data of the response
 message. In case of CoAP observe, each notification MUST be verified
 using the Tid of the observe registration, so the Tid of the
 registration needs to be cached by the observer until the observation
 ends.

 If a CoAP server receives a request with the Object-Security option,
 then the server SHALL include the Tid of the request in the AAD of
 the response, as described in Section 6.4.

 If the CoAP client receives a response with the Object-Security
 option, then the client SHALL verify the integrity of the response,
 using the Tid of its own associated request in the AAD, as described
 in Section 6.5.

6.2. Protecting the Request

 Given an unprotected CoAP request, including header, options and
 payload, the client SHALL perform the following steps to create a
 protected CoAP request using a security context associated with the
 target resource (see Section 3.2.2).

 When using Uri-Host or Proxy-Uri in the construction of the request,
 the <host> value MUST be a reg-name ([RFC3986]), and not an IP-
 literal or IPv4address, for canonicalization of the destination
 address.

 1. Compute the COSE object as specified in Section 5

 * the AEAD nonce is created by XORing the Sender IV (context IV)
 with the Sender Sequence Number (partial IV).

 * If the block option is used, the AAD includes the AEAD Tag
 from the previous block sent (from the second block and
 following) Section 5.2. This means that the endpoint MUST
 store the Tag of each last-sent block to compute the
 following.

 * Note that the 'sid' field containing the Sender ID is included
 in the COSE object (Section 5) if the application needs it.

 2. Format the protected CoAP message as an ordinary CoAP message,
 with the following Header, Options, and Payload, based on the
 unprotected CoAP message:

 * The CoAP header is the same as the unprotected CoAP message.

https://datatracker.ietf.org/doc/html/rfc3986

Selander, et al. Expires June 22, 2017 [Page 22]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 * If present, the CoAP option Proxy-Uri is decomposed as
 described in Section 4.3.2.1.

 * The CoAP options which are of class E (Section 4) are removed.
 The Object-Security option is added.

 * If the message type of the unprotected CoAP message does not
 allow Payload, then the value of the Object-Security option is
 the COSE object. If the message type of the unprotected CoAP
 message allows Payload, then the Object-Security option is
 empty and the Payload of the protected CoAP message is the
 COSE object.

 3. Store the association Token - Cid. The Client SHALL be able to
 find the correct security context used to protect the request and
 verify the response with use of the Token of the message
 exchange.

 4. Increment the Sender Sequence Number by one. If the Sender
 Sequence Number exceeds the maximum number for the AEAD
 algorithm, the client MUST NOT process any more requests with the
 given security context. The client SHOULD acquire a new security
 context (and consequently inform the server about it) before this
 happens. The latter is out of scope of this memo.

6.3. Verifying the Request

 A CoAP server receiving an unprotected CoAP request to access a
 protected resource (as defined Section 3.2.2) SHALL reject the
 message with error code 4.01 (Unauthorized).

 A CoAP server receiving a message containing the Object-Security
 option and a outer Block option SHALL first process this option
 according to [RFC7959], until all blocks of the protected CoAP
 message has been received, see Section 4.3.1.3.

 A CoAP server receiving a message containing the Object-Security
 option SHALL perform the following steps, using the security context
 identified by the Context Identifier in the "kid" parameter in the
 received COSE object:

 1. Verify the Sequence Number in the Partial IV parameter, as
 described in Section 6.1. If it cannot be verified that the
 Sequence Number has not been received before, the server MUST
 stop processing the request.

 2. Recreate the Additional Authenticated Data, as described in
Section 5.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires June 22, 2017 [Page 23]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 * If the block option is used, the AAD includes the AEAD Tag
 from the previous block received (from the second block and
 following) Section 5.2. This means that the endpoint MUST
 store the Tag of each last-received block to compute the
 following.

 * Note that the server's <host> value MUST be a reg-name
 ([RFC3986]), and not an IP-literal or IPv4address.

 3. Compose the AEAD nonce by XORing the Recipient IV (context IV)
 with the padded Partial IV parameter, received in the COSE
 Object.

 4. Retrieve the Recipient Key.

 5. Verify and decrypt the message. If the verification fails, the
 server MUST stop processing the request.

 6. If the message verifies, update the Recipient Replay Window, as
 described in Section 6.1.

 7. Restore the unprotected request by adding any decrypted options
 or payload from the plaintext. Any outer E options (Section 4)
 are overwritten. The Object-Security option is removed.

6.4. Protecting the Response

 A server receiving a valid request with a protected CoAP message
 (i.e. containing an Object-Security option) SHALL respond with a
 protected CoAP message.

 Given an unprotected CoAP response, including header, options, and
 payload, the server SHALL perform the following steps to create a
 protected CoAP response, using the security context identified by the
 Context Identifier of the received request:

 1. Compute the COSE object as specified in Section Section 5

 * The AEAD nonce is created by XORing the Sender IV (context IV)
 and the padded Sender Sequence Number.

 * If the block option [RFC7959] is used, the AAD includes the
 AEAD Tag from the previous block sent (from the second block
 and following) Section 5.2. This means that the endpoint MUST
 store the Tag of each last-sent block to compute the
 following. Note that this applies even for random access of
 blocks, i.e. when blocks are not requested in the order of
 their relative number (NUM).

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires June 22, 2017 [Page 24]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 2. Format the protected CoAP message as an ordinary CoAP message,
 with the following Header, Options, and Payload based on the
 unprotected CoAP message:

 * The CoAP header is the same as the unprotected CoAP message.

 * The CoAP options which are of class E are removed, except any
 special option (labelled '*') that is present which has its
 outer value (Section 4). The Object-Security option is added.

 * If the message type of the unprotected CoAP message does not
 allow Payload, then the value of the Object-Security option is
 the COSE object. If the message type of the unprotected CoAP
 message allows Payload, then the Object-Security option is
 empty and the Payload of the protected CoAP message is the
 COSE object.

 3. Increment the Sender Sequence Number by one. If the Sender
 Sequence Number exceeds the maximum number for the AEAD
 algorithm, the server MUST NOT process any more responses with
 the given security context. The server SHOULD acquire a new
 security context (and consequently inform the client about it)
 before this happens. The latter is out of scope of this memo.

 Note the differences between generating a protected request, and a
 protected response, for example whether "kid" is present in the
 header, or whether Destination URI or Tid is present in the AAD, of
 the COSE object.

6.5. Verifying the Response

 A CoAP client receiving a message containing the Object-Security
 option SHALL perform the following steps, using the security context
 identified by the Token of the received response:

 1. If the message contain an outer Block option the client SHALL
 process this option according to [RFC7959], until all blocks of
 the protected CoAP message has been received, see

Section 4.3.1.3.

 2. Verify the Sequence Number in the Partial IV parameter as
 described in Section 6.1. If it cannot be verified that the
 Sequence Number has not been received before, the client MUST
 stop processing the response.

 3. Recreate the Additional Authenticated Data as described in
Section 5.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires June 22, 2017 [Page 25]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 * If the block option is used, the AAD includes the AEAD Tag
 from the previous block received (from the second block and
 following) Section 5.2. This means that the endpoint MUST
 store the Tag of each last-received block to compute the
 following.

 4. Compose the AEAD nonce by XORing the Recipient IV (context IV)
 with the Partial IV parameter, received in the COSE Object.

 5. Retrieve the Recipient Key.

 6. Verify and decrypt the message. If the verification fails, the
 client MUST stop processing the response.

 7. If the message verifies, update the Recipient Replay Window, as
 described in Section 6.1.

 8. Restore the unprotected response by adding any decrypted options
 or payload from the plaintext. Any class E options (Section 4)
 are overwritten. The Object-Security option is removed.

7. Security Considerations

 In scenarios with intermediary nodes such as proxies or brokers,
 transport layer security such as DTLS only protects data hop-by-hop.
 As a consequence the intermediary nodes can read and modify
 information. The trust model where all intermediate nodes are
 considered trustworthy is problematic, not only from a privacy
 perspective, but also from a security perspective, as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases, where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture brittle.

 DTLS protects hop-by-hop the entire CoAP message, including header,
 options, and payload. OSCOAP protects end-to-end the payload, and
 all information in the options and header, that is not required for
 forwarding (see Section 4). DTLS and OSCOAP can be combined, thereby
 enabling end-to-end security of CoAP payload, in combination with
 hop-by-hop protection of the entire CoAP message, during transport
 between end-point and intermediary node.

 The CoAP message layer, however, cannot be protected end-to-end
 through intermediary devices since the parameters Type and Message
 ID, as well as Token and Token Length may be changed by a proxy.
 Moreover, messages that are not possible to verify should for
 security reasons not always be acknowledged but in some cases be

Selander, et al. Expires June 22, 2017 [Page 26]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 silently dropped. This would not comply with CoAP message layer, but
 does not have an impact on the application layer security solution,
 since message layer is excluded from that.

 The use of COSE to protect CoAP messages as specified in this
 document requires an established security context. The method to
 establish the security context described in Section 3.2 is based on a
 common shared secret material and key derivation function in client
 and server. EDHOC [I-D.selander-ace-cose-ecdhe] describes an
 augmented Diffie-Hellman key exchange to produce forward secret
 keying material and agree on crypto algorithms necessary for OSCOAP,
 authenticated with pre-established credentials. These pre-
 established credentials may, in turn, be provisioned using a trusted
 third party such as described in the OAuth-based ACE framework
 [I-D.ietf-ace-oauth-authz]. An OSCOAP profile of ACE is described in
 [I-D.seitz-ace-oscoap-profile].

 The mandatory-to-implement AEAD algorithm AES-CCM-64-64-128 is
 selected for broad applicability in terms of message size (2^64
 blocks) and maximum no. messages (2^56-1). Compatibility with CCM*
 is achieved by using the algorithm AES-CCM-16-64-128
 [I-D.ietf-cose-msg].

 Most AEAD algorithms require a unique nonce for each message, for
 which the sequence numbers in the COSE message field "Partial IV" is
 used. If the recipient accepts any sequence number larger than the
 one previously received, then the problem of sequence number
 synchronization is avoided. With reliable transport it may be
 defined that only messages with sequence number which are equal to
 previous sequence number + 1 are accepted. The alternatives to
 sequence numbers have their issues: very constrained devices may not
 be able to support accurate time, or to generate and store large
 numbers of random nonces. The requirement to change key at counter
 wrap is a complication, but it also forces the user of this
 specification to think about implementing key renewal.

 The encrypted block options enable the sender to split large messages
 into protected blocks such that the receiving node can verify blocks
 before having received the complete message. In order to protect
 from attacks replacing blocks from a different message with the same
 block number between same endpoints and same resource at roughly the
 same time, the AEAD Tag from the message containing one block is
 included in the external_aad of the message containing the next
 block.

 The unencrypted block options allow for arbitrary proxy fragmentation
 operations that cannot be verified by the endpoints, but can by
 policy be restricted in size since the encrypted options allow for

Selander, et al. Expires June 22, 2017 [Page 27]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 secure fragmentation of very large messages. A maximum message size
 (above which the sending endpoint fragments the message and the
 receiving endpoint discards the message, if complying to the policy)
 may be obtained as part of normal resource discovery.

 Applications need to use a padding scheme if the content of a message
 can be determined solely from the length of the payload. As an
 example, the strings "YES" and "NO" even if encrypted can be
 distinguished from each other as there is no padding supplied by the
 current set of encryption algorithms. Some information can be
 determined even from looking at boundary conditions. An example of
 this would be returning an integer between 0 and 100 where lengths of
 1, 2 and 3 will provide information about where in the range things
 are. Three different methods to deal with this are: 1) ensure that
 all messages are the same length. For example using 0 and 1 instead
 of 'yes' and 'no'. 2) Use a character which is not part of the
 responses to pad to a fixed length. For example, pad with a space to
 three characters. 3) Use the PKCS #7 style padding scheme where m
 bytes are appended each having the value of m. For example,
 appending a 0 to "YES" and two 1's to "NO". This style of padding
 means that all values need to be padded.

8. Privacy Considerations

 Privacy threats executed through intermediate nodes are considerably
 reduced by means of OSCOAP. End-to-end integrity protection and
 encryption of CoAP payload and all options that are not used for
 forwarding, provide mitigation against attacks on sensor and actuator
 communication, which may have a direct impact on the personal sphere.

 CoAP headers sent in plaintext allow for example matching of CON and
 ACK (CoAP Message Identifier), matching of request and responses
 (Token) and traffic analysis.

9. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

9.1. CoAP Option Numbers Registry

 The Object-Security option is added to the CoAP Option Numbers
 registry:

Selander, et al. Expires June 22, 2017 [Page 28]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

9.2. COSE Header Parameters Registry

 The "sid" parameter is added to the COSE Header Parameter Registry:

 +------+-------+------------+----------------+-------------------+
 | name | label | value type | value registry | description |
 +------+-------+------------+----------------+-------------------+
 | sid | TBD | bstr | | Sender Identifier |
 +------+-------+------------+----------------+-------------------+

9.3. Media Type Registrations

 The "application/oscon" media type is added to the Media Types
 registry:

Selander, et al. Expires June 22, 2017 [Page 29]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Type name: application

 Subtype name: oscon

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See Appendix C of [[this document]].

 Interoperability considerations: N/A

 Published specification: [[this document]]

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Goeran Selander, goran.selander@ericsson.com

 Change Controller: IESG

 Provisional registration? No

9.4. CoAP Content Format Registration

 The "application/oscon" content format is added to the CoAP Content
 Format registry:

Selander, et al. Expires June 22, 2017 [Page 30]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 +-------------------+----------+----+-------------------+
 | Media type | Encoding | ID | Reference |
 +-------------------+----------+----+-------------------+
 | application/oscon | - | 70 | [[this document]] |
 +-------------------+----------+----+-------------------+

10. Acknowledgments

 The following individuals provided input to this document: Carsten
 Bormann, Joakim Brorsson, Martin Gunnarsson, Klaus Hartke, Jim
 Schaad, Marco Tiloca, and Malisa Vucinic.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

11. References

11.1. Normative References

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",

draft-ietf-cose-msg-24 (work in progress), November 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-24
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959

Selander, et al. Expires June 22, 2017 [Page 31]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

11.2. Informative References

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-

cose-ecdhe-04 (work in progress), October 2016.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-01 (work in progress), July 2016.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [I-D.bormann-6lo-coap-802-15-ie]
 Bormann, C., "Constrained Application Protocol (CoAP) over
 IEEE 802.15.4 Information Element for IETF", draft-

bormann-6lo-coap-802-15-ie-00 (work in progress), April
 2016.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-oauth-

authz-04 (work in progress), October 2016.

 [I-D.seitz-ace-oscoap-profile]
 Seitz, L. and F. Palombini, "OSCOAP profile of ACE",

draft-seitz-ace-oscoap-profile-01 (work in progress),
 October 2016.

https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-04
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-04
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-01
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-01
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-04
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-04
https://datatracker.ietf.org/doc/html/draft-seitz-ace-oscoap-profile-01

Selander, et al. Expires June 22, 2017 [Page 32]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

draft-ietf-core-coap-tcp-tls-05 (work in progress),
 October 2016.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C. and H. Birkholz, "CBOR data definition language
 (CDDL): a notational convention to express CBOR data
 structures", draft-greevenbosch-appsawg-cbor-cddl-09 (work
 in progress), September 2016.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Appendix A. Overhead

 OSCOAP transforms an unprotected CoAP message to a protected CoAP
 message, and the protected CoAP message is larger than the
 unprotected CoAP message. This appendix illustrates the message
 expansion.

A.1. Length of the Object-Security Option

 The protected CoAP message contains the COSE object. The COSE object
 is included in the payload if the message type of the unprotected
 CoAP message allows payload or else in the Object-Security option.
 In the former case the Object-Security option is empty. So the
 length of the Object-Security option is either zero or the size of
 the COSE object, depending on whether the CoAP message allows payload
 or not.

 Length of Object-Security option = { 0, size of COSE Object }

A.2. Size of the COSE Object

 The size of the COSE object is the sum of the sizes of

 o the Header parameters,

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-tcp-tls-05
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-09
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228

Selander, et al. Expires June 22, 2017 [Page 33]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 o the Cipher Text (excluding the Tag),

 o the Tag, and

 o data incurred by the COSE format itself (including CBOR encoding).

 Let's analyze the contributions one at a time:

 o The header parameters of the COSE object are the Context
 Identifier (Cid) and the Sequence Number (Seq) (also part of the
 Transaction Identifier (Tid)) if the message is a request, and Seq
 only if the message is a response (see Section 5).

 * The size of Cid is recommended to be 64 bits, but may be
 shorter, as discussed in Section 3.2.2

 * The size of Seq is variable, and increases with the number of
 messages exchanged.

 * As the AEAD nonce is generated from the padded Sequence Number
 and a previously agreed upon context IV it is not required to
 send the whole nonce in the message.

 o The Cipher Text, excluding the Tag, is the encryption of the
 payload and the encrypted options Section 4, which are present in
 the unprotected CoAP message.

 o The size of the Tag depends on the Algorithm. For example, for
 the algorithm AES-CCM-64-64-128, the Tag is 8 bytes.

 o The overhead from the COSE format itself depends on the sizes of
 the previous fields, and is of the order of 10 bytes.

A.3. Message Expansion

 The message expansion is not the size of the COSE object. The
 ciphertext in the COSE object is encrypted payload and options of the
 unprotected CoAP message - the plaintext of which is removed from the
 protected CoAP message. Since the size of the ciphertext is the same
 as the corresponding plaintext, there is no message expansion due to
 encryption; payload and options are just represented in a different
 way in the protected CoAP message:

 o The encrypted payload is in the payload of the protected CoAP
 message

 o The encrypted options are in the Object-Security option or within
 the payload.

Selander, et al. Expires June 22, 2017 [Page 34]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Therefore the OSCOAP message expansion is due to Cid (if present),
 Seq, Tag, and COSE overhead:

 Message Overhead = Cid + Seq + Tag + COSE Overhead

 Figure 7: OSCOAP message expansion

A.4. Example

 This section gives an example of message expansion in a request with
 OSCOAP.

 In this example we assume an 8-byte Cid.

 o Cid: 0xa1534e3c9cecad84

 In the example the sequence number is 225, requiring 1 byte to
 encode. (The size of Seq could be larger depending on how many
 messages that has been sent as is discussed in Appendix A.2.)

 o Seq: 225

 The example is based on AES-CCM-64-64-128.

 o Tag is 8 bytes

 The COSE object is represented in Figure 8 using CBOR's diagnostic
 notation.

 [
 h'a20448a1534e3c9cecad840641e2', / protected:
 {04:h'a1534e3c9cecad84',
 06:h'e2'} /
 {}, / unprotected: - /
 Ciph + Tag / ciphertext + 8 byte
 authentication tag /
]

 Figure 8: Example of message expansion

 Note that the encrypted CoAP options and payload are omitted since we
 target the message expansion (see Appendix A.3). Therefore the size
 of the COSE Cipher Text equals the size of the Tag, which is 8 bytes.

 The COSE object encodes to a total size of 26 bytes, which is the
 message expansion in this example. The COSE overhead in this example
 is 26 - (8 + 1 + 8) = 9 bytes, according to the formula in Figure 7.

Selander, et al. Expires June 22, 2017 [Page 35]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Note that in this example two bytes in the COSE overhead are used to
 encode the length of Cid and the length of Seq.

 Figure 9 summarizes these results.

 +---------+---------+---------+----------+------------+
 | Cid | Seq | Tag | COSE OH | Message OH |
 +---------+---------+---------+----------+------------+
 | 8 bytes | 1 byte | 8 bytes | 9 bytes | 22 bytes |
 +---------+---------+---------+----------+------------+

 Figure 9: Message overhead for a 8-byte Cid, 1-byte Seq and 8-byte
 Tag.

Appendix B. Examples

 This section gives examples of OSCOAP. The message exchanges are
 made, based on the assumption that there is a security context
 established between client and server. For simplicity, these
 examples only indicate the content of the messages without going into
 detail of the COSE message format.

B.1. Secure Access to Sensor

 Here is an example targeting the scenario in the Section 2.2.1. -
 Forwarding of [I-D.hartke-core-e2e-security-reqs]. The example
 illustrates a client requesting the alarm status from a server. In
 the request, CoAP option Uri-Path is encrypted and integrity
 protected, and the CoAP header fields Code and Version are integrity
 protected (see Section 4). In the response, the CoAP Payload is
 encrypted and integrity protected, and the CoAP header fields Code
 and Version are integrity protected.

Selander, et al. Expires June 22, 2017 [Page 36]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Client Proxy Server
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x8c
 | | | Object-Security: [cid:5fdc, seq:42,
 | | | {Uri-Path:"alarm_status"},
 | | | <Tag>]
 | | | Payload: -
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0x7b
 | | | Object-Security: [cid:5fdc, seq:42,
 | | | {Uri-Path:"alarm_status"},
 | | | <Tag>]
 | | | Payload: -
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x7b
 | | | Max-Age: 0
 | | | Object-Security: -
 | | | Payload: [seq:56, {"OFF"}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x8c
 | | | Max-Age: 0
 | | | Object-Security: -
 | | | Payload: [seq:56, {"OFF"}, <Tag>]
 | | |

 Figure 10: Indication of CoAP GET protected with OSCOAP. The
 brackets [...] indicate a COSE object. The brackets { ... }
 indicate encrypted data.

 Since the unprotected request message (GET) has no payload, the
 Object-Security option carries the COSE object as its value. Since
 the unprotected response message (Content) has payload ("OFF"), the
 COSE object (indicated with [...]) is carried as the CoAP payload.

 The COSE header of the request contains a Context Identifier
 (cid:5fdc), indicating which security context was used to protect the
 message and a Sequence Number (seq:42).

 The option Uri-Path (alarm_status) and payload ("OFF") are formatted
 as indicated in Section 5, and encrypted in the COSE Cipher Text
 (indicated with { ... }).

 The server verifies that the Sequence Number has not been received
 before (see Section 6.1). The client verifies that the Sequence

Selander, et al. Expires June 22, 2017 [Page 37]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Number has not been received before and that the response message is
 generated as a response to the sent request message (see

Section 6.1).

B.2. Secure Subscribe to Sensor

 Here is an example targeting the scenario in the Forwarding with
 observe case of [I-D.hartke-core-e2e-security-reqs]. The example
 illustrates a client requesting subscription to a blood sugar
 measurement resource (GET /glucose), and first receiving the value
 220 mg/dl, and then a second reading with value 180 mg/dl. The CoAP
 options Observe, Uri-Path, Content-Format, and Payload are encrypted
 and integrity protected, and the CoAP header field Code is integrity
 protected (see Section 4).

 Client Proxy Server
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x83
 | | | Observe: 0
 | | | Object-Security: [cid:ca, seq:15b7, {Observe:0,
 | | | Uri-Path:"glucose"}, <Tag>]
 | | | Payload: -
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0xbe
 | | | Observe: 0
 | | | Object-Security: [cid:ca, seq:15b7, {Observe:0,
 | | | Uri-Path:"glucose"}, <Tag>]
 | | | Payload: -
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Max-Age: 0
 | | | Observe: 1
 | | | Object-Security: -
 | | | Payload: [seq:32c2, {Observe:1,
 | | | Content-Format:0, "220"}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Max-Age: 0
 | | | Observe: 1
 | | | Object-Security: -
 | | | Payload: [seq:32c2, {Observe:1,
 | | | Content-Format:0, "220"}, <Tag>]

 | | |

Selander, et al. Expires June 22, 2017 [Page 38]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Max-Age: 0
 | | | Observe: 2
 | | | Object-Security: -
 | | | Payload: [seq:32c6, {Observe:2,
 | | | Content-Format:0, "180"}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Max-Age: 0
 | | | Observe: 2
 | | | Object-Security: -
 | | | Payload: [seq:32c6, {Observe:2,
 | | | Content-Format:0, "180"}, <Tag>]
 | | |

 Figure 11: Indication of CoAP GET protected with OSCOAP. The
 brackets [...] indicates COSE object. The bracket { ... }
 indicates encrypted data.

 Since the unprotected request message (GET) allows no payload, the
 COSE object (indicated with [...]) is carried in the Object-
 Security option value. Since the unprotected response message
 (Content) has payload, the Object-Security option is empty, and the
 COSE object is carried as the payload.

 The COSE header of the request contains a Context Identifier
 (cid:ca), indicating which security context was used to protect the
 message and a Sequence Number (seq:15b7).

 The options Observe, Content-Format and the payload are formatted as
 indicated in Section 5, and encrypted in the COSE ciphertext
 (indicated with { ... }).

 The server verifies that the Sequence Number has not been received
 before (see Section 6.1). The client verifies that the Sequence
 Number has not been received before and that the response message is
 generated as a response to the subscribe request.

Appendix C. Object Security of Content (OSCON)

 OSCOAP protects message exchanges end-to-end between a certain client
 and a certain server, targeting the security requirements for forward
 proxy of [I-D.hartke-core-e2e-security-reqs]. In contrast, many use
 cases require one and the same message to be protected for, and
 verified by, multiple endpoints, see caching proxy section of
 [I-D.hartke-core-e2e-security-reqs]. Those security requirements can

Selander, et al. Expires June 22, 2017 [Page 39]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 be addressed by protecting essentially the payload/content of
 individual messages using the COSE format ([I-D.ietf-cose-msg]),
 rather than the entire request/response message exchange. This is
 referred to as Object Security of Content (OSCON).

 OSCON transforms an unprotected CoAP message into a protected CoAP
 message in the following way: the payload of the unprotected CoAP
 message is wrapped by a COSE object, which replaces the payload of
 the unprotected CoAP message. We call the result the "protected"
 CoAP message.

 The unprotected payload shall be the plaintext/payload of the COSE
 object. The 'protected' field of the COSE object 'Headers' shall
 include the context identifier, both for requests and responses. If
 the unprotected CoAP message includes a Content-Format option, then
 the COSE object shall include a protected 'content type' field, whose
 value is set to the unprotected message Content-Format value. The
 Content-Format option of the protected CoAP message shall be replaced
 with "application/oscon" (Section 9)

 The COSE object shall be protected (encrypted) and verified
 (decrypted) as described in ([I-D.ietf-cose-msg]).

 Most AEAD algorithms require a unique nonce for each message.
 Sequence numbers for partial IV as specified for OSCOAP may be used
 for replay protection as described in Section 6.1. The use of time
 stamps in the COSE header parameter 'operation time'
 [I-D.ietf-cose-msg] for freshness may be used.

 OSCON shall not be used in cases where CoAP header fields (such as
 Code or Version) or CoAP options need to be integrity protected or
 encrypted. OSCON shall not be used in cases which require a secure
 binding between request and response.

 The scenarios in Sections 3.3 - 3.5 of
 [I-D.hartke-core-e2e-security-reqs] assume multiple recipients for a
 particular content. In this case the use of symmetric keys does not
 provide data origin authentication. Therefore the COSE object should
 in general be protected with a digital signature.

C.1. Overhead OSCON

 In general there are four different kinds of modes that need to be
 supported: message authentication code, digital signature,
 authenticated encryption, and symmetric encryption + digital
 signature. The use of digital signature is necessary for
 applications with many legitimate recipients of a given message, and
 where data origin authentication is required.

Selander, et al. Expires June 22, 2017 [Page 40]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 To distinguish between these different cases, the tagged structures
 of COSE are used (see Section 2 of [I-D.ietf-cose-msg]).

 The sizes of COSE messages for selected algorithms are detailed in
 this section.

 The size of the header is shown separately from the size of the MAC/
 signature. A 4-byte Context Identifier and a 1-byte Sequence Number
 are used throughout all examples, with these values:

 o Cid: 0xa1534e3c

 o Seq: 0xa3

 For each scheme, we indicate the fixed length of these two parameters
 ("Cid+Seq" column) and of the Tag ("MAC"/"SIG"/"TAG"). The "Message
 OH" column shows the total expansions of the CoAP message size, while
 the "COSE OH" column is calculated from the previous columns
 following the formula in Figure 7.

 Overhead incurring from CBOR encoding is also included in the COSE
 overhead count.

 To make it easier to read, COSE objects are represented using CBOR's
 diagnostic notation rather than a binary dump.

C.2. MAC Only

 This example is based on HMAC-SHA256, with truncation to 8 bytes
 (HMAC 256/64).

 Since the key is implicitly known by the recipient, the
 COSE_Mac0_Tagged structure is used (Section 6.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 996(# COSE_Mac0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 MAC # truncated 8-byte MAC
]
)

Selander, et al. Expires June 22, 2017 [Page 41]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 This COSE object encodes to a total size of 26 bytes.

 Figure 12 summarizes these results.

 +------------------+-----+-----+---------+------------+
 | Structure | Tid | MAC | COSE OH | Message OH |
 +------------------+-----+-----+---------+------------+
 | COSE_Mac0_Tagged | 5 B | 8 B | 13 B | 26 B |
 +------------------+-----+-----+---------+------------+

 Figure 12: Message overhead for a 5-byte Tid using HMAC 256/64

C.3. Signature Only

 This example is based on ECDSA, with a signature of 64 bytes.

 Since only one signature is used, the COSE_Sign1_Tagged structure is
 used (Section 4.2 of [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 997(# COSE_Sign1_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 SIG # 64-byte signature
]
)

 This COSE object encodes to a total size of 83 bytes.

 Figure 13 summarizes these results.

 +-------------------+-----+------+---------+------------+
 | Structure | Tid | SIG | COSE OH | Message OH |
 +-------------------+-----+------+---------+------------+
 | COSE_Sign1_Tagged | 5 B | 64 B | 14 B | 83 bytes |
 +-------------------+-----+------+---------+------------+

 Figure 13: Message overhead for a 5-byte Tid using 64 byte ECDSA
 signature.

Selander, et al. Expires June 22, 2017 [Page 42]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

C.4. Authenticated Encryption with Additional Data (AEAD)

 This example is based on AES-CCM with the Tag truncated to 8 bytes.

 Since the key is implicitly known by the recipient, the
 COSE_Encrypt0_Tagged structure is used (Section 5.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 993(# COSE_Encrypt0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 TAG # ciphertext + truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 25 bytes.

 Figure 14 summarizes these results.

 +----------------------+-----+-----+---------+------------+
 | Structure | Tid | TAG | COSE OH | Message OH |
 +----------------------+-----+-----+---------+------------+
 | COSE_Encrypt0_Tagged | 5 B | 8 B | 12 B | 25 bytes |
 +----------------------+-----+-----+---------+------------+

 Figure 14: Message overhead for a 5-byte Tid using AES_128_CCM_8.

C.5. Symmetric Encryption with Asymmetric Signature (SEAS)

 This example is based on AES-CCM and ECDSA with 64 bytes signature.
 The same assumption on the security context as in Appendix C.4. COSE
 defines the field 'counter signature w/o headers' that is used here
 to sign a COSE_Encrypt0_Tagged message (see Section 3 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

Selander, et al. Expires June 22, 2017 [Page 43]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 993(# COSE_Encrypt0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {9:SIG}, # unprotected:
 09: 64 bytes signature
 TAG # ciphertext + truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 92 bytes.

 Figure 15 summarizes these results.

 +----------------------+-----+-----+------+---------+------------+
 | Structure | Tid | TAG | SIG | COSE OH | Message OH |
 +----------------------+-----+-----+------+---------+------------+
 | COSE_Encrypt0_Tagged | 5 B | 8 B | 64 B | 15 B | 92 B |
 +----------------------+-----+-----+------+---------+------------+

 Figure 15: Message overhead for a 5-byte Tid using AES-CCM
 countersigned with ECDSA.

Authors' Addresses

 Goeran Selander
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

Selander, et al. Expires June 22, 2017 [Page 44]

Internet-Draft Object Security of CoAP (OSCOAP) December 2016

 Francesca Palombini
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT
 Scheelevagen 17
 Lund 22370
 Sweden

 Email: ludwig@sics.se

Selander, et al. Expires June 22, 2017 [Page 45]

