
CoRE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: November 4, 2017 Ericsson AB
 L. Seitz
 SICS Swedish ICT
 May 03, 2017

Object Security of CoAP (OSCOAP)
draft-ietf-core-object-security-03

Abstract

 This document defines Object Security of CoAP (OSCOAP), a method for
 application layer protection of the Constrained Application Protocol
 (CoAP), using the CBOR Object Signing and Encryption (COSE). OSCOAP
 provides end-to-end encryption, integrity and replay protection to
 CoAP payload, options, and header fields, as well as a secure message
 binding. OSCOAP is designed for constrained nodes and networks and
 can be used across intermediaries and over any layer. The use of
 OSCOAP is signaled with the CoAP option Object-Security, also defined
 in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 4, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Selander, et al. Expires November 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. The Object-Security Option 5
3. The Security Context . 6
3.1. Security Context Definition 6
3.2. Derivation of Security Context Parameters 9
3.3. Requirements on the Security Context Parameters 10

4. Protected CoAP Message Fields 11
4.1. CoAP Payload . 12
4.2. CoAP Header . 12
4.3. CoAP Options . 12

5. The COSE Object . 18
5.1. Plaintext . 19
5.2. Additional Authenticated Data 19

6. Sequence Numbers, Replay, Message Binding, and Freshness . . 20
6.1. AEAD Nonce Uniqueness 20
6.2. Replay Protection . 20
6.3. Sequence Number and Replay Window State 21
6.4. Freshness . 22
6.5. Delay and Mismatch Attacks 23

7. Processing . 23
7.1. Protecting the Request 23
7.2. Verifying the Request 23
7.3. Protecting the Response 25
7.4. Verifying the Response 25

8. OSCOAP Compression . 26
8.1. Encoding of the Object-Security Option 27
8.2. Examples . 28

9. Web Linking . 29
10. Security Considerations 29
11. Privacy Considerations 31
12. IANA Considerations . 32
12.1. CoAP Option Numbers Registry 32
12.2. Media Type Registrations 32
12.3. CoAP Content Format Registration 33

13. Acknowledgments . 34
14. References . 34
14.1. Normative References 34

http://trustee.ietf.org/license-info

Selander, et al. Expires November 4, 2017 [Page 2]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

14.2. Informative References 35
Appendix A. Test Vectors . 36
Appendix B. Examples . 36
B.1. Secure Access to Sensor 36
B.2. Secure Subscribe to Sensor 37

Appendix C. Object Security of Content (OSCON) 39
C.1. Overhead OSCON . 40
C.2. MAC Only . 41
C.3. Signature Only . 41
C.4. Authenticated Encryption with Additional Data (AEAD) . . 42
C.5. Symmetric Encryption with Asymmetric Signature (SEAS) . . 43

 Authors' Addresses . 43

1. Introduction

 The Constrained Application Protocol (CoAP) is a web application
 protocol, designed for constrained nodes and networks [RFC7228].
 CoAP specifies the use of proxies for scalability and efficiency. At
 the same time CoAP [RFC7252] references DTLS [RFC6347] for security.
 Proxy operations on CoAP messages require DTLS to be terminated at
 the proxy. The proxy therefore not only has access to the data
 required for performing the intended proxy functionality, but is also
 able to eavesdrop on, or manipulate any part of the CoAP payload and
 metadata, in transit between client and server. The proxy can also
 inject, delete, or reorder packages since they are no longer
 protected by DTLS.

 This document defines Object Security of CoAP (OSCOAP), a data object
 based security protocol, protecting CoAP message exchanges end-to-
 end, across intermediary nodes. An analysis of end-to-end security
 for CoAP messages through intermediary nodes is performed in
 [I-D.hartke-core-e2e-security-reqs], this specification addresses the
 forwarding case. In addition to the core features defined in
 [RFC7252], OSCOAP supports Observe [RFC7641] and Blockwise [RFC7959].

 OSCOAP is designed for constrained nodes and networks and provides an
 in-layer security protocol for CoAP which does not depend on
 underlying layers. OSCOAP can be used anywhere that CoAP can be
 used, including unreliable transport [RFC7228], reliable transport
 [I-D.ietf-core-coap-tcp-tls], and non-IP transport
 [I-D.bormann-6lo-coap-802-15-ie]. OSCOAP may also be used to protect
 group communication for CoAP [I-D.tiloca-core-multicast-oscoap]. The
 use of OSCOAP does not affect the URI scheme and OSCOAP can therefore
 be used with any URI scheme defined for CoAP. The application
 decides the conditions for which OSCOAP is required.

 OSCOAP builds on CBOR Object Signing and Encryption (COSE)
 [I-D.ietf-cose-msg], providing end-to-end encryption, integrity,

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7228

Selander, et al. Expires November 4, 2017 [Page 3]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 replay protection, and secure message binding. A compressed version
 of COSE is used, see Section 8. The use of OSCOAP is signaled with
 the CoAP option Object-Security, defined in Section 2. OSCOAP
 provides protection of CoAP payload, certain options, and header
 fields. The solution transforms an unprotected CoAP message into a
 protected CoAP message in the following way: the unprotected CoAP
 message is protected by including payload (if present), certain
 options, and header fields in a COSE object. The message fields that
 have been encrypted are removed from the message whereas the Object-
 Security option and the compressed COSE object are added, see
 Figure 1.

 Client Server
 | request: |
 | GET example.com |
 | [Header, Token, Options:{..., |
 | Object-Security:COSE object}] |
 +-->|
 | response: |
 | 2.05 (Content) |
 | [Header, Token, Options:{..., |
 | Object-Security:-}, Payload:COSE object] |
 |<--+
 | |

 Figure 1: Sketch of OSCOAP

 OSCOAP may be used in extremely constrained settings, where CoAP over
 DTLS may be prohibitive e.g. due to large code size. Alternatively,
 OSCOAP can be combined with DTLS, thereby enabling end-to-end
 security of e.g. CoAP payload and options, in combination with hop-
 by-hop protection of the entire CoAP message, during transport
 between end-point and intermediary node. Examples of the use of
 OSCOAP are given in Appendix B.

 The message protection provided by OSCOAP can alternatively be
 applied only to the payload of individual messages. We call this
 object security of content (OSCON), which is defined in Appendix C.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

https://datatracker.ietf.org/doc/html/rfc2119

Selander, et al. Expires November 4, 2017 [Page 4]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Readers are expected to be familiar with the terms and concepts
 described in CoAP [RFC7252], Observe [RFC7641], Blockwise [RFC7959],
 COSE [I-D.ietf-cose-msg], CBOR [RFC7049], CDDL
 [I-D.greevenbosch-appsawg-cbor-cddl], and constrained environments
 [RFC7228].

 The terms Common/Sender/Recipient Context, Master Secret/Salt, Sender
 ID/Key/IV, Recepient ID/Key/IV and Context IV are defined in

Section 3.1.

2. The Object-Security Option

 The Object-Security option (see Figure 2) indicates that OSCOAP is
 used to protect the CoAP message exchange. The Object-Security
 option is critical, safe to forward, part of the cache key, not
 repeatable, and opaque.

 +-----+---+---+---+---+-----------------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+-----------------+--------+--------|
 | TBD | x | | | | Object-Security | opaque | 0- |
 +-----+---+---+---+---+-----------------+--------+--------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 2: The Object-Security Option

 A successful response to a request with the Object-Security option
 SHALL contain the Object-Security option. A CoAP endpoint SHOULD NOT
 cache a response to a request with an Object-Security option, since
 the response is only applicable to the original client's request.
 The Object-Security option is included in the cache key for backward
 compatibility with proxies not recognizing the Object-Security
 option. The effect is that messages with the Object-Security option
 will never generate cache hits. For Max-Age processing, see

Section 4.3.1.1.

 The protection is achieved by means of a COSE object (see Section 5),
 which is compressed and then included in the protected CoAP message.
 The placement of the COSE object depends on whether the method/
 response code allows payload (see [RFC7252]):

 o If the method/response code allows payload, then the compressed
 COSE object Section 8 is the payload of the protected message, and
 the Object-Security option has length zero. An endpoint receiving
 a CoAP message with payload, that also contains a non-empty
 Object-Security option SHALL treat it as malformed and reject it.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires November 4, 2017 [Page 5]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 o If the method/response code does not allow payload, then the
 compressed COSE object Section 8 is the value of the Object-
 Security option and the length of the Object-Security option is
 equal to the size of the compressed COSE object. An endpoint
 receiving a CoAP message without payload, that also contains an
 empty Object-Security option SHALL treat it as malformed and
 reject it.

 The size of the COSE object depends on whether the method/response
 code allows payload, if the message is a request or response, on the
 set of options that are included in the unprotected message, the AEAD
 algorithm, the length of the information identifying the security
 context, and the length of the sequence number.

3. The Security Context

 OSCOAP uses COSE with an Authenticated Encryption with Additional
 Data (AEAD) algorithm between a CoAP client and a CoAP server. An
 implementation supporting this specification MAY only implement the
 client part or MAY only implement the server part.

 This specification requires that client and server establish a
 security context to apply to the COSE objects protecting the CoAP
 messages. In this section we define the security context, and also
 specify how to derive the initial security contexts in client and
 server based on common shared secret and a key derivation function
 (KDF).

3.1. Security Context Definition

 The security context is the set of information elements necessary to
 carry out the cryptographic operations in OSCOAP. For each endpoint,
 the security context is composed of a "Common Context", a "Sender
 Context", and a "Recipient Context".

 The endpoints protect messages to send using the Sender Context and
 verify messages received using the Recipient Context, both contexts
 being derived from the Common Context and other data. Clients need
 to be able to retrieve the correct security context to use.

 An endpoint uses its Sender ID (SID) to derive its Sender Context,
 and the other endpoint uses the same ID, now called Recipient ID
 (RID), to derive its Recipient Context. In communication between two
 endpoints, the Sender Context of one endpoint matches the Recipient
 Context of the other endpoint, and vice versa. Thus the two security
 contexts identified by the same IDs in the two endpoints are not the
 same, but they are partly mirrored. Retrieval and use of the
 security context are shown in Figure 3.

Selander, et al. Expires November 4, 2017 [Page 6]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 .------------. .------------.
 | Common, | | Common, |
 | Sender, | | Recipient,|
 | Recipient | | Sender |
 '------------' '------------'
 Client Server
 | |
 Retrieve context for | request: |
 target resource | [Token = Token1, |
 Protect request with | kid = SID, ...] |
 Sender Context +---------------------->| Retrieve context with
 | | RID = kid
 | | Verify request with
 | | Recipient Context
 | response: | Protect response with
 | [Token = Token1, ...] | Sender Context
 Retrieve context with |<----------------------+
 Token = Token1 | |
 Verify request with | |
 Recipient Context | |

 Figure 3: Retrieval and use of the Security Context

 The Common Context contains the following parameters:

 o Algorithm (Alg). Value that identifies the COSE AEAD algorithm to
 use for encryption. Its value is immutable once the security
 context is established.

 o Master Secret. Variable length, uniformly random byte string
 containing the key used to derive traffic keys and IVs. Its value
 is immutable once the security context is established.

 o Master Salt (OPTIONAL). Variable length byte string containing
 the salt used to derive traffic keys and IVs. Its value is
 immutable once the security context is established.

 The Sender Context contains the following parameters:

 o Sender ID. Variable length byte string identifying the Sender
 Context. Its value is immutable once the security context is
 established.

 o Sender Key. Byte string containing the symmetric key to protect
 messages to send. Derived from Common Context and Sender ID.
 Length is determined by Algorithm. Its value is immutable once
 the security context is established.

Selander, et al. Expires November 4, 2017 [Page 7]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 o Sender IV. Byte string containing the IV to protect messages to
 send. Derived from Common Context and Sender ID. Length is
 determined by Algorithm. Its value is immutable once the security
 context is established.

 o Sequence Number. Non-negative integer used to protect requests
 and observe responses to send. Used as partial IV
 [I-D.ietf-cose-msg] to generate unique nonces for the AEAD.
 Maximum value is determined by Algorithm.

 The Recipient Context contains the following parameters:

 o Recipient ID. Variable length byte string identifying the
 Recipient Context. Its value is immutable once the security
 context is established.

 o Recipient Key. Byte string containing the symmetric key to verify
 messages received. Derived from Common Context and Recipient ID.
 Length is determined by the Algorithm. Its value is immutable
 once the security context is established.

 o Recipient IV. Byte string containing the IV to verify messages
 received. Derived from Common Context and Recipient ID. Length
 is determined by Algorithm. Its value is immutable once the
 security context is established.

 o Replay Window. The replay window to verify requests and observe
 responses received.

 When it is understood which context is referred to (Sender Context or
 Recipient Context), the term "Context IV" is used to denote the IV
 currently used with this context.

 An endpoint may free up memory by not storing the Sender Key, Sender
 IV, Recipient Key, and Recipient IV, deriving them from the Common
 Context when needed. Alternatively, an endpoint may free up memory
 by not storing the Master Secret and Master Salt after the other
 parameters have been derived.

 The endpoints MAY interchange the client and server roles while
 maintaining the same security context. When this happens, the former
 server still protects messages to send using its Sender Context, and
 verifies messages received using its Recipient Context. The same is
 also true for the former client. The endpoints MUST NOT change the
 Sender/Recipient ID. In other words, changing the roles does not
 change the set of keys to be used.

Selander, et al. Expires November 4, 2017 [Page 8]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

3.2. Derivation of Security Context Parameters

 The parameters in the security context are derived from a small set
 of input parameters. The following input parameters SHALL be pre-
 established:

 o Master Secret

 o Sender ID

 o Recipient ID

 The following input parameters MAY be pre-established. In case any
 of these parameters is not pre-established, the default value
 indicated below is used:

 o AEAD Algorithm (Alg)

 * Default is AES-CCM-64-64-128 (COSE abbreviation: 12)

 o Master Salt

 * Default is the empty string

 o Key Derivation Function (KDF)

 * Default is HKDF SHA-256

 o Replay Window Type and Size

 * Default is DTLS-type replay protection with a window size of 32

 How the input parameters are pre-established, is application
 specific. The EDHOC protocol [I-D.selander-ace-cose-ecdhe] enables
 the establishment of input parameters with the property of forward
 secrecy and negotiation of KDF and AEAD, it thus provides all
 necessary pre-requisite steps for using OSCOAP as defined here.

3.2.1. Derivation of Sender Key/IV, Recipient Key/IV

 The KDF MUST be one of the HMAC based HKDF [RFC5869] algorithms
 defined in COSE. HKDF SHA-256 is mandatory to implement. The
 security context parameters Sender Key/IV and Recipient Key/IV SHALL
 be derived from the input parameters using the HKDF, which consists
 of the composition of the HKDF-Extract and HKDF-Expand steps
 ([RFC5869]):

 output parameter = HKDF(salt, IKM, info, L)

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires November 4, 2017 [Page 9]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 where:

 o salt is the Master Salt as defined above

 o IKM is the Master Secret is defined above

 o info is a CBOR array consisting of:

 info = [
 id : bstr,
 alg : int,
 type : tstr,
 L : int
]

 * id is the Sender ID or Recipient ID

 * type is "Key" or "IV"

 o L is the size of the key/IV for the AEAD algorithm used, in
 octets.

 For example, if the algorithm AES-CCM-64-64-128 (see Section 10.2 in
 [I-D.ietf-cose-msg]) is used, the value for L is 16 for keys and 7
 for IVs.

3.2.2. Initial Sequence Numbers and Replay Window

 The Sequence Number is initialized to 0. The supported types of
 replay protection and replay window length is application specific
 and depends on the lower layers. Default is DTLS-type replay
 protection with a window size of 32 initiated as described in

Section 4.1.2.6 of [RFC6347].

3.3. Requirements on the Security Context Parameters

 As collisions may lead to the loss of both confidentiality and
 integrity, Sender ID SHALL be unique in the set of all security
 contexts using the same Master Secret. Normally (e.g. when using
 EDHOC [I-D.selander-ace-cose-ecdhe]) Sender IDs can be very short.
 Note that Sender IDs of different lengths can be used with the same
 Master Secret. E.g. the SID with value 0x00 is different from the
 SID with the value 0x0000. If Sender ID uniqueness cannot be
 guaranteed, random Sender IDs MUST be used. Random Sender IDs MUST
 be long enough so that the probability of collisions is negligible.

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6

Selander, et al. Expires November 4, 2017 [Page 10]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 To enable retrieval of the right Recipient Context, the Recipient ID
 SHOULD be unique in the sets of all Recipient Contexts used by an
 endpoint.

 The same Master Salt MAY be used with several Master Secrets.

4. Protected CoAP Message Fields

 OSCOAP transforms an unprotected CoAP message into a protected CoAP
 message, and vice versa. This section defines how the CoAP message
 fields are protected. Note that OSCOAP protects messages from the
 CoAP Requests/Responses layer only, and not from the Messaging layer
 (Section 2 of [RFC7252]): this means that RST and ACK empty messages
 are not protected, while ACK with piggybacked responses are protected
 using the process defined in this document. All the messages
 mentioned in this document refer to CON, NON and non-empty ACK
 messages.

 OSCOAP protects as much of the unprotected CoAP message as possible,
 while still allowing forward proxy operations
 [I-D.hartke-core-e2e-security-reqs]. Message fields may either be

 o Class E: encrypted and integrity protected,

 o Class I: integrity protected only, or

 o Class U: unprotected.

 This section also outlines how the message fields are transferred, a
 detailed description of the processing is provided in Section 7.
 Message fields of the unprotected CoAP message are either transferred
 in the header/options part of the protected CoAP message, or in the
 plaintext of the COSE object. Depending on which, the location of
 the message field in the protected CoAP message is called "inner" or
 "outer":

 o Inner message field: message field included in the plaintext of
 the COSE object of the protected CoAP message (see Section 5.1).
 The inner message fields are by definition encrypted and integrity
 protected by the COSE object (Class E).

 o Outer message field: message field included in the header or
 options part of the protected CoAP message. The outer message
 fields are not encrypted and thus visible to an intermediary, but
 may be integrity protected by including the message field values
 in the Additional Authenticated Data (AAD) of the COSE object (see

Section 5.2). I.e. outer message fields may be Class I or Class
 U.

https://datatracker.ietf.org/doc/html/rfc7252#section-2

Selander, et al. Expires November 4, 2017 [Page 11]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Note that, even though the message formats are slightly different,
 OSCOAP complies with CoAP over unreliable transport [RFC7252] as well
 as CoAP over reliable transport [I-D.ietf-core-coap-tcp-tls].

4.1. CoAP Payload

 The CoAP Payload SHALL be encrypted and integrity protected (Class
 E), and thus is an inner message field.

 The sending endpoint writes the payload of the unprotected CoAP
 message into the plaintext of the COSE object.

 The receiving endpoint verifies and decrypts the COSE object, and
 recreates the payload of the unprotected CoAP message.

4.2. CoAP Header

 Many CoAP header fields are required to be read and changed during a
 normal message exchange or when traversing a proxy and thus cannot in
 general be protected between the endpoints, e.g. CoAP message layer
 fields such as Message ID.

 The CoAP header field Code MUST be sent in plaintext to support
 RESTful processing, but MUST be integrity protected to prevent an
 intermediary from changing, e.g. from GET to DELETE (Class I). The
 CoAP version number MUST be integrity protected to prevent potential
 future version-based attacks (Class I). Note that while the version
 number is not sent in each CoAP message over reliable transport
 [I-D.ietf-core-coap-tcp-tls], its value is known to client and
 server.

 The other CoAP header fields SHALL neither be integrity protected nor
 encrypted (Class U). All CoAP header fields are thus outer message
 fields.

 The sending endpoint SHALL copy the header fields from the
 unprotected CoAP message to the header of the protected CoAP message.
 The receiving endpoint SHALL copy the header fields from the
 protected CoAP message to the header of the unprotected CoAP message.
 Both sender and receiver include the CoAP version number and header
 field Code in the AAD of the COSE object (see Section 5.2).

4.3. CoAP Options

 Most options are encrypted and integrity protected (Class E), and
 thus inner message fields. But to allow certain proxy operations,
 some options have outer values, i.e. are present as options in the
 protected CoAP message. Certain options may have both an inner value

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires November 4, 2017 [Page 12]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 and a potentially different outer value, where the inner value is
 intended for the destination endpoint and the outer value is intended
 for the proxy.

 A summary of how options are protected and processed is shown in
 Figure 4. Options within each class are protected and processed in a
 similar way, but certain options which require special processing are
 indicated by a * in Figure 4 and described in the subsections below.

 +----+----------------+---+---+---+
 | No.| Name | E | I | U |
 +----+----------------+---+---+---+
 | 1 | If-Match | x | | |
 | 3 | Uri-Host | | | x |
 | 4 | ETag | x | | |
 | 5 | If-None-Match | x | | |
 | 6 | Observe | | * | |
 | 7 | Uri-Port | | | x |
 | 8 | Location-Path | x | | |
 | 11 | Uri-Path | x | | |
 | 12 | Content-Format | x | | |
 | 14 | Max-Age | * | | |
 | 15 | Uri-Query | x | | |
 | 17 | Accept | x | | |
 | 20 | Location-Query | x | | |
 | 23 | Block2 | * | | |
 | 27 | Block1 | * | | |
 | 28 | Size2 | * | | |
 | 35 | Proxy-Uri | | | * |
 | 39 | Proxy-Scheme | | | x |
 | 60 | Size1 | * | | |
 +----+----------------+---+---+---+

 E=Encrypt and Integrity Protect, I=Integrity Protect only,
 U=Unprotected, *=Special

 Figure 4: Protection of CoAP Options

 Unless specified otherwise, CoAP options not listed in Figure 4 SHALL
 be encrypted and integrity protected and processed as class E
 options.

 Specifications of new CoAP options SHOULD define how they are
 processed with OSCOAP. New COAP options SHOULD be of class E and
 SHOULD NOT have outer values unless a forwarding proxy needs to read
 that option value. If a certain option has both inner and outer
 values, the two values SHOULD NOT be the same.

Selander, et al. Expires November 4, 2017 [Page 13]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

4.3.1. Class E Options

 For options in class E (see Figure 4) the option value in the
 unprotected CoAP message, if present, SHALL be encrypted and
 integrity protected between the endpoints. Hence the actions
 resulting from the use of such options is analogous to communicating
 in a protected manner directly with the endpoint. For example, a
 client using an If-Match option will not be served by a proxy.

 The sending endpoint SHALL write the class E option from the
 unprotected CoAP message into the plaintext of the COSE object.

 Except for the special options described in the subsections, the
 sending endpoint SHALL NOT use the outer options of class E.
 However, note that an intermediary may, legitimately or not, add,
 change or remove the value of an outer option.

 Except for the Block options Section 4.3.1.2, the receiving endpoint
 SHALL discard any outer options of class E from the protected CoAP
 message and SHALL write the Class E options present in the plaintext
 of the COSE object into the unprotected CoAP message.

4.3.1.1. Max-Age

 An inner Max-Age option, like other class E options, is used as
 defined in [RFC7252] taking into account that it is not accessible to
 proxies.

 Since OSCOAP binds CoAP responses to requests, a cached response
 would not be possible to use for any other request. To avoid
 unnecessary caching, a server MAY add an outer Max-Age option with
 value zero to protected CoAP responses (see Section 5.6.1 of
 [RFC7252]). The outer Max-Age option is not integrity protected.

4.3.1.2. The Block Options

 Blockwise [RFC7959] is an optional feature. An implementation MAY
 comply with [RFC7252] and the Object-Security option without
 implementing [RFC7959].

 The Block options (Block1, Block2, Size1 and Size2) MAY be either
 only inner options, only outer options or both inner and outer
 options. The inner and outer options are processed independently.

 The inner block options are used for endpoint-to-endpoint secure
 fragmentation of payload into blocks and protection of information
 about the fragmentation (block number, block size, last block). In
 this case, the CoAP client fragments the CoAP message as defined in

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7252#section-5.6.1
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires November 4, 2017 [Page 14]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 [RFC7959] before the message is processed by OSCOAP. The CoAP server
 first processes the OSCOAP message before processing blockwise as
 defined in [RFC7959].

 There SHALL be a security policy defining a maximum unfragmented
 message size for inner Block options such that messages exceeding
 this size SHALL be fragmented by the sending endpoint.

 Additionally, a proxy may arbitrarily do block fragmentation on any
 CoAP message, in particular an OSCOAP message, as defined in
 [RFC7959] and thereby add outer Block options to a block and send on
 the next hop. The outer block options are thus neither encrypted nor
 integrity protected.

 An endpoint receiving a message with an outer Block option SHALL
 first process this option according to [RFC7959], until all blocks of
 the protected CoAP message has been received, or the cumulated
 message size of the exceeds the maximum unfragmented message size.
 In the latter case the message SHALL be discarded. In the former
 case, the processing of the protected CoAP message continues as
 defined in this document.

 If the unprotected CoAP message in turn contains Block options, the
 receiving endpoint processes this according to [RFC7959].

 TODO: Update processing to support multiple concurrently proceeding
 requests

4.3.2. Class I Options

 A Class I option is an outer option and hence visible in the options
 part of the protected CoAP message. Except for special options
 described in the subsections, for options in Class I (see Figure 4)
 the option value SHALL be integrity protected between the endpoints,
 see (Section 5.2). Unless otherwise specified, the sending endpoint
 SHALL encode the Class I options in the protected CoAP message as
 described in Section 4.3.4.

4.3.2.1. Observe

 Observe [RFC7641] is an optional feature. An implementation MAY
 support [RFC7252] and the Object-Security option without supporting
 [RFC7641]. The Observe option as used here targets the requirements
 on forwarding of [I-D.hartke-core-e2e-security-reqs]
 (Section 2.2.1.2).

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641

Selander, et al. Expires November 4, 2017 [Page 15]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 In order for a proxy to support forwarding of Observe messages, there
 must be an Observe option present in options part of the protected
 CoAP message ([RFC7641]), so Observe must have an outer value:

 o The Observe option of the unprotected CoAP request SHALL be
 encoded in the protected CoAP request as described in

Section 4.3.4.

 To secure the order of the notifications, responses with the Observe
 option SHALL be integrity protected in the following way:

 o The Observe option SHALL be included in the external_aad of the
 response (see Section 5.2), with value set to the 3 least
 significant bytes of the Sequence Number of the response.

 The Observe option in the CoAP request SHALL NOT be integrity
 protected, since it may be legitimately removed by a proxy.

 If the Observe option is removed from a CoAP request by a proxy, then
 the server can still verify the request (as a non-Observe request),
 and produce a non-Observe response. If the OSCOAP client receives a
 response to an Observe request without an outer Observe value, then
 it MUST verify the response as a non-Observe response, i.e. not
 include the Sequence Number of the response in the external_aad.

4.3.3. Class U Options

 Options in Class U have outer values and are used to support forward
 proxy operations. Unless otherwise specified, the sending endpoint
 SHALL encode the Class U options in the options part of the protected
 CoAP message as described in Section 4.3.4.

4.3.3.1. Uri-Host, Uri-Port, and Proxy-Scheme

 The sending endpoint SHALL copy Uri-Host, Uri-Port, and Proxy-Scheme
 from the unprotected CoAP message to the options part of the
 protected CoAP message. When Uri-Host, Uri-Port, or Proxy-Scheme
 options are present, Proxy-Uri is not used [RFC7252].

4.3.3.2. Proxy-Uri

 Proxy-Uri, when present, is split by OSCOAP into class U options and
 class E options, which are processed accordingly. When Proxy-Uri is
 used in the unprotected CoAP message, Uri-* are not present
 [RFC7252].

 The sending endpoint SHALL first decompose the Proxy-Uri value of the
 unprotected CoAP message into the Proxy-Scheme, Uri-Host, Uri-Port,

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires November 4, 2017 [Page 16]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Uri-Path and Uri-Query options (if present) according to section 6.4
 of [RFC7252].

 Uri-Path and Uri-Query are class E options and MUST be protected and
 processed as if obtained from the unprotected CoAP message, see

Section 4.3.1.

 The value of the Proxy-Uri option of the protected CoAP message MUST
 be replaced with Proxy-Scheme, Uri-Host and Uri-Port options (if
 present) composed according to section 6.5 of [RFC7252] and MUST be
 processed as a class U option, see Section 4.3.3.

 An example of how Proxy-Uri is processed is given here. Assume that
 the unprotected CoAP message contains:

 o Proxy-Uri = "coap://example.com/resource?q=1"

 During OSCOAP processing, Proxy-Uri is split into:

 o Proxy-Scheme = "coap"

 o Uri-Host = "example.com"

 o Uri-Port = "5863"

 o Uri-Path = "resource"

 o Uri-Query = "q=1"

 Uri-Path and Uri-Query follow the processing defined in
Section 4.3.1, and are thus encrypted and transported in the COSE

 object. The remaining options are composed into the Proxy-Uri
 included in the options part of the protected CoAP message, which has
 value:

 o Proxy-Uri = "coap://example.com"

4.3.4. Outer Options in the Protected CoAP Message

 All options with outer values present in the protected CoAP message,
 including the Object-Security option, SHALL be encoded as described
 in Section 3.1 of [RFC7252], where the delta is the difference to the
 previously included outer option value.

https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7252#section-3.1

Selander, et al. Expires November 4, 2017 [Page 17]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

5. The COSE Object

 This section defines how to use COSE [I-D.ietf-cose-msg] to wrap and
 protect data in the unprotected CoAP message. OSCOAP uses the
 untagged COSE_Encrypt0 structure with an Authenticated Encryption
 with Additional Data (AEAD) algorithm. The key lengths, IV lengths,
 and maximum sequence number are algorithm dependent.

 The AEAD algorithm AES-CCM-64-64-128 defined in Section 10.2 of
 [I-D.ietf-cose-msg] is mandatory to implement. For AES-CCM-64-64-128
 the length of Sender Key and Recipient Key is 128 bits, the length of
 nonce, Sender IV, and Recipient IV is 7 bytes. The maximum Sequence
 Number is specified in Section 10.

 The nonce is constructed as described in Section 3.1 of
 [I-D.ietf-cose-msg], i.e. by padding the partial IV (Sequence Number
 in network byte order) with zeroes and XORing it with the Context IV
 (Sender IV or Recipient IV), with the following addition: The most
 significant bit in the first byte of the Context IV SHALL be flipped
 for responses, in case there is a unique response (not Observe). In
 this way, the same sequence number can be reused for requests and
 corresponding responses, which reduces the size of the responses in
 the most common case. For detailed processing instructions, see

Section 7.

 We denote by Plaintext the data that is encrypted and integrity
 protected, and by Additional Authenticated Data (AAD) the data that
 is integrity protected only.

 The COSE Object SHALL be a COSE_Encrypt0 object with fields defined
 as follows

 o The "protected" field is empty.

 o The "unprotected" field includes:

 * The "Partial IV" parameter. The value is set to the Sequence
 Number. The Partial IV SHALL be of minimum length needed to
 encode the sequence number. This parameter SHALL be present in
 requests. In case of Observe (Section 4.3.2.1) the Partial IV
 SHALL be present in the response, and otherwise the Partial IV
 SHALL NOT be present in the response.

 * The "kid" parameter. The value is set to the Sender ID (see
Section 3). This parameter SHALL be present in requests and

 SHALL NOT be present in responses.

Selander, et al. Expires November 4, 2017 [Page 18]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 o The "ciphertext" field is computed from the Plaintext (see
Section 5.1) and the Additional Authenticated Data (AAD) (see
Section 5.2) following Section 5.2 of [I-D.ietf-cose-msg].

 The encryption process is described in Section 5.3 of
 [I-D.ietf-cose-msg].

5.1. Plaintext

 The Plaintext is formatted as a CoAP message without Header (see
 Figure 5) consisting of:

 o all Class E option values Section 4.3.1 present in the unprotected
 CoAP message (see Section 4.3). The options are encoded as
 described in Section 3.1 of [RFC7252], where the delta is the
 difference to the previously included Class E option; and

 o the Payload of unprotected CoAP message, if present, and in that
 case prefixed by the one-byte Payload Marker (0xFF).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Class E options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+
 (only if there
 is payload)

 Figure 5: Plaintext

5.2. Additional Authenticated Data

 The external_aad SHALL be a CBOR array as defined below:

 external_aad = [
 ver : uint,
 code : uint,
 options : bstr,
 alg : int,
 request_kid : bstr,
 request_seq : bstr
]

 where:

https://datatracker.ietf.org/doc/html/rfc7252#section-3.1

Selander, et al. Expires November 4, 2017 [Page 19]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 o ver: contains the CoAP version number, as defined in Section 3 of
 [RFC7252].

 o code: contains is the CoAP Code of the unprotected CoAP message,
 as defined in Section 3 of [RFC7252].

 o options: contains the Class I options Section 4.3.2 present in the
 unprotected CoAP message encoded as described in Section 3.1 of
 [RFC7252], where the delta is the difference to the previously
 included class I option

 o alg: contains the Algorithm from the security context used for the
 exchange (see Section 3.1).

 o request_kid: contains the value of the 'kid' in the COSE object of
 the request (see Section 5).

 o request_seq: contains the value of the 'Partial IV' in the COSE
 object of the request (see Section 5).

6. Sequence Numbers, Replay, Message Binding, and Freshness

 Sequence numbers and replay window are initialized as defined in
Section 3.2.2.

6.1. AEAD Nonce Uniqueness

 An AEAD nonce MUST NOT be used more than once per AEAD key. In order
 to assure unique nonces, each Sender Context contains a Sequence
 Number used to protect requests, and - in case of Observe -
 responses. The maximum sequence number is algorithm dependent, see

Section 10. If the Sequence Number exceeds the maximum sequence
 number, the endpoint MUST NOT process any more messages with the
 given Sender Context. The endpoint SHOULD acquire a new security
 context (and consequently inform the other endpoint) before this
 happens. The latter is out of scope of this document.

6.2. Replay Protection

 In order to protect from replay of messages, each Recipient Context
 contains a Replay Window used to verify request, and - in case of
 Observe - responses. A receiving endpoint SHALL verify that a
 Sequence Number (Partial IV) received in the COSE object has not been
 received before in the Recipient Context. For requests, if this
 verification fails and the message received is a CON message, the
 server SHALL respond with a 4.00 Bad Request error message. The
 diagnostic payload MAY contain the "Replay protection failed" string.
 For responses, if this verification fails and the message received is

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3.1
https://datatracker.ietf.org/doc/html/rfc7252#section-3.1

Selander, et al. Expires November 4, 2017 [Page 20]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 a CON message, the client SHALL respond with an empty ACK and stop
 processing the response.

 The size and type of the Replay Window depends on the use case and
 lower protocol layers. In case of reliable and ordered transport
 from endpoint to endpoint, the recipient MAY just store the last
 received sequence number and require that newly received Sequence
 Numbers equals the last received Sequence Number + 1.

6.3. Sequence Number and Replay Window State

 To prevent reuse of the Nonce/Sequence Number with the same key, or
 from accepting replayed messages, a node needs to handle the
 situation of suddenly losing sequence number and replay window state
 in RAM, e.g. as a result of a reboot.

 After boot, a node MAY reject to use existing security contexts from
 before it booted and MAY establish a new security context with each
 party it communicates, e.g. using EDHOC
 [I-D.selander-ace-cose-ecdhe]. However, establishing a fresh
 security context may have a non-negligible cost in terms of e.g.
 power consumption.

 If a stored security context is to be used after reboot, then the
 node MUST NOT reuse a previous Sequence Number and MUST NOT accept
 previously accepted messages.

6.3.1. The Basic Case

 To prevent reuse of Sequence Number, the node MAY perform the
 following procedure during normal operations:

 o Before sending a message, the client stores in persistent memory a
 sequence number associated to the stored security context higher
 than any sequence number which has been or are being sent using
 this security context. After boot, the client does not use any
 lower sequence number in a request than what was persistently
 stored with that security context.

 * Storing to persistent memory can be costly. Instead of storing
 a sequence number for each request, the client may store Seq +
 K to persistent memory every K requests, where Seq is the
 current sequence number and K > 1. This is a trade-off between
 the number of storage operations and efficient use of sequence
 numbers.

 To prevent accepting replay of previously received messages, the node
 MAY perform the following procedure:

Selander, et al. Expires November 4, 2017 [Page 21]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 o After boot, before verifying a message using a security context
 stored before boot, the server synchronizes the replay window so
 that no old messages are being accepted. The server uses the
 Repeat option [I-D.mattsson-core-coap-actuators] for synchronizing
 the replay window: For each stored security context, the first
 time after boot the server receives an OSCOAP request, it
 generates a pseudo-random nonce and responds with the Repeat
 option set to the nonce as described in
 [I-D.mattsson-core-coap-actuators]. If the server receives a
 repeated OSCOAP request containing the Repeat option and the same
 nonce, and if the server can verify the request, then the sequence
 number obtained in the repeated message is set as the lower limit
 of the replay window.

6.3.2. The Observe Case

 To prevent reuse of Sequence Number in case of Observe, the node MAY
 perform the following procedure during normal operations:

 o Before sending a notification, the server stores in persistent
 memory a sequence number associated to the stored security context
 higher than any sequence number for which a notification has been
 or are being sent using this security context. After boot, the
 server does not use any lower sequence number in an Observe
 response than what was persistently stored with that security
 context.

 * Storing to persistent memory can be costly. Instead of storing
 a sequence number for each notification, the server may store
 Seq + K to persistent memory every K requests, where Seq is the
 current sequence number and K > 1. This is a trade-off between
 the number of storage operations and efficient use of sequence
 numbers.

 Note that a client MAY continue an ongoing observation after reboot
 using a stored security context. With Observe, the client can only
 verify the order of the notifications, as they may be delayed. If
 the client wants to synchronize with a server resource it MAY restart
 an observation.

6.4. Freshness

 For responses without Observe, OSCOAP provides absolute freshness.
 For requests, and responses with Observe, OSCOAP provides relative
 freshness in the sense that the sequence numbers allows a recipient
 to determine the relative order of messages.

Selander, et al. Expires November 4, 2017 [Page 22]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 For applications having stronger demands on freshness (e.g. control
 of actuators), OSCOAP needs to be augmented with mechanisms providing
 absolute freshness [I-D.mattsson-core-coap-actuators].

6.5. Delay and Mismatch Attacks

 In order to prevent response delay and mismatch attacks
 [I-D.mattsson-core-coap-actuators] from on-path attackers and
 compromised proxies, OSCOAP binds responses to the request by
 including the request's ID (Sender ID or Recipient ID) and sequence
 number in the AAD of the response. The server therefore needs to
 store the request's ID (Sender ID or Recipient ID) and sequence
 number until all responses have been sent.

7. Processing

7.1. Protecting the Request

 Given an unprotected request, the client SHALL perform the following
 steps to create a protected request:

 1. Retrieve the Sender Context associated with the target resource.

 2. Compose the Additional Authenticated Data, as described in
Section 5.

 3. Compose the AEAD nonce by XORing the Context IV (Sender IV) with
 the partial IV (Sequence Number in network byte order).

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 8.

 5. Format the protected CoAP message according to Section 4. The
 Object-Security option is added, see Section 4.3.4.

 6. Store the association Token - Security Context. The client SHALL
 be able to find the Recipient Context from the Token in the
 response.

 7. Increment the Sequence Number by one.

7.2. Verifying the Request

 A server receiving a request containing the Object-Security option
 SHALL perform the following steps:

 1. Process outer Block options according to [RFC7959], until all
 blocks of the request have been received, see Section 4.3.1.2.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires November 4, 2017 [Page 23]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 2. Decompress the COSE Object (Section 8) and retrieve the Recipient
 Context associated with the Recipient ID in the 'kid' parameter.
 If the request is a CON message, and:

 * either the decompression or the COSE message fails to decode,
 the server SHALL respond with a 4.02 Bad Option error message.
 The diagnostic payload SHOULD contain the string "Failed to
 decode COSE".

 * the server fails to retrieve a Recipient Context with
 Recipient ID corresponding to the 'kid' parameter received,
 the server SHALL respond with a 4.01 Unauthorized error
 message. The diagnostic payload MAY contain the string
 "Security context not found".

 If the request is a NON message and either the decompression or the
 COSE message fails to decode, or the server fails to retrieve a
 Recipient Context with Recipient ID corresponding to the 'kid'
 parameter received, then the server SHALL stop processing the
 request.

 1. Verify the Sequence Number in the 'Partial IV' parameter, as
 described in Section 6.

 2. Compose the Additional Authenticated Data, as described in
Section 5.

 3. Compose the AEAD nonce by XORing the Context IV (Recipient IV)
 with the padded 'Partial IV' parameter, received in the COSE
 Object.

 4. Decrypt the COSE object using the Recipient Key.

 * If decryption fails, the server MUST stop processing the
 request and, if the request is a CON message, the server MUST
 respond with a 4.00 Bad Request error message. The diagnostic
 payload MAY contain the "Decryption failed" string.

 * If decryption succeeds, update the Recipient Replay Window, as
 described in Section 6.

 5. Add decrypted options and payload to the unprotected request,
 processing the E options as described in (Section 4). The
 Object-Security option is removed.

 6. The unprotected CoAP request is processed according to [RFC7252]

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires November 4, 2017 [Page 24]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

7.3. Protecting the Response

 Given an unprotected response, the server SHALL perform the following
 steps to create a protected response:

 1. Retrieve the Sender Context in the Security Context used to
 verify the request.

 2. Compose the Additional Authenticated Data, as described in
Section 5.

 3. Compose the AEAD nonce

 * If Observe is not used, compose the AEAD nonce by XORing the
 Context IV (Sender IV with the most significant bit in the
 first byte flipped) with the padded Partial IV parameter from
 the request.

 * If Observe is used, compose the AEAD nonce by XORing the
 Context IV (Sender IV) with the Partial IV of the response
 (Sequence Number in network byte order).

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 8.

 5. Format the protected CoAP message according to Section 4. The
 Object-Security option is added, see Section 4.3.4.

 6. If Observe is used, increment the Sequence Number by one.

7.4. Verifying the Response

 A client receiving a response containing the Object-Security option
 SHALL perform the following steps:

 1. Process outer Block options according to [RFC7959], until all
 blocks of the protected CoAP message have been received, see

Section 4.3.1.2.

 2. Retrieve the Recipient Context associated with the Token.
 Decompress the COSE Object (Section 8). If the response is a CON
 message and either the decompression or the COSE message fails to
 decode, then the client SHALL send an empty ACK back and stop
 processing the response. If the response is a NON message and
 any of the previous conditions appear, then the client SHALL
 simply stop processing the response.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires November 4, 2017 [Page 25]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 1. For Observe notifications, verify the Sequence Number in the
 'Partial IV' parameter as described in Section 6.

 2. Compose the Additional Authenticated Data, as described in
Section 5.

 3. Compose the AEAD nonce

 * If the Observe option is not present in the response, compose
 the AEAD nonce by XORing the Context IV (Recipient IV with the
 the most significant bit in the first byte flipped) with the
 padded Partial IV parameter from the request.

 * If the Observe option is present in the response, compose the
 AEAD nonce by XORing the Context IV (Recipient IV) with the
 padded Partial IV parameter from the response.

 4. Decrypt the COSE object using the Recipient Key.

 * If decryption fails, the client MUST stop processing the
 response and, if the request is a CON message, the client MUST
 respond with an empty ACK back.

 * If decryption succeeds and Observe is used, update the
 Recipient Replay Window, as described in Section 6.

 5. Add decrypted options or payload to the unprotected response
 overwriting any outer E options (see Section 4). The Object-
 Security option is removed.

 * If Observe is used, replace the Observe value with the 3 least
 significant bytes in the sequence number.

 6. The unprotected CoAP response is processed according to [RFC7252]

8. OSCOAP Compression

 The Concise Binary Object Representation (CBOR) [RFC7049] combines
 very small message sizes with extensibility. The CBOR Object Signing
 and Encryption (COSE) [I-D.ietf-cose-msg] uses CBOR to create compact
 encoding of signed and encrypted data. COSE is however constructed
 to support a large number of different stateless use cases, and is
 not fully optimized for use as a stateful security protocol, leading
 to a larger than necessary message expansion. In this section we
 define a simple stateless compression mechanism for OSCOAP, which
 significantly reduces the per-packet overhead.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049

Selander, et al. Expires November 4, 2017 [Page 26]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

8.1. Encoding of the Object-Security Option

 The value of the Object-Security option SHALL be encoded as follows:

 o The first byte MUST encode a set of flags and the length of the
 Partial IV parameter.

 * The three least significant bits encode the Partial IV size.
 If their value is 0, the Partial IV is not present in the
 compressed message.

 * The fourth least significant bit is set to 1 if the kid is
 present in the compressed message.

 * The fifth-eighth least significant bits (= most significant
 half-byte) are reserved and SHALL be set to zero when not in
 use.

 o The following n bytes (n being the value of the Partial IV size in
 the first byte) encode the value of the Partial IV, if the Partial
 IV is present (size not 0).

 o The following byte encodes the size of the kid parameter, if the
 kid is present (flag bit set to 1)

 o The following m bytes (m given by the previous byte) encode the
 value of the kid, if the kid is present (flag bit set to 1)

 o The remainining bytes encode the ciphertext.

 The presence of Partial IV and kid in requests and responses is
 specified in Section 5, and summarized in Figure 6.

 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ k: kid flag bit
 |0 0 0 0|k|pivsz| pivsz: Partial IV size (3 bits)
 +-+-+-+-+-+-+-+-+

 +-------+---------+------------+-----------+
 | | Request | Resp with- | Resp with |
 | | | out observe| observe |
 +-------+---------+------------+-----------+
 | k | 1 | 0 | 0 |
 | pivsz | > 0 | 0 | > 0 |
 +-------+---------+------------+-----------+

 Figure 6: Flag byte for OSCOAP compression

Selander, et al. Expires November 4, 2017 [Page 27]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

8.2. Examples

 This section provides examples of COSE Objects before and after
 OSCOAP compression.

8.2.1. Example: Request

 Before compression:

 [
 h'',
 { 4:h'25', 6:h'05' },
 h'aea0155667924dff8a24e4cb35b9'
]

 0x83 40 a2 04 41 25 06 41 05 4e ae a0 15 56 67 92
 4d ff 8a 24 e4 cb 35 b9 (24 bytes)

 After compression:

 First byte: 0b00001001 = 0x09

 0x09 05 01 25 ae a0 15 56 67 92 4d ff 8a 24 e4 cb
 35 b9 (18 bytes)

8.2.2. Example: Response (without Observe)

 Before compression:

 [
 h'',
 {},
 h'aea0155667924dff8a24e4cb35b9'
]

 0x83 40 a0 4e ae a0 15 56 67 92 4d ff 8a 24 e4 cb
 35 b9 (18 bytes)

 After compression:

 First byte: 0b00000000 = 0x00

 0x00 ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9
 (15 bytes)

Selander, et al. Expires November 4, 2017 [Page 28]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

8.2.3. Example: Response (with Observe)

 Before compression:

 [
 h'',
 { 6:h'07' },
 h'aea0155667924dff8a24e4cb35b9'
]

 0x83 40 a1 06 41 07 4e ae a0 15 56 67 92 4d ff
 8a 24 e4 cb 35 b9 (21 bytes)

 After compression:

 First byte: 0b00000001 = 0x01

 0x01 07 ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9
 (16 bytes)

9. Web Linking

 The use of OSCOAP MAY be indicated by a target attribute "osc" in a
 web link [RFC5988] to a CoAP resource. This attribute is a hint
 indicating that the destination of that link is to be accessed using
 OSCOAP. Note that this is simply a hint, it does not include any
 security context material or any other information required to run
 OSCOAP.

 A value MUST NOT be given for the "osc" attribute; any present value
 MUST be ignored by parsers. The "osc" attribute MUST NOT appear more
 than once in a given link-value; occurrences after the first MUST be
 ignored by parsers.

10. Security Considerations

 In scenarios with intermediary nodes such as proxies or brokers,
 transport layer security such as DTLS only protects data hop-by-hop.
 As a consequence the intermediary nodes can read and modify
 information. The trust model where all intermediate nodes are
 considered trustworthy is problematic, not only from a privacy
 perspective, but also from a security perspective, as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases, where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture brittle.

https://datatracker.ietf.org/doc/html/rfc5988

Selander, et al. Expires November 4, 2017 [Page 29]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 DTLS protects hop-by-hop the entire CoAP message, including header,
 options, and payload. OSCOAP protects end-to-end the payload, and
 all information in the options and header, that is not required for
 forwarding (see Section 4). DTLS and OSCOAP can be combined, thereby
 enabling end-to-end security of CoAP payload, in combination with
 hop-by-hop protection of the entire CoAP message, during transport
 between end-point and intermediary node.

 The CoAP message layer, however, cannot be protected end-to-end
 through intermediary devices since the parameters Type and Message
 ID, as well as Token and Token Length may be changed by a proxy.
 Moreover, messages that are not possible to verify should for
 security reasons not always be acknowledged but in some cases be
 silently dropped. This would not comply with CoAP message layer, but
 does not have an impact on the application layer security solution,
 since message layer is excluded from that.

 The use of COSE to protect CoAP messages as specified in this
 document requires an established security context. The method to
 establish the security context described in Section 3.2 is based on a
 common shared secret material in client and server, which may be
 obtained e.g. by using EDHOC [I-D.selander-ace-cose-ecdhe] or the ACE
 framework [I-D.ietf-ace-oauth-authz]. An OSCOAP profile of ACE is
 described in [I-D.seitz-ace-oscoap-profile].

 The mandatory-to-implement AEAD algorithm AES-CCM-64-64-128 is
 selected for broad applicability in terms of message size (2^64
 blocks) and maximum number of messages (2^56). Compatibility with
 CCM* is achieved by using the algorithm AES-CCM-16-64-128
 [I-D.ietf-cose-msg].

 Most AEAD algorithms require a unique nonce for each message, for
 which the sequence numbers in the COSE message field "Partial IV" is
 used. If the recipient accepts any sequence number larger than the
 one previously received, then the problem of sequence number
 synchronization is avoided. With reliable transport it may be
 defined that only messages with sequence number which are equal to
 previous sequence number + 1 are accepted. The alternatives to
 sequence numbers have their issues: very constrained devices may not
 be able to support accurate time, or to generate and store large
 numbers of random nonces. The requirement to change key at counter
 wrap is a complication, but it also forces the user of this
 specification to think about implementing key renewal.

 The maximum sequence number to guarantee nonce uniqueness
 (Section 6.1) is algorithm dependent. Using AES_CCM, with the
 maximum sequence number SHALL be 2^(min(nonce length in bits, 56) -
 1) - 1. The "-1" in the exponent stems from the same partial IV and

Selander, et al. Expires November 4, 2017 [Page 30]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 flipped bit of IV (Section 5) is used in request and response. The
 compression algorithm (Section 8) assumes that the partial IV is 56
 bits or less (which is the reason for min(,) in the exponent).

 The inner block options enable the sender to split large messages
 into protected blocks such that the receiving node can verify blocks
 before having received the complete message. The outer block options
 allow for arbitrary proxy fragmentation operations that cannot be
 verified by the endpoints, but can by policy be restricted in size
 since the encrypted options allow for secure fragmentation of very
 large messages. A maximum message size (above which the sending
 endpoint fragments the message and the receiving endpoint discards
 the message, if complying to the policy) may be obtained as part of
 normal resource discovery.

 Applications need to use a padding scheme if the content of a message
 can be determined solely from the length of the payload. As an
 example, the strings "YES" and "NO" even if encrypted can be
 distinguished from each other as there is no padding supplied by the
 current set of encryption algorithms. Some information can be
 determined even from looking at boundary conditions. An example of
 this would be returning an integer between 0 and 100 where lengths of
 1, 2 and 3 will provide information about where in the range things
 are. Three different methods to deal with this are: 1) ensure that
 all messages are the same length. For example using 0 and 1 instead
 of 'yes' and 'no'. 2) Use a character which is not part of the
 responses to pad to a fixed length. For example, pad with a space to
 three characters. 3) Use the PKCS #7 style padding scheme where m
 bytes are appended each having the value of m. For example,
 appending a 0 to "YES" and two 1's to "NO". This style of padding
 means that all values need to be padded.

11. Privacy Considerations

 Privacy threats executed through intermediate nodes are considerably
 reduced by means of OSCOAP. End-to-end integrity protection and
 encryption of CoAP payload and all options that are not used for
 forwarding, provide mitigation against attacks on sensor and actuator
 communication, which may have a direct impact on the personal sphere.

 The unprotected options (Figure 4) may reveal privacy sensitive
 information. In particular Uri-Host SHOULD NOT contain privacy
 sensitive information.

 CoAP headers sent in plaintext allow for example matching of CON and
 ACK (CoAP Message Identifier), matching of request and responses
 (Token) and traffic analysis.

Selander, et al. Expires November 4, 2017 [Page 31]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

12. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

12.1. CoAP Option Numbers Registry

 The Object-Security option is added to the CoAP Option Numbers
 registry:

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

12.2. Media Type Registrations

 The "application/oscon" media type is added to the Media Types
 registry:

Selander, et al. Expires November 4, 2017 [Page 32]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Type name: application

 Subtype name: oscon

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See Appendix C of this document.

 Interoperability considerations: N/A

 Published specification: [[this document]] (this document)

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 Goeran Selander <goran.selander@ericsson.com>

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Goeran Selander, goran.selander@ericsson.com

12.3. CoAP Content Format Registration

 The "application/oscon" content format is added to the CoAP Content
 Format registry:

 +-------------------+----------+----+-------------------+
 | Media type | Encoding | ID | Reference |
 +-------------------+----------+----+-------------------+
 | application/oscon | - | 70 | [[this document]] |
 +-------------------+----------+----+-------------------+

Selander, et al. Expires November 4, 2017 [Page 33]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

13. Acknowledgments

 The following individuals provided input to this document: Christian
 Amsuess, Carsten Bormann, Joakim Brorsson, Martin Gunnarsson, Klaus
 Hartke, Jim Schaad, Marco Tiloca, and Malisa Vučinić.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

14. References

14.1. Normative References

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",

draft-ietf-cose-msg-24 (work in progress), November 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-24
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc5988
http://www.rfc-editor.org/info/rfc5988
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641

Selander, et al. Expires November 4, 2017 [Page 34]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

14.2. Informative References

 [I-D.bormann-6lo-coap-802-15-ie]
 Bormann, C., "Constrained Application Protocol (CoAP) over
 IEEE 802.15.4 Information Element for IETF", draft-

bormann-6lo-coap-802-15-ie-00 (work in progress), April
 2016.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "CBOR data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-

cbor-cddl-10 (work in progress), March 2017.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-02 (work in progress), January 2017.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-oauth-

authz-06 (work in progress), March 2017.

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

draft-ietf-core-coap-tcp-tls-08 (work in progress), April
 2017.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [I-D.seitz-ace-oscoap-profile]
 Seitz, L. and F. Palombini, "OSCOAP profile of ACE",

draft-seitz-ace-oscoap-profile-01 (work in progress),
 October 2016.

https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-02
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-06
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-tcp-tls-08
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-seitz-ace-oscoap-profile-01

Selander, et al. Expires November 4, 2017 [Page 35]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-

cose-ecdhe-06 (work in progress), April 2017.

 [I-D.tiloca-core-multicast-oscoap]
 Tiloca, M., Selander, G., and F. Palombini, "Secure group
 communication for CoAP", draft-tiloca-core-multicast-

oscoap-01 (work in progress), March 2017.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Appendix A. Test Vectors

 TODO: This section needs to be updated.

Appendix B. Examples

 This section gives examples of OSCOAP. The message exchanges are
 made, based on the assumption that there is a security context
 established between client and server. For simplicity, these
 examples only indicate the content of the messages without going into
 detail of the COSE message format.

B.1. Secure Access to Sensor

 This example targets the scenario in Section 3.1 of
 [I-D.hartke-core-e2e-security-reqs] and illustrates a client
 requesting the alarm status from a server.

https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-06
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-06
https://datatracker.ietf.org/doc/html/draft-tiloca-core-multicast-oscoap-01
https://datatracker.ietf.org/doc/html/draft-tiloca-core-multicast-oscoap-01
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228

Selander, et al. Expires November 4, 2017 [Page 36]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Client Proxy Server
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x8c
 | | | Object-Security: [kid:5f, seq:42,
 | | | {Uri-Path:"alarm_status"}]
 | | | Payload: -
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0x7b
 | | | Object-Security: [kid:5f, seq:42,
 | | | {Uri-Path:"alarm_status"}]
 | | | Payload: -
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x7b
 | | | Object-Security: -
 | | | Payload: [{"OFF"}]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: [{"OFF"}]
 | | |

 Figure 7: Secure Access to Sensor. Square brackets [...] indicate
 a COSE object. Curly brackets { ... } indicate encrypted data.

 Since the method (GET) doesn't allow payload, the Object-Security
 option carries the COSE object as its value. Since the response code
 (Content) allows payload, the COSE object is carried as the CoAP
 payload.

 The COSE header of the request contains an identifier (5f),
 indicating which security context was used to protect the message and
 a sequence number (42). The option Uri-Path ("alarm_status") and
 payload ("OFF") are encrypted.

 The server verifies that the sequence number has not been received
 before. The client verifies that the response is bound to the
 request.

B.2. Secure Subscribe to Sensor

 This example targets the scenario in Section 3.2 of
 [I-D.hartke-core-e2e-security-reqs] and illustrates a client
 requesting subscription to a blood sugar measurement resource (GET

Selander, et al. Expires November 4, 2017 [Page 37]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 /glucose), first receiving the value 220 mg/dl and then a second
 value 180 mg/dl.

 Client Proxy Server
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x83
 | | | Observe: 0
 | | | Object-Security: [kid:ca, seq:15,
 | | | {Uri-Path:"glucose"}]
 | | | Payload: -
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0xbe
 | | | Observe: 0
 | | | Object-Security: [kid:ca, seq:15,
 | | | {Uri-Path:"glucose"}]
 | | | Payload: -
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Observe: 000032
 | | | Object-Security: -
 | | | Payload: [seq:32, {Content-Format:0, "220"}]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Observe: 000032
 | | | Object-Security: -
 | | | Payload: [seq:32, {Content-Format:0, "220"}]

 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Observe: 000036
 | | | Object-Security: -
 | | | Payload: [seq:36, {Content-Format:0, "180"}]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Observe: 000036
 | | | Object-Security: -
 | | | Payload: [seq:36, {Content-Format:0, "180"}]
 | | |

 Figure 8: Secure Subscribe to Sensor. Square brackets [...]
 indicate a COSE object. Curly brackets { ... } indicate encrypted
 data.

Selander, et al. Expires November 4, 2017 [Page 38]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Since the method (GET) doesn't allow payload, the Object-Security
 option carries the COSE object as its value. Since the response code
 (Content) allows payload, the COSE object is carried as the CoAP
 payload.

 The COSE header of the request contains an identifier (ca),
 indicating the security context used to protect the message and a
 Sequence Number (15). The COSE header of the responses contains
 sequence numbers (32 and 36). The options Content-Format (0) and the
 payload ("220" and "180"), are encrypted. The Observe option is
 integrity protected. The shown Observe values (000032 and 000036)
 are the ones that the client will see after OSCOAP processing.

 The server verifies that the sequence number has not been received
 before. The client verifies that the sequence number has not been
 received before and that the responses are bound to the request.

Appendix C. Object Security of Content (OSCON)

 TODO: This section needs to be updated.

 OSCOAP protects message exchanges end-to-end between a certain client
 and a certain server, targeting the security requirements for forward
 proxy of [I-D.hartke-core-e2e-security-reqs]. In contrast, many use
 cases require one and the same message to be protected for, and
 verified by, multiple endpoints, see caching proxy section of
 [I-D.hartke-core-e2e-security-reqs]. Those security requirements can
 be addressed by protecting essentially the payload/content of
 individual messages using the COSE format ([I-D.ietf-cose-msg]),
 rather than the entire request/response message exchange. This is
 referred to as Object Security of Content (OSCON).

 OSCON transforms an unprotected CoAP message into a protected CoAP
 message in the following way: the payload of the unprotected CoAP
 message is wrapped by a COSE object, which replaces the payload of
 the unprotected CoAP message. We call the result the "protected"
 CoAP message.

 The unprotected payload shall be the plaintext/payload of the COSE
 object. The 'protected' field of the COSE object 'Headers' shall
 include the context identifier, both for requests and responses. If
 the unprotected CoAP message includes a Content-Format option, then
 the COSE object shall include a protected 'content type' field, whose
 value is set to the unprotected message Content-Format value. The
 Content-Format option of the protected CoAP message shall be replaced
 with "application/oscon" (Section 12)

Selander, et al. Expires November 4, 2017 [Page 39]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 The COSE object shall be protected (encrypted) and verified
 (decrypted) as described in ([I-D.ietf-cose-msg]).

 Most AEAD algorithms require a unique nonce for each message.
 Sequence numbers for partial IV as specified for OSCOAP may be used
 for replay protection as described in Section 6. The use of time
 stamps in the COSE header parameter 'operation time'
 [I-D.ietf-cose-msg] for freshness may be used.

 OSCON shall not be used in cases where CoAP header fields (such as
 Code or Version) or CoAP options need to be integrity protected or
 encrypted. OSCON shall not be used in cases which require a secure
 binding between request and response.

 The scenarios in Sections 3.3 - 3.5 of
 [I-D.hartke-core-e2e-security-reqs] assume multiple recipients for a
 particular content. In this case the use of symmetric keys does not
 provide data origin authentication. Therefore the COSE object should
 in general be protected with a digital signature.

C.1. Overhead OSCON

 In general there are four different kinds of modes that need to be
 supported: message authentication code, digital signature,
 authenticated encryption, and symmetric encryption + digital
 signature. The use of digital signature is necessary for
 applications with many legitimate recipients of a given message, and
 where data origin authentication is required.

 To distinguish between these different cases, the tagged structures
 of COSE are used (see Section 2 of [I-D.ietf-cose-msg]).

 The sizes of COSE messages for selected algorithms are detailed in
 this section.

 The size of the header is shown separately from the size of the MAC/
 signature. A 4-byte Context Identifier and a 1-byte Sequence Number
 are used throughout all examples, with these values:

 o Cid: 0xa1534e3c

 o Seq: 0xa3

 For each scheme, we indicate the fixed length of these two parameters
 ("Cid+Seq" column) and of the Tag ("MAC"/"SIG"/"TAG"). The "Message
 OH" column shows the total expansions of the CoAP message size, while
 the "COSE OH" column is calculated from the previous columns.

Selander, et al. Expires November 4, 2017 [Page 40]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 Overhead incurring from CBOR encoding is also included in the COSE
 overhead count.

 To make it easier to read, COSE objects are represented using CBOR's
 diagnostic notation rather than a binary dump.

C.2. MAC Only

 This example is based on HMAC-SHA256, with truncation to 8 bytes
 (HMAC 256/64).

 Since the key is implicitly known by the recipient, the
 COSE_Mac0_Tagged structure is used (Section 6.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 996(# COSE_Mac0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 MAC # truncated 8-byte MAC
]
)

 This COSE object encodes to a total size of 26 bytes.

 Figure 9 summarizes these results.

 +------------------+-----+-----+---------+------------+
 | Structure | Tid | MAC | COSE OH | Message OH |
 +------------------+-----+-----+---------+------------+
 | COSE_Mac0_Tagged | 5 B | 8 B | 13 B | 26 B |
 +------------------+-----+-----+---------+------------+

 Figure 9: Message overhead for a 5-byte Tid using HMAC 256/64

C.3. Signature Only

 This example is based on ECDSA, with a signature of 64 bytes.

 Since only one signature is used, the COSE_Sign1_Tagged structure is
 used (Section 4.2 of [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

Selander, et al. Expires November 4, 2017 [Page 41]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 997(# COSE_Sign1_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 SIG # 64-byte signature
]
)

 This COSE object encodes to a total size of 83 bytes.

 Figure 10 summarizes these results.

 +-------------------+-----+------+---------+------------+
 | Structure | Tid | SIG | COSE OH | Message OH |
 +-------------------+-----+------+---------+------------+
 | COSE_Sign1_Tagged | 5 B | 64 B | 14 B | 83 bytes |
 +-------------------+-----+------+---------+------------+

 Figure 10: Message overhead for a 5-byte Tid using 64 byte ECDSA
 signature.

C.4. Authenticated Encryption with Additional Data (AEAD)

 This example is based on AES-CCM with the Tag truncated to 8 bytes.

 Since the key is implicitly known by the recipient, the
 COSE_Encrypt0_Tagged structure is used (Section 5.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

993(# COSE_Encrypt0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 ciphertext # ciphertext including truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 25 bytes.

 Figure 11 summarizes these results.

Selander, et al. Expires November 4, 2017 [Page 42]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 +----------------------+-----+-----+---------+------------+
 | Structure | Tid | TAG | COSE OH | Message OH |
 +----------------------+-----+-----+---------+------------+
 | COSE_Encrypt0_Tagged | 5 B | 8 B | 12 B | 25 bytes |
 +----------------------+-----+-----+---------+------------+

 Figure 11: Message overhead for a 5-byte Tid using AES_128_CCM_8.

C.5. Symmetric Encryption with Asymmetric Signature (SEAS)

 This example is based on AES-CCM and ECDSA with 64 bytes signature.
 The same assumption on the security context as in Appendix C.4. COSE
 defines the field 'counter signature w/o headers' that is used here
 to sign a COSE_Encrypt0_Tagged message (see Section 3 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

993(# COSE_Encrypt0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {9:SIG}, # unprotected:
 09: 64 bytes signature
 ciphertext # ciphertext including truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 92 bytes.

 Figure 12 summarizes these results.

 +----------------------+-----+-----+------+---------+------------+
 | Structure | Tid | TAG | SIG | COSE OH | Message OH |
 +----------------------+-----+-----+------+---------+------------+
 | COSE_Encrypt0_Tagged | 5 B | 8 B | 64 B | 15 B | 92 B |
 +----------------------+-----+-----+------+---------+------------+

 Figure 12: Message overhead for a 5-byte Tid using AES-CCM
 countersigned with ECDSA.

Authors' Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Selander, et al. Expires November 4, 2017 [Page 43]

Internet-Draft Object Security of CoAP (OSCOAP) May 2017

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT

 Email: ludwig@sics.se

Selander, et al. Expires November 4, 2017 [Page 44]

