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Abstract

   This document defines Object Security for Constrained RESTful
   Environments (OSCORE), a method for application-layer protection of
   the Constrained Application Protocol (CoAP), using CBOR Object
   Signing and Encryption (COSE).  OSCORE provides end-to-end protection
   between endpoints communicating using CoAP or CoAP-mappable HTTP.
   OSCORE is designed for constrained nodes and networks supporting a
   range of proxy operations, including translation between different
   transport protocols.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 15, 2018.

Copyright Notice
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   document authors.  All rights reserved.
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Constrained Application Protocol (CoAP) [RFC7252] is a web
   application protocol, designed for constrained nodes and networks
   [RFC7228], and may be mapped from HTTP [RFC8075].  CoAP specifies the
   use of proxies for scalability and efficiency and references DTLS
   ([RFC6347]) for security.  CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-
   HTTP proxies require (D)TLS to be terminated at the proxy.  The proxy
   therefore not only has access to the data required for performing the
   intended proxy functionality, but is also able to eavesdrop on, or
   manipulate any part of, the message payload and metadata in transit
   between the endpoints.  The proxy can also inject, delete, or reorder
   packets since they are no longer protected by (D)TLS.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc6347
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   This document defines the Object Security for Constrained RESTful
   Environments (OSCORE) security protocol, protecting CoAP and CoAP-
   mappable HTTP requests and responses end-to-end across intermediary
   nodes such as CoAP forward proxies and cross-protocol translators
   including HTTP-to-CoAP proxies [RFC8075].  In addition to the core
   CoAP features defined in [RFC7252], OSCORE supports Observe
   [RFC7641], Blockwise [RFC7959], No-Response [RFC7967], and PATCH and
   FETCH [RFC8132].  An analysis of end-to-end security for CoAP
   messages through some types of intermediary nodes is performed in
   [I-D.hartke-core-e2e-security-reqs].  OSCORE essentially protects the
   RESTful interactions; the request method, the requested resource, the
   message payload, etc. (see Section 4).  OSCORE protects neither the
   CoAP Messaging Layer nor the CoAP Token which may change between the
   endpoints, and those are therefore processed as defined in [RFC7252].
   Additionally, since the message formats for CoAP over unreliable
   transport [RFC7252] and for CoAP over reliable transport [RFC8323]
   differ only in terms of CoAP Messaging Layer, OSCORE can be applied
   to both unreliable and reliable transports (see Figure 1).

               +-----------------------------------+
               |            Application            |
               +-----------------------------------+
               +-----------------------------------+  \
               |  Requests / Responses / Signaling |  |
               |-----------------------------------|  |
               |               OSCORE              |  | CoAP
               |-----------------------------------|  |
               | Messaging Layer / Message Framing |  |
               +-----------------------------------+  /
               +-----------------------------------+
               |          UDP / TCP / ...          |
               +-----------------------------------+

              Figure 1: Abstract Layering of CoAP with OSCORE

   OSCORE works in very constrained nodes and networks, thanks to its
   small message size and the restricted code and memory requirements in
   addition to what is required by CoAP.  Examples of the use of OSCORE
   are given in Appendix A.  OSCORE does not depend on underlying
   layers, and can be used anywhere where CoAP or HTTP can be used,
   including non-IP transports (e.g., [I-D.bormann-6lo-coap-802-15-ie]).
   OSCORE may be used together with (D)TLS over one or more hops in the
   end-to-end path, e.g. with HTTPs in one hop and with plain CoAP in
   another hop.

   The use of OSCORE does not affect the URI scheme and OSCORE can
   therefore be used with any URI scheme defined for CoAP or HTTP.  The
   application decides the conditions for which OSCORE is required.

https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7967
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
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   OSCORE uses pre-shared keys which may have been established out-of-
   band or with a key establishment protocol (see Section 3.2).  The
   technical solution builds on CBOR Object Signing and Encryption
   (COSE) [RFC8152], providing end-to-end encryption, integrity, replay
   protection, and secure binding of response to request.  A compressed
   version of COSE is used, as specified in Section 6.  The use of
   OSCORE is signaled with the new Object-Security CoAP option or HTTP
   header field, defined in Section 2 and Section 10.3.  The solution
   transforms a CoAP/HTTP message into an "OSCORE message" before
   sending, and vice versa after receiving.  The OSCORE message is a
   CoAP/HTTP message related to the original message in the following
   way: the original CoAP/HTTP message is translated to CoAP (if not
   already in CoAP) and protected in a COSE object.  The encrypted
   message fields of this COSE object are transported in the CoAP
   payload/HTTP body of the OSCORE message, and the Object-Security
   option/header field is included in the message.  A sketch of an
   OSCORE message exchange in the case of the original message being
   CoAP is provided in Figure 2).

          Client                                          Server
             |      OSCORE request - POST example.com:      |
             |        Header, Token,                        |
             |        Options: {Object-Security, ...},      |
             |        Payload: COSE ciphertext              |
             +--------------------------------------------->|
             |                                              |
             |<---------------------------------------------+
             |      OSCORE response - 2.04 (Changed):       |
             |        Header, Token,                        |
             |        Options: {Object-Security, ...},      |
             |        Payload: COSE ciphertext              |
             |                                              |

                   Figure 2: Sketch of CoAP with OSCORE

   An implementation supporting this specification MAY implement only
   the client part, MAY implement only the server part, or MAY implement
   only one of the proxy parts.  OSCORE is designed to protect as much
   information as possible while still allowing proxy operations
   (Section 10).  It works with legacy CoAP-to-CoAP forward proxies
   [RFC7252], but an OSCORE-aware proxy will be more efficient.  HTTP-
   to-CoAP proxies [RFC8075] and CoAP-to-HTTP proxies can also be used
   with OSCORE, as specified in Section 10.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8075
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1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Readers are expected to be familiar with the terms and concepts
   described in CoAP [RFC7252], Observe [RFC7641], Blockwise [RFC7959],
   COSE [RFC8152], CBOR [RFC7049], CDDL [I-D.ietf-cbor-cddl] as
   summarized in Appendix E, and constrained environments [RFC7228].

   The term "hop" is used to denote a particular leg in the end-to-end
   path.  The concept "hop-by-hop" (as in "hop-by-hop encryption" or
   "hop-by-hop fragmentation") opposed to "end-to-end", is used in this
   document to indicate that the messages are processed accordingly in
   the intermediaries, rather than just forwarded to the next node.

   The term "stop processing" is used throughout the document to denote
   that the message is not passed up to the CoAP Request/Response layer
   (see Figure 1).

   The terms Common/Sender/Recipient Context, Master Secret/Salt, Sender
   ID/Key, Recipient ID/Key, and Common IV are defined in Section 3.1.

2.  The CoAP Object-Security Option

   The CoAP Object-Security option (see Figure 3, which extends Table 4
   of [RFC7252]) indicates that the CoAP message is an OSCORE message
   and that it contains a compressed COSE object (see Section 5 and

Section 6).  The Object-Security option is critical, safe to forward,
   part of the cache key, and not repeatable.

   +-----+---+---+---+---+-----------------+--------+--------+---------+
   | No. | C | U | N | R | Name            | Format | Length | Default |
   +-----+---+---+---+---+-----------------+--------+--------+---------+
   | TBD | x |   |   |   | Object-Security |  (*)   | 0-255  | (none)  |
   +-----+---+---+---+---+-----------------+--------+--------+---------+
       C = Critical,   U = Unsafe,   N = NoCacheKey,   R = Repeatable
       (*) See below.

                   Figure 3: The Object-Security Option

   The Object-Security option includes the OSCORE flag bits (Section 6),
   the Sender Sequence Number and the Sender ID when present
   (Section 3).  The detailed format and length is specified in

Section 6.  If the OSCORE flag bits is all zero (0x00) the Option

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
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   value SHALL be empty (Option Length = 0).  An endpoint receiving a
   CoAP message without payload, that also contains an Object-Security
   option SHALL treat it as malformed and reject it.

   A successful response to a request with the Object-Security option
   SHALL contain the Object-Security option.  Whether error responses
   contain the Object-Security option depends on the error type (see

Section 8).

   A CoAP proxy SHOULD NOT cache a response to a request with an Object-
   Security option, since the response is only applicable to the
   original request (see Section 10.1).  As the compressed COSE Object
   is included in the cache key, messages with the Object-Security
   option will never generate cache hits.  For Max-Age processing (see

Section 4.1.3.1).

3.  The Security Context

   OSCORE requires that client and server establish a shared security
   context used to process the COSE objects.  OSCORE uses COSE with an
   Authenticated Encryption with Additional Data (AEAD, [RFC5116])
   algorithm for protecting message data between a client and a server.
   In this section, we define the security context and how it is derived
   in client and server based on a shared secret and a key derivation
   function (KDF).

3.1.  Security Context Definition

   The security context is the set of information elements necessary to
   carry out the cryptographic operations in OSCORE.  For each endpoint,
   the security context is composed of a "Common Context", a "Sender
   Context", and a "Recipient Context".

   The endpoints protect messages to send using the Sender Context and
   verify messages received using the Recipient Context, both contexts
   being derived from the Common Context and other data.  Clients and
   servers need to be able to retrieve the correct security context to
   use.

   An endpoint uses its Sender ID (SID) to derive its Sender Context,
   and the other endpoint uses the same ID, now called Recipient ID
   (RID), to derive its Recipient Context.  In communication between two
   endpoints, the Sender Context of one endpoint matches the Recipient
   Context of the other endpoint, and vice versa.  Thus, the two
   security contexts identified by the same IDs in the two endpoints are
   not the same, but they are partly mirrored.  Retrieval and use of the
   security context are shown in Figure 4.

https://datatracker.ietf.org/doc/html/rfc5116
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                 .-------------.           .-------------.
                 |  Common,    |           |  Common,    |
                 |  Sender,    |           |  Recipient, |
                 |  Recipient  |           |  Sender     |
                 '-------------'           '-------------'
                      Client                   Server
                         |                       |
   Retrieve context for  | OSCORE request:       |
    target resource      |   Token = Token1,     |
   Protect request with  |   kid = SID, ...      |
     Sender Context      +---------------------->| Retrieve context with
                         |                       |  RID = kid
                         |                       | Verify request with
                         |                       |  Recipient Context
                         | OSCORE response:      | Protect response with
                         |   Token = Token1, ... |  Sender Context
   Retrieve context with |<----------------------+
    Token = Token1       |                       |
   Verify request with   |                       |
    Recipient Context    |                       |

            Figure 4: Retrieval and use of the Security Context

   The Common Context contains the following parameters:

   o  AEAD Algorithm.  The COSE AEAD algorithm to use for encryption.

   o  Key Derivation Function.  The HMAC based HKDF [RFC5869] used to
      derive Sender Key, Recipient Key, and Common IV.

   o  Master Secret.  Variable length, uniformly random byte string
      containing the key used to derive traffic keys and IVs.

   o  Master Salt.  Variable length byte string containing the salt used
      to derive traffic keys and IVs.

   o  Common IV.  Byte string derived from Master Secret and Master
      Salt.  Length is determined by the AEAD Algorithm.

   The Sender Context contains the following parameters:

   o  Sender ID.  Byte string used to identify the Sender Context and to
      assure unique AEAD nonces.  Maximum length is determined by the
      AEAD Algorithm.

   o  Sender Key. Byte string containing the symmetric key to protect
      messages to send.  Derived from Common Context and Sender ID.
      Length is determined by the AEAD Algorithm.

https://datatracker.ietf.org/doc/html/rfc5869
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   o  Sender Sequence Number.  Non-negative integer used by the sender
      to protect requests and Observe notifications.  Used as 'Partial
      IV' [RFC8152] to generate unique nonces for the AEAD.  Maximum
      value is determined by the AEAD Algorithm.

   The Recipient Context contains the following parameters:

   o  Recipient ID.  Byte string used to identify the Recipient Context
      and to assure unique AEAD nonces.  Maximum length is determined by
      the AEAD Algorithm.

   o  Recipient Key. Byte string containing the symmetric key to verify
      messages received.  Derived from Common Context and Recipient ID.
      Length is determined by the AEAD Algorithm.

   o  Replay Window (Server only).  The replay window to verify requests
      received.

   All parameters except Sender Sequence Number and Replay Window are
   immutable once the security context is established.  An endpoint may
   free up memory by not storing the Common IV, Sender Key, and
   Recipient Key, deriving them from the Master Key and Master Salt when
   needed.  Alternatively, an endpoint may free up memory by not storing
   the Master Secret and Master Salt after the other parameters have
   been derived.

   Endpoints MAY operate as both client and server and use the same
   security context for those roles.  Independent of being client or
   server, the endpoint protects messages to send using its Sender
   Context, and verifies messages received using its Recipient Context.
   The endpoints MUST NOT change the Sender/Recipient ID when changing
   roles.  In other words, changing the roles does not change the set of
   keys to be used.

3.2.  Establishment of Security Context Parameters

   The parameters in the security context are derived from a small set
   of input parameters.  The following input parameters SHALL be pre-
   established:

   o  Master Secret

   o  Sender ID

   o  Recipient ID

https://datatracker.ietf.org/doc/html/rfc8152
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   The following input parameters MAY be pre-established.  In case any
   of these parameters is not pre-established, the default value
   indicated below is used:

   o  AEAD Algorithm

      *  Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

   o  Master Salt

      *  Default is the empty string

   o  Key Derivation Function (KDF)

      *  Default is HKDF SHA-256

   o  Replay Window Type and Size

      *  Default is DTLS-type replay protection with a window size of 32
         ([RFC6347])

   All input parameters need to be known to and agreed on by both
   endpoints, but the replay window may be different in the two
   endpoints.  How the input parameters are pre-established, is
   application specific.  The OSCORE profile of the ACE framework may be
   used to establish the necessary input parameters
   ([I-D.ietf-ace-oscore-profile]), or a key exchange protocol such as
   the TLS/DTLS handshake ([I-D.mattsson-ace-tls-oscore]) or EDHOC
   ([I-D.selander-ace-cose-ecdhe]) providing forward secrecy.  Other
   examples of deploying OSCORE are given in Appendix B.

3.2.1.  Derivation of Sender Key, Recipient Key, and Common IV

   The KDF MUST be one of the HMAC based HKDF [RFC5869] algorithms
   defined in COSE.  HKDF SHA-256 is mandatory to implement.  The
   security context parameters Sender Key, Recipient Key, and Common IV
   SHALL be derived from the input parameters using the HKDF, which
   consists of the composition of the HKDF-Extract and HKDF-Expand steps
   ([RFC5869]):

      output parameter = HKDF(salt, IKM, info, L)

   where:

   o  salt is the Master Salt as defined above

   o  IKM is the Master Secret as defined above

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
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   o  info is a CBOR array consisting of:

      info = [
          id : bstr,
          alg_aead : int / tstr,
          type : tstr,
          L : uint
      ]

   where:

   o  id is the Sender ID or Recipient ID when deriving keys and the
      empty string when deriving the Common IV.  The encoding is
      described in Section 5.

   o  alg_aead is the AEAD Algorithm, encoded as defined in [RFC8152].

   o  type is "Key" or "IV".  The label is an ASCII string, and does not
      include a trailing NUL byte.

   o  L is the size of the key/IV for the AEAD algorithm used, in bytes.

   For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
   [RFC8152]) is used, the integer value for alg_aead is 10, the value
   for L is 16 for keys and 13 for the Common IV.

3.2.2.  Initial Sequence Numbers and Replay Window

   The Sender Sequence Number is initialized to 0.  The supported types
   of replay protection and replay window length is application specific
   and depends on how OSCORE is transported, see Section 7.4.  The
   default is DTLS-type replay protection with a window size of 32
   initiated as described in Section 4.1.2.6 of [RFC6347].

3.3.  Requirements on the Security Context Parameters

   As collisions may lead to the loss of both confidentiality and
   integrity, Sender ID SHALL be unique in the set of all security
   contexts using the same Master Secret and Master Salt.  When a
   trusted third party assigns identifiers (e.g., using
   [I-D.ietf-ace-oauth-authz]) or by using a protocol that allows the
   parties to negotiate locally unique identifiers in each endpoint, the
   Sender IDs can be very short.  The maximum length of Sender ID in
   bytes equals the length of AEAD nonce minus 6.  For AES-CCM-16-64-128
   the maximum length of Sender ID is 7 bytes.  Sender IDs MAY be
   uniformly random distributed byte strings if the probability of
   collisions is negligible.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
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   If Sender ID uniqueness cannot be guaranteed by construction, Sender
   IDs MUST be long uniformly random distributed byte strings such that
   the probability of collisions is negligible.

   To simplify retrieval of the right Recipient Context, the Recipient
   ID SHOULD be unique in the sets of all Recipient Contexts used by an
   endpoint.  If an endpoint has the same Recipient ID with different
   Recipient Contexts, i.e. the Recipient Contexts are derived from
   different keying material, then the endpoint may need to try multiple
   times before finding the right security context associated to the
   Recipient ID.  The Client MAY provide a 'kid context' parameter
   (Section 5.1) to help the Server find the right context.

   While the triple (Master Secret, Master Salt, Sender ID) MUST be
   unique, the same Master Salt MAY be used with several Master Secrets
   and the same Master Secret MAY be used with several Master Salts.

4.  Protected Message Fields

   OSCORE transforms a CoAP message (which may have been generated from
   an HTTP message) into an OSCORE message, and vice versa.  OSCORE
   protects as much of the original message as possible while still
   allowing certain proxy operations (see Section 10).  This section
   defines how OSCORE protects the message fields and transfers them
   end-to-end between client and server (in any direction).

   The remainder of this section and later sections discuss the behavior
   in terms of CoAP messages.  If HTTP is used for a particular hop in
   the end-to-end path, then this section applies to the conceptual CoAP
   message that is mappable to/from the original HTTP message as
   discussed in Section 10.  That is, an HTTP message is conceptually
   transformed to a CoAP message and then to an OSCORE message, and
   similarly in the reverse direction.  An actual implementation might
   translate directly from HTTP to OSCORE without the intervening CoAP
   representation.

   Protection of Signaling messages (Section 5 of [RFC8323]) is
   specified in Section 4.3.  The other parts of this section target
   Request/Response messages.

   Message fields of the CoAP message may be protected end-to-end
   between CoAP client and CoAP server in different ways:

   o  Class E: encrypted and integrity protected,

   o  Class I: integrity protected only, or

   o  Class U: unprotected.

https://datatracker.ietf.org/doc/html/rfc8323#section-5
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   The sending endpoint SHALL transfer Class E message fields in the
   ciphertext of the COSE object in the OSCORE message.  The sending
   endpoint SHALL include Class I message fields in the Additional
   Authenticated Data (AAD) of the AEAD algorithm, allowing the
   receiving endpoint to detect if the value has changed in transfer.
   Class U message fields SHALL NOT be protected in transfer.  Class I
   and Class U message field values are transferred in the header or
   options part of the OSCORE message, which is visible to proxies.

   Message fields not visible to proxies, i.e., transported in the
   ciphertext of the COSE object, are called "Inner" (Class E).  Message
   fields transferred in the header or options part of the OSCORE
   message, which is visible to proxies, are called "Outer" (Class I or
   U).  There are currently no Class I options defined.

   An OSCORE message may contain both an Inner and an Outer instance of
   a certain CoAP message field.  Inner message fields are intended for
   the receiving endpoint, whereas Outer message fields are used to
   support proxy operations.  Inner and Outer message fields are
   processed independently.

4.1.  CoAP Options

   A summary of how options are protected is shown in Figure 5.  Note
   that some options may have both Inner and Outer message fields which
   are protected accordingly.  The options which require special
   processing are labelled with asterisks.
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                   +-----+-----------------+---+---+
                   | No. | Name            | E | U |
                   +-----+-----------------+---+---+
                   |   1 | If-Match        | x |   |
                   |   3 | Uri-Host        |   | x |
                   |   4 | ETag            | x |   |
                   |   5 | If-None-Match   | x |   |
                   |   6 | Observe         |   | * |
                   |   7 | Uri-Port        |   | x |
                   |   8 | Location-Path   | x |   |
                   | TBD | Object-Security |   | * |
                   |  11 | Uri-Path        | x |   |
                   |  12 | Content-Format  | x |   |
                   |  14 | Max-Age         | * | * |
                   |  15 | Uri-Query       | x |   |
                   |  17 | Accept          | x |   |
                   |  20 | Location-Query  | x |   |
                   |  23 | Block2          | * | * |
                   |  27 | Block1          | * | * |
                   |  28 | Size2           | * | * |
                   |  35 | Proxy-Uri       |   | * |
                   |  39 | Proxy-Scheme    |   | x |
                   |  60 | Size1           | * | * |
                   | 258 | No-Response     | * | * |
                   +-----+-----------------+---+---+

                 E = Encrypt and Integrity Protect (Inner)
                 U = Unprotected (Outer)
                 * = Special

                   Figure 5: Protection of CoAP Options

   Options that are unknown or for which OSCORE processing is not
   defined SHALL be processed as class E (and no special processing).
   Specifications of new CoAP options SHOULD define how they are
   processed with OSCORE.  A new COAP option SHOULD be of class E unless
   it requires proxy processing.

4.1.1.  Inner Options

   Inner option message fields (class E) are used to communicate
   directly with the other endpoint.

   The sending endpoint SHALL write the Inner option message fields
   present in the original CoAP message into the plaintext of the COSE
   object (Section 5.3), and then remove the Inner option message fields
   from the OSCORE message.



Selander, et al.       Expires September 15, 2018              [Page 14]



Internet-Draft                   OSCORE                       March 2018

   The processing of Inner option message fields by the receiving
   endpoint is specified in Section 8.2 and Section 8.4.

4.1.2.  Outer Options

   Outer option message fields (Class U or I) are used to support proxy
   operations.

   The sending endpoint SHALL include the Outer option message field
   present in the original message in the options part of the OSCORE
   message.  All Outer option message fields, including Object-Security,
   SHALL be encoded as described in Section 3.1 of [RFC7252], where the
   delta is the difference to the previously included instance of Outer
   option message field.

   The processing of Outer options by the receiving endpoint is
   specified in Section 8.2 and Section 8.4.

   A procedure for integrity-protection-only of Class I option message
   fields is specified in Section 5.4.  Proxies MUST NOT change the
   order of option's occurrences, for options repeatable and of class I.

   Note: There are currently no Class I option message fields defined.

4.1.3.  Special Options

   Some options require special processing, marked with an asterisk '*'
   in Figure 5; the processing is specified in this section.

4.1.3.1.  Max-Age

   An Inner Max-Age message field is used to indicate the maximum time a
   response may be cached by the client (as defined in [RFC7252]), end-
   to-end from the server to the client, taking into account that the
   option is not accessible to proxies.  The Inner Max-Age SHALL be
   processed by OSCORE as specified in Section 4.1.1.

   An Outer Max-Age message field is used to avoid unnecessary caching
   of OSCORE error responses at OSCORE unaware intermediary nodes.  A
   server MAY set a Class U Max-Age message field with value zero to
   OSCORE error responses, which are described in Section 7.4,

Section 8.2 and Section 8.4.  Such message field is then processed
   according to Section 4.1.2.

   Successful OSCORE responses do not need to include an Outer Max-Age
   option since the responses are non-cacheable by construction (see

Section 4.2).

https://datatracker.ietf.org/doc/html/rfc7252#section-3.1
https://datatracker.ietf.org/doc/html/rfc7252
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4.1.3.2.  The Block Options

   Blockwise [RFC7959] is an optional feature.  An implementation MAY
   support [RFC7252] and the Object-Security option without supporting
   Blockwise.  The Block options (Block1, Block2, Size1, Size2), when
   Inner message fields, provide secure message fragmentation such that
   each fragment can be verified.  The Block options, when Outer message
   fields, enables hop-by-hop fragmentation of the OSCORE message.
   Inner and Outer block processing may have different performance
   properties depending on the underlying transport.  The end-to-end
   integrity of the message can be verified both in case of Inner and
   Outer Blockwise provided all blocks are received.

4.1.3.2.1.  Inner Block Options

   The sending CoAP endpoint MAY fragment a CoAP message as defined in
   [RFC7959] before the message is processed by OSCORE.  In this case
   the Block options SHALL be processed by OSCORE as Inner options
   (Section 4.1.1).  The receiving CoAP endpoint SHALL process the
   OSCORE message according to Section 4.1.1 before processing Blockwise
   as defined in [RFC7959].

4.1.3.2.2.  Outer Block Options

   Proxies MAY fragment an OSCORE message using [RFC7959], by
   introducing Block option message fields that are Outer
   (Section 4.1.2) and not generated by the sending endpoint.  Note that
   the Outer Block options are neither encrypted nor integrity
   protected.  As a consequence, a proxy can maliciously inject block
   fragments indefinitely, since the receiving endpoint needs to receive
   the last block (see [RFC7959]) to be able to compose the OSCORE
   message and verify its integrity.  Therefore, applications supporting
   OSCORE and [RFC7959] MUST specify a security policy defining a
   maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
   the maximum size of message which can be handled by the endpoints.
   Messages exceeding this size SHOULD be fragmented by the sending
   endpoint using Inner Block options (Section 4.1.3.2.1).

   An endpoint receiving an OSCORE message with an Outer Block option
   SHALL first process this option according to [RFC7959], until all
   blocks of the OSCORE message have been received, or the cumulated
   message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE.  In the
   former case, the processing of the OSCORE message continues as
   defined in this document.  In the latter case the message SHALL be
   discarded.

   Because of encryption of Uri-Path and Uri-Query, messages to the same
   server may, from the point of view of a proxy, look like they also

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
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   target the same resource.  A proxy SHOULD mitigate a potential mix-up
   of blocks from concurrent requests to the same server, for example
   using the Request-Tag processing specified in Section 3.3.2 of
   [I-D.ietf-core-echo-request-tag].

4.1.3.3.  Proxy-Uri

   Proxy-Uri, when present, is split by OSCORE into class U options and
   class E options, which are processed accordingly.  When Proxy-Uri is
   used in the original CoAP message, Uri-* are not present [RFC7252].

   The sending endpoint SHALL first decompose the Proxy-Uri value of the
   original CoAP message into the Proxy-Scheme, Uri-Host, Uri-Port, Uri-
   Path, and Uri-Query options (if present) according to Section 6.4 of
   [RFC7252].

   Uri-Path and Uri-Query are class E options and SHALL be protected and
   processed as Inner options (Section 4.1.1).

   The Proxy-Uri option of the OSCORE message SHALL be set to the
   composition of Proxy-Scheme, Uri-Host, and Uri-Port options (if
   present) as specified in Section 6.5 of [RFC7252], and processed as
   an Outer option of Class U (Section 4.1.2).

   Note that replacing the Proxy-Uri value with the Proxy-Scheme and
   Uri-* options works by design for all CoAP URIs (see Section 6 of
   [RFC7252]).  OSCORE-aware HTTP servers should not use the userinfo
   component of the HTTP URI (as defined in Section 3.2.1 of [RFC3986]),
   so that this type of replacement is possible in the presence of CoAP-
   to-HTTP proxies.  In future documents specifying cross-protocol
   proxying behavior using different URI structures, it is expected that
   the authors will create Uri-* options that allow decomposing the
   Proxy-Uri, and specify in which OSCORE class they belong.

   An example of how Proxy-Uri is processed is given here.  Assume that
   the original CoAP message contains:

   o  Proxy-Uri = "coap://example.com/resource?q=1"

   During OSCORE processing, Proxy-Uri is split into:

   o  Proxy-Scheme = "coap"

   o  Uri-Host = "example.com"

   o  Uri-Port = "5683"

   o  Uri-Path = "resource"

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1
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   o  Uri-Query = "q=1"

   Uri-Path and Uri-Query follow the processing defined in
Section 4.1.1, and are thus encrypted and transported in the COSE

   object.  The remaining options are composed into the Proxy-Uri
   included in the options part of the OSCORE message, which has value:

   o  Proxy-Uri = "coap://example.com"

   See Sections 6.1 and 12.6 of [RFC7252] for more information.

4.1.3.4.  Observe

   Observe [RFC7641] is an optional feature.  An implementation MAY
   support [RFC7252] and the Object-Security option without supporting
   [RFC7641].  The Observe option as used here targets the requirements
   on forwarding of [I-D.hartke-core-e2e-security-reqs] (Section 2.2.1).

   In order for an OSCORE-unaware proxy to support forwarding of Observe
   messages ([RFC7641]), there SHALL be an Outer Observe option, i.e.,
   present in the options part of the OSCORE message.  The processing of
   the CoAP Code for Observe messages is described in Section 4.2.

   To secure the order of notifications, the client SHALL maintain a
   Notification Number for each Observation it registers.  The
   Notification Number is a non-negative integer containing the largest
   Partial IV of the successfully received notifications for the
   associated Observe registration (see Section 7.4).  The Notification
   Number is initialized to the Partial IV of the first successfully
   received notification response to the registration request.  In
   contrast to [RFC7641], the received Partial IV MUST always be
   compared with the Notification Number, which thus MUST NOT be
   forgotten after 128 seconds.  The client MAY ignore the Observe
   option value.

   If the verification fails, the client SHALL stop processing the
   response.

   The Observe option in the CoAP request may be legitimately removed by
   a proxy.  If the Observe option is removed from a CoAP request by a
   proxy, then the server can still verify the request (as a non-Observe
   request), and produce a non-Observe response.  If the OSCORE client
   receives a response to an Observe request without an Outer Observe
   value, then it MUST verify the response as a non-Observe response.
   If the OSCORE client receives a response to a non-Observe request
   with an Outer Observe value, it stops processing the message, as
   specified in Section 8.4.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
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   Clients can re-register observations to ensure that the observation
   is still active and establish freshness again ([RFC7641]
   Section 3.3.1).  When an OSCORE observation is refreshed, not only
   the ETags, but also the partial IV (and thus the payload and Object-
   Security option) change.  The server uses the new request's Partial
   IV as the 'request_piv' of new responses.

4.1.3.5.  No-Response

   No-Response is defined in [RFC7967].  Clients using No-Response MUST
   set both an Inner (Class E) and an Outer (Class U) No-Response
   option, with same value.

   The Inner No-Response option is used to communicate to the server the
   client's disinterest in certain classes of responses to a particular
   request.  The Inner No-Response SHALL be processed by OSCORE as
   specified in Section 4.1.1.

   The Outer No-Response option is used to support proxy functionality,
   specifically to avoid error transmissions from proxies to clients,
   and to avoid bandwidth reduction to servers by proxies applying
   congestion control when not receiving responses.  The Outer No-
   Response option is processed according to Section 4.1.2.

   In particular, step 8 of Section 8.4 is applied to No-Response.

   Applications should consider that a proxy may remove the Outer No-
   Response option from the request.  Applications using No-Response can
   specify policies to deal with cases where servers receive an Inner
   No-Response option only, which may be the result of the request
   having traversed a No-Response unaware proxy, and update the
   processing in Section 8.4 accordingly.  This avoids unnecessary error
   responses to clients and bandwidth reductions to servers, due to No-
   Response unaware proxies.

4.1.3.6.  Object-Security

   The Object-Security option is only defined to be present in OSCORE
   messages, as an indication that OSCORE processing have been
   performed.  The content in the Object-Security option is neither
   encrypted nor integrity protected as a whole but some part of the
   content of this option is protected (see Section 5.4).  "OSCORE
   within OSCORE" is not supported: If OSCORE processing detects an
   Object-Security option in the original CoAP message, then processing
   SHALL be stopped.

https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7967
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4.2.  CoAP Header Fields and Payload

   A summary of how the CoAP header fields and payload are protected is
   shown in Figure 6, including fields specific to CoAP over UDP and
   CoAP over TCP (marked accordingly in the table).

                       +------------------+---+---+
                       | Field            | E | U |
                       +------------------+---+---+
                       | Version (UDP)    |   | x |
                       | Type (UDP)       |   | x |
                       | Length (TCP)     |   | x |
                       | Token Length     |   | x |
                       | Code             | x |   |
                       | Message ID (UDP) |   | x |
                       | Token            |   | x |
                       | Payload          | x |   |
                       +------------------+---+---+

                 E = Encrypt and Integrity Protect (Inner)
                 U = Unprotected (Outer)

          Figure 6: Protection of CoAP Header Fields and Payload

   Most CoAP Header fields (i.e. the message fields in the fixed 4-byte
   header) are required to be read and/or changed by CoAP proxies and
   thus cannot in general be protected end-to-end between the endpoints.
   As mentioned in Section 1, OSCORE protects the CoAP Request/Response
   layer only, and not the Messaging Layer (Section 2 of [RFC7252]), so
   fields such as Type and Message ID are not protected with OSCORE.

   The CoAP Header field Code is protected by OSCORE.  Code SHALL be
   encrypted and integrity protected (Class E) to prevent an
   intermediary from eavesdropping or manipulating the Code (e.g.,
   changing from GET to DELETE).

   The sending endpoint SHALL write the Code of the original CoAP
   message into the plaintext of the COSE object (see Section 5.3).
   After that, the Outer Code of the OSCORE message SHALL be set to 0.02
   (POST) for requests without Observe option, to 0.05 (FETCH) for
   requests with Observe option, and to 2.04 (Changed) for responses.
   Using FETCH with Observe allows OSCORE to be compliant with the
   Observe processing in OSCORE-unaware proxies.  The choice of POST and
   FETCH ([RFC8132]) allows all OSCORE messages to have payload.

   The receiving endpoint SHALL discard the Code in the OSCORE message
   and write the Code of the plaintext in the COSE object (Section 5.3)
   into the decrypted CoAP message.

https://datatracker.ietf.org/doc/html/rfc7252#section-2
https://datatracker.ietf.org/doc/html/rfc8132
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   The other currently defined CoAP Header fields are Unprotected (Class
   U).  The sending endpoint SHALL write all other header fields of the
   original message into the header of the OSCORE message.  The
   receiving endpoint SHALL write the header fields from the received
   OSCORE message into the header of the decrypted CoAP message.

   The CoAP Payload, if present in the original CoAP message, SHALL be
   encrypted and integrity protected and is thus an Inner message field.
   The sending endpoint writes the payload of the original CoAP message
   into the plaintext (Section 5.3) input to the COSE object.  The
   receiving endpoint verifies and decrypts the COSE object, and
   recreates the payload of the original CoAP message.

4.3.  Signaling Messages

   Signaling messages (CoAP Code 7.00-7.31) were introduced to exchange
   information related to an underlying transport connection in the
   specific case of CoAP over reliable transports ([RFC8323]).  The use
   of OSCORE for protecting Signaling is application dependent.

   OSCORE MAY be used to protect Signaling if the endpoints for OSCORE
   coincide with the endpoints for the connection.  If OSCORE is used to
   protect Signaling then:

   o  Signaling messages SHALL be protected as CoAP Request messages,
      except in the case the Signaling message is a response to a
      previous Signaling message, in which case it SHALL be protected as
      a CoAP Response message.  For example, 7.02 (Ping) is protected as
      a CoAP Request and 7.03 (Pong) as a CoAP response.

   o  The Outer Code for Signaling messages SHALL be set to 0.02 (POST),
      unless it is a response to a previous Signaling message, in which
      case it SHALL be set to 2.04 (Changed).

   o  All Signaling options, except the Object-Security option, SHALL be
      Inner (Class E).

   NOTE: Option numbers for Signaling messages are specific to the CoAP
   Code (see Section 5.2 of [RFC8323]).

   If OSCORE is not used to protect Signaling, Signaling messages SHALL
   be unaltered by OSCORE.

5.  The COSE Object

   This section defines how to use COSE [RFC8152] to wrap and protect
   data in the original message.  OSCORE uses the untagged COSE_Encrypt0
   structure with an Authenticated Encryption with Additional Data

https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc8323#section-5.2
https://datatracker.ietf.org/doc/html/rfc8152


Selander, et al.       Expires September 15, 2018              [Page 21]



Internet-Draft                   OSCORE                       March 2018

   (AEAD) algorithm.  The key lengths, IV length, nonce length, and
   maximum Sender Sequence Number are algorithm dependent.

   The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
   [RFC8152] is mandatory to implement.  For AES-CCM-16-64-128 the
   length of Sender Key and Recipient Key is 128 bits, the length of
   nonce and Common IV is 13 bytes.  The maximum Sender Sequence Number
   is specified in Section 11.

   As specified in [RFC5116], plaintext denotes the data that is to be
   encrypted and integrity protected, and Additional Authenticated Data
   (AAD) denotes the data that is to be integrity protected only.

   The COSE Object SHALL be a COSE_Encrypt0 object with fields defined
   as follows

   o  The 'protected' field is empty.

   o  The 'unprotected' field includes:

      *  The 'Partial IV' parameter.  The value is set to the Sender
         Sequence Number.  All leading zeroes SHALL be removed when
         encoding the Partial IV.  The value 0 encodes to the byte
         string 0x00.  This parameter SHALL be present in requests.  In
         case of Observe (Section 4.1.3.4) the Partial IV SHALL be
         present in responses, and otherwise the Partial IV will not
         typically be present in responses.  (A non-Observe example
         where the Partial IV is included in a response is provided in

Section 7.5.2.)

      *  The 'kid' parameter.  The value is set to the Sender ID.  This
         parameter SHALL be present in requests and will not typically
         be present in responses.  An example where the Sender ID is
         included in a response is the extension of OSCORE to group
         communication [I-D.ietf-core-oscore-groupcomm].

      *  Optionally, a 'kid context' parameter as defined in
Section 5.1.  This parameter MAY be present in requests and

         SHALL NOT be present in responses.

   o  The 'ciphertext' field is computed from the secret key (Sender Key
      or Recipient Key), AEAD nonce (see Section 5.2), plaintext (see

Section 5.3), and the Additional Authenticated Data (AAD) (see
Section 5.4) following Section 5.2 of [RFC8152].

   The encryption process is described in Section 5.3 of [RFC8152].

https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc8152#section-5.2
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
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5.1.  Kid Context

   For certain use cases, e.g. deployments where the same kid is used
   with multiple contexts, it is necessary or favorable for the sender
   to provide an additional identifier of the security material to use,
   in order for the receiver to retrieve or establish the correct key.
   The kid context parameter is used to provide such additional input.
   The kid context and kid are used to determine the security context,
   or to establish the necessary input parameters to derive the security
   context (see Section 3.2).  The application defines how this is done.

   The kid context is implicitly integrity protected, as manipulation
   that leads to the wrong key (or no key) being retrieved which results
   in an error, as described in Section 8.2.

   A summary of the COSE header parameter kid context defined above can
   be found in Figure 7.

   Some examples of relevant uses of kid context are the following:

   o  If the client has an identifier in some other namespace which can
      be used by the server to retrieve or establish the security
      context, then that identifier can be used as kid context.  The kid
      context may be used as Master Salt (Section 3.1) for additional
      entropy of the security contexts (see for example Appendix B.2 or
      [I-D.ietf-6tisch-minimal-security]).

   o  In case of a group communication scenario
      [I-D.ietf-core-oscore-groupcomm], if the server belongs to
      multiple groups, then a group identifier can be used as kid
      context to enable the server to find the right security context.

   +----------+--------+------------+----------------+-----------------+
   |   name   |  label | value type | value registry | description     |
   +----------+--------+------------+----------------+-----------------+
   |   kid    | kidctx | bstr       |                | Identifies the  |
   | context  |        |            |                | kid context     |
   +----------+--------+------------+----------------+-----------------+

     Figure 7: Additional common header parameter for the COSE object

5.2.  Nonce

   The AEAD nonce is constructed in the following way (see Figure 8):

   1.  left-padding the Partial IV (in network byte order) with zeroes
       to exactly 5 bytes,
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   2.  left-padding the (Sender) ID of the endpoint that generated the
       Partial IV (in network byte order) with zeroes to exactly nonce
       length - 6 bytes,

   3.  concatenating the size of the ID (S) with the padded ID and the
       padded Partial IV,

   4.  and then XORing with the Common IV.

   Note that in this specification only algorithms that use nonces equal
   or greater than 7 bytes are supported.  The nonce construction with
   S, ID of PIV generator, and Partial IV together with endpoint unique
   IDs and encryption keys make it easy to verify that the nonces used
   with a specific key will be unique.

   When Observe is not used, the request and the response may use the
   same nonce.  In this way, the Partial IV does not have to be sent in
   responses, which reduces the size.  For processing instructions see

Section 8.

            +---+-----------------------+--+--+--+--+--+
            | S | ID of PIV generator   |  Partial IV  |----+
            +---+-----------------------+--+--+--+--+--+    |
                                                            |
            +------------------------------------------+    |
            |                Common IV                 |->(XOR)
            +------------------------------------------+    |
                                                            |
            +------------------------------------------+    |
            |                  Nonce                   |<---+
            +------------------------------------------+

                      Figure 8: AEAD Nonce Formation

5.3.  Plaintext

   The plaintext is formatted as a CoAP message without Header (see
   Figure 9) consisting of:

   o  the Code of the original CoAP message as defined in Section 3 of
      [RFC7252]; and

   o  all Inner option message fields (see Section 4.1.1) present in the
      original CoAP message (see Section 4.1).  The options are encoded
      as described in Section 3.1 of [RFC7252], where the delta is the
      difference to the previously included instance of Class E option;
      and

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3.1
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   o  the Payload of original CoAP message, if present, and in that case
      prefixed by the one-byte Payload Marker (0xFF).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |    Class E options (if any) ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 1 1 1 1 1 1 1|    Payload (if any) ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      (only if there
        is payload)

                            Figure 9: Plaintext

   NOTE: The plaintext contains all CoAP data that needs to be encrypted
   end-to-end between the endpoints.

5.4.  Additional Authenticated Data

   The external_aad SHALL be a CBOR array as defined below:

   external_aad = [
      oscore_version : uint,
      algorithms : [ alg_aead : int / tstr ],
      request_kid : bstr,
      request_piv : bstr,
      options : bstr
   ]

   where:

   o  oscore_version: contains the OSCORE version number.
      Implementations of this specification MUST set this field to 1.
      Other values are reserved for future versions.

   o  alg_aead: contains the AEAD Algorithm from the security context
      used for the exchange (see Section 3.1).

   o  request_kid: contains the value of the 'kid' in the COSE object of
      the request (see Section 5).

   o  request_piv: contains the value of the 'Partial IV' in the COSE
      object of the request (see Section 5).

   o  options: contains the Class I options (see Section 4.1.2) present
      in the original CoAP message encoded as described in Section 3.1
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      of [RFC7252], where the delta is the difference to the previously
      included instance of class I option.

   NOTE: The format of the external_aad is for simplicity the same for
   requests and responses, although some parameters, e.g. request_kid
   need not be integrity protected in the requests.

6.  OSCORE Header Compression

   The Concise Binary Object Representation (CBOR) [RFC7049] combines
   very small message sizes with extensibility.  The CBOR Object Signing
   and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
   of signed and encrypted data.  COSE is however constructed to support
   a large number of different stateless use cases, and is not fully
   optimized for use as a stateful security protocol, leading to a
   larger than necessary message expansion.  In this section, we define
   a stateless header compression mechanism, simply removing redundant
   information from the COSE objects, which significantly reduces the
   per-packet overhead.  The result of applying this mechanism to a COSE
   object is called the "compressed COSE object".

   The COSE_Encrypt0 object used in OSCORE is transported in the Object-
   Security option and in the Payload.  The Payload contains the
   Ciphertext and the headers of the COSE object are compactly encoded
   as described in the next section.

6.1.  Encoding of the Object-Security Value

   The value of the Object-Security option SHALL contain the OSCORE flag
   bits, the Partial IV parameter, the kid context parameter (length and
   value), and the kid parameter as follows:

          0 1 2 3 4 5 6 7 <--------- n bytes ------------->
         +-+-+-+-+-+-+-+-+---------------------------------
         |0 0 0|h|k|  n  |      Partial IV (if any) ...
         +-+-+-+-+-+-+-+-+---------------------------------

          <- 1 byte -> <------ s bytes ----->
         +------------+----------------------+------------------+
         | s (if any) | kid context (if any) | kid (if any) ... |
         +------------+----------------------+------------------+

                     Figure 10: Object-Security Value

   o  The first byte of flag bits encodes the following set of flags and
      the length of the Partial IV parameter:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8152
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      *  The three least significant bits encode the Partial IV length
         n.  If n = 0 then the Partial IV is not present in the
         compressed COSE object.  The values n = 6 and n = 7 are
         reserved.

      *  The fourth least significant bit is the kid flag, k: it is set
         to 1 if the kid is present in the compressed COSE object.

      *  The fifth least significant bit is the kid context flag, h: it
         is set to 1 if the compressed COSE object contains a kid
         context (see Section 5.1).

      *  The sixth to eighth least significant bits are reserved for
         future use.  These bits SHALL be set to zero when not in use.
         According to this specification, if any of these bits are set
         to 1 the message is considered to be malformed and
         decompression fails as specified in item 3 of Section 8.2.

   o  The following n bytes encode the value of the Partial IV, if the
      Partial IV is present (n > 0).

   o  The following 1 byte encode the length of the kid context
      (Section 5.1) s, if the kid context flag is set (h = 1).

   o  The following s bytes encode the kid context, if the kid context
      flag is set (h = 1).

   o  The remaining bytes encode the value of the kid, if the kid is
      present (k = 1).

   Note that the kid MUST be the last field of the object-security
   value, even in case reserved bits are used and additional fields are
   added to it.

   The length of the Object-Security option thus depends on the presence
   and length of Partial IV, kid context, kid, as specified in this
   section, and on the presence and length of the other parameters, as
   defined in the separate documents.

6.2.  Encoding of the OSCORE Payload

   The payload of the OSCORE message SHALL encode the ciphertext of the
   COSE object.
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6.3.  Examples of Compressed COSE Objects

6.3.1.  Examples: Requests

   1.  Request with kid = 0x25 and Partial IV = 0x05

   Before compression (24 bytes):

   [
   h'',
   { 4:h'25', 6:h'05' },
   h'aea0155667924dff8a24e4cb35b9'
   ]

   After compression (17 bytes):

   Flag byte: 0b00001001 = 0x09

   Option Value: 09 05 25 (3 bytes)

   Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

   2.  Request with kid = empty string and Partial IV = 0x00

   After compression (16 bytes):

   Flag byte: 0b00001001 = 0x09

   Option Value: 09 00 (2 bytes)

   Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

   3.  Request with kid = empty string, Partial IV = 0x05, and kid
   context = 0x44616c656b

   After compression (22 bytes):

   Flag byte: 0b00011001 = 0x19

   Option Value: 19 05 05 44 61 6c 65 6b (8 bytes)

   Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

6.3.2.  Example: Response (without Observe)

   Before compression (18 bytes):
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   [
   h'',
   {},
   h'aea0155667924dff8a24e4cb35b9'
   ]

   After compression (14 bytes):

   Flag byte: 0b00000000 = 0x00

   Option Value: (0 bytes)

   Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

6.3.3.  Example: Response (with Observe)

   Before compression (21 bytes):

   [
   h'',
   { 6:h'07' },
   h'aea0155667924dff8a24e4cb35b9'
   ]

   After compression (16 bytes):

   Flag byte: 0b00000001 = 0x01

   Option Value: 01 07 (2 bytes)

   Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

7.  Sequence Numbers, Replay, Message Binding, and Freshness

7.1.  Message Binding

   In order to prevent response delay and mismatch attacks
   [I-D.mattsson-core-coap-actuators] from on-path attackers and
   compromised proxies, OSCORE binds responses to the requests by
   including the kid and Partial IV of the request in the AAD of the
   response.  The server therefore needs to store the kid and Partial IV
   of the request until all responses have been sent.

7.2.  AEAD Nonce Uniqueness

   An AEAD nonce MUST NOT be used more than once per AEAD key.  In order
   to assure unique nonces, each Sender Context contains a Sender
   Sequence Number used to protect requests, and - in case of Observe -
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   responses.  If messages are processed concurrently, the operation of
   reading and increasing the Sender Sequence Number MUST be atomic.

   The maximum Sender Sequence Number is algorithm dependent (see
Section 11), and no greater than 2^40 - 1.  If the Sender Sequence

   Number exceeds the maximum, the endpoint MUST NOT process any more
   messages with the given Sender Context.  The endpoint SHOULD acquire
   a new security context (and consequently inform the other endpoint)
   before this happens.  The latter is out of scope of this document.

7.3.  Freshness

   For requests, OSCORE provides only the guarantee that the request is
   not older than the security context.  For applications having
   stronger demands on request freshness (e.g., control of actuators),
   OSCORE needs to be augmented with mechanisms providing freshness, for
   example as specified in [I-D.ietf-core-echo-request-tag].

   For responses, the message binding guarantees that a response is not
   older than its request.  For responses without Observe, this gives
   strong absolute freshness.  For responses with Observe, the absolute
   freshness gets weaker with time, and it is RECOMMENDED that the
   client regularly re-register the observation.

   For requests, and responses with Observe, OSCORE also provides
   relative freshness in the sense that the received Partial IV allows a
   recipient to determine the relative order of responses.

7.4.  Replay Protection

   In order to protect from replay of requests, the server's Recipient
   Context includes a Replay Window.  A server SHALL verify that a
   Partial IV received in the COSE object has not been received before.
   If this verification fails the server SHALL stop processing the
   message, and MAY optionally respond with a 4.01 Unauthorized error
   message.  Also, the server MAY set an Outer Max-Age option with value
   zero.  The diagnostic payload MAY contain the "Replay protection
   failed" string.  The size and type of the Replay Window depends on
   the use case and the protocol with which the OSCORE message is
   transported.  In case of reliable and ordered transport from endpoint
   to endpoint, e.g.  TCP, the server MAY just store the last received
   Partial IV and require that newly received Partial IVs equals the
   last received Partial IV + 1.  However, in case of mixed reliable and
   unreliable transports and where messages may be lost, such a replay
   mechanism may be too restrictive and the default replay window be
   more suitable (see Section 3.2.2).
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   Responses to non-Observe requests are protected against replay as
   they are cryptographically bound to the request.

   In the case of Observe, a client receiving a notification SHALL
   verify that the Partial IV of a received notification is greater than
   the Notification Number bound to that Observe registration.  If the
   verification fails, the client SHALL stop processing the response.
   If the verification succeeds, the client SHALL overwrite the
   corresponding Notification Number with the received Partial IV.

   If messages are processed concurrently, the Partial IV needs to be
   validated a second time after decryption and before updating the
   replay protection data.  The operation of validating the Partial IV
   and updating the replay protection data MUST be atomic.

7.5.  Losing Part of the Context State

   To prevent reuse of the AEAD nonce with the same key, or from
   accepting replayed messages, an endpoint needs to handle the
   situation of losing rapidly changing parts of the context, such as
   the request Token, Sender Sequence Number, Replay Window, and
   Notification Numbers.  These are typically stored in RAM and
   therefore lost in the case of an unplanned reboot.

   After boot, an endpoint MAY reject to use pre-existing security
   contexts, and MAY establish a new security context with each endpoint
   it communicates with.  However, establishing a fresh security context
   may have a non-negligible cost in terms of, e.g., power consumption.

   After boot, an endpoint MAY use a partly persistently stored security
   context, but then the endpoint MUST NOT reuse a previous Sender
   Sequence Number and MUST NOT accept previously accepted messages.
   Some ways to achieve this are described in the following sections.

7.5.1.  Sequence Number

   To prevent reuse of Sender Sequence Numbers, an endpoint MAY perform
   the following procedure during normal operations:

   o  Each time the Sender Sequence Number is evenly divisible by K,
      where K is a positive integer, store the Sender Sequence Number in
      persistent memory.  After boot, the endpoint initiates the Sender
      Sequence Number to the value stored in persistent memory + K - 1.
      Storing to persistent memory can be costly.  The value K gives a
      trade-off between the number of storage operations and efficient
      use of Sender Sequence Numbers.
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7.5.2.  Replay Window

   To prevent accepting replay of previously received requests, the
   server MAY perform the following procedure after boot:

   o  For each stored security context, the first time after boot the
      server receives an OSCORE request, the server responds with the
      Echo option [I-D.ietf-core-echo-request-tag] to get a request with
      verifiable freshness.  The server MUST use its Partial IV when
      generating the AEAD nonce and MUST include the Partial IV in the
      response.

   If the server using the Echo option can verify a second request as
   fresh, then the Partial IV of the second request is set as the lower
   limit of the replay window.

7.5.3.  Replay Protection of Observe Notifications

   To prevent accepting replay of previously received notification
   responses, the client MAY perform the following procedure after boot:

   o  The client rejects notifications bound to the earlier
      registration, removes all Notification Numbers and re-registers
      using Observe.

8.  Processing

   This section describes the OSCORE message processing.

8.1.  Protecting the Request

   Given a CoAP request, the client SHALL perform the following steps to
   create an OSCORE request:

   1.  Retrieve the Sender Context associated with the target resource.

   2.  Compose the Additional Authenticated Data and the plaintext, as
       described in Section 5.4 and Section 5.3.

   3.  Compute the AEAD nonce from the Sender ID, Common IV, and Partial
       IV (Sender Sequence Number in network byte order) as described in

Section 5.2 and (in one atomic operation, see Section 7.2)
       increment the Sender Sequence Number by one.

   4.  Encrypt the COSE object using the Sender Key. Compress the COSE
       Object as specified in Section 6.
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   5.  Format the OSCORE message according to Section 4.  The Object-
       Security option is added (see Section 4.1.2).

   6.  Store the association Token - Security Context, in order to be
       able to find the Recipient Context from the Token in the
       response.

8.2.  Verifying the Request

   A server receiving a request containing the Object-Security option
   SHALL perform the following steps:

   1.   Process Outer Block options according to [RFC7959], until all
        blocks of the request have been received (see Section 4.1.3.2).

   2.   Discard the message Code and all non-special Inner option
        message fields (marked with 'x' in column E of Figure 5) present
        in the received message.  For example, an If-Match Outer option
        is discarded, but an Uri-Host Outer option is not discarded.

   3.   Decompress the COSE Object (Section 6) and retrieve the
        Recipient Context associated with the Recipient ID in the 'kid'
        parameter.  If either the decompression or the COSE message
        fails to decode, or the server fails to retrieve a Recipient
        Context with Recipient ID corresponding to the 'kid' parameter
        received, then the server SHALL stop processing the request.
        If:

        *  either the decompression or the COSE message fails to decode,
           the server MAY respond with a 4.02 Bad Option error message.
           The server MAY set an Outer Max-Age option with value zero.
           The diagnostic payload SHOULD contain the string "Failed to
           decode COSE".

        *  the server fails to retrieve a Recipient Context with
           Recipient ID corresponding to the 'kid' parameter received,
           the server MAY respond with a 4.01 Unauthorized error
           message.  The server MAY set an Outer Max-Age option with
           value zero.  The diagnostic payload SHOULD contain the string
           "Security context not found".

   4.   Verify the 'Partial IV' parameter using the Replay Window, as
        described in Section 7.4.

   5.   Compose the Additional Authenticated Data, as described in
Section 5.4.

https://datatracker.ietf.org/doc/html/rfc7959
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   6.   Compute the AEAD nonce from the Recipient ID, Common IV, and the
        'Partial IV' parameter, received in the COSE Object.

   7.   Decrypt the COSE object using the Recipient Key, as per
[RFC8152] Section 5.3.  (The decrypt operation includes the

        verification of the integrity.)

        *  If decryption fails, the server MUST stop processing the
           request and MAY respond with a 4.00 Bad Request error
           message.  The server MAY set an Outer Max-Age option with
           value zero.  The diagnostic payload SHOULD contain the
           "Decryption failed" string.

        *  If decryption succeeds, update the Replay Window, as
           described in Section 7.

   8.   For each decrypted option, check if the option is also present
        as an Outer option: if it is, discard the Outer.  For example:
        the message contains a Max-Age Inner and a Max-Age Outer option.
        The Outer Max-Age is discarded.

   9.   Add decrypted code, options and payload to the decrypted
        request.  The Object-Security option is removed.

   10.  The decrypted CoAP request is processed according to [RFC7252]

8.3.  Protecting the Response

   If a CoAP response is generated in response to an OSCORE request, the
   server SHALL perform the following steps to create an OSCORE
   response.  Note that CoAP error responses derived from CoAP
   processing (point 10. in Section 8.2) are protected, as well as
   successful CoAP responses, while the OSCORE errors (point 3, 4, and 7
   in Section 8.2) do not follow the processing below, but are sent as
   simple CoAP responses, without OSCORE processing.

   1.  Retrieve the Sender Context in the Security Context used to
       verify the request.

   2.  Compose the Additional Authenticated Data and the plaintext, as
       described in Section 5.4 and Section 5.3.

   3.  Compute the AEAD nonce

       *  If Observe is used, compute the nonce from the Sender ID,
          Common IV, and Partial IV (Sender Sequence Number in network
          byte order).  Then (in one atomic operation, see Section 7.2)
          increment the Sender Sequence Number by one.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc7252
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       *  If Observe is not used, either the nonce from the request is
          used or a new Partial IV is used (see bullet on 'Partial IV'
          in Section 5).

   4.  Encrypt the COSE object using the Sender Key. Compress the COSE
       Object as specified in Section 6.  If the AEAD nonce was
       constructed from a new Partial IV, this Partial IV MUST be
       included in the message.  If the AEAD nonce from the request was
       used, the Partial IV MUST NOT be included in the message.

   5.  Format the OSCORE message according to Section 4.  The Object-
       Security option is added (see Section 4.1.2).

8.4.  Verifying the Response

   A client receiving a response containing the Object-Security option
   SHALL perform the following steps:

   1.   Process Outer Block options according to [RFC7959], until all
        blocks of the OSCORE message have been received (see

Section 4.1.3.2).

   2.   Discard the message Code and all non-special Class E options
        from the message.  For example, ETag Outer option is discarded,
        Max-Age Outer option is not discarded.

   3.   Retrieve the Recipient Context associated with the Token.
        Decompress the COSE Object (Section 6).  If either the
        decompression or the COSE message fails to decode, then go to
        11.

   4.   For Observe notifications, verify the received 'Partial IV'
        parameter against the corresponding Notification Number as
        described in Section 7.4.  If the client receives a notification
        for which no Observe request was sent, then go to 11.

   5.   Compose the Additional Authenticated Data, as described in
Section 5.4.

   6.   Compute the AEAD nonce

        1.  If the Observe option and the Partial IV are not present in
            the response, the nonce from the request is used.

        2.  If the Observe option is present in the response, and the
            Partial IV is not present in the response, then go to 11.

https://datatracker.ietf.org/doc/html/rfc7959
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        3.  If the Partial IV is present in the response, compute the
            nonce from the Recipient ID, Common IV, and the 'Partial IV'
            parameter, received in the COSE Object.

   7.   Decrypt the COSE object using the Recipient Key, as per
[RFC8152] Section 5.3.  (The decrypt operation includes the

        verification of the integrity.)

        *  If decryption fails, then go to 11.

        *  If decryption succeeds and Observe is used, update the
           corresponding Notification Number, as described in Section 7.

   8.   For each decrypted option, check if the option is also present
        as an Outer option: if it is, discard the Outer.  For example:
        the message contains a Max-Age Inner and a Max-Age Outer option.
        The Outer Max-Age is discarded.

   9.   Add decrypted code, options and payload to the decrypted
        request.  The Object-Security option is removed.

   10.  The decrypted CoAP response is processed according to [RFC7252]

   11.  (Optional) In case any of the previous erroneous conditions
        apply: the client SHALL stop processing the response.

   An error condition occurring while processing a response in an
   observation does not cancel the observation.  A client MUST NOT react
   to failure in step 7 by re-registering the observation immediately.

9.  Web Linking

   The use of OSCORE MAY be indicated by a target attribute "osc" in a
   web link [RFC8288] to a resource.  This attribute is a hint
   indicating that the destination of that link is to be accessed using
   OSCORE.  Note that this is simply a hint, it does not include any
   security context material or any other information required to run
   OSCORE.

   A value MUST NOT be given for the "osc" attribute; any present value
   MUST be ignored by parsers.  The "osc" attribute MUST NOT appear more
   than once in a given link-value; occurrences after the first MUST be
   ignored by parsers.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8288
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10.  Proxy and HTTP Operations

RFC 7252 defines operations for a CoAP-to-CoAP proxy (see Section 5.7
   of [RFC7252]) and for proxying between CoAP and HTTP (Section 10 of
   [RFC7252]).  A more detailed description of the HTTP-to-CoAP mapping
   is provided by [RFC8075].  This section describes the operations of
   OSCORE-aware proxies.

10.1.  CoAP-to-CoAP Forwarding Proxy

   OSCORE is designed to work with legacy CoAP-to-CoAP forward proxies
   [RFC7252], but OSCORE-aware proxies MAY provide certain
   simplifications as specified in this section.

   Security requirements for forwarding are presented in Section 2.2.1
   of [I-D.hartke-core-e2e-security-reqs].  OSCORE complies with the
   extended security requirements also addressing Blockwise ([RFC7959])
   and CoAP-mappable HTTP.  In particular caching is disabled since the
   CoAP response is only applicable to the original CoAP request.  An
   OSCORE-aware proxy SHALL NOT cache a response to a request with an
   Object-Security option.  As a consequence, the search for cache hits
   and CoAP freshness/Max-Age processing can be omitted.

   Proxy processing of the (Outer) Proxy-Uri option is as defined in
   [RFC7252].

   Proxy processing of the (Outer) Block options is as defined in
   [RFC7959].

   Proxy processing of the (Outer) Observe option is as defined in
   [RFC7641].  OSCORE-aware proxies MAY look at the Partial IV value
   instead of the Outer Observe option.

10.2.  HTTP Processing

   OSCORE was initially designed to work between CoAP endpoints only,
   but the interest in use cases with one endpoint being an HTTP
   endpoint has driven the extension specified here.  OSCORE is intended
   to be used with at least one endpoint being a CoAP endpoint.

   In order to use OSCORE with HTTP, an endpoint needs to be able to map
   HTTP messages to CoAP messages (see [RFC8075]), and to apply OSCORE
   to CoAP messages (as defined in this document).

   For this purpose, this specification defines a new HTTP header field
   named CoAP-Object-Security, see Section 12.4.  The CoAP-Object-
   Security header field is only used in POST requests and 200 (OK)
   responses.  All field semantics is given within the CoAP-Object-

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc8075
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   Security header field.  The header field is neither appropriate to
   list in the Connection header field (see Section 6.1 of [RFC7230]),
   nor in a Vary response header field (see Section 7.1.4 of [RFC7231]),
   nor allowed in trailers (see Section 4.1 of [RFC7230]).
   Intermediaries are not allowed to insert, delete, or modify the
   field's value.  The header field is not preserved across redirects.

   A sending endpoint uses [RFC8075] to translate an HTTP message into a
   CoAP message.  It then protects the message with OSCORE processing,
   and add the Object-Security option (as defined in this document).
   Then, the endpoint maps the resulting CoAP message to an HTTP message
   that includes the HTTP header field CoAP-Object-Security, whose value
   is:

   o  "" if the CoAP Object-Security option is empty, or

   o  the value of the CoAP Object-Security option (Section 6.1) in
      base64url encoding (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this encoding).

   Note that the value of the HTTP body is the CoAP payload, i.e. the
   OSCORE payload (Section 6.2).

   The HTTP header field Content-Type is set to 'application/oscore'
   (see Section 12.5).

   The resulting message is an OSCORE message that uses HTTP.

   A receiving endpoint uses [RFC8075] to translate an HTTP message into
   a CoAP message, with the following addition.  The HTTP message
   includes the CoAP-Object-Security header field, which is mapped to
   the CoAP Object-Security option in the following way.  The CoAP
   Object-Security option value is:

   o  empty if the value of the HTTP CoAP-Object-Security header field
      is ""

   o  the value of the HTTP CoAP-Object-Security header field decoded
      from base64url (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this decoding).

   Note that the value of the CoAP payload is the HTTP body, i.e. the
   OSCORE payload (Section 6.2).

   The resulting message is an OSCORE message that uses CoAP.

https://datatracker.ietf.org/doc/html/rfc7230#section-6.1
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
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   The endpoint can then verify the message according to the OSCORE
   processing and get a verified CoAP message.  It can then translate
   the verified CoAP message into a verified HTTP message.

10.3.  HTTP-to-CoAP Translation Proxy

Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
   HTTP-to-CoAP proxy.  As requested in Section 1 of [RFC8075], this
   section describes the HTTP mapping for the OSCORE protocol extension
   of CoAP.

   The presence of the Object-Security option, both in requests and
   responses, is expressed in an HTTP header field named CoAP-Object-
   Security in the mapped request or response.  The value of the field
   is:

   o  "" if the CoAP Object-Security option is empty, or

   o  the value of the CoAP Object-Security option (Section 6.1) in
      base64url encoding (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this encoding).

   The header field Content-Type 'application/oscore' (see Section 12.5)
   is used for OSCORE messages transported in HTTP.  The CoAP Content-
   Format option is omitted for OSCORE messages transported in CoAP.

   The value of the body is the OSCORE payload (Section 6.2).

   Example:

   Mapping and notation here is based on "Simple Form" (Section 5.4.1.1
   of [RFC8075]).

   [HTTP request -- Before client object security processing]

     GET http://proxy.url/hc/?target_uri=coap://server.url/orders
HTTP/1.1

   [HTTP request -- HTTP Client to Proxy]

     POST http://proxy.url/hc/?target_uri=coap://server.url/ HTTP/1.1
     Content-Type: application/oscore
     CoAP-Object-Security: CSU
     Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

https://datatracker.ietf.org/doc/html/rfc7252#section-10.2
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc8075#section-1
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
https://datatracker.ietf.org/doc/html/rfc8075#section-5.4.1.1
https://datatracker.ietf.org/doc/html/rfc8075#section-5.4.1.1
http://proxy.url/hc/?target_uri=coap://server.url/ordersHTTP/1.1
http://proxy.url/hc/?target_uri=coap://server.url/ordersHTTP/1.1
http://proxy.url/hc/?target_uri=coap://server.url/
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   [CoAP request -- Proxy to CoAP Server]

     POST coap://server.url/
     Object-Security: 09 25
     Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [CoAP request -- After server object security processing]

     GET coap://server.url/orders

   [CoAP response -- Before server object security processing]

     2.05 Content
     Content-Format: 0
     Payload: Exterminate! Exterminate!

   [CoAP response -- CoAP Server to Proxy]

     2.04 Changed
     Object-Security: [empty]
     Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [HTTP response -- Proxy to HTTP Client]

     HTTP/1.1 200 OK
     Content-Type: application/oscore
     CoAP-Object-Security: ""
     Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [HTTP response -- After client object security processing]

     HTTP/1.1 200 OK
     Content-Type: text/plain
     Body: Exterminate! Exterminate!

   Note that the HTTP Status Code 200 in the next-to-last message is the
   mapping of CoAP Code 2.04 (Changed), whereas the HTTP Status Code 200
   in the last message is the mapping of the CoAP Code 2.05 (Content),
   which was encrypted within the compressed COSE object carried in the
   Body of the HTTP response.

10.4.  CoAP-to-HTTP Translation Proxy

Section 10.1 of [RFC7252] describes the behavior of a CoAP-to-HTTP
   proxy.  RFC 8075 [RFC8075] does not cover this direction in any more
   detail and so an example instantiation of Section 10.1 of [RFC7252]
   is used below.

https://datatracker.ietf.org/doc/html/rfc7252#section-10.1
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252#section-10.1
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   Example:

   [CoAP request -- Before client object security processing]

     GET coap://proxy.url/
     Proxy-Uri=http://server.url/orders

   [CoAP request -- CoAP Client to Proxy]

     POST coap://proxy.url/
     Proxy-Uri=http://server.url/
     Object-Security: 09 25
     Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [HTTP request -- Proxy to HTTP Server]

     POST http://server.url/ HTTP/1.1
     Content-Type: application/oscore
     CoAP-Object-Security: CSU
     Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [HTTP request -- After server object security processing]

     GET http://server.url/orders HTTP/1.1

   [HTTP response -- Before server object security processing]

     HTTP/1.1 200 OK
     Content-Type: text/plain
     Body: Exterminate! Exterminate!

   [HTTP response -- HTTP Server to Proxy]

     HTTP/1.1 200 OK
     Content-Type: application/oscore
     CoAP-Object-Security: ""
     Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [CoAP response - Proxy to CoAP Client]

     2.04 Changed
     Object-Security: [empty]
     Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

http://server.url/
http://server.url/orders
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   [CoAP response -- After client object security processing]

     2.05 Content
     Content-Format: 0
     Payload: Exterminate! Exterminate!

   Note that the HTTP Code 2.04 (Changed) in the next-to-last message is
   the mapping of HTTP Status Code 200, whereas the CoAP Code 2.05
   (Content) in the last message is the value that was encrypted within
   the compressed COSE object carried in the Body of the HTTP response.

11.  Security Considerations

11.1.  End-to-end protection

   In scenarios with intermediary nodes such as proxies or gateways,
   transport layer security such as (D)TLS only protects data hop-by-
   hop.  As a consequence, the intermediary nodes can read and modify
   information.  The trust model where all intermediary nodes are
   considered trustworthy is problematic, not only from a privacy
   perspective, but also from a security perspective, as the
   intermediaries are free to delete resources on sensors and falsify
   commands to actuators (such as "unlock door", "start fire alarm",
   "raise bridge").  Even in the rare cases, where all the owners of the
   intermediary nodes are fully trusted, attacks and data breaches make
   such an architecture brittle.

   (D)TLS protects hop-by-hop the entire message.  OSCORE protects end-
   to-end all information that is not required for proxy operations (see

Section 4).  (D)TLS and OSCORE can be combined, thereby enabling end-
   to-end security of the message payload, in combination with hop-by-
   hop protection of the entire message, during transport between end-
   point and intermediary node.  The CoAP messaging layer, including
   header fields such as Type and Message ID, as well as CoAP message
   fields Token and Token Length may be changed by a proxy and thus
   cannot be protected end-to-end.  Error messages occurring during CoAP
   processing are protected end-to-end.  Error messages occurring during
   OSCORE processing are not always possible to protect, e.g. if the
   receiving endpoint cannot locate the right security context.  It may
   still be favorable to send an unprotected error message, e.g. to
   prevent extensive retransmissions, so unprotected error messages are
   allowed as specified.  Similar to error messages, signaling messages
   are not always possible to protect as they may be intended for an
   intermediary.  Hop-by-hop protection of signaling messages can be
   achieved with (D)TLS.  Applications using unprotected error and
   signaling messages need to consider the threat that these messages
   may be spoofed.
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11.2.  Security Context Establishment

   The use of COSE to protect messages as specified in this document
   requires an established security context.  The method to establish
   the security context described in Section 3.2 is based on a common
   shared secret material in client and server, which may be obtained,
   e.g., by using the ACE framework [I-D.ietf-ace-oauth-authz].  An
   OSCORE profile of ACE is described in [I-D.ietf-ace-oscore-profile].

11.3.  Replay Protection

   Most AEAD algorithms require a unique nonce for each message, for
   which the sender sequence numbers in the COSE message field 'Partial
   IV' is used.  If the recipient accepts any sequence number larger
   than the one previously received, then the problem of sequence number
   synchronization is avoided.  With reliable transport, it may be
   defined that only messages with sequence number which are equal to
   previous sequence number + 1 are accepted.  The alternatives to
   sequence numbers have their issues: very constrained devices may not
   be able to support accurate time, or to generate and store large
   numbers of random nonces.  The requirement to change key at counter
   wrap is a complication, but it also forces the user of this
   specification to think about implementing key renewal.

11.4.  Cryptographic Considerations

   The maximum sender sequence number is dependent on the AEAD
   algorithm.  The maximum sender sequence number SHALL be 2^40 - 1, or
   any algorithm specific lower limit, after which a new security
   context must be generated.  The mechanism to build the nonce
   (Section 5.2) assumes that the nonce is at least 56 bit-long, and the
   Partial IV is at most 40 bit-long.  The mandatory-to-implement AEAD
   algorithm AES-CCM-16-64-128 is selected for compatibility with CCM*.

   The security level of a system with m Masters Keys of length k used
   together with Master Salts with entropy n is k + n - log2(m).
   Similarly, the security level of a system with m AEAD keys of length
   k used together with AEAD nonces of length n is k + n - log2(m).
   Security level here means that an attacker can recover one of the m
   keys with complexity 2^(k + n) / m.  Protection against such attacks
   can be provided by increasing the size of the keys or the entropy of
   the Master Salt.  The complexity of recovering a specific key is
   still 2^k (assuming the Master Salt/AEAD nonce is public).  The
   Master Secret, Sender Key, and Recipient Key MUST be secret, the rest
   of the parameters MAY be public.  The Master Secret MUST be uniformly
   random.
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11.5.  Message Fragmentation

   The Inner Block options enable the sender to split large messages
   into OSCORE-protected blocks such that the receiving endpoint can
   verify blocks before having received the complete message.  The Outer
   Block options allow for arbitrary proxy fragmentation operations that
   cannot be verified by the endpoints, but can by policy be restricted
   in size since the Inner Block options allow for secure fragmentation
   of very large messages.  A maximum message size (above which the
   sending endpoint fragments the message and the receiving endpoint
   discards the message, if complying to the policy) may be obtained as
   part of normal resource discovery.

11.6.  Privacy Considerations

   Privacy threats executed through intermediary nodes are considerably
   reduced by means of OSCORE.  End-to-end integrity protection and
   encryption of the message payload and all options that are not used
   for proxy operations, provide mitigation against attacks on sensor
   and actuator communication, which may have a direct impact on the
   personal sphere.

   The unprotected options (Figure 5) may reveal privacy sensitive
   information.  In particular Uri-Host SHOULD NOT contain privacy
   sensitive information.  CoAP headers sent in plaintext allow, for
   example, matching of CON and ACK (CoAP Message Identifier), matching
   of request and responses (Token) and traffic analysis.  OSCORE does
   not provide protection for HTTP header fields which are not CoAP-
   mappable.

   Unprotected error messages reveal information about the security
   state in the communication between the endpoints.  Unprotected
   signalling messages reveal information about the reliable transport
   used on a leg of the path.  Using the mechanisms described in

Section 7.5 may reveal when a device goes through a reboot.  This can
   be mitigated by the device storing the precise state of sender
   sequence number and replay window on a clean shutdown.

   The length of message fields can reveal information about the
   message.  Applications may use a padding scheme to protect against
   traffic analysis.  As an example, the strings "YES" and "NO" even if
   encrypted can be distinguished from each other as there is no padding
   supplied by the current set of encryption algorithms.  Some
   information can be determined even from looking at boundary
   conditions.  An example of this would be returning an integer between
   0 and 100 where lengths of 1, 2 and 3 will provide information about
   where in the range things are.  Three different methods to deal with
   this are: 1) ensure that all messages are the same length.  For
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   example, using 0 and 1 instead of "yes" and "no". 2) Use a character
   which is not part of the responses to pad to a fixed length.  For
   example, pad with a space to three characters. 3) Use the PKCS #7
   style padding scheme where m bytes are appended each having the value
   of m.  For example, appending a 0 to "YES" and two 1's to "NO".  This
   style of padding means that all values need to be padded.  Similar
   arguments apply to other message fields such as resource names.

12.  IANA Considerations

   Note to RFC Editor: Please replace all occurrences of "[[this
   document]]" with the RFC number of this specification.

   Note to IANA: Please note all occurrences of "TBD" in this
   specification should be assigned the same number.

12.1.  COSE Header Parameters Registry

   The 'kid context' parameter is added to the "COSE Header Parameters
   Registry":

   o  Name: kid context

   o  Label: TBD1 (Integer value between 1 and 255)

   o  Value Type: bstr

   o  Value Registry:

   o  Description: kid context

   o  Reference: Section 5.1 of this document

12.2.  CoAP Option Numbers Registry

   The Object-Security option is added to the CoAP Option Numbers
   registry:

             +--------+-----------------+-------------------+
             | Number | Name            | Reference         |
             +--------+-----------------+-------------------+
             |  TBD   | Object-Security | [[this document]] |
             +--------+-----------------+-------------------+
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12.3.  CoAP Signaling Option Numbers Registry

   The Object-Security option is added to the CoAP Signaling Option
   Numbers registry:

     +------------+--------+---------------------+-------------------+
     | Applies to | Number | Name                | Reference         |
     +------------+--------+---------------------+-------------------+
     | 7.xx       |  TBD   | Object-Security     | [[this document]] |
     +------------+--------+---------------------+-------------------+

12.4.  Header Field Registrations

   The HTTP header field CoAP-Object-Security is added to the Message
   Headers registry:

    +----------------------+----------+----------+-------------------+
    | Header Field Name    | Protocol | Status   | Reference         |
    +----------------------+----------+----------+-------------------+
    | CoAP-Object-Security | http     | standard | [[this document]] |
    +----------------------+----------+----------+-------------------+

12.5.  Media Type Registrations

   This section registers the 'application/oscore' media type in the
   "Media Types" registry.
   These media types are used to indicate that the content is an OSCORE
   message.
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     Type name: application

     Subtype name: oscore

     Required parameters: N/A

     Optional parameters: N/A

     Encoding considerations: binary

     Security considerations: See the Security Considerations section
     of [[This document]].

     Interoperability considerations: N/A

     Published specification: [[This document]]

     Applications that use this media type: IoT applications sending
     security content over HTTP(S) transports.

     Fragment identifier considerations: N/A

     Additional information:

     *  Deprecated alias names for this type: N/A

     *  Magic number(s): N/A

     *  File extension(s): N/A

     *  Macintosh file type code(s): N/A

     Person & email address to contact for further information:
     iesg@ietf.org

     Intended usage: COMMON

     Restrictions on usage: N/A

     Author: Goeran Selander, goran.selander@ericsson.com

     Change Controller: IESG

     Provisional registration?  No
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      Client  Proxy  Server
        |       |       |
        +------>|       |            Code: 0.02 (POST)
        | POST  |       |           Token: 0x8c
        |       |       | Object-Security: [kid:5f,Partial IV:42]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"alarm_status"}
        |       |       |
        |       +------>|            Code: 0.02 (POST)
        |       | POST  |           Token: 0x7b
        |       |       | Object-Security: [kid:5f,Partial IV:42]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"alarm_status"}
        |       |       |
        |       |<------+            Code: 2.04 (Changed)
        |       |  2.04 |           Token: 0x7b
        |       |       | Object-Security: -
        |       |       |         Payload: {Code:2.05, "OFF"}
        |       |       |
        |<------+       |            Code: 2.04 (Changed)
        |  2.04 |       |           Token: 0x8c
        |       |       | Object-Security: -
        |       |       |         Payload: {Code:2.05, "OFF"}
        |       |       |

   Figure 11: Secure Access to Sensor.  Square brackets [ ... ] indicate
    content of compressed COSE object.  Curly brackets { ... } indicate
                              encrypted data.

   The request/response Codes are encrypted by OSCORE and only dummy
   Codes (POST/Changed) are visible in the header of the OSCORE message.
   The option Uri-Path ("alarm_status") and payload ("OFF") are
   encrypted.

   The COSE header of the request contains an identifier (5f),
   indicating which security context was used to protect the message and
   a Partial IV (42).

   The server verifies the request as specified in Section 8.2.  The
   client verifies the response as specified in Section 8.4.

A.2.  Secure Subscribe to Sensor

   This example illustrates a client requesting subscription to a blood
   sugar measurement resource (GET /glucose), first receiving the value
   220 mg/dl and then a second value 180 mg/dl.

      Client  Proxy  Server
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        |       |       |
        +------>|       |            Code: 0.05 (FETCH)
        | FETCH |       |           Token: 0x83
        |       |       |         Observe: 0
        |       |       | Object-Security: [kid:ca,Partial IV:15]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"glucose"}
        |       |       |
        |       +------>|            Code: 0.05 (FETCH)
        |       | FETCH |           Token: 0xbe
        |       |       |         Observe: 0
        |       |       | Object-Security: [kid:ca,Partial IV:15]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"glucose"}
        |       |       |
        |       |<------+            Code: 2.04 (Changed)
        |       |  2.04 |           Token: 0xbe
        |       |       |         Observe: 7
        |       |       | Object-Security: [Partial IV:32]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Content-Format:0, "220"}
        |       |       |
        |<------+       |            Code: 2.04 (Changed)
        |  2.04 |       |           Token: 0x83
        |       |       |         Observe: 7
        |       |       | Object-Security: [Partial IV:32]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Content-Format:0, "220"}
       ...     ...     ...
        |       |       |
        |       |<------+            Code: 2.04 (Changed)
        |       |  2.04 |           Token: 0xbe
        |       |       |         Observe: 8
        |       |       | Object-Security: [Partial IV:36]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Content-Format:0, "180"}
        |       |       |
        |<------+       |            Code: 2.04 (Changed)
        |  2.04 |       |           Token: 0x83
        |       |       |         Observe: 8
        |       |       | Object-Security: [Partial IV:36]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Content-Format:0, "180"}
        |       |       |

      Figure 12: Secure Subscribe to Sensor.  Square brackets [ ... ]
   indicate content of compressed COSE object header.  Curly brackets {
                      ... } indicate encrypted data.
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   The request/response Codes are encrypted by OSCORE and only dummy
   Codes (FETCH/Changed) are visible in the header of the OSCORE
   message.  The options Content-Format (0) and the payload ("220" and
   "180"), are encrypted.

   The COSE header of the request contains an identifier (ca),
   indicating the security context used to protect the message and a
   Partial IV (15).  The COSE headers of the responses contains Partial
   IVs (32 and 36).

   The server verifies that the Partial IV has not been received before.
   The client verifies that the responses are bound to the request and
   that the Partial IVs are greater than any Partial IV previously
   received in a response bound to the request.

Appendix B.  Deployment examples

   OSCORE may be deployed in a variety of settings, a few examples are
   given in this section.

B.1.  Master Secret Used Once

   For settings where the Master Secret is only used during deployment,
   the uniqueness of AEAD nonce may be assured by persistent storage of
   the security context as described in this specification (see

Section 7.5).  For many IoT deployments, a 128 bit uniformly random
   Master Key is sufficient for encrypting all data exchanged with the
   IoT device throughout its lifetime.

B.2.  Master Secret Used Multiple Times

   In cases where the Master Secret needs to be used to derive multiple
   security contexts, e.g. due to recommissioning or where the security
   context is not persistently stored, a stochastically unique Master
   Salt prevents the reuse of AEAD nonce and key.  The Master Salt may
   be transported between client and server in the kid context parameter
   (see Section 5.1) of the request.

   In this section we give an example of a procedure which may be
   implemented in client and server to establish the OSCORE security
   context based on pre-established input parameters (see Section 3.2)
   except for the Master Salt which is transported in kid context.

   1.  In order to establish a security context with a server for the
       first time, or a new security context replacing an old security
       context, the client generates a (pseudo-)random uniformly
       distributed 64-bit Master Salt and derives the security context
       as specified in Section 3.2.  The client protects a request with
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       the new Sender Context and sends the message with kid context set
       to the Master Salt.

   2.  The server, receiving an OSCORE request with a non-empty kid
       context derives the new security context using the received kid
       context as Master Salt.  The server processes the request as
       specified in this document using the new Recipient Context.  If
       the processing of the request completes without error, the server
       responds with an Echo option as specified in
       [I-D.ietf-core-echo-request-tag].  The response is protected with
       the new Sender Context.

   3.  The client, receiving a response with an Echo option to a request
       which used a new security context, verifies the response using
       the new Recipient Context, and if valid repeats the request with
       the Echo option (see [I-D.ietf-core-echo-request-tag]) using the
       new Sender Context.  Subsequent message exchanges (unless
       superseded) are processed using the new security context without
       including the Master Salt in the kid context.

   4.  The server, receiving a request with a kid context and a valid
       Echo option (see [I-D.ietf-core-echo-request-tag]), repeats the
       processing described in step 2.  If it completes without error,
       then the new security context is established, and the request is
       valid.  If the server already had an old security context with
       this client that is now replaced by the new security context.

   If the server receives a request without kid context from a client
   with which no security context is established, then the server
   responds with a 4.01 Unauthorized error message with diagnostic
   payload containing the string "Security context not found".  This
   could be the result of the server having lost its security context or
   that a new security context has not been successfully established,
   which may be a trigger for the client to run this procedure.

B.3.  Client Aliveness

   The use of a single OSCORE request and response enables the client to
   verify that the server's identity and aliveness through actual
   communications.  While a verified OSCORE request enables the server
   to verify the identity of the entity who generated the message, it
   does not verify that the client is currently involved in the
   communication, since the message may be a delayed delivery of a
   previously generated request which now reaches the server.  To verify
   the aliveness of the client the server may initiate an OSCORE
   protected message exchange with the client, e.g. by switching the
   roles of client and server as described in Section 3.1, or by using
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   the Echo option in the response to a request from the client
   [I-D.ietf-core-echo-request-tag].

Appendix C.  Test Vectors

   This appendix includes the test vectors for different examples of
   CoAP messages using OSCORE.

C.1.  Test Vector 1: Key Derivation with Master Salt

   Given a set of inputs, OSCORE defines how to set up the Security
   Context in both the client and the server.  The default values are
   used for AEAD Algorithm and KDF.

C.1.1.  Client

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Master Salt: 0x9e7ca92223786340 (8 bytes)

   o  Sender ID: 0x (0 byte)

   o  Recipient ID: 0x01 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x84400A634b657910 (8 bytes)

   o  info (for Recipient Key): 0x8441010A634b657910 (9 bytes)

   o  info (for Common IV): 0x84400a6249560d (7 bytes)

   Outputs:

   o  Sender Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

   o  Recipient Key: 0xe534a26a64aa3982e988e31f1e401e65 (16 bytes)

   o  Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

C.1.2.  Server

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)
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   o  Master Salt: 0x9e7ca92223786340 (64 bytes)

   o  Sender ID: 0x01 (1 byte)

   o  Recipient ID: 0x (0 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x8441010A634b657910 (9 bytes)

   o  info (for Recipient Key): 0x84400A634b657910 (8 bytes)

   o  info (for Common IV): 0x84400a6249560d (7 bytes)

   Outputs:

   o  Sender Key: 0xe534a26a64aa3982e988e31f1e401e65 (16 bytes)

   o  Recipient Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

   o  Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

C.2.  Test Vector 2: Key Derivation without Master Salt

   Given a set of inputs, OSCORE defines how to set up the Security
   Context in both the client and the server.  The default values are
   used for AEAD Algorithm, KDF, and Master Salt.

C.2.1.  Client

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Sender ID: 0x00 (1 byte)

   o  Recipient ID: 0x01 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x8441000A634b657910 (9 bytes)

   o  info (for Recipient Key): 0x8441010A634b657910 (9 bytes)

   o  info (for Common IV): 0x84400a6249560d (7 bytes)

   Outputs:
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   o  Sender Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

   o  Recipient Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

C.2.2.  Server

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Sender ID: 0x01 (1 byte)

   o  Recipient ID: 0x00 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x8441010A634b657910 (9 bytes)

   o  info (for Recipient Key): 0x8441000A634b657910 (9 bytes)

   o  info (for Common IV): 0x84400a6249560d (7 bytes)

   Outputs:

   o  Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  Recipient Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

   o  Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

C.3.  Test Vector 3: OSCORE Request, Client

   This section contains a test vector for a OSCORE protected CoAP GET
   request using the security context derived in Appendix C.1.  The
   unprotected request only contains the Uri-Path option.

   Unprotected CoAP request:
   0x440149c60000f2a7396c6f63616c686f737483747631 (22 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)
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   Sender Context:

   o  Sender ID: 0x00 (1 byte)

   o  Sender Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

   o  Sender Sequence Number: 20

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x14 (1 byte)

   o  kid: 0x00 (1 byte)

   o  external_aad: 0x8501810a4100411440 (9 bytes)

   o  AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

   o  plaintext: 0x01b3747631 (5 bytes)

   o  encryption key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

   o  nonce: 0xd0a1949aa253278f34c528d2d8 (13 bytes)

   From the previous parameter, the following is derived:

   o  Object-Security value: 0x091400 (3 bytes)

   o  ciphertext: 0x55b3710d47c611cd3924838a44 (13 bytes)

   From there:

   o  Protected CoAP request (OSCORE message): 0x44026dd30000acc5396c6f6
      3616c686f7374d305091400ff55b3710d47c611cd3924838a44 (37 bytes)

C.4.  Test Vector 4: OSCORE Request, Client

   This section contains a test vector for a OSCORE protected CoAP GET
   request using the security context derived in Appendix C.2.  The
   unprotected request only contains the Uri-Path option.

   Unprotected CoAP request:
   0x440149c60000f2a7396c6f63616c686f737483747631 (22 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)
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   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

   Sender Context:

   o  Sender ID: 0x (0 bytes)

   o  Sender Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

   o  Sender Sequence Number: 20

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x14 (1 byte)

   o  kid: 0x (0 byte)

   o  external_aad: 0x8501810a40411440 (8 bytes)

   o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

   o  plaintext: 0x01b3747631 (5 bytes)

   o  encryption key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

   o  nonce: 0x01727733ab49ead385b18f7d85 (13 bytes)

   From the previous parameter, the following is derived:

   o  Object-Security value: 0x0914 (2 bytes)

   o  ciphertext: 0x6be9214aad448260ff1be1f594 (13 bytes)

   From there:

   o  Protected CoAP request (OSCORE message): 0x44023bfc000066ef396c6f6
      3616c686f7374d2050914ff6be9214aad448260ff1be1f594 (36 bytes)

C.5.  Test Vector 5: OSCORE Response, Server

   This section contains a test vector for a OSCORE protected 2.05
   Content response to the request in Appendix C.3.  The unprotected
   response has payload "Hello World!" and no options.  The protected
   response does not contain a kid nor a Partial IV.

   Unprotected CoAP response:
   0x644549c60000f2a7ff48656c6c6f20576f726c6421 (21 bytes)
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   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

   Sender Context:

   o  Sender ID: 0x01 (1 byte)

   o  Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  Sender Sequence Number: 0

   The following COSE and cryptographic parameters are derived:

   o  external_aad: 0x8501810a4100411440 (9 bytes)

   o  AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

   o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

   o  encryption key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  nonce: 0xd0a1949aa253278f34c528d2d8 (13 bytes)

   From the previous parameter, the following is derived:

   o  Object-Security value: 0x (0 bytes)

   o  ciphertext: e4e8c28c41c8f31ca56eec24f6c71d94eacbcdffdc6d (22
      bytes)

   From there:

   o  Protected CoAP response (OSCORE message): 0x64446dd30000acc5d008ff
      e4e8c28c41c8f31ca56eec24f6c71d94eacbcdffdc6d (33 bytes)

C.6.  Test Vector 6: OSCORE Response with Partial IV, Server

   This section contains a test vector for a OSCORE protected 2.05
   Content response to the request in Appendix C.3.  The unprotected
   response has payload "Hello World!" and no options.  The protected
   response does not contain a kid, but contains a Partial IV.
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   Unprotected CoAP response:
   0x644549c60000f2a7ff48656c6c6f20576f726c6421 (21 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

   Sender Context:

   o  Sender ID: 0x01 (1 byte)

   o  Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  Sender Sequence Number: 0

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x00 (1 byte)

   o  external_aad: 0x8501810a4100411440 (9 bytes)

   o  AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

   o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

   o  encryption key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

   o  nonce: 0xd0a1949aa253278e34c528d2cc (13 bytes)

   From the previous parameter, the following is derived:

   o  Object-Security value: 0x0100 (2 bytes)

   o  ciphertext: 0xa7e3ca27f221f453c0ba68c350bf652ea096b328a1bf (22
      bytes)

   From there:

   o  Protected CoAP response (OSCORE message): 0x64442b130000b29ed20801
      00ffa7e3ca27f221f453c0ba68c350bf652ea096b328a1bf (35 bytes)
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Appendix D.  Security properties

   This appendix discusses security properties of OSCORE.

   TODO

Appendix E.  CDDL Summary

   Data structure definitions in the present specification employ the
   CDDL language for conciseness and precision.  CDDL is defined in
   [I-D.ietf-cbor-cddl], which at the time of writing this appendix is
   in the process of completion.  As the document is not yet available
   for a normative reference, the present appendix defines the small
   subset of CDDL that is being used in the present specification.

   Within the subset being used here, a CDDL rule is of the form "name =
   type", where "name" is the name given to the "type".  A "type" can be
   one of:

   o  a reference to another named type, by giving its name.  The
      predefined named types used in the present specification are:
      "uint", an unsigned integer (as represented in CBOR by major type
      0); "int", an unsigned or negative integer (as represented in CBOR
      by major type 0 or 1); "bstr", a byte string (as represented in
      CBOR by major type 2); "tstr", a text string (as represented in
      CBOR by major type 3);

   o  a choice between two types, by giving both types separated by a
      "/";

   o  an array type (as represented in CBOR by major type 4), where the
      sequence of elements of the array is described by giving a
      sequence of entries separated by commas ",", and this sequence is
      enclosed by square brackets "[" and "]".  Arrays described by an
      array description contain elements that correspond one-to-one to
      the sequence of entries given.  Each entry of an array description
      is of the form "name : type", where "name" is the name given to
      the entry and "type" is the type of the array element
      corresponding to this entry.
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