
CoRE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: September 15, 2018 Ericsson AB
 L. Seitz
 RISE SICS
 March 14, 2018

Object Security for Constrained RESTful Environments (OSCORE)
draft-ietf-core-object-security-10

Abstract

 This document defines Object Security for Constrained RESTful
 Environments (OSCORE), a method for application-layer protection of
 the Constrained Application Protocol (CoAP), using CBOR Object
 Signing and Encryption (COSE). OSCORE provides end-to-end protection
 between endpoints communicating using CoAP or CoAP-mappable HTTP.
 OSCORE is designed for constrained nodes and networks supporting a
 range of proxy operations, including translation between different
 transport protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Selander, et al. Expires September 15, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OSCORE March 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 6

2. The CoAP Object-Security Option 6
3. The Security Context . 7
3.1. Security Context Definition 7
3.2. Establishment of Security Context Parameters 9
3.3. Requirements on the Security Context Parameters 11

4. Protected Message Fields 12
4.1. CoAP Options . 13
4.2. CoAP Header Fields and Payload 20
4.3. Signaling Messages 21

5. The COSE Object . 21
5.1. Kid Context . 23
5.2. Nonce . 23
5.3. Plaintext . 24
5.4. Additional Authenticated Data 25

6. OSCORE Header Compression 26
6.1. Encoding of the Object-Security Value 26
6.2. Encoding of the OSCORE Payload 27
6.3. Examples of Compressed COSE Objects 28

7. Sequence Numbers, Replay, Message Binding, and Freshness . . 29
7.1. Message Binding . 29
7.2. AEAD Nonce Uniqueness 29
7.3. Freshness . 30
7.4. Replay Protection . 30
7.5. Losing Part of the Context State 31

8. Processing . 32
8.1. Protecting the Request 32
8.2. Verifying the Request 33
8.3. Protecting the Response 34
8.4. Verifying the Response 35

9. Web Linking . 36
10. Proxy and HTTP Operations 37
10.1. CoAP-to-CoAP Forwarding Proxy 37
10.2. HTTP Processing . 37
10.3. HTTP-to-CoAP Translation Proxy 39
10.4. CoAP-to-HTTP Translation Proxy 40

11. Security Considerations 42
11.1. End-to-end protection 42

Selander, et al. Expires September 15, 2018 [Page 2]

Internet-Draft OSCORE March 2018

11.2. Security Context Establishment 43
11.3. Replay Protection 43
11.4. Cryptographic Considerations 43
11.5. Message Fragmentation 44
11.6. Privacy Considerations 44

12. IANA Considerations . 45
12.1. COSE Header Parameters Registry 45
12.2. CoAP Option Numbers Registry 45
12.3. CoAP Signaling Option Numbers Registry 46
12.4. Header Field Registrations 46
12.5. Media Type Registrations 46

13. References . 48
13.1. Normative References 48
13.2. Informative References 49

Appendix A. Scenario Examples 51
A.1. Secure Access to Sensor 51
A.2. Secure Subscribe to Sensor 52

Appendix B. Deployment examples 54
B.1. Master Secret Used Once 54
B.2. Master Secret Used Multiple Times 54
B.3. Client Aliveness . 55

Appendix C. Test Vectors . 56
C.1. Test Vector 1: Key Derivation with Master Salt 56
C.2. Test Vector 2: Key Derivation without Master Salt 57
C.3. Test Vector 3: OSCORE Request, Client 58
C.4. Test Vector 4: OSCORE Request, Client 59
C.5. Test Vector 5: OSCORE Response, Server 60

 C.6. Test Vector 6: OSCORE Response with Partial IV, Server . 61
Appendix D. Security properties 63
Appendix E. CDDL Summary . 63

 Acknowledgments . 63
 Authors' Addresses . 64

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a web
 application protocol, designed for constrained nodes and networks
 [RFC7228], and may be mapped from HTTP [RFC8075]. CoAP specifies the
 use of proxies for scalability and efficiency and references DTLS
 ([RFC6347]) for security. CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-
 HTTP proxies require (D)TLS to be terminated at the proxy. The proxy
 therefore not only has access to the data required for performing the
 intended proxy functionality, but is also able to eavesdrop on, or
 manipulate any part of, the message payload and metadata in transit
 between the endpoints. The proxy can also inject, delete, or reorder
 packets since they are no longer protected by (D)TLS.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc6347

Selander, et al. Expires September 15, 2018 [Page 3]

Internet-Draft OSCORE March 2018

 This document defines the Object Security for Constrained RESTful
 Environments (OSCORE) security protocol, protecting CoAP and CoAP-
 mappable HTTP requests and responses end-to-end across intermediary
 nodes such as CoAP forward proxies and cross-protocol translators
 including HTTP-to-CoAP proxies [RFC8075]. In addition to the core
 CoAP features defined in [RFC7252], OSCORE supports Observe
 [RFC7641], Blockwise [RFC7959], No-Response [RFC7967], and PATCH and
 FETCH [RFC8132]. An analysis of end-to-end security for CoAP
 messages through some types of intermediary nodes is performed in
 [I-D.hartke-core-e2e-security-reqs]. OSCORE essentially protects the
 RESTful interactions; the request method, the requested resource, the
 message payload, etc. (see Section 4). OSCORE protects neither the
 CoAP Messaging Layer nor the CoAP Token which may change between the
 endpoints, and those are therefore processed as defined in [RFC7252].
 Additionally, since the message formats for CoAP over unreliable
 transport [RFC7252] and for CoAP over reliable transport [RFC8323]
 differ only in terms of CoAP Messaging Layer, OSCORE can be applied
 to both unreliable and reliable transports (see Figure 1).

 +-----------------------------------+
 | Application |
 +-----------------------------------+
 +-----------------------------------+ \
 | Requests / Responses / Signaling | |
 |-----------------------------------| |
 | OSCORE | | CoAP
 |-----------------------------------| |
 | Messaging Layer / Message Framing | |
 +-----------------------------------+ /
 +-----------------------------------+
 | UDP / TCP / ... |
 +-----------------------------------+

 Figure 1: Abstract Layering of CoAP with OSCORE

 OSCORE works in very constrained nodes and networks, thanks to its
 small message size and the restricted code and memory requirements in
 addition to what is required by CoAP. Examples of the use of OSCORE
 are given in Appendix A. OSCORE does not depend on underlying
 layers, and can be used anywhere where CoAP or HTTP can be used,
 including non-IP transports (e.g., [I-D.bormann-6lo-coap-802-15-ie]).
 OSCORE may be used together with (D)TLS over one or more hops in the
 end-to-end path, e.g. with HTTPs in one hop and with plain CoAP in
 another hop.

 The use of OSCORE does not affect the URI scheme and OSCORE can
 therefore be used with any URI scheme defined for CoAP or HTTP. The
 application decides the conditions for which OSCORE is required.

https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7967
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323

Selander, et al. Expires September 15, 2018 [Page 4]

Internet-Draft OSCORE March 2018

 OSCORE uses pre-shared keys which may have been established out-of-
 band or with a key establishment protocol (see Section 3.2). The
 technical solution builds on CBOR Object Signing and Encryption
 (COSE) [RFC8152], providing end-to-end encryption, integrity, replay
 protection, and secure binding of response to request. A compressed
 version of COSE is used, as specified in Section 6. The use of
 OSCORE is signaled with the new Object-Security CoAP option or HTTP
 header field, defined in Section 2 and Section 10.3. The solution
 transforms a CoAP/HTTP message into an "OSCORE message" before
 sending, and vice versa after receiving. The OSCORE message is a
 CoAP/HTTP message related to the original message in the following
 way: the original CoAP/HTTP message is translated to CoAP (if not
 already in CoAP) and protected in a COSE object. The encrypted
 message fields of this COSE object are transported in the CoAP
 payload/HTTP body of the OSCORE message, and the Object-Security
 option/header field is included in the message. A sketch of an
 OSCORE message exchange in the case of the original message being
 CoAP is provided in Figure 2).

 Client Server
 | OSCORE request - POST example.com: |
 | Header, Token, |
 | Options: {Object-Security, ...}, |
 | Payload: COSE ciphertext |
 +--->|
 | |
 |<---+
 | OSCORE response - 2.04 (Changed): |
 | Header, Token, |
 | Options: {Object-Security, ...}, |
 | Payload: COSE ciphertext |
 | |

 Figure 2: Sketch of CoAP with OSCORE

 An implementation supporting this specification MAY implement only
 the client part, MAY implement only the server part, or MAY implement
 only one of the proxy parts. OSCORE is designed to protect as much
 information as possible while still allowing proxy operations
 (Section 10). It works with legacy CoAP-to-CoAP forward proxies
 [RFC7252], but an OSCORE-aware proxy will be more efficient. HTTP-
 to-CoAP proxies [RFC8075] and CoAP-to-HTTP proxies can also be used
 with OSCORE, as specified in Section 10.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8075

Selander, et al. Expires September 15, 2018 [Page 5]

Internet-Draft OSCORE March 2018

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in CoAP [RFC7252], Observe [RFC7641], Blockwise [RFC7959],
 COSE [RFC8152], CBOR [RFC7049], CDDL [I-D.ietf-cbor-cddl] as
 summarized in Appendix E, and constrained environments [RFC7228].

 The term "hop" is used to denote a particular leg in the end-to-end
 path. The concept "hop-by-hop" (as in "hop-by-hop encryption" or
 "hop-by-hop fragmentation") opposed to "end-to-end", is used in this
 document to indicate that the messages are processed accordingly in
 the intermediaries, rather than just forwarded to the next node.

 The term "stop processing" is used throughout the document to denote
 that the message is not passed up to the CoAP Request/Response layer
 (see Figure 1).

 The terms Common/Sender/Recipient Context, Master Secret/Salt, Sender
 ID/Key, Recipient ID/Key, and Common IV are defined in Section 3.1.

2. The CoAP Object-Security Option

 The CoAP Object-Security option (see Figure 3, which extends Table 4
 of [RFC7252]) indicates that the CoAP message is an OSCORE message
 and that it contains a compressed COSE object (see Section 5 and

Section 6). The Object-Security option is critical, safe to forward,
 part of the cache key, and not repeatable.

 +-----+---+---+---+---+-----------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+-----------------+--------+--------+---------+
 | TBD | x | | | | Object-Security | (*) | 0-255 | (none) |
 +-----+---+---+---+---+-----------------+--------+--------+---------+
 C = Critical, U = Unsafe, N = NoCacheKey, R = Repeatable
 (*) See below.

 Figure 3: The Object-Security Option

 The Object-Security option includes the OSCORE flag bits (Section 6),
 the Sender Sequence Number and the Sender ID when present
 (Section 3). The detailed format and length is specified in

Section 6. If the OSCORE flag bits is all zero (0x00) the Option

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires September 15, 2018 [Page 6]

Internet-Draft OSCORE March 2018

 value SHALL be empty (Option Length = 0). An endpoint receiving a
 CoAP message without payload, that also contains an Object-Security
 option SHALL treat it as malformed and reject it.

 A successful response to a request with the Object-Security option
 SHALL contain the Object-Security option. Whether error responses
 contain the Object-Security option depends on the error type (see

Section 8).

 A CoAP proxy SHOULD NOT cache a response to a request with an Object-
 Security option, since the response is only applicable to the
 original request (see Section 10.1). As the compressed COSE Object
 is included in the cache key, messages with the Object-Security
 option will never generate cache hits. For Max-Age processing (see

Section 4.1.3.1).

3. The Security Context

 OSCORE requires that client and server establish a shared security
 context used to process the COSE objects. OSCORE uses COSE with an
 Authenticated Encryption with Additional Data (AEAD, [RFC5116])
 algorithm for protecting message data between a client and a server.
 In this section, we define the security context and how it is derived
 in client and server based on a shared secret and a key derivation
 function (KDF).

3.1. Security Context Definition

 The security context is the set of information elements necessary to
 carry out the cryptographic operations in OSCORE. For each endpoint,
 the security context is composed of a "Common Context", a "Sender
 Context", and a "Recipient Context".

 The endpoints protect messages to send using the Sender Context and
 verify messages received using the Recipient Context, both contexts
 being derived from the Common Context and other data. Clients and
 servers need to be able to retrieve the correct security context to
 use.

 An endpoint uses its Sender ID (SID) to derive its Sender Context,
 and the other endpoint uses the same ID, now called Recipient ID
 (RID), to derive its Recipient Context. In communication between two
 endpoints, the Sender Context of one endpoint matches the Recipient
 Context of the other endpoint, and vice versa. Thus, the two
 security contexts identified by the same IDs in the two endpoints are
 not the same, but they are partly mirrored. Retrieval and use of the
 security context are shown in Figure 4.

https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires September 15, 2018 [Page 7]

Internet-Draft OSCORE March 2018

 .-------------. .-------------.
 | Common, | | Common, |
 | Sender, | | Recipient, |
 | Recipient | | Sender |
 '-------------' '-------------'
 Client Server
 | |
 Retrieve context for | OSCORE request: |
 target resource | Token = Token1, |
 Protect request with | kid = SID, ... |
 Sender Context +---------------------->| Retrieve context with
 | | RID = kid
 | | Verify request with
 | | Recipient Context
 | OSCORE response: | Protect response with
 | Token = Token1, ... | Sender Context
 Retrieve context with |<----------------------+
 Token = Token1 | |
 Verify request with | |
 Recipient Context | |

 Figure 4: Retrieval and use of the Security Context

 The Common Context contains the following parameters:

 o AEAD Algorithm. The COSE AEAD algorithm to use for encryption.

 o Key Derivation Function. The HMAC based HKDF [RFC5869] used to
 derive Sender Key, Recipient Key, and Common IV.

 o Master Secret. Variable length, uniformly random byte string
 containing the key used to derive traffic keys and IVs.

 o Master Salt. Variable length byte string containing the salt used
 to derive traffic keys and IVs.

 o Common IV. Byte string derived from Master Secret and Master
 Salt. Length is determined by the AEAD Algorithm.

 The Sender Context contains the following parameters:

 o Sender ID. Byte string used to identify the Sender Context and to
 assure unique AEAD nonces. Maximum length is determined by the
 AEAD Algorithm.

 o Sender Key. Byte string containing the symmetric key to protect
 messages to send. Derived from Common Context and Sender ID.
 Length is determined by the AEAD Algorithm.

https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires September 15, 2018 [Page 8]

Internet-Draft OSCORE March 2018

 o Sender Sequence Number. Non-negative integer used by the sender
 to protect requests and Observe notifications. Used as 'Partial
 IV' [RFC8152] to generate unique nonces for the AEAD. Maximum
 value is determined by the AEAD Algorithm.

 The Recipient Context contains the following parameters:

 o Recipient ID. Byte string used to identify the Recipient Context
 and to assure unique AEAD nonces. Maximum length is determined by
 the AEAD Algorithm.

 o Recipient Key. Byte string containing the symmetric key to verify
 messages received. Derived from Common Context and Recipient ID.
 Length is determined by the AEAD Algorithm.

 o Replay Window (Server only). The replay window to verify requests
 received.

 All parameters except Sender Sequence Number and Replay Window are
 immutable once the security context is established. An endpoint may
 free up memory by not storing the Common IV, Sender Key, and
 Recipient Key, deriving them from the Master Key and Master Salt when
 needed. Alternatively, an endpoint may free up memory by not storing
 the Master Secret and Master Salt after the other parameters have
 been derived.

 Endpoints MAY operate as both client and server and use the same
 security context for those roles. Independent of being client or
 server, the endpoint protects messages to send using its Sender
 Context, and verifies messages received using its Recipient Context.
 The endpoints MUST NOT change the Sender/Recipient ID when changing
 roles. In other words, changing the roles does not change the set of
 keys to be used.

3.2. Establishment of Security Context Parameters

 The parameters in the security context are derived from a small set
 of input parameters. The following input parameters SHALL be pre-
 established:

 o Master Secret

 o Sender ID

 o Recipient ID

https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires September 15, 2018 [Page 9]

Internet-Draft OSCORE March 2018

 The following input parameters MAY be pre-established. In case any
 of these parameters is not pre-established, the default value
 indicated below is used:

 o AEAD Algorithm

 * Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

 o Master Salt

 * Default is the empty string

 o Key Derivation Function (KDF)

 * Default is HKDF SHA-256

 o Replay Window Type and Size

 * Default is DTLS-type replay protection with a window size of 32
 ([RFC6347])

 All input parameters need to be known to and agreed on by both
 endpoints, but the replay window may be different in the two
 endpoints. How the input parameters are pre-established, is
 application specific. The OSCORE profile of the ACE framework may be
 used to establish the necessary input parameters
 ([I-D.ietf-ace-oscore-profile]), or a key exchange protocol such as
 the TLS/DTLS handshake ([I-D.mattsson-ace-tls-oscore]) or EDHOC
 ([I-D.selander-ace-cose-ecdhe]) providing forward secrecy. Other
 examples of deploying OSCORE are given in Appendix B.

3.2.1. Derivation of Sender Key, Recipient Key, and Common IV

 The KDF MUST be one of the HMAC based HKDF [RFC5869] algorithms
 defined in COSE. HKDF SHA-256 is mandatory to implement. The
 security context parameters Sender Key, Recipient Key, and Common IV
 SHALL be derived from the input parameters using the HKDF, which
 consists of the composition of the HKDF-Extract and HKDF-Expand steps
 ([RFC5869]):

 output parameter = HKDF(salt, IKM, info, L)

 where:

 o salt is the Master Salt as defined above

 o IKM is the Master Secret as defined above

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires September 15, 2018 [Page 10]

Internet-Draft OSCORE March 2018

 o info is a CBOR array consisting of:

 info = [
 id : bstr,
 alg_aead : int / tstr,
 type : tstr,
 L : uint
]

 where:

 o id is the Sender ID or Recipient ID when deriving keys and the
 empty string when deriving the Common IV. The encoding is
 described in Section 5.

 o alg_aead is the AEAD Algorithm, encoded as defined in [RFC8152].

 o type is "Key" or "IV". The label is an ASCII string, and does not
 include a trailing NUL byte.

 o L is the size of the key/IV for the AEAD algorithm used, in bytes.

 For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
 [RFC8152]) is used, the integer value for alg_aead is 10, the value
 for L is 16 for keys and 13 for the Common IV.

3.2.2. Initial Sequence Numbers and Replay Window

 The Sender Sequence Number is initialized to 0. The supported types
 of replay protection and replay window length is application specific
 and depends on how OSCORE is transported, see Section 7.4. The
 default is DTLS-type replay protection with a window size of 32
 initiated as described in Section 4.1.2.6 of [RFC6347].

3.3. Requirements on the Security Context Parameters

 As collisions may lead to the loss of both confidentiality and
 integrity, Sender ID SHALL be unique in the set of all security
 contexts using the same Master Secret and Master Salt. When a
 trusted third party assigns identifiers (e.g., using
 [I-D.ietf-ace-oauth-authz]) or by using a protocol that allows the
 parties to negotiate locally unique identifiers in each endpoint, the
 Sender IDs can be very short. The maximum length of Sender ID in
 bytes equals the length of AEAD nonce minus 6. For AES-CCM-16-64-128
 the maximum length of Sender ID is 7 bytes. Sender IDs MAY be
 uniformly random distributed byte strings if the probability of
 collisions is negligible.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6

Selander, et al. Expires September 15, 2018 [Page 11]

Internet-Draft OSCORE March 2018

 If Sender ID uniqueness cannot be guaranteed by construction, Sender
 IDs MUST be long uniformly random distributed byte strings such that
 the probability of collisions is negligible.

 To simplify retrieval of the right Recipient Context, the Recipient
 ID SHOULD be unique in the sets of all Recipient Contexts used by an
 endpoint. If an endpoint has the same Recipient ID with different
 Recipient Contexts, i.e. the Recipient Contexts are derived from
 different keying material, then the endpoint may need to try multiple
 times before finding the right security context associated to the
 Recipient ID. The Client MAY provide a 'kid context' parameter
 (Section 5.1) to help the Server find the right context.

 While the triple (Master Secret, Master Salt, Sender ID) MUST be
 unique, the same Master Salt MAY be used with several Master Secrets
 and the same Master Secret MAY be used with several Master Salts.

4. Protected Message Fields

 OSCORE transforms a CoAP message (which may have been generated from
 an HTTP message) into an OSCORE message, and vice versa. OSCORE
 protects as much of the original message as possible while still
 allowing certain proxy operations (see Section 10). This section
 defines how OSCORE protects the message fields and transfers them
 end-to-end between client and server (in any direction).

 The remainder of this section and later sections discuss the behavior
 in terms of CoAP messages. If HTTP is used for a particular hop in
 the end-to-end path, then this section applies to the conceptual CoAP
 message that is mappable to/from the original HTTP message as
 discussed in Section 10. That is, an HTTP message is conceptually
 transformed to a CoAP message and then to an OSCORE message, and
 similarly in the reverse direction. An actual implementation might
 translate directly from HTTP to OSCORE without the intervening CoAP
 representation.

 Protection of Signaling messages (Section 5 of [RFC8323]) is
 specified in Section 4.3. The other parts of this section target
 Request/Response messages.

 Message fields of the CoAP message may be protected end-to-end
 between CoAP client and CoAP server in different ways:

 o Class E: encrypted and integrity protected,

 o Class I: integrity protected only, or

 o Class U: unprotected.

https://datatracker.ietf.org/doc/html/rfc8323#section-5

Selander, et al. Expires September 15, 2018 [Page 12]

Internet-Draft OSCORE March 2018

 The sending endpoint SHALL transfer Class E message fields in the
 ciphertext of the COSE object in the OSCORE message. The sending
 endpoint SHALL include Class I message fields in the Additional
 Authenticated Data (AAD) of the AEAD algorithm, allowing the
 receiving endpoint to detect if the value has changed in transfer.
 Class U message fields SHALL NOT be protected in transfer. Class I
 and Class U message field values are transferred in the header or
 options part of the OSCORE message, which is visible to proxies.

 Message fields not visible to proxies, i.e., transported in the
 ciphertext of the COSE object, are called "Inner" (Class E). Message
 fields transferred in the header or options part of the OSCORE
 message, which is visible to proxies, are called "Outer" (Class I or
 U). There are currently no Class I options defined.

 An OSCORE message may contain both an Inner and an Outer instance of
 a certain CoAP message field. Inner message fields are intended for
 the receiving endpoint, whereas Outer message fields are used to
 support proxy operations. Inner and Outer message fields are
 processed independently.

4.1. CoAP Options

 A summary of how options are protected is shown in Figure 5. Note
 that some options may have both Inner and Outer message fields which
 are protected accordingly. The options which require special
 processing are labelled with asterisks.

Selander, et al. Expires September 15, 2018 [Page 13]

Internet-Draft OSCORE March 2018

 +-----+-----------------+---+---+
 | No. | Name | E | U |
 +-----+-----------------+---+---+
 | 1 | If-Match | x | |
 | 3 | Uri-Host | | x |
 | 4 | ETag | x | |
 | 5 | If-None-Match | x | |
 | 6 | Observe | | * |
 | 7 | Uri-Port | | x |
 | 8 | Location-Path | x | |
 | TBD | Object-Security | | * |
 | 11 | Uri-Path | x | |
 | 12 | Content-Format | x | |
 | 14 | Max-Age | * | * |
 | 15 | Uri-Query | x | |
 | 17 | Accept | x | |
 | 20 | Location-Query | x | |
 | 23 | Block2 | * | * |
 | 27 | Block1 | * | * |
 | 28 | Size2 | * | * |
 | 35 | Proxy-Uri | | * |
 | 39 | Proxy-Scheme | | x |
 | 60 | Size1 | * | * |
 | 258 | No-Response | * | * |
 +-----+-----------------+---+---+

 E = Encrypt and Integrity Protect (Inner)
 U = Unprotected (Outer)
 * = Special

 Figure 5: Protection of CoAP Options

 Options that are unknown or for which OSCORE processing is not
 defined SHALL be processed as class E (and no special processing).
 Specifications of new CoAP options SHOULD define how they are
 processed with OSCORE. A new COAP option SHOULD be of class E unless
 it requires proxy processing.

4.1.1. Inner Options

 Inner option message fields (class E) are used to communicate
 directly with the other endpoint.

 The sending endpoint SHALL write the Inner option message fields
 present in the original CoAP message into the plaintext of the COSE
 object (Section 5.3), and then remove the Inner option message fields
 from the OSCORE message.

Selander, et al. Expires September 15, 2018 [Page 14]

Internet-Draft OSCORE March 2018

 The processing of Inner option message fields by the receiving
 endpoint is specified in Section 8.2 and Section 8.4.

4.1.2. Outer Options

 Outer option message fields (Class U or I) are used to support proxy
 operations.

 The sending endpoint SHALL include the Outer option message field
 present in the original message in the options part of the OSCORE
 message. All Outer option message fields, including Object-Security,
 SHALL be encoded as described in Section 3.1 of [RFC7252], where the
 delta is the difference to the previously included instance of Outer
 option message field.

 The processing of Outer options by the receiving endpoint is
 specified in Section 8.2 and Section 8.4.

 A procedure for integrity-protection-only of Class I option message
 fields is specified in Section 5.4. Proxies MUST NOT change the
 order of option's occurrences, for options repeatable and of class I.

 Note: There are currently no Class I option message fields defined.

4.1.3. Special Options

 Some options require special processing, marked with an asterisk '*'
 in Figure 5; the processing is specified in this section.

4.1.3.1. Max-Age

 An Inner Max-Age message field is used to indicate the maximum time a
 response may be cached by the client (as defined in [RFC7252]), end-
 to-end from the server to the client, taking into account that the
 option is not accessible to proxies. The Inner Max-Age SHALL be
 processed by OSCORE as specified in Section 4.1.1.

 An Outer Max-Age message field is used to avoid unnecessary caching
 of OSCORE error responses at OSCORE unaware intermediary nodes. A
 server MAY set a Class U Max-Age message field with value zero to
 OSCORE error responses, which are described in Section 7.4,

Section 8.2 and Section 8.4. Such message field is then processed
 according to Section 4.1.2.

 Successful OSCORE responses do not need to include an Outer Max-Age
 option since the responses are non-cacheable by construction (see

Section 4.2).

https://datatracker.ietf.org/doc/html/rfc7252#section-3.1
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires September 15, 2018 [Page 15]

Internet-Draft OSCORE March 2018

4.1.3.2. The Block Options

 Blockwise [RFC7959] is an optional feature. An implementation MAY
 support [RFC7252] and the Object-Security option without supporting
 Blockwise. The Block options (Block1, Block2, Size1, Size2), when
 Inner message fields, provide secure message fragmentation such that
 each fragment can be verified. The Block options, when Outer message
 fields, enables hop-by-hop fragmentation of the OSCORE message.
 Inner and Outer block processing may have different performance
 properties depending on the underlying transport. The end-to-end
 integrity of the message can be verified both in case of Inner and
 Outer Blockwise provided all blocks are received.

4.1.3.2.1. Inner Block Options

 The sending CoAP endpoint MAY fragment a CoAP message as defined in
 [RFC7959] before the message is processed by OSCORE. In this case
 the Block options SHALL be processed by OSCORE as Inner options
 (Section 4.1.1). The receiving CoAP endpoint SHALL process the
 OSCORE message according to Section 4.1.1 before processing Blockwise
 as defined in [RFC7959].

4.1.3.2.2. Outer Block Options

 Proxies MAY fragment an OSCORE message using [RFC7959], by
 introducing Block option message fields that are Outer
 (Section 4.1.2) and not generated by the sending endpoint. Note that
 the Outer Block options are neither encrypted nor integrity
 protected. As a consequence, a proxy can maliciously inject block
 fragments indefinitely, since the receiving endpoint needs to receive
 the last block (see [RFC7959]) to be able to compose the OSCORE
 message and verify its integrity. Therefore, applications supporting
 OSCORE and [RFC7959] MUST specify a security policy defining a
 maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
 the maximum size of message which can be handled by the endpoints.
 Messages exceeding this size SHOULD be fragmented by the sending
 endpoint using Inner Block options (Section 4.1.3.2.1).

 An endpoint receiving an OSCORE message with an Outer Block option
 SHALL first process this option according to [RFC7959], until all
 blocks of the OSCORE message have been received, or the cumulated
 message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE. In the
 former case, the processing of the OSCORE message continues as
 defined in this document. In the latter case the message SHALL be
 discarded.

 Because of encryption of Uri-Path and Uri-Query, messages to the same
 server may, from the point of view of a proxy, look like they also

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires September 15, 2018 [Page 16]

Internet-Draft OSCORE March 2018

 target the same resource. A proxy SHOULD mitigate a potential mix-up
 of blocks from concurrent requests to the same server, for example
 using the Request-Tag processing specified in Section 3.3.2 of
 [I-D.ietf-core-echo-request-tag].

4.1.3.3. Proxy-Uri

 Proxy-Uri, when present, is split by OSCORE into class U options and
 class E options, which are processed accordingly. When Proxy-Uri is
 used in the original CoAP message, Uri-* are not present [RFC7252].

 The sending endpoint SHALL first decompose the Proxy-Uri value of the
 original CoAP message into the Proxy-Scheme, Uri-Host, Uri-Port, Uri-
 Path, and Uri-Query options (if present) according to Section 6.4 of
 [RFC7252].

 Uri-Path and Uri-Query are class E options and SHALL be protected and
 processed as Inner options (Section 4.1.1).

 The Proxy-Uri option of the OSCORE message SHALL be set to the
 composition of Proxy-Scheme, Uri-Host, and Uri-Port options (if
 present) as specified in Section 6.5 of [RFC7252], and processed as
 an Outer option of Class U (Section 4.1.2).

 Note that replacing the Proxy-Uri value with the Proxy-Scheme and
 Uri-* options works by design for all CoAP URIs (see Section 6 of
 [RFC7252]). OSCORE-aware HTTP servers should not use the userinfo
 component of the HTTP URI (as defined in Section 3.2.1 of [RFC3986]),
 so that this type of replacement is possible in the presence of CoAP-
 to-HTTP proxies. In future documents specifying cross-protocol
 proxying behavior using different URI structures, it is expected that
 the authors will create Uri-* options that allow decomposing the
 Proxy-Uri, and specify in which OSCORE class they belong.

 An example of how Proxy-Uri is processed is given here. Assume that
 the original CoAP message contains:

 o Proxy-Uri = "coap://example.com/resource?q=1"

 During OSCORE processing, Proxy-Uri is split into:

 o Proxy-Scheme = "coap"

 o Uri-Host = "example.com"

 o Uri-Port = "5683"

 o Uri-Path = "resource"

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.4
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1

Selander, et al. Expires September 15, 2018 [Page 17]

Internet-Draft OSCORE March 2018

 o Uri-Query = "q=1"

 Uri-Path and Uri-Query follow the processing defined in
Section 4.1.1, and are thus encrypted and transported in the COSE

 object. The remaining options are composed into the Proxy-Uri
 included in the options part of the OSCORE message, which has value:

 o Proxy-Uri = "coap://example.com"

 See Sections 6.1 and 12.6 of [RFC7252] for more information.

4.1.3.4. Observe

 Observe [RFC7641] is an optional feature. An implementation MAY
 support [RFC7252] and the Object-Security option without supporting
 [RFC7641]. The Observe option as used here targets the requirements
 on forwarding of [I-D.hartke-core-e2e-security-reqs] (Section 2.2.1).

 In order for an OSCORE-unaware proxy to support forwarding of Observe
 messages ([RFC7641]), there SHALL be an Outer Observe option, i.e.,
 present in the options part of the OSCORE message. The processing of
 the CoAP Code for Observe messages is described in Section 4.2.

 To secure the order of notifications, the client SHALL maintain a
 Notification Number for each Observation it registers. The
 Notification Number is a non-negative integer containing the largest
 Partial IV of the successfully received notifications for the
 associated Observe registration (see Section 7.4). The Notification
 Number is initialized to the Partial IV of the first successfully
 received notification response to the registration request. In
 contrast to [RFC7641], the received Partial IV MUST always be
 compared with the Notification Number, which thus MUST NOT be
 forgotten after 128 seconds. The client MAY ignore the Observe
 option value.

 If the verification fails, the client SHALL stop processing the
 response.

 The Observe option in the CoAP request may be legitimately removed by
 a proxy. If the Observe option is removed from a CoAP request by a
 proxy, then the server can still verify the request (as a non-Observe
 request), and produce a non-Observe response. If the OSCORE client
 receives a response to an Observe request without an Outer Observe
 value, then it MUST verify the response as a non-Observe response.
 If the OSCORE client receives a response to a non-Observe request
 with an Outer Observe value, it stops processing the message, as
 specified in Section 8.4.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641

Selander, et al. Expires September 15, 2018 [Page 18]

Internet-Draft OSCORE March 2018

 Clients can re-register observations to ensure that the observation
 is still active and establish freshness again ([RFC7641]
 Section 3.3.1). When an OSCORE observation is refreshed, not only
 the ETags, but also the partial IV (and thus the payload and Object-
 Security option) change. The server uses the new request's Partial
 IV as the 'request_piv' of new responses.

4.1.3.5. No-Response

 No-Response is defined in [RFC7967]. Clients using No-Response MUST
 set both an Inner (Class E) and an Outer (Class U) No-Response
 option, with same value.

 The Inner No-Response option is used to communicate to the server the
 client's disinterest in certain classes of responses to a particular
 request. The Inner No-Response SHALL be processed by OSCORE as
 specified in Section 4.1.1.

 The Outer No-Response option is used to support proxy functionality,
 specifically to avoid error transmissions from proxies to clients,
 and to avoid bandwidth reduction to servers by proxies applying
 congestion control when not receiving responses. The Outer No-
 Response option is processed according to Section 4.1.2.

 In particular, step 8 of Section 8.4 is applied to No-Response.

 Applications should consider that a proxy may remove the Outer No-
 Response option from the request. Applications using No-Response can
 specify policies to deal with cases where servers receive an Inner
 No-Response option only, which may be the result of the request
 having traversed a No-Response unaware proxy, and update the
 processing in Section 8.4 accordingly. This avoids unnecessary error
 responses to clients and bandwidth reductions to servers, due to No-
 Response unaware proxies.

4.1.3.6. Object-Security

 The Object-Security option is only defined to be present in OSCORE
 messages, as an indication that OSCORE processing have been
 performed. The content in the Object-Security option is neither
 encrypted nor integrity protected as a whole but some part of the
 content of this option is protected (see Section 5.4). "OSCORE
 within OSCORE" is not supported: If OSCORE processing detects an
 Object-Security option in the original CoAP message, then processing
 SHALL be stopped.

https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7641#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc7967

Selander, et al. Expires September 15, 2018 [Page 19]

Internet-Draft OSCORE March 2018

4.2. CoAP Header Fields and Payload

 A summary of how the CoAP header fields and payload are protected is
 shown in Figure 6, including fields specific to CoAP over UDP and
 CoAP over TCP (marked accordingly in the table).

 +------------------+---+---+
 | Field | E | U |
 +------------------+---+---+
 | Version (UDP) | | x |
 | Type (UDP) | | x |
 | Length (TCP) | | x |
 | Token Length | | x |
 | Code | x | |
 | Message ID (UDP) | | x |
 | Token | | x |
 | Payload | x | |
 +------------------+---+---+

 E = Encrypt and Integrity Protect (Inner)
 U = Unprotected (Outer)

 Figure 6: Protection of CoAP Header Fields and Payload

 Most CoAP Header fields (i.e. the message fields in the fixed 4-byte
 header) are required to be read and/or changed by CoAP proxies and
 thus cannot in general be protected end-to-end between the endpoints.
 As mentioned in Section 1, OSCORE protects the CoAP Request/Response
 layer only, and not the Messaging Layer (Section 2 of [RFC7252]), so
 fields such as Type and Message ID are not protected with OSCORE.

 The CoAP Header field Code is protected by OSCORE. Code SHALL be
 encrypted and integrity protected (Class E) to prevent an
 intermediary from eavesdropping or manipulating the Code (e.g.,
 changing from GET to DELETE).

 The sending endpoint SHALL write the Code of the original CoAP
 message into the plaintext of the COSE object (see Section 5.3).
 After that, the Outer Code of the OSCORE message SHALL be set to 0.02
 (POST) for requests without Observe option, to 0.05 (FETCH) for
 requests with Observe option, and to 2.04 (Changed) for responses.
 Using FETCH with Observe allows OSCORE to be compliant with the
 Observe processing in OSCORE-unaware proxies. The choice of POST and
 FETCH ([RFC8132]) allows all OSCORE messages to have payload.

 The receiving endpoint SHALL discard the Code in the OSCORE message
 and write the Code of the plaintext in the COSE object (Section 5.3)
 into the decrypted CoAP message.

https://datatracker.ietf.org/doc/html/rfc7252#section-2
https://datatracker.ietf.org/doc/html/rfc8132

Selander, et al. Expires September 15, 2018 [Page 20]

Internet-Draft OSCORE March 2018

 The other currently defined CoAP Header fields are Unprotected (Class
 U). The sending endpoint SHALL write all other header fields of the
 original message into the header of the OSCORE message. The
 receiving endpoint SHALL write the header fields from the received
 OSCORE message into the header of the decrypted CoAP message.

 The CoAP Payload, if present in the original CoAP message, SHALL be
 encrypted and integrity protected and is thus an Inner message field.
 The sending endpoint writes the payload of the original CoAP message
 into the plaintext (Section 5.3) input to the COSE object. The
 receiving endpoint verifies and decrypts the COSE object, and
 recreates the payload of the original CoAP message.

4.3. Signaling Messages

 Signaling messages (CoAP Code 7.00-7.31) were introduced to exchange
 information related to an underlying transport connection in the
 specific case of CoAP over reliable transports ([RFC8323]). The use
 of OSCORE for protecting Signaling is application dependent.

 OSCORE MAY be used to protect Signaling if the endpoints for OSCORE
 coincide with the endpoints for the connection. If OSCORE is used to
 protect Signaling then:

 o Signaling messages SHALL be protected as CoAP Request messages,
 except in the case the Signaling message is a response to a
 previous Signaling message, in which case it SHALL be protected as
 a CoAP Response message. For example, 7.02 (Ping) is protected as
 a CoAP Request and 7.03 (Pong) as a CoAP response.

 o The Outer Code for Signaling messages SHALL be set to 0.02 (POST),
 unless it is a response to a previous Signaling message, in which
 case it SHALL be set to 2.04 (Changed).

 o All Signaling options, except the Object-Security option, SHALL be
 Inner (Class E).

 NOTE: Option numbers for Signaling messages are specific to the CoAP
 Code (see Section 5.2 of [RFC8323]).

 If OSCORE is not used to protect Signaling, Signaling messages SHALL
 be unaltered by OSCORE.

5. The COSE Object

 This section defines how to use COSE [RFC8152] to wrap and protect
 data in the original message. OSCORE uses the untagged COSE_Encrypt0
 structure with an Authenticated Encryption with Additional Data

https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc8323#section-5.2
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires September 15, 2018 [Page 21]

Internet-Draft OSCORE March 2018

 (AEAD) algorithm. The key lengths, IV length, nonce length, and
 maximum Sender Sequence Number are algorithm dependent.

 The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
 [RFC8152] is mandatory to implement. For AES-CCM-16-64-128 the
 length of Sender Key and Recipient Key is 128 bits, the length of
 nonce and Common IV is 13 bytes. The maximum Sender Sequence Number
 is specified in Section 11.

 As specified in [RFC5116], plaintext denotes the data that is to be
 encrypted and integrity protected, and Additional Authenticated Data
 (AAD) denotes the data that is to be integrity protected only.

 The COSE Object SHALL be a COSE_Encrypt0 object with fields defined
 as follows

 o The 'protected' field is empty.

 o The 'unprotected' field includes:

 * The 'Partial IV' parameter. The value is set to the Sender
 Sequence Number. All leading zeroes SHALL be removed when
 encoding the Partial IV. The value 0 encodes to the byte
 string 0x00. This parameter SHALL be present in requests. In
 case of Observe (Section 4.1.3.4) the Partial IV SHALL be
 present in responses, and otherwise the Partial IV will not
 typically be present in responses. (A non-Observe example
 where the Partial IV is included in a response is provided in

Section 7.5.2.)

 * The 'kid' parameter. The value is set to the Sender ID. This
 parameter SHALL be present in requests and will not typically
 be present in responses. An example where the Sender ID is
 included in a response is the extension of OSCORE to group
 communication [I-D.ietf-core-oscore-groupcomm].

 * Optionally, a 'kid context' parameter as defined in
Section 5.1. This parameter MAY be present in requests and

 SHALL NOT be present in responses.

 o The 'ciphertext' field is computed from the secret key (Sender Key
 or Recipient Key), AEAD nonce (see Section 5.2), plaintext (see

Section 5.3), and the Additional Authenticated Data (AAD) (see
Section 5.4) following Section 5.2 of [RFC8152].

 The encryption process is described in Section 5.3 of [RFC8152].

https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc8152#section-10.2
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc8152#section-5.2
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires September 15, 2018 [Page 22]

Internet-Draft OSCORE March 2018

5.1. Kid Context

 For certain use cases, e.g. deployments where the same kid is used
 with multiple contexts, it is necessary or favorable for the sender
 to provide an additional identifier of the security material to use,
 in order for the receiver to retrieve or establish the correct key.
 The kid context parameter is used to provide such additional input.
 The kid context and kid are used to determine the security context,
 or to establish the necessary input parameters to derive the security
 context (see Section 3.2). The application defines how this is done.

 The kid context is implicitly integrity protected, as manipulation
 that leads to the wrong key (or no key) being retrieved which results
 in an error, as described in Section 8.2.

 A summary of the COSE header parameter kid context defined above can
 be found in Figure 7.

 Some examples of relevant uses of kid context are the following:

 o If the client has an identifier in some other namespace which can
 be used by the server to retrieve or establish the security
 context, then that identifier can be used as kid context. The kid
 context may be used as Master Salt (Section 3.1) for additional
 entropy of the security contexts (see for example Appendix B.2 or
 [I-D.ietf-6tisch-minimal-security]).

 o In case of a group communication scenario
 [I-D.ietf-core-oscore-groupcomm], if the server belongs to
 multiple groups, then a group identifier can be used as kid
 context to enable the server to find the right security context.

 +----------+--------+------------+----------------+-----------------+
 | name | label | value type | value registry | description |
 +----------+--------+------------+----------------+-----------------+
 | kid | kidctx | bstr | | Identifies the |
 | context | | | | kid context |
 +----------+--------+------------+----------------+-----------------+

 Figure 7: Additional common header parameter for the COSE object

5.2. Nonce

 The AEAD nonce is constructed in the following way (see Figure 8):

 1. left-padding the Partial IV (in network byte order) with zeroes
 to exactly 5 bytes,

Selander, et al. Expires September 15, 2018 [Page 23]

Internet-Draft OSCORE March 2018

 2. left-padding the (Sender) ID of the endpoint that generated the
 Partial IV (in network byte order) with zeroes to exactly nonce
 length - 6 bytes,

 3. concatenating the size of the ID (S) with the padded ID and the
 padded Partial IV,

 4. and then XORing with the Common IV.

 Note that in this specification only algorithms that use nonces equal
 or greater than 7 bytes are supported. The nonce construction with
 S, ID of PIV generator, and Partial IV together with endpoint unique
 IDs and encryption keys make it easy to verify that the nonces used
 with a specific key will be unique.

 When Observe is not used, the request and the response may use the
 same nonce. In this way, the Partial IV does not have to be sent in
 responses, which reduces the size. For processing instructions see

Section 8.

 +---+-----------------------+--+--+--+--+--+
 | S | ID of PIV generator | Partial IV |----+
 +---+-----------------------+--+--+--+--+--+ |
 |
 +--+ |
 | Common IV |->(XOR)
 +--+ |
 |
 +--+ |
 | Nonce |<---+
 +--+

 Figure 8: AEAD Nonce Formation

5.3. Plaintext

 The plaintext is formatted as a CoAP message without Header (see
 Figure 9) consisting of:

 o the Code of the original CoAP message as defined in Section 3 of
 [RFC7252]; and

 o all Inner option message fields (see Section 4.1.1) present in the
 original CoAP message (see Section 4.1). The options are encoded
 as described in Section 3.1 of [RFC7252], where the delta is the
 difference to the previously included instance of Class E option;
 and

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-3.1

Selander, et al. Expires September 15, 2018 [Page 24]

Internet-Draft OSCORE March 2018

 o the Payload of original CoAP message, if present, and in that case
 prefixed by the one-byte Payload Marker (0xFF).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Class E options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+
 (only if there
 is payload)

 Figure 9: Plaintext

 NOTE: The plaintext contains all CoAP data that needs to be encrypted
 end-to-end between the endpoints.

5.4. Additional Authenticated Data

 The external_aad SHALL be a CBOR array as defined below:

 external_aad = [
 oscore_version : uint,
 algorithms : [alg_aead : int / tstr],
 request_kid : bstr,
 request_piv : bstr,
 options : bstr
]

 where:

 o oscore_version: contains the OSCORE version number.
 Implementations of this specification MUST set this field to 1.
 Other values are reserved for future versions.

 o alg_aead: contains the AEAD Algorithm from the security context
 used for the exchange (see Section 3.1).

 o request_kid: contains the value of the 'kid' in the COSE object of
 the request (see Section 5).

 o request_piv: contains the value of the 'Partial IV' in the COSE
 object of the request (see Section 5).

 o options: contains the Class I options (see Section 4.1.2) present
 in the original CoAP message encoded as described in Section 3.1

Selander, et al. Expires September 15, 2018 [Page 25]

Internet-Draft OSCORE March 2018

 of [RFC7252], where the delta is the difference to the previously
 included instance of class I option.

 NOTE: The format of the external_aad is for simplicity the same for
 requests and responses, although some parameters, e.g. request_kid
 need not be integrity protected in the requests.

6. OSCORE Header Compression

 The Concise Binary Object Representation (CBOR) [RFC7049] combines
 very small message sizes with extensibility. The CBOR Object Signing
 and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
 of signed and encrypted data. COSE is however constructed to support
 a large number of different stateless use cases, and is not fully
 optimized for use as a stateful security protocol, leading to a
 larger than necessary message expansion. In this section, we define
 a stateless header compression mechanism, simply removing redundant
 information from the COSE objects, which significantly reduces the
 per-packet overhead. The result of applying this mechanism to a COSE
 object is called the "compressed COSE object".

 The COSE_Encrypt0 object used in OSCORE is transported in the Object-
 Security option and in the Payload. The Payload contains the
 Ciphertext and the headers of the COSE object are compactly encoded
 as described in the next section.

6.1. Encoding of the Object-Security Value

 The value of the Object-Security option SHALL contain the OSCORE flag
 bits, the Partial IV parameter, the kid context parameter (length and
 value), and the kid parameter as follows:

 0 1 2 3 4 5 6 7 <--------- n bytes ------------->
 +-+-+-+-+-+-+-+-+---------------------------------
 |0 0 0|h|k| n | Partial IV (if any) ...
 +-+-+-+-+-+-+-+-+---------------------------------

 <- 1 byte -> <------ s bytes ----->
 +------------+----------------------+------------------+
 | s (if any) | kid context (if any) | kid (if any) ... |
 +------------+----------------------+------------------+

 Figure 10: Object-Security Value

 o The first byte of flag bits encodes the following set of flags and
 the length of the Partial IV parameter:

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires September 15, 2018 [Page 26]

Internet-Draft OSCORE March 2018

 * The three least significant bits encode the Partial IV length
 n. If n = 0 then the Partial IV is not present in the
 compressed COSE object. The values n = 6 and n = 7 are
 reserved.

 * The fourth least significant bit is the kid flag, k: it is set
 to 1 if the kid is present in the compressed COSE object.

 * The fifth least significant bit is the kid context flag, h: it
 is set to 1 if the compressed COSE object contains a kid
 context (see Section 5.1).

 * The sixth to eighth least significant bits are reserved for
 future use. These bits SHALL be set to zero when not in use.
 According to this specification, if any of these bits are set
 to 1 the message is considered to be malformed and
 decompression fails as specified in item 3 of Section 8.2.

 o The following n bytes encode the value of the Partial IV, if the
 Partial IV is present (n > 0).

 o The following 1 byte encode the length of the kid context
 (Section 5.1) s, if the kid context flag is set (h = 1).

 o The following s bytes encode the kid context, if the kid context
 flag is set (h = 1).

 o The remaining bytes encode the value of the kid, if the kid is
 present (k = 1).

 Note that the kid MUST be the last field of the object-security
 value, even in case reserved bits are used and additional fields are
 added to it.

 The length of the Object-Security option thus depends on the presence
 and length of Partial IV, kid context, kid, as specified in this
 section, and on the presence and length of the other parameters, as
 defined in the separate documents.

6.2. Encoding of the OSCORE Payload

 The payload of the OSCORE message SHALL encode the ciphertext of the
 COSE object.

Selander, et al. Expires September 15, 2018 [Page 27]

Internet-Draft OSCORE March 2018

6.3. Examples of Compressed COSE Objects

6.3.1. Examples: Requests

 1. Request with kid = 0x25 and Partial IV = 0x05

 Before compression (24 bytes):

 [
 h'',
 { 4:h'25', 6:h'05' },
 h'aea0155667924dff8a24e4cb35b9'
]

 After compression (17 bytes):

 Flag byte: 0b00001001 = 0x09

 Option Value: 09 05 25 (3 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

 2. Request with kid = empty string and Partial IV = 0x00

 After compression (16 bytes):

 Flag byte: 0b00001001 = 0x09

 Option Value: 09 00 (2 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

 3. Request with kid = empty string, Partial IV = 0x05, and kid
 context = 0x44616c656b

 After compression (22 bytes):

 Flag byte: 0b00011001 = 0x19

 Option Value: 19 05 05 44 61 6c 65 6b (8 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

6.3.2. Example: Response (without Observe)

 Before compression (18 bytes):

Selander, et al. Expires September 15, 2018 [Page 28]

Internet-Draft OSCORE March 2018

 [
 h'',
 {},
 h'aea0155667924dff8a24e4cb35b9'
]

 After compression (14 bytes):

 Flag byte: 0b00000000 = 0x00

 Option Value: (0 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

6.3.3. Example: Response (with Observe)

 Before compression (21 bytes):

 [
 h'',
 { 6:h'07' },
 h'aea0155667924dff8a24e4cb35b9'
]

 After compression (16 bytes):

 Flag byte: 0b00000001 = 0x01

 Option Value: 01 07 (2 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

7. Sequence Numbers, Replay, Message Binding, and Freshness

7.1. Message Binding

 In order to prevent response delay and mismatch attacks
 [I-D.mattsson-core-coap-actuators] from on-path attackers and
 compromised proxies, OSCORE binds responses to the requests by
 including the kid and Partial IV of the request in the AAD of the
 response. The server therefore needs to store the kid and Partial IV
 of the request until all responses have been sent.

7.2. AEAD Nonce Uniqueness

 An AEAD nonce MUST NOT be used more than once per AEAD key. In order
 to assure unique nonces, each Sender Context contains a Sender
 Sequence Number used to protect requests, and - in case of Observe -

Selander, et al. Expires September 15, 2018 [Page 29]

Internet-Draft OSCORE March 2018

 responses. If messages are processed concurrently, the operation of
 reading and increasing the Sender Sequence Number MUST be atomic.

 The maximum Sender Sequence Number is algorithm dependent (see
Section 11), and no greater than 2^40 - 1. If the Sender Sequence

 Number exceeds the maximum, the endpoint MUST NOT process any more
 messages with the given Sender Context. The endpoint SHOULD acquire
 a new security context (and consequently inform the other endpoint)
 before this happens. The latter is out of scope of this document.

7.3. Freshness

 For requests, OSCORE provides only the guarantee that the request is
 not older than the security context. For applications having
 stronger demands on request freshness (e.g., control of actuators),
 OSCORE needs to be augmented with mechanisms providing freshness, for
 example as specified in [I-D.ietf-core-echo-request-tag].

 For responses, the message binding guarantees that a response is not
 older than its request. For responses without Observe, this gives
 strong absolute freshness. For responses with Observe, the absolute
 freshness gets weaker with time, and it is RECOMMENDED that the
 client regularly re-register the observation.

 For requests, and responses with Observe, OSCORE also provides
 relative freshness in the sense that the received Partial IV allows a
 recipient to determine the relative order of responses.

7.4. Replay Protection

 In order to protect from replay of requests, the server's Recipient
 Context includes a Replay Window. A server SHALL verify that a
 Partial IV received in the COSE object has not been received before.
 If this verification fails the server SHALL stop processing the
 message, and MAY optionally respond with a 4.01 Unauthorized error
 message. Also, the server MAY set an Outer Max-Age option with value
 zero. The diagnostic payload MAY contain the "Replay protection
 failed" string. The size and type of the Replay Window depends on
 the use case and the protocol with which the OSCORE message is
 transported. In case of reliable and ordered transport from endpoint
 to endpoint, e.g. TCP, the server MAY just store the last received
 Partial IV and require that newly received Partial IVs equals the
 last received Partial IV + 1. However, in case of mixed reliable and
 unreliable transports and where messages may be lost, such a replay
 mechanism may be too restrictive and the default replay window be
 more suitable (see Section 3.2.2).

Selander, et al. Expires September 15, 2018 [Page 30]

Internet-Draft OSCORE March 2018

 Responses to non-Observe requests are protected against replay as
 they are cryptographically bound to the request.

 In the case of Observe, a client receiving a notification SHALL
 verify that the Partial IV of a received notification is greater than
 the Notification Number bound to that Observe registration. If the
 verification fails, the client SHALL stop processing the response.
 If the verification succeeds, the client SHALL overwrite the
 corresponding Notification Number with the received Partial IV.

 If messages are processed concurrently, the Partial IV needs to be
 validated a second time after decryption and before updating the
 replay protection data. The operation of validating the Partial IV
 and updating the replay protection data MUST be atomic.

7.5. Losing Part of the Context State

 To prevent reuse of the AEAD nonce with the same key, or from
 accepting replayed messages, an endpoint needs to handle the
 situation of losing rapidly changing parts of the context, such as
 the request Token, Sender Sequence Number, Replay Window, and
 Notification Numbers. These are typically stored in RAM and
 therefore lost in the case of an unplanned reboot.

 After boot, an endpoint MAY reject to use pre-existing security
 contexts, and MAY establish a new security context with each endpoint
 it communicates with. However, establishing a fresh security context
 may have a non-negligible cost in terms of, e.g., power consumption.

 After boot, an endpoint MAY use a partly persistently stored security
 context, but then the endpoint MUST NOT reuse a previous Sender
 Sequence Number and MUST NOT accept previously accepted messages.
 Some ways to achieve this are described in the following sections.

7.5.1. Sequence Number

 To prevent reuse of Sender Sequence Numbers, an endpoint MAY perform
 the following procedure during normal operations:

 o Each time the Sender Sequence Number is evenly divisible by K,
 where K is a positive integer, store the Sender Sequence Number in
 persistent memory. After boot, the endpoint initiates the Sender
 Sequence Number to the value stored in persistent memory + K - 1.
 Storing to persistent memory can be costly. The value K gives a
 trade-off between the number of storage operations and efficient
 use of Sender Sequence Numbers.

Selander, et al. Expires September 15, 2018 [Page 31]

Internet-Draft OSCORE March 2018

7.5.2. Replay Window

 To prevent accepting replay of previously received requests, the
 server MAY perform the following procedure after boot:

 o For each stored security context, the first time after boot the
 server receives an OSCORE request, the server responds with the
 Echo option [I-D.ietf-core-echo-request-tag] to get a request with
 verifiable freshness. The server MUST use its Partial IV when
 generating the AEAD nonce and MUST include the Partial IV in the
 response.

 If the server using the Echo option can verify a second request as
 fresh, then the Partial IV of the second request is set as the lower
 limit of the replay window.

7.5.3. Replay Protection of Observe Notifications

 To prevent accepting replay of previously received notification
 responses, the client MAY perform the following procedure after boot:

 o The client rejects notifications bound to the earlier
 registration, removes all Notification Numbers and re-registers
 using Observe.

8. Processing

 This section describes the OSCORE message processing.

8.1. Protecting the Request

 Given a CoAP request, the client SHALL perform the following steps to
 create an OSCORE request:

 1. Retrieve the Sender Context associated with the target resource.

 2. Compose the Additional Authenticated Data and the plaintext, as
 described in Section 5.4 and Section 5.3.

 3. Compute the AEAD nonce from the Sender ID, Common IV, and Partial
 IV (Sender Sequence Number in network byte order) as described in

Section 5.2 and (in one atomic operation, see Section 7.2)
 increment the Sender Sequence Number by one.

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 6.

Selander, et al. Expires September 15, 2018 [Page 32]

Internet-Draft OSCORE March 2018

 5. Format the OSCORE message according to Section 4. The Object-
 Security option is added (see Section 4.1.2).

 6. Store the association Token - Security Context, in order to be
 able to find the Recipient Context from the Token in the
 response.

8.2. Verifying the Request

 A server receiving a request containing the Object-Security option
 SHALL perform the following steps:

 1. Process Outer Block options according to [RFC7959], until all
 blocks of the request have been received (see Section 4.1.3.2).

 2. Discard the message Code and all non-special Inner option
 message fields (marked with 'x' in column E of Figure 5) present
 in the received message. For example, an If-Match Outer option
 is discarded, but an Uri-Host Outer option is not discarded.

 3. Decompress the COSE Object (Section 6) and retrieve the
 Recipient Context associated with the Recipient ID in the 'kid'
 parameter. If either the decompression or the COSE message
 fails to decode, or the server fails to retrieve a Recipient
 Context with Recipient ID corresponding to the 'kid' parameter
 received, then the server SHALL stop processing the request.
 If:

 * either the decompression or the COSE message fails to decode,
 the server MAY respond with a 4.02 Bad Option error message.
 The server MAY set an Outer Max-Age option with value zero.
 The diagnostic payload SHOULD contain the string "Failed to
 decode COSE".

 * the server fails to retrieve a Recipient Context with
 Recipient ID corresponding to the 'kid' parameter received,
 the server MAY respond with a 4.01 Unauthorized error
 message. The server MAY set an Outer Max-Age option with
 value zero. The diagnostic payload SHOULD contain the string
 "Security context not found".

 4. Verify the 'Partial IV' parameter using the Replay Window, as
 described in Section 7.4.

 5. Compose the Additional Authenticated Data, as described in
Section 5.4.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires September 15, 2018 [Page 33]

Internet-Draft OSCORE March 2018

 6. Compute the AEAD nonce from the Recipient ID, Common IV, and the
 'Partial IV' parameter, received in the COSE Object.

 7. Decrypt the COSE object using the Recipient Key, as per
[RFC8152] Section 5.3. (The decrypt operation includes the

 verification of the integrity.)

 * If decryption fails, the server MUST stop processing the
 request and MAY respond with a 4.00 Bad Request error
 message. The server MAY set an Outer Max-Age option with
 value zero. The diagnostic payload SHOULD contain the
 "Decryption failed" string.

 * If decryption succeeds, update the Replay Window, as
 described in Section 7.

 8. For each decrypted option, check if the option is also present
 as an Outer option: if it is, discard the Outer. For example:
 the message contains a Max-Age Inner and a Max-Age Outer option.
 The Outer Max-Age is discarded.

 9. Add decrypted code, options and payload to the decrypted
 request. The Object-Security option is removed.

 10. The decrypted CoAP request is processed according to [RFC7252]

8.3. Protecting the Response

 If a CoAP response is generated in response to an OSCORE request, the
 server SHALL perform the following steps to create an OSCORE
 response. Note that CoAP error responses derived from CoAP
 processing (point 10. in Section 8.2) are protected, as well as
 successful CoAP responses, while the OSCORE errors (point 3, 4, and 7
 in Section 8.2) do not follow the processing below, but are sent as
 simple CoAP responses, without OSCORE processing.

 1. Retrieve the Sender Context in the Security Context used to
 verify the request.

 2. Compose the Additional Authenticated Data and the plaintext, as
 described in Section 5.4 and Section 5.3.

 3. Compute the AEAD nonce

 * If Observe is used, compute the nonce from the Sender ID,
 Common IV, and Partial IV (Sender Sequence Number in network
 byte order). Then (in one atomic operation, see Section 7.2)
 increment the Sender Sequence Number by one.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires September 15, 2018 [Page 34]

Internet-Draft OSCORE March 2018

 * If Observe is not used, either the nonce from the request is
 used or a new Partial IV is used (see bullet on 'Partial IV'
 in Section 5).

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 6. If the AEAD nonce was
 constructed from a new Partial IV, this Partial IV MUST be
 included in the message. If the AEAD nonce from the request was
 used, the Partial IV MUST NOT be included in the message.

 5. Format the OSCORE message according to Section 4. The Object-
 Security option is added (see Section 4.1.2).

8.4. Verifying the Response

 A client receiving a response containing the Object-Security option
 SHALL perform the following steps:

 1. Process Outer Block options according to [RFC7959], until all
 blocks of the OSCORE message have been received (see

Section 4.1.3.2).

 2. Discard the message Code and all non-special Class E options
 from the message. For example, ETag Outer option is discarded,
 Max-Age Outer option is not discarded.

 3. Retrieve the Recipient Context associated with the Token.
 Decompress the COSE Object (Section 6). If either the
 decompression or the COSE message fails to decode, then go to
 11.

 4. For Observe notifications, verify the received 'Partial IV'
 parameter against the corresponding Notification Number as
 described in Section 7.4. If the client receives a notification
 for which no Observe request was sent, then go to 11.

 5. Compose the Additional Authenticated Data, as described in
Section 5.4.

 6. Compute the AEAD nonce

 1. If the Observe option and the Partial IV are not present in
 the response, the nonce from the request is used.

 2. If the Observe option is present in the response, and the
 Partial IV is not present in the response, then go to 11.

https://datatracker.ietf.org/doc/html/rfc7959

Selander, et al. Expires September 15, 2018 [Page 35]

Internet-Draft OSCORE March 2018

 3. If the Partial IV is present in the response, compute the
 nonce from the Recipient ID, Common IV, and the 'Partial IV'
 parameter, received in the COSE Object.

 7. Decrypt the COSE object using the Recipient Key, as per
[RFC8152] Section 5.3. (The decrypt operation includes the

 verification of the integrity.)

 * If decryption fails, then go to 11.

 * If decryption succeeds and Observe is used, update the
 corresponding Notification Number, as described in Section 7.

 8. For each decrypted option, check if the option is also present
 as an Outer option: if it is, discard the Outer. For example:
 the message contains a Max-Age Inner and a Max-Age Outer option.
 The Outer Max-Age is discarded.

 9. Add decrypted code, options and payload to the decrypted
 request. The Object-Security option is removed.

 10. The decrypted CoAP response is processed according to [RFC7252]

 11. (Optional) In case any of the previous erroneous conditions
 apply: the client SHALL stop processing the response.

 An error condition occurring while processing a response in an
 observation does not cancel the observation. A client MUST NOT react
 to failure in step 7 by re-registering the observation immediately.

9. Web Linking

 The use of OSCORE MAY be indicated by a target attribute "osc" in a
 web link [RFC8288] to a resource. This attribute is a hint
 indicating that the destination of that link is to be accessed using
 OSCORE. Note that this is simply a hint, it does not include any
 security context material or any other information required to run
 OSCORE.

 A value MUST NOT be given for the "osc" attribute; any present value
 MUST be ignored by parsers. The "osc" attribute MUST NOT appear more
 than once in a given link-value; occurrences after the first MUST be
 ignored by parsers.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8288

Selander, et al. Expires September 15, 2018 [Page 36]

Internet-Draft OSCORE March 2018

10. Proxy and HTTP Operations

RFC 7252 defines operations for a CoAP-to-CoAP proxy (see Section 5.7
 of [RFC7252]) and for proxying between CoAP and HTTP (Section 10 of
 [RFC7252]). A more detailed description of the HTTP-to-CoAP mapping
 is provided by [RFC8075]. This section describes the operations of
 OSCORE-aware proxies.

10.1. CoAP-to-CoAP Forwarding Proxy

 OSCORE is designed to work with legacy CoAP-to-CoAP forward proxies
 [RFC7252], but OSCORE-aware proxies MAY provide certain
 simplifications as specified in this section.

 Security requirements for forwarding are presented in Section 2.2.1
 of [I-D.hartke-core-e2e-security-reqs]. OSCORE complies with the
 extended security requirements also addressing Blockwise ([RFC7959])
 and CoAP-mappable HTTP. In particular caching is disabled since the
 CoAP response is only applicable to the original CoAP request. An
 OSCORE-aware proxy SHALL NOT cache a response to a request with an
 Object-Security option. As a consequence, the search for cache hits
 and CoAP freshness/Max-Age processing can be omitted.

 Proxy processing of the (Outer) Proxy-Uri option is as defined in
 [RFC7252].

 Proxy processing of the (Outer) Block options is as defined in
 [RFC7959].

 Proxy processing of the (Outer) Observe option is as defined in
 [RFC7641]. OSCORE-aware proxies MAY look at the Partial IV value
 instead of the Outer Observe option.

10.2. HTTP Processing

 OSCORE was initially designed to work between CoAP endpoints only,
 but the interest in use cases with one endpoint being an HTTP
 endpoint has driven the extension specified here. OSCORE is intended
 to be used with at least one endpoint being a CoAP endpoint.

 In order to use OSCORE with HTTP, an endpoint needs to be able to map
 HTTP messages to CoAP messages (see [RFC8075]), and to apply OSCORE
 to CoAP messages (as defined in this document).

 For this purpose, this specification defines a new HTTP header field
 named CoAP-Object-Security, see Section 12.4. The CoAP-Object-
 Security header field is only used in POST requests and 200 (OK)
 responses. All field semantics is given within the CoAP-Object-

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc7252#section-10
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc8075

Selander, et al. Expires September 15, 2018 [Page 37]

Internet-Draft OSCORE March 2018

 Security header field. The header field is neither appropriate to
 list in the Connection header field (see Section 6.1 of [RFC7230]),
 nor in a Vary response header field (see Section 7.1.4 of [RFC7231]),
 nor allowed in trailers (see Section 4.1 of [RFC7230]).
 Intermediaries are not allowed to insert, delete, or modify the
 field's value. The header field is not preserved across redirects.

 A sending endpoint uses [RFC8075] to translate an HTTP message into a
 CoAP message. It then protects the message with OSCORE processing,
 and add the Object-Security option (as defined in this document).
 Then, the endpoint maps the resulting CoAP message to an HTTP message
 that includes the HTTP header field CoAP-Object-Security, whose value
 is:

 o "" if the CoAP Object-Security option is empty, or

 o the value of the CoAP Object-Security option (Section 6.1) in
 base64url encoding (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this encoding).

 Note that the value of the HTTP body is the CoAP payload, i.e. the
 OSCORE payload (Section 6.2).

 The HTTP header field Content-Type is set to 'application/oscore'
 (see Section 12.5).

 The resulting message is an OSCORE message that uses HTTP.

 A receiving endpoint uses [RFC8075] to translate an HTTP message into
 a CoAP message, with the following addition. The HTTP message
 includes the CoAP-Object-Security header field, which is mapped to
 the CoAP Object-Security option in the following way. The CoAP
 Object-Security option value is:

 o empty if the value of the HTTP CoAP-Object-Security header field
 is ""

 o the value of the HTTP CoAP-Object-Security header field decoded
 from base64url (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this decoding).

 Note that the value of the CoAP payload is the HTTP body, i.e. the
 OSCORE payload (Section 6.2).

 The resulting message is an OSCORE message that uses CoAP.

https://datatracker.ietf.org/doc/html/rfc7230#section-6.1
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C

Selander, et al. Expires September 15, 2018 [Page 38]

Internet-Draft OSCORE March 2018

 The endpoint can then verify the message according to the OSCORE
 processing and get a verified CoAP message. It can then translate
 the verified CoAP message into a verified HTTP message.

10.3. HTTP-to-CoAP Translation Proxy

Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
 HTTP-to-CoAP proxy. As requested in Section 1 of [RFC8075], this
 section describes the HTTP mapping for the OSCORE protocol extension
 of CoAP.

 The presence of the Object-Security option, both in requests and
 responses, is expressed in an HTTP header field named CoAP-Object-
 Security in the mapped request or response. The value of the field
 is:

 o "" if the CoAP Object-Security option is empty, or

 o the value of the CoAP Object-Security option (Section 6.1) in
 base64url encoding (Section 5 of [RFC4648]) without padding (see

[RFC7515] Appendix C for implementation notes for this encoding).

 The header field Content-Type 'application/oscore' (see Section 12.5)
 is used for OSCORE messages transported in HTTP. The CoAP Content-
 Format option is omitted for OSCORE messages transported in CoAP.

 The value of the body is the OSCORE payload (Section 6.2).

 Example:

 Mapping and notation here is based on "Simple Form" (Section 5.4.1.1
 of [RFC8075]).

 [HTTP request -- Before client object security processing]

 GET http://proxy.url/hc/?target_uri=coap://server.url/orders
HTTP/1.1

 [HTTP request -- HTTP Client to Proxy]

 POST http://proxy.url/hc/?target_uri=coap://server.url/ HTTP/1.1
 Content-Type: application/oscore
 CoAP-Object-Security: CSU
 Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

https://datatracker.ietf.org/doc/html/rfc7252#section-10.2
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc8075#section-1
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7515#appendix-C
https://datatracker.ietf.org/doc/html/rfc8075#section-5.4.1.1
https://datatracker.ietf.org/doc/html/rfc8075#section-5.4.1.1
http://proxy.url/hc/?target_uri=coap://server.url/ordersHTTP/1.1
http://proxy.url/hc/?target_uri=coap://server.url/ordersHTTP/1.1
http://proxy.url/hc/?target_uri=coap://server.url/

Selander, et al. Expires September 15, 2018 [Page 39]

Internet-Draft OSCORE March 2018

 [CoAP request -- Proxy to CoAP Server]

 POST coap://server.url/
 Object-Security: 09 25
 Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [CoAP request -- After server object security processing]

 GET coap://server.url/orders

 [CoAP response -- Before server object security processing]

 2.05 Content
 Content-Format: 0
 Payload: Exterminate! Exterminate!

 [CoAP response -- CoAP Server to Proxy]

 2.04 Changed
 Object-Security: [empty]
 Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [HTTP response -- Proxy to HTTP Client]

 HTTP/1.1 200 OK
 Content-Type: application/oscore
 CoAP-Object-Security: ""
 Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [HTTP response -- After client object security processing]

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Body: Exterminate! Exterminate!

 Note that the HTTP Status Code 200 in the next-to-last message is the
 mapping of CoAP Code 2.04 (Changed), whereas the HTTP Status Code 200
 in the last message is the mapping of the CoAP Code 2.05 (Content),
 which was encrypted within the compressed COSE object carried in the
 Body of the HTTP response.

10.4. CoAP-to-HTTP Translation Proxy

Section 10.1 of [RFC7252] describes the behavior of a CoAP-to-HTTP
 proxy. RFC 8075 [RFC8075] does not cover this direction in any more
 detail and so an example instantiation of Section 10.1 of [RFC7252]
 is used below.

https://datatracker.ietf.org/doc/html/rfc7252#section-10.1
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc8075
https://datatracker.ietf.org/doc/html/rfc7252#section-10.1

Selander, et al. Expires September 15, 2018 [Page 40]

Internet-Draft OSCORE March 2018

 Example:

 [CoAP request -- Before client object security processing]

 GET coap://proxy.url/
 Proxy-Uri=http://server.url/orders

 [CoAP request -- CoAP Client to Proxy]

 POST coap://proxy.url/
 Proxy-Uri=http://server.url/
 Object-Security: 09 25
 Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [HTTP request -- Proxy to HTTP Server]

 POST http://server.url/ HTTP/1.1
 Content-Type: application/oscore
 CoAP-Object-Security: CSU
 Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [HTTP request -- After server object security processing]

 GET http://server.url/orders HTTP/1.1

 [HTTP response -- Before server object security processing]

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Body: Exterminate! Exterminate!

 [HTTP response -- HTTP Server to Proxy]

 HTTP/1.1 200 OK
 Content-Type: application/oscore
 CoAP-Object-Security: ""
 Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [CoAP response - Proxy to CoAP Client]

 2.04 Changed
 Object-Security: [empty]
 Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

http://server.url/
http://server.url/orders

Selander, et al. Expires September 15, 2018 [Page 41]

Internet-Draft OSCORE March 2018

 [CoAP response -- After client object security processing]

 2.05 Content
 Content-Format: 0
 Payload: Exterminate! Exterminate!

 Note that the HTTP Code 2.04 (Changed) in the next-to-last message is
 the mapping of HTTP Status Code 200, whereas the CoAP Code 2.05
 (Content) in the last message is the value that was encrypted within
 the compressed COSE object carried in the Body of the HTTP response.

11. Security Considerations

11.1. End-to-end protection

 In scenarios with intermediary nodes such as proxies or gateways,
 transport layer security such as (D)TLS only protects data hop-by-
 hop. As a consequence, the intermediary nodes can read and modify
 information. The trust model where all intermediary nodes are
 considered trustworthy is problematic, not only from a privacy
 perspective, but also from a security perspective, as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases, where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture brittle.

 (D)TLS protects hop-by-hop the entire message. OSCORE protects end-
 to-end all information that is not required for proxy operations (see

Section 4). (D)TLS and OSCORE can be combined, thereby enabling end-
 to-end security of the message payload, in combination with hop-by-
 hop protection of the entire message, during transport between end-
 point and intermediary node. The CoAP messaging layer, including
 header fields such as Type and Message ID, as well as CoAP message
 fields Token and Token Length may be changed by a proxy and thus
 cannot be protected end-to-end. Error messages occurring during CoAP
 processing are protected end-to-end. Error messages occurring during
 OSCORE processing are not always possible to protect, e.g. if the
 receiving endpoint cannot locate the right security context. It may
 still be favorable to send an unprotected error message, e.g. to
 prevent extensive retransmissions, so unprotected error messages are
 allowed as specified. Similar to error messages, signaling messages
 are not always possible to protect as they may be intended for an
 intermediary. Hop-by-hop protection of signaling messages can be
 achieved with (D)TLS. Applications using unprotected error and
 signaling messages need to consider the threat that these messages
 may be spoofed.

Selander, et al. Expires September 15, 2018 [Page 42]

Internet-Draft OSCORE March 2018

11.2. Security Context Establishment

 The use of COSE to protect messages as specified in this document
 requires an established security context. The method to establish
 the security context described in Section 3.2 is based on a common
 shared secret material in client and server, which may be obtained,
 e.g., by using the ACE framework [I-D.ietf-ace-oauth-authz]. An
 OSCORE profile of ACE is described in [I-D.ietf-ace-oscore-profile].

11.3. Replay Protection

 Most AEAD algorithms require a unique nonce for each message, for
 which the sender sequence numbers in the COSE message field 'Partial
 IV' is used. If the recipient accepts any sequence number larger
 than the one previously received, then the problem of sequence number
 synchronization is avoided. With reliable transport, it may be
 defined that only messages with sequence number which are equal to
 previous sequence number + 1 are accepted. The alternatives to
 sequence numbers have their issues: very constrained devices may not
 be able to support accurate time, or to generate and store large
 numbers of random nonces. The requirement to change key at counter
 wrap is a complication, but it also forces the user of this
 specification to think about implementing key renewal.

11.4. Cryptographic Considerations

 The maximum sender sequence number is dependent on the AEAD
 algorithm. The maximum sender sequence number SHALL be 2^40 - 1, or
 any algorithm specific lower limit, after which a new security
 context must be generated. The mechanism to build the nonce
 (Section 5.2) assumes that the nonce is at least 56 bit-long, and the
 Partial IV is at most 40 bit-long. The mandatory-to-implement AEAD
 algorithm AES-CCM-16-64-128 is selected for compatibility with CCM*.

 The security level of a system with m Masters Keys of length k used
 together with Master Salts with entropy n is k + n - log2(m).
 Similarly, the security level of a system with m AEAD keys of length
 k used together with AEAD nonces of length n is k + n - log2(m).
 Security level here means that an attacker can recover one of the m
 keys with complexity 2^(k + n) / m. Protection against such attacks
 can be provided by increasing the size of the keys or the entropy of
 the Master Salt. The complexity of recovering a specific key is
 still 2^k (assuming the Master Salt/AEAD nonce is public). The
 Master Secret, Sender Key, and Recipient Key MUST be secret, the rest
 of the parameters MAY be public. The Master Secret MUST be uniformly
 random.

Selander, et al. Expires September 15, 2018 [Page 43]

Internet-Draft OSCORE March 2018

11.5. Message Fragmentation

 The Inner Block options enable the sender to split large messages
 into OSCORE-protected blocks such that the receiving endpoint can
 verify blocks before having received the complete message. The Outer
 Block options allow for arbitrary proxy fragmentation operations that
 cannot be verified by the endpoints, but can by policy be restricted
 in size since the Inner Block options allow for secure fragmentation
 of very large messages. A maximum message size (above which the
 sending endpoint fragments the message and the receiving endpoint
 discards the message, if complying to the policy) may be obtained as
 part of normal resource discovery.

11.6. Privacy Considerations

 Privacy threats executed through intermediary nodes are considerably
 reduced by means of OSCORE. End-to-end integrity protection and
 encryption of the message payload and all options that are not used
 for proxy operations, provide mitigation against attacks on sensor
 and actuator communication, which may have a direct impact on the
 personal sphere.

 The unprotected options (Figure 5) may reveal privacy sensitive
 information. In particular Uri-Host SHOULD NOT contain privacy
 sensitive information. CoAP headers sent in plaintext allow, for
 example, matching of CON and ACK (CoAP Message Identifier), matching
 of request and responses (Token) and traffic analysis. OSCORE does
 not provide protection for HTTP header fields which are not CoAP-
 mappable.

 Unprotected error messages reveal information about the security
 state in the communication between the endpoints. Unprotected
 signalling messages reveal information about the reliable transport
 used on a leg of the path. Using the mechanisms described in

Section 7.5 may reveal when a device goes through a reboot. This can
 be mitigated by the device storing the precise state of sender
 sequence number and replay window on a clean shutdown.

 The length of message fields can reveal information about the
 message. Applications may use a padding scheme to protect against
 traffic analysis. As an example, the strings "YES" and "NO" even if
 encrypted can be distinguished from each other as there is no padding
 supplied by the current set of encryption algorithms. Some
 information can be determined even from looking at boundary
 conditions. An example of this would be returning an integer between
 0 and 100 where lengths of 1, 2 and 3 will provide information about
 where in the range things are. Three different methods to deal with
 this are: 1) ensure that all messages are the same length. For

Selander, et al. Expires September 15, 2018 [Page 44]

Internet-Draft OSCORE March 2018

 example, using 0 and 1 instead of "yes" and "no". 2) Use a character
 which is not part of the responses to pad to a fixed length. For
 example, pad with a space to three characters. 3) Use the PKCS #7
 style padding scheme where m bytes are appended each having the value
 of m. For example, appending a 0 to "YES" and two 1's to "NO". This
 style of padding means that all values need to be padded. Similar
 arguments apply to other message fields such as resource names.

12. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

 Note to IANA: Please note all occurrences of "TBD" in this
 specification should be assigned the same number.

12.1. COSE Header Parameters Registry

 The 'kid context' parameter is added to the "COSE Header Parameters
 Registry":

 o Name: kid context

 o Label: TBD1 (Integer value between 1 and 255)

 o Value Type: bstr

 o Value Registry:

 o Description: kid context

 o Reference: Section 5.1 of this document

12.2. CoAP Option Numbers Registry

 The Object-Security option is added to the CoAP Option Numbers
 registry:

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

Selander, et al. Expires September 15, 2018 [Page 45]

Internet-Draft OSCORE March 2018

12.3. CoAP Signaling Option Numbers Registry

 The Object-Security option is added to the CoAP Signaling Option
 Numbers registry:

 +------------+--------+---------------------+-------------------+
 | Applies to | Number | Name | Reference |
 +------------+--------+---------------------+-------------------+
 | 7.xx | TBD | Object-Security | [[this document]] |
 +------------+--------+---------------------+-------------------+

12.4. Header Field Registrations

 The HTTP header field CoAP-Object-Security is added to the Message
 Headers registry:

 +----------------------+----------+----------+-------------------+
 | Header Field Name | Protocol | Status | Reference |
 +----------------------+----------+----------+-------------------+
 | CoAP-Object-Security | http | standard | [[this document]] |
 +----------------------+----------+----------+-------------------+

12.5. Media Type Registrations

 This section registers the 'application/oscore' media type in the
 "Media Types" registry.
 These media types are used to indicate that the content is an OSCORE
 message.

Selander, et al. Expires September 15, 2018 [Page 46]

Internet-Draft OSCORE March 2018

 Type name: application

 Subtype name: oscore

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[This document]].

 Interoperability considerations: N/A

 Published specification: [[This document]]

 Applications that use this media type: IoT applications sending
 security content over HTTP(S) transports.

 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: N/A

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Goeran Selander, goran.selander@ericsson.com

 Change Controller: IESG

 Provisional registration? No

Selander, et al. Expires September 15, 2018 [Page 47]

Internet-Draft OSCORE March 2018

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014, <https://www.rfc-

editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015, <https://www.rfc-

editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959

Selander, et al. Expires September 15, 2018 [Page 48]

Internet-Draft OSCORE March 2018

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017, <https://www.rfc-

editor.org/info/rfc8075>.

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/info/rfc8132>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017, <https://www.rfc-

editor.org/info/rfc8288>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

13.2. Informative References

 [I-D.bormann-6lo-coap-802-15-ie]
 Bormann, C., "Constrained Application Protocol (CoAP) over
 IEEE 802.15.4 Information Element for IETF", draft-

bormann-6lo-coap-802-15-ie-00 (work in progress), April
 2016.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-03 (work in progress), July 2017.

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Minimal Security Framework for 6TiSCH", draft-ietf-

6tisch-minimal-security-05 (work in progress), March 2018.

https://datatracker.ietf.org/doc/html/rfc8075
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8075
https://datatracker.ietf.org/doc/html/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-bormann-6lo-coap-802-15-ie-00
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-05
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-05

Selander, et al. Expires September 15, 2018 [Page 49]

Internet-Draft OSCORE March 2018

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-oauth-

authz-10 (work in progress), February 2018.

 [I-D.ietf-ace-oscore-profile]
 Seitz, L., Palombini, F., and M. Gunnarsson, "OSCORE
 profile of the Authentication and Authorization for
 Constrained Environments Framework", draft-ietf-ace-

oscore-profile-00 (work in progress), December 2017.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-02
 (work in progress), February 2018.

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "Echo and
 Request-Tag", draft-ietf-core-echo-request-tag-00 (work in
 progress), October 2017.

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., and J. Park,
 "Secure group communication for CoAP", draft-ietf-core-

oscore-groupcomm-01 (work in progress), March 2018.

 [I-D.mattsson-ace-tls-oscore]
 Mattsson, J., "Using Transport Layer Security (TLS) to
 Secure OSCORE", draft-mattsson-ace-tls-oscore-00 (work in
 progress), October 2017.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., Palombini, F.,
 and C. Amsuess, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-04 (work in progress), March
 2018.

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-

cose-ecdhe-07 (work in progress), July 2017.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-00
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-00
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-01
https://datatracker.ietf.org/doc/html/draft-mattsson-ace-tls-oscore-00
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-04
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-04
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-07
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-07
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986

Selander, et al. Expires September 15, 2018 [Page 50]

Internet-Draft OSCORE March 2018

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010, <https://www.rfc-

editor.org/info/rfc5869>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014, <https://www.rfc-

editor.org/info/rfc7228>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7967] Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
 Bose, "Constrained Application Protocol (CoAP) Option for
 No Server Response", RFC 7967, DOI 10.17487/RFC7967,
 August 2016, <https://www.rfc-editor.org/info/rfc7967>.

Appendix A. Scenario Examples

 This section gives examples of OSCORE, targeting scenarios in
 Section 2.2.1.1 of [I-D.hartke-core-e2e-security-reqs]. The message
 exchanges are made, based on the assumption that there is a security
 context established between client and server. For simplicity, these
 examples only indicate the content of the messages without going into
 detail of the (compressed) COSE message format.

A.1. Secure Access to Sensor

 This example illustrates a client requesting the alarm status from a
 server.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7967
https://www.rfc-editor.org/info/rfc7967

Selander, et al. Expires September 15, 2018 [Page 51]

Internet-Draft OSCORE March 2018

 Client Proxy Server
 | | |
 +------>| | Code: 0.02 (POST)
 | POST | | Token: 0x8c
 | | | Object-Security: [kid:5f,Partial IV:42]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"alarm_status"}
 | | |
 | +------>| Code: 0.02 (POST)
 | | POST | Token: 0x7b
 | | | Object-Security: [kid:5f,Partial IV:42]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"alarm_status"}
 | | |
 | |<------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7b
 | | | Object-Security: -
 | | | Payload: {Code:2.05, "OFF"}
 | | |
 |<------+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: {Code:2.05, "OFF"}
 | | |

 Figure 11: Secure Access to Sensor. Square brackets [...] indicate
 content of compressed COSE object. Curly brackets { ... } indicate
 encrypted data.

 The request/response Codes are encrypted by OSCORE and only dummy
 Codes (POST/Changed) are visible in the header of the OSCORE message.
 The option Uri-Path ("alarm_status") and payload ("OFF") are
 encrypted.

 The COSE header of the request contains an identifier (5f),
 indicating which security context was used to protect the message and
 a Partial IV (42).

 The server verifies the request as specified in Section 8.2. The
 client verifies the response as specified in Section 8.4.

A.2. Secure Subscribe to Sensor

 This example illustrates a client requesting subscription to a blood
 sugar measurement resource (GET /glucose), first receiving the value
 220 mg/dl and then a second value 180 mg/dl.

 Client Proxy Server

Selander, et al. Expires September 15, 2018 [Page 52]

Internet-Draft OSCORE March 2018

 | | |
 +------>| | Code: 0.05 (FETCH)
 | FETCH | | Token: 0x83
 | | | Observe: 0
 | | | Object-Security: [kid:ca,Partial IV:15]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"glucose"}
 | | |
 | +------>| Code: 0.05 (FETCH)
 | | FETCH | Token: 0xbe
 | | | Observe: 0
 | | | Object-Security: [kid:ca,Partial IV:15]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"glucose"}
 | | |
 | |<------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0xbe
 | | | Observe: 7
 | | | Object-Security: [Partial IV:32]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "220"}
 | | |
 |<------+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x83
 | | | Observe: 7
 | | | Object-Security: [Partial IV:32]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "220"}

 | | |
 | |<------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0xbe
 | | | Observe: 8
 | | | Object-Security: [Partial IV:36]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "180"}
 | | |
 |<------+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x83
 | | | Observe: 8
 | | | Object-Security: [Partial IV:36]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "180"}
 | | |

 Figure 12: Secure Subscribe to Sensor. Square brackets [...]
 indicate content of compressed COSE object header. Curly brackets {
 ... } indicate encrypted data.

Selander, et al. Expires September 15, 2018 [Page 53]

Internet-Draft OSCORE March 2018

 The request/response Codes are encrypted by OSCORE and only dummy
 Codes (FETCH/Changed) are visible in the header of the OSCORE
 message. The options Content-Format (0) and the payload ("220" and
 "180"), are encrypted.

 The COSE header of the request contains an identifier (ca),
 indicating the security context used to protect the message and a
 Partial IV (15). The COSE headers of the responses contains Partial
 IVs (32 and 36).

 The server verifies that the Partial IV has not been received before.
 The client verifies that the responses are bound to the request and
 that the Partial IVs are greater than any Partial IV previously
 received in a response bound to the request.

Appendix B. Deployment examples

 OSCORE may be deployed in a variety of settings, a few examples are
 given in this section.

B.1. Master Secret Used Once

 For settings where the Master Secret is only used during deployment,
 the uniqueness of AEAD nonce may be assured by persistent storage of
 the security context as described in this specification (see

Section 7.5). For many IoT deployments, a 128 bit uniformly random
 Master Key is sufficient for encrypting all data exchanged with the
 IoT device throughout its lifetime.

B.2. Master Secret Used Multiple Times

 In cases where the Master Secret needs to be used to derive multiple
 security contexts, e.g. due to recommissioning or where the security
 context is not persistently stored, a stochastically unique Master
 Salt prevents the reuse of AEAD nonce and key. The Master Salt may
 be transported between client and server in the kid context parameter
 (see Section 5.1) of the request.

 In this section we give an example of a procedure which may be
 implemented in client and server to establish the OSCORE security
 context based on pre-established input parameters (see Section 3.2)
 except for the Master Salt which is transported in kid context.

 1. In order to establish a security context with a server for the
 first time, or a new security context replacing an old security
 context, the client generates a (pseudo-)random uniformly
 distributed 64-bit Master Salt and derives the security context
 as specified in Section 3.2. The client protects a request with

Selander, et al. Expires September 15, 2018 [Page 54]

Internet-Draft OSCORE March 2018

 the new Sender Context and sends the message with kid context set
 to the Master Salt.

 2. The server, receiving an OSCORE request with a non-empty kid
 context derives the new security context using the received kid
 context as Master Salt. The server processes the request as
 specified in this document using the new Recipient Context. If
 the processing of the request completes without error, the server
 responds with an Echo option as specified in
 [I-D.ietf-core-echo-request-tag]. The response is protected with
 the new Sender Context.

 3. The client, receiving a response with an Echo option to a request
 which used a new security context, verifies the response using
 the new Recipient Context, and if valid repeats the request with
 the Echo option (see [I-D.ietf-core-echo-request-tag]) using the
 new Sender Context. Subsequent message exchanges (unless
 superseded) are processed using the new security context without
 including the Master Salt in the kid context.

 4. The server, receiving a request with a kid context and a valid
 Echo option (see [I-D.ietf-core-echo-request-tag]), repeats the
 processing described in step 2. If it completes without error,
 then the new security context is established, and the request is
 valid. If the server already had an old security context with
 this client that is now replaced by the new security context.

 If the server receives a request without kid context from a client
 with which no security context is established, then the server
 responds with a 4.01 Unauthorized error message with diagnostic
 payload containing the string "Security context not found". This
 could be the result of the server having lost its security context or
 that a new security context has not been successfully established,
 which may be a trigger for the client to run this procedure.

B.3. Client Aliveness

 The use of a single OSCORE request and response enables the client to
 verify that the server's identity and aliveness through actual
 communications. While a verified OSCORE request enables the server
 to verify the identity of the entity who generated the message, it
 does not verify that the client is currently involved in the
 communication, since the message may be a delayed delivery of a
 previously generated request which now reaches the server. To verify
 the aliveness of the client the server may initiate an OSCORE
 protected message exchange with the client, e.g. by switching the
 roles of client and server as described in Section 3.1, or by using

Selander, et al. Expires September 15, 2018 [Page 55]

Internet-Draft OSCORE March 2018

 the Echo option in the response to a request from the client
 [I-D.ietf-core-echo-request-tag].

Appendix C. Test Vectors

 This appendix includes the test vectors for different examples of
 CoAP messages using OSCORE.

C.1. Test Vector 1: Key Derivation with Master Salt

 Given a set of inputs, OSCORE defines how to set up the Security
 Context in both the client and the server. The default values are
 used for AEAD Algorithm and KDF.

C.1.1. Client

 Inputs:

 o Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

 o Master Salt: 0x9e7ca92223786340 (8 bytes)

 o Sender ID: 0x (0 byte)

 o Recipient ID: 0x01 (1 byte)

 From the previous parameters,

 o info (for Sender Key): 0x84400A634b657910 (8 bytes)

 o info (for Recipient Key): 0x8441010A634b657910 (9 bytes)

 o info (for Common IV): 0x84400a6249560d (7 bytes)

 Outputs:

 o Sender Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

 o Recipient Key: 0xe534a26a64aa3982e988e31f1e401e65 (16 bytes)

 o Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

C.1.2. Server

 Inputs:

 o Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

Selander, et al. Expires September 15, 2018 [Page 56]

Internet-Draft OSCORE March 2018

 o Master Salt: 0x9e7ca92223786340 (64 bytes)

 o Sender ID: 0x01 (1 byte)

 o Recipient ID: 0x (0 byte)

 From the previous parameters,

 o info (for Sender Key): 0x8441010A634b657910 (9 bytes)

 o info (for Recipient Key): 0x84400A634b657910 (8 bytes)

 o info (for Common IV): 0x84400a6249560d (7 bytes)

 Outputs:

 o Sender Key: 0xe534a26a64aa3982e988e31f1e401e65 (16 bytes)

 o Recipient Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

 o Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

C.2. Test Vector 2: Key Derivation without Master Salt

 Given a set of inputs, OSCORE defines how to set up the Security
 Context in both the client and the server. The default values are
 used for AEAD Algorithm, KDF, and Master Salt.

C.2.1. Client

 Inputs:

 o Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

 o Sender ID: 0x00 (1 byte)

 o Recipient ID: 0x01 (1 byte)

 From the previous parameters,

 o info (for Sender Key): 0x8441000A634b657910 (9 bytes)

 o info (for Recipient Key): 0x8441010A634b657910 (9 bytes)

 o info (for Common IV): 0x84400a6249560d (7 bytes)

 Outputs:

Selander, et al. Expires September 15, 2018 [Page 57]

Internet-Draft OSCORE March 2018

 o Sender Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

 o Recipient Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

C.2.2. Server

 Inputs:

 o Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

 o Sender ID: 0x01 (1 byte)

 o Recipient ID: 0x00 (1 byte)

 From the previous parameters,

 o info (for Sender Key): 0x8441010A634b657910 (9 bytes)

 o info (for Recipient Key): 0x8441000A634b657910 (9 bytes)

 o info (for Common IV): 0x84400a6249560d (7 bytes)

 Outputs:

 o Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o Recipient Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

 o Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

C.3. Test Vector 3: OSCORE Request, Client

 This section contains a test vector for a OSCORE protected CoAP GET
 request using the security context derived in Appendix C.1. The
 unprotected request only contains the Uri-Path option.

 Unprotected CoAP request:
 0x440149c60000f2a7396c6f63616c686f737483747631 (22 bytes)

 Common Context:

 o AEAD Algorithm: 10 (AES-CCM-16-64-128)

 o Key Derivation Function: HKDF SHA-256

 o Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

Selander, et al. Expires September 15, 2018 [Page 58]

Internet-Draft OSCORE March 2018

 Sender Context:

 o Sender ID: 0x00 (1 byte)

 o Sender Key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

 o Sender Sequence Number: 20

 The following COSE and cryptographic parameters are derived:

 o Partial IV: 0x14 (1 byte)

 o kid: 0x00 (1 byte)

 o external_aad: 0x8501810a4100411440 (9 bytes)

 o AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

 o plaintext: 0x01b3747631 (5 bytes)

 o encryption key: 0xf8f3b887436285ed5a66f6026ac2cdc1 (16 bytes)

 o nonce: 0xd0a1949aa253278f34c528d2d8 (13 bytes)

 From the previous parameter, the following is derived:

 o Object-Security value: 0x091400 (3 bytes)

 o ciphertext: 0x55b3710d47c611cd3924838a44 (13 bytes)

 From there:

 o Protected CoAP request (OSCORE message): 0x44026dd30000acc5396c6f6
 3616c686f7374d305091400ff55b3710d47c611cd3924838a44 (37 bytes)

C.4. Test Vector 4: OSCORE Request, Client

 This section contains a test vector for a OSCORE protected CoAP GET
 request using the security context derived in Appendix C.2. The
 unprotected request only contains the Uri-Path option.

 Unprotected CoAP request:
 0x440149c60000f2a7396c6f63616c686f737483747631 (22 bytes)

 Common Context:

 o AEAD Algorithm: 10 (AES-CCM-16-64-128)

Selander, et al. Expires September 15, 2018 [Page 59]

Internet-Draft OSCORE March 2018

 o Key Derivation Function: HKDF SHA-256

 o Common IV: 0x01727733ab49ead385b18f7d91 (13 bytes)

 Sender Context:

 o Sender ID: 0x (0 bytes)

 o Sender Key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

 o Sender Sequence Number: 20

 The following COSE and cryptographic parameters are derived:

 o Partial IV: 0x14 (1 byte)

 o kid: 0x (0 byte)

 o external_aad: 0x8501810a40411440 (8 bytes)

 o AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

 o plaintext: 0x01b3747631 (5 bytes)

 o encryption key: 0x7230aab3b549d94c9224aacc744e93ab (16 bytes)

 o nonce: 0x01727733ab49ead385b18f7d85 (13 bytes)

 From the previous parameter, the following is derived:

 o Object-Security value: 0x0914 (2 bytes)

 o ciphertext: 0x6be9214aad448260ff1be1f594 (13 bytes)

 From there:

 o Protected CoAP request (OSCORE message): 0x44023bfc000066ef396c6f6
 3616c686f7374d2050914ff6be9214aad448260ff1be1f594 (36 bytes)

C.5. Test Vector 5: OSCORE Response, Server

 This section contains a test vector for a OSCORE protected 2.05
 Content response to the request in Appendix C.3. The unprotected
 response has payload "Hello World!" and no options. The protected
 response does not contain a kid nor a Partial IV.

 Unprotected CoAP response:
 0x644549c60000f2a7ff48656c6c6f20576f726c6421 (21 bytes)

Selander, et al. Expires September 15, 2018 [Page 60]

Internet-Draft OSCORE March 2018

 Common Context:

 o AEAD Algorithm: 10 (AES-CCM-16-64-128)

 o Key Derivation Function: HKDF SHA-256

 o Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

 Sender Context:

 o Sender ID: 0x01 (1 byte)

 o Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o Sender Sequence Number: 0

 The following COSE and cryptographic parameters are derived:

 o external_aad: 0x8501810a4100411440 (9 bytes)

 o AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

 o plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

 o encryption key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o nonce: 0xd0a1949aa253278f34c528d2d8 (13 bytes)

 From the previous parameter, the following is derived:

 o Object-Security value: 0x (0 bytes)

 o ciphertext: e4e8c28c41c8f31ca56eec24f6c71d94eacbcdffdc6d (22
 bytes)

 From there:

 o Protected CoAP response (OSCORE message): 0x64446dd30000acc5d008ff
 e4e8c28c41c8f31ca56eec24f6c71d94eacbcdffdc6d (33 bytes)

C.6. Test Vector 6: OSCORE Response with Partial IV, Server

 This section contains a test vector for a OSCORE protected 2.05
 Content response to the request in Appendix C.3. The unprotected
 response has payload "Hello World!" and no options. The protected
 response does not contain a kid, but contains a Partial IV.

Selander, et al. Expires September 15, 2018 [Page 61]

Internet-Draft OSCORE March 2018

 Unprotected CoAP response:
 0x644549c60000f2a7ff48656c6c6f20576f726c6421 (21 bytes)

 Common Context:

 o AEAD Algorithm: 10 (AES-CCM-16-64-128)

 o Key Derivation Function: HKDF SHA-256

 o Common IV: 0xd1a1949aa253278f34c528d2cc (13 bytes)

 Sender Context:

 o Sender ID: 0x01 (1 byte)

 o Sender Key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o Sender Sequence Number: 0

 The following COSE and cryptographic parameters are derived:

 o Partial IV: 0x00 (1 byte)

 o external_aad: 0x8501810a4100411440 (9 bytes)

 o AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

 o plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

 o encryption key: 0xd904cb101f7341c3f4c56c300fa69941 (16 bytes)

 o nonce: 0xd0a1949aa253278e34c528d2cc (13 bytes)

 From the previous parameter, the following is derived:

 o Object-Security value: 0x0100 (2 bytes)

 o ciphertext: 0xa7e3ca27f221f453c0ba68c350bf652ea096b328a1bf (22
 bytes)

 From there:

 o Protected CoAP response (OSCORE message): 0x64442b130000b29ed20801
 00ffa7e3ca27f221f453c0ba68c350bf652ea096b328a1bf (35 bytes)

Selander, et al. Expires September 15, 2018 [Page 62]

Internet-Draft OSCORE March 2018

Appendix D. Security properties

 This appendix discusses security properties of OSCORE.

 TODO

Appendix E. CDDL Summary

 Data structure definitions in the present specification employ the
 CDDL language for conciseness and precision. CDDL is defined in
 [I-D.ietf-cbor-cddl], which at the time of writing this appendix is
 in the process of completion. As the document is not yet available
 for a normative reference, the present appendix defines the small
 subset of CDDL that is being used in the present specification.

 Within the subset being used here, a CDDL rule is of the form "name =
 type", where "name" is the name given to the "type". A "type" can be
 one of:

 o a reference to another named type, by giving its name. The
 predefined named types used in the present specification are:
 "uint", an unsigned integer (as represented in CBOR by major type
 0); "int", an unsigned or negative integer (as represented in CBOR
 by major type 0 or 1); "bstr", a byte string (as represented in
 CBOR by major type 2); "tstr", a text string (as represented in
 CBOR by major type 3);

 o a choice between two types, by giving both types separated by a
 "/";

 o an array type (as represented in CBOR by major type 4), where the
 sequence of elements of the array is described by giving a
 sequence of entries separated by commas ",", and this sequence is
 enclosed by square brackets "[" and "]". Arrays described by an
 array description contain elements that correspond one-to-one to
 the sequence of entries given. Each entry of an array description
 is of the form "name : type", where "name" is the name given to
 the entry and "type" is the type of the array element
 corresponding to this entry.

Acknowledgments

 The following individuals provided input to this document: Christian
 Amsuess, Tobias Andersson, Carsten Bormann, Joakim Brorsson, Esko
 Dijk, Thomas Fossati, Martin Gunnarsson, Klaus Hartke, Jim Schaad,
 Peter van der Stok, Dave Thaler, Marco Tiloca, and Malisa Vucinic.

Selander, et al. Expires September 15, 2018 [Page 63]

Internet-Draft OSCORE March 2018

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

Authors' Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 RISE SICS

 Email: ludwig.seitz@ri.se

Selander, et al. Expires September 15, 2018 [Page 64]

