
CoRE Working Group K. Hartke

Internet-Draft Universitaet Bremen TZI

Intended status: Standards Track Z. Shelby

Expires: August 11, 2011 Sensinode

February 07, 2011

Observing Resources in CoAP

draft-ietf-core-observe-01

Abstract

CoAP is a RESTful application protocol for constrained nodes and

networks. The state of a resource on a CoAP server can change over

time. This specification provides a simple extension for CoAP that

gives clients the ability to observe such changes.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 11, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Overview

*

*

3. Observation Relationships

3.1. Establishment

3.2. Maintenance

3.3. Termination

4. Notifications

4.1. Strategies

4.2. Retransmission

4.3. Reordering

4.4. Caching

5. Lifetime Option

6. Interactions with other CoAP features

6.1. Request Methods

6.2. Block-wise Transfers

6.3. Resource Discovery

7. Security Considerations

8. IANA Considerations

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Examples

Appendix A.1. Proxying

Appendix B. Changelog

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

CoAP [I-D.ietf-core-coap] is an Application Protocol for Constrained

Nodes/Networks. It is intended to provide RESTful services [REST] not

unlike HTTP [RFC2616], while reducing the complexity of implementation

as well as the size of packets exchanged in order to make these

services useful in a highly constrained network of themselves highly

constrained nodes.

The state of a resource on a CoAP server can change over time. We want

to give CoAP clients the ability to observe this change. However,

existing approaches from the HTTP world, such as repeated polling or

long-polls, generate significant complexity and/or overhead and thus

are less applicable in the constrained CoAP world. Instead, a much

simpler mechanism is provided to solve the basic problem of resource

observation. Note that there is no intention for this mechanism to

solve the full set of problems that the existing HTTP solutions solve,

or to replace publish/subscribe networks that solve a much more general

problem [RFC5989].

This short specification describes an architecture and a protocol

design that realizes the well-known subject/observer design pattern

within the REST-based environment of CoAP.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Overview

In the subject/observer design pattern, an object, called the subject,

maintains a list of interested parties, called observers, and notifies

them automatically when a predefined condition, event or state change

occurs. The pattern supports a clean separation between components,

such as data storage and user interface.

The subject typically provides a method for observers to register

themselves with the subject (see Figure 1). The order in which

observers receive notifications is not defined; the subject is free to

use any method to determine the order.

Subject:

Observer:

Observation Relationship:

Notification:

Lifetime:

Observer Subject

 | |

 | Register |

 +----------------->|

 | |

 | Notification |

 |<-----------------+

 | |

 | Notification |

 |<-----------------+

 | |

 | Notification |

 |<-----------------+

 | |

The design pattern is realized in CoAP as follows:

In the context of CoAP, the subject is a resource located at

some CoAP server. The state of the resource may change over time,

ranging from infrequent changes to continuous state updates.

The observer is a CoAP client that is interested in the

current state of the resource at any given time.

A client registers itself with a resource by

sending a modified GET request to the server hosting the resource.

The request causes the server to establish an observation

relationship between the client and the resource. The response to

the GET request supplies the client with a representation of the

current resource state.

Whenever the state of a resource changes, the server

notifies each client that has an observation relationship to the

resource. The notification is an additional response to the GET

request; it supplies the client with a representation of the new

resource state. The response echoes the token specified by the

client in the request, so the client can easily correlate

notifications.

For robustness, an observation relationship is automatically

ended after a negotiated duration of time. A client needs to refresh

the relationship before the lifetime ends if it wants to be kept in

the list of observers. The server includes the remaining lifetime

duration in each notification.

Figure 2 shows an example of a CoAP client establishing an observation

relationship with a resource on a CoAP server and then being notified,

once upon registration and then whenever the state of the resource

changes.

Client Server

 | |

 | GET /temperature |

 | Lifetime: 60 sec | (establish observation relationship)

 | Token: 0x4a |

 +----------------->|

 | |

 | 2.00 OK "22.9 C" |

 | Lifetime: 60 sec | (initial notification of current state)

 | Token: 0x4a |

 |<-----------------+

 | |

 | 2.00 OK "22.8 C" |

 | Lifetime: 44 sec | (notification upon state change)

 | Token: 0x4a |

 |<-----------------+

 | |

 | 2.00 OK "23.1 C" |

 | Lifetime: 12 sec | (notification upon state change)

 | Token: 0x4a |

 |<-----------------+

 | |

3. Observation Relationships

3.1. Establishment

A client registers itself with a resource by sending a GET request that

includes a Lifetime Option. (See Section 5 for the option definition.)

When a server receives such a request, it satisfies the request as with

a basic GET request and, upon success, establishes an observation

relationship between the client and the target resource.

The Lifetime Option indicates the duration for which the server is

requested to maintain the observation relationship before it is ended.

The server MUST NOT establish the relationship with a duration longer

than requested, although it MAY choose to cut short the remaining

lifetime upon registration (or any time while the relationship is

established). The server MUST include the remaining lifetime in each

response sent in reply to the GET request, including the initial

response.

A server that is unable or unwilling to establish an observation

relationship between a client to a resource MUST silently ignore the

Lifetime Option and process the GET request as usual. The resulting

response will not include a Lifetime Option, implying that no

observation relationship was established.

The token specified by the client in the GET request will be echoed by

the server in the initial response and in all notifications sent to the

client during the lifetime of the observation relationship. See Section

4 for the details on notifications.

3.2. Maintenance

For robustness, an observation relationship has to be maintained

through periodic refreshing. If the relationship is not refreshed, it

ends after the duration that is negotiated using the Lifetime Option. A

client refreshes an observation relationship by repeating the original

GET request shortly before the observation lifetime ends.

When a server receives such a repeated request (i.e. a GET request from

a client for which an observation relationship already exists), it MUST

NOT establish a second relationship but replace or update the existing

one with the new duration.

The exact rules for determining if two requests request to establish

the same observation relationship are as follows:

The request URI of the two requests MUST match.

The sources of the two requests MUST match. How this is

determined depends on the security mode used (see Section 10 of

[I-D.ietf-core-coap]): With NoSec, the IP address and port number

of the request sources must match. With other security modes, in

addition to the IP address and UDP port number matching, the

requests must have the same security context.

The Message IDs and any Token Options in the two requests MUST

NOT be taken into account.

A client MAY refresh an observation relationship at any time before the

lifetime ends, for example, when it didn't receive a notification for

some time. However, it is RECOMMENDED that the client does not refresh

the relationship for the time specified in the Max-Age Option of the

most recent notification received, including the initial response.

3.3. Termination

The observation relationship between a client and a resource MUST be

ended when one of the following conditions occurs:

The age of the observation relationship becomes greater than the

negotiated lifetime.

The server sends a notification response with a non-success

response code (4.xx or 5.xx).

The client rejects a confirmable notification with a RST message.

The last attempt of transmitting a confirmable notification to

the client times out.

*

*

*

*

*

*

*

A client MAY terminate an observation relationship before its lifetime

ends. It can do so by performing one of the following actions:

The client rejects a confirmable notification with a RST message.

The client refreshes the observation relationship with a value of

0 seconds, which will cause the server to end any observation

relationship immediately after returning the initial response.

4. Notifications

When an observation relationship is established between a client and a

resource, the client is notified of resource state changes by

additional responses sent in reply to the GET request to the client.

Each such notification response MUST echo the token specified in the

request and specify the remaining duration for which the server

maintains the observation relationship. The order in which observers

are notified about a state change is not defined; the server is free to

use any method to determine the order.

A notification SHOULD have a 2.00 (OK) or 2.03 (Valid) response code.

However, in the event the state of a resource is changed in a way that

would cause a basic GET request to return an error code (for example,

when the resource is deleted), the server SHOULD notify the client with

a notification with an appropriate error code and MUST end the

observation relationship.

The representation format (i.e. the media type) used in any

notification response during the lifetime of an observation relation

MUST be the same format used in the initial response to the GET

request. If the server is unable to continue sending notifications in

the same representation format, it SHOULD send a 5.00 (Internal Server

Error) notification response and MUST end the observation relationship.

A notification may be confirmable or non-confirmable, and the server

can employ different strategies in how it notifies a client; see

Section 4.1 below. The objective is that the state observed by the

client eventually becomes consistent with the actual state of the

resource.

If a client does not recognize the token in a confirmable notification,

it SHOULD reject the message with a RST message (in which case the

server MUST end the observation). Otherwise, the client MUST

acknowledge the message with an ACK message as normal. See Section 4.2

for details on the retransmission of confirmable messages.

Note that notifications may arrive in a different order than sent by

the server due to network latency. A client must be prepared to receive

notifications before the initial response to a GET request, after an

error notification or after the client has requested the server to end

the observation relationship. See Section 4.3 for further details on

message reordering.

Notifications MAY be cached by CoAP end-points. This is detailed in

Section 4.4.

*

*

4.1. Strategies

The objective when notifying clients of state changes is that the state

observed by the client eventually becomes consistent with the actual

state of the resource. This allows the server some liberties in how it

sends notifications, as long as it works towards the objective.

A notification may be sent confirmable or non-confirmable. The message

type used is typically application-dependent and MAY be determined by

the server for each notification individually. For example, for

resources that change in a somewhat predictable or regular fashion,

notifications can be sent in non-confirmable messages. For resources

that change infrequently, notifications can be sent in confirmable

messages. The server can combine these two approaches depending on the

frequency of state changes and the importance of individual

notifications.

A server MAY choose to omit notifying a client of a state change if it

knows that it will send another notification soon (e.g., when the state

is changing frequently or maybe even continuously). Similarly, it MAY

choose to notify a client about the same state change more than once.

For example, when state changes occur in bursts, the server can omit

some notifications, send the others in non-confirmable messages, and

make sure that the client observes the latest state change by repeating

the last notification in a confirmable message.

4.2. Retransmission

According to the core CoAP protocol, confirmable messages are

retransmitted in exponentially increasing intervals for a certain

number of attempts until they are acknowledged by the client. In the

context of observing a resource, it is undesirable to continue

transmitting the representation of a resource state when the state

changed in the meantime. There are many reasons why a client might not

acknowledge a confirmable message, ranging from short interruptions in

the network to a permanent failure of the client.

When a server is retransmitting a confirmable message with a

notification, waiting for an acknowledgement, and wants to notify the

client of a state change using a new confirmable message, it MUST stop

retransmitting the old notification and MUST attempt to transmit the

new notification with the number of attempts remaining from the old

notification. When the last attempt to retransmit a confirmable message

with a notification for a resource times out, the observation

relationship is ended.

4.3. Reordering

Messages with notifications can arrive in a different order than they

were sent. Since the objective is eventual consistency, a client can

safely discard a notification that arrives later than a newer

notification. For this purpose, the remaining lifetime indicated by

notifications as a result of an observation request MUST be strictly

decreasing and the client SHOULD specify a token in a refresh request

that is different from the token in the previous request.

A client MAY discard a notification under the following conditions:

The client receives a notification with a token other than that

specified in the most recent request.

The client receives a notification with the right token but also

with an indicated remaining lifetime duration longer than the

duration specified in the previous notification.

4.4. Caching

As notifications are just additional responses to a GET request, the

same rules on caching apply as to basic responses: CoAP end-points MAY

cache the responses and thereby reduce the response time and network

bandwidth consumption. Both the freshness model and the validation

model are supported.

When a response is fresh in the cache, GET requests can be satisfied

without contacting the origin server. The observation mechanism ensures

that the cache has a fresh response for most of the duration of the

observation lifetime. This is particularly useful when the cache is

located at an CoAP intermediary such as a proxy or reverse proxy. (Note

that the freshness of the stored response is determined by its Max-Age

Option, not the existence of an observation relationship. So a request

can cause the end-point to refresh cache and observation relationship

even while having an relationship.)

When an end-point has one or more responses stored, it can use the Etag

Option to give the origin server an opportunity to select a stored

response to be used. The end-point SHOULD add an Etag Option specifying

the entity-tag of each stored response that is applicable. It MUST keep

those responses in the cache until the observation lifetime ends, the

relationship is terminated or a refresh request with a new set of

entity-tags is. When the observed resource changes its state and the

origin server is about to send a 2.00 (OK) notification, then, whenever

that notification has an entity-tag in the set of entity-tags specified

by the client, it sends a 2.03 (Valid) response with an appropriate

Etag Option instead. The server MUST NOT assume that the recipient has

any response stored other than those identified by the entity-tags in

the most recent observation request.

5. Lifetime Option

No. C/E Name Format Length Default

10 Elective Lifetime uint 1-4 B 0

Options

The Lifetime Option, when present, modifies the GET method so it does

not only retrieve a representation of the current state of the resource

*

*

identified by the request URI once, but also lets the server notify the

client of changes to the resource state for the duration specified in

the option.

In a response, the Lifetime Option indicates a lower bound (e.g., by

rounding down) for the remaining observation lifetime. (Note that the

server can always choose to cut short the observation lifetime before

it echoes this lifetime back in a response.)

The option's value is encoded as a variable-length unsigned integer

(see Appendix A of [I-D.ietf-core-coap]) that indicates a duration of

time measured in seconds.

Note that a Lifetime value of 0 is indicated by leaving out the

Lifetime option, which then defaults to 0.

Since the Lifetime Option is elective, a GET request that includes the

Lifetime Option will automatically fall back to a basic GET request if

the server does not support observations.

6. Interactions with other CoAP features

6.1. Request Methods

If a client has an observation relationship with a resource and

performs a POST, PUT or DELETE request on that resource, the request

MUST NOT affect the observation relationship. However, since such a

request can affect the observed resource, it can cause the server to

send a notification with a resource state representation or end the

observation relationship with an error notification (e.g., when a

DELETE request is successful and the observed resource no longer

exists).

Note that a client cannot perform a GET request on a resource to get a

representation of the current resource state without affecting the

lifetime of an existing observation relation to that resource: the

client is already notified by the server with a fresh representation

whenever the state changes. If the client wants to make sure that is

has a fresh representation and wants to continue being notified, it

should refresh the observation relationship as described in Section

3.2. If the client wants to make sure it has a fresh representation and

does not want to continue being notified, it should perform a GET

request with a lifetime duration of 0 seconds as described in Section

3.3.

6.2. Block-wise Transfers

Resources that are the subject of an observation relationship may be

larger than can be comfortably processed or transferred in one CoAP

message. CoAP provides a block-wise transfer mechanism to address this

problem [I-D.ietf-core-block]. The following rules apply to the

combination of block-wise transfers with notifications:

As with basic GET transfers, the client can indicate its desired

block size in a Block option in the GET request. If it implements

Block, the server SHOULD take note of the block size not just for

the initial response but also for further notifications in this

observation relationship.

Notification responses can make use of the Block option. With

increasing block numbers, the Lifetime option value MUST stay the

same or decrease. The client SHOULD use the Lifetime information

from the last block. All blocks in a notification response SHOULD

also carry an Etag option to ensure they are reassembled

correctly.

6.3. Resource Discovery

Clients can discover interesting resources to observe using CoRE

Resource Discovery [I-D.ietf-core-link-format]. Links with the "obs"

attribute indicate resources that MUST support the mechanism in this

document and are RECOMMENDED to change their state at least once in a

while.

The "obs" attribute is used as a flag, and thus it has no value

component. The attribute MUST NOT appear more than once in a link.

7. Security Considerations

The security considerations of the base protocol [I-D.ietf-core-coap]

apply.

Note that the considerations about amplification attacks are somewhat

amplified in an observation relationship. In NoSec mode, a server MUST

therefore strictly limit the number of messages generated from an

observation relationship that it sends between receiving packets that

confirm the actual interest of the recipient in the data; i.e., any

notifications sent in Non-Confirmable messages MUST be interspersed

with Confirmable messages. (An Attacker may still spoof the

acknowledgements if the Confirmable messages are sufficiently

predictable.)

As with any protocol that creates state, attackers may attempt to

exhaust the resources that the server has available for maintaining

observation relationships. Servers MAY want to access-control this

creation of state. As degraded behavior, the server can always fall

back to a basic GET (no Lifetime option) if it is unwilling or unable

to establish the observation relationship, including if resources for

state are exhausted or nearing exhaustion.

Intermediaries MUST be careful to ensure that notifications cannot be

employed to create a loop. A simple way to break any loops is to employ

caches for forwarding notifications in intermediaries.

*

*

8. IANA Considerations

The following entry is added to the CoAP Option Numbers registry:

Number Name Reference

10 Lifetime [RFCXXXX]

New CoAP Option Numbers

The following entry is added to the CoRE Target Attribute registry:

Name Reference

obs [RFCXXXX]

New CoRE

Target

Attributes

9. Acknowledgements

Carsten Bormann was an original author of this draft and is

acknowledged for significant contribution to this document.

Klaus Hartke was funded by the Klaus Tschira Foundation.

10. References

10.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[I-D.ietf-

core-coap]

Shelby, Z, Hartke, K, Bormann, C and B Frank,

"Constrained Application Protocol (CoAP)",

Internet-Draft draft-ietf-core-coap-04, January

2011.

[I-D.ietf-

core-link-

format]

Shelby, Z, "CoRE Link Format", Internet-Draft

draft-ietf-core-link-format-02, December 2010.

[I-D.ietf-

core-block]

Shelby, Z and C Bormann, "Blockwise transfers in

CoAP", Internet-Draft draft-ietf-core-block-01,

January 2011.

10.2. Informative References

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC5989]
Roach, A.B., "A SIP Event Package for Subscribing to

Changes to an HTTP Resource", RFC 5989, October 2010.

[REST]
Fielding, R, "Architectural Styles and the Design of

Network-based Software Architectures", 2000.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/draft-ietf-core-coap-04
http://tools.ietf.org/html/draft-ietf-core-link-format-02
http://tools.ietf.org/html/draft-ietf-core-block-01
http://tools.ietf.org/html/draft-ietf-core-block-01
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5989
http://tools.ietf.org/html/rfc5989

(Seminal dissertation introducing the REST

architectural style.)

Appendix A. Examples

Client Server

 | |

 | |

 +----->| Header: GET (T=CON, Code=1, MID=0x1633)

 | GET | Token: 0x4a

 | | Uri: coap://sensor.example/temperature

 | | Lifetime: 60sec

 | |

 | |

 |<-----+ Header: 2.00 OK (T=ACK, Code=64, MID=0x1633)

 | 2.00 | Token: 0x4a

 | | Lifetime: 60sec

 | | Payload: "22.9 C"

 | |

 | |

 |<-----+ Header: 2.00 OK (T=NON, Code=64, MID=0x7b50)

 | 2.00 | Token: 0x4a

 | | Lifetime: 59sec

 | | Payload: "22.8 C"

 | |

 | |

 |<-----+ Header: 2.00 OK (T=NON, Code=64, MID=0x7b51)

 | 2.00 | Token: 0x4a

 | | Lifetime: 58sec

 | | Payload: "22.5 C"

 | |

Appendix A.1. Proxying

Client Proxy Server

 | | |

 | | |

 | +----->| Header: GET (T=CON, Code=1, MID=0x5fb8)

 | | GET | Token: 0x1a

 | | | Uri: coap://sensor.example/status

 | | | Lifetime: 3600 sec

 | | |

 | | |

 | |<-----+ Header: 2.00 OK (T=ACK, Code=64, MID=0x5fb8)

 | | 2.00 | Token: 0x1a

 | | | Lifetime: 3600 sec

 | | | Max-Age 120 sec

 | | | Payload: "ready"

 | | |

 | | |

 +----->| | Header: GET (T=CON, Code=1, MID=0x1633)

 | GET | | Token: 0x9a

 | | | Proxy-Uri: coap://sensor.example/status

 | | |

 | | |

 |<-----+ | Header: 2.00 OK (T=ACK, Code=1, MID=0x1633)

 | 2.00 | | Token: 0x9a

 | | | Max-Age: 113 sec

 | | | Payload: "ready"

 | | |

 | | |

 | |<-----+ Header: 2.00 OK (T=NON, Code=64, MID=0x5fc0)

 | | 2.00 | Token: 0x1a

 | | | Lifetime: 1780 sec

 | | | Max-Age: 120 sec

 | | | Payload: "busy"

 | | |

 | | |

 +----->| | Header: GET (T=CON, Code=1, MID=0x1634)

 | GET | | Token: 0x9b

 | | | Proxy-Uri: coap://sensor.example/status

 | | |

 | | |

 |<-----+ | Header: 2.00 OK (T=ACK, Code=1, MID=0x1634)

 | 2.00 | | Token: 0x9b

 | | | Max-Age: 89 sec

 | | | Payload: "busy"

 | | |

Client Proxy Server

 | | |

 | | |

 +----->| | Header: (T=CON, Code=1, MID=0x1633)

 | GET | | Token: 0x6a

 | | | Proxy-Uri: coap://sensor.example/status

 | | | Lifetime: 360 sec

 | | |

 | | |

 |< - - + | Header: (T=ACK, Code=0, MID=0x1633)

 | | |

 | | |

 | +----->| Header: GET (T=CON, Code=1, MID=0xaf90)

 | | GET | Token: 0xaa

 | | | Uri: coap://sensor.example/status

 | | | Lifetime: 1800 sec

 | | |

 | | |

 | |<-----+ Header: 2.00 (T=ACK, Code=64, MID=0xaf90)

 | | 2.00 | Token: 0xaa

 | | | Lifetime: 1800 sec

 | | | Payload: "ready"

 | | |

 | | |

 |<-----+ | Header: 2.00 (T=CON, Code=64, MID=0xaf94)

 | 2.00 | | Token: 0x6a

 | | | Lifetime: 346 sec

 | | | Payload: "ready"

 | | |

 | | |

 + - - >| | Header: (T=ACK, Code=0, MID=0x...)

 | | |

 | | |

 | |<-----+ Header: 2.00 (T=CON, Code=64, MID=0x5a20)

 | | 2.00 | Token: 0xaa

 | | | Lifetime: 1460 sec

 | | | Payload: "busy"

 | | |

 | | |

 | + - - >| Header: (T=ACK, Code=0, MID=0x5a20)

 | | |

 | | |

 |<-----+ | Header: 2.00 (T=CON, Code=64, MID=0xaf9b)

 | 2.00 | | Token: 0x6a

 | | | Lifetime: 6 sec

 | | | Payload: "busy"

 | | |

 | | |

 + - - >| | Header: (T=ACK, Code=0, MID=0xaf9b)

 | | |

Appendix B. Changelog

Changes from ietf-00 to ietf-01:

Name of the option is now simply "Lifetime".

Terminology changed from "subscriptions" to "observation

relationships" (#33).

Clarified establishment of observation relationships.

Clarified that an observation is only identified by the URI of

the observed resource and the identity of the client (#66).

Clarified rules for establishing observation relationships (#68).

Clarified conditions under which an observation relationship is

terminated.

Added explanation on how clients can terminate an observation

relationship before the lifetime ends (#34).

Clarified that the overriding objective for notifications is

eventual consistency of the actual and the observed state (#67).

Specified how a server needs to deal with clients not

acknowledging confirmable messages carrying notifications (#69).

Added a mechanism to detect message reordering (#35).

Added an explanation of how notifications can be cached,

supporting both the freshness and the validation model (#39,

#64).

Clarified that non-GET requests do not affect observation

relationships, and that GET requests without Lifetime Option

affecting relationships is by design (#65).

Described interaction with block-wise transfers (#36).

Added Resource Discovery section (#99).

Added IANA Considerations.

Added Security Considerations (#40).

Added examples (#38).

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Authors' Addresses

Klaus Hartke Hartke Universitaet Bremen TZI Postfach 330440

Bremen, D-28359 Germany Phone: +49-421-218-63905 EMail:

hartke@tzi.org

Zach Shelby Shelby Sensinode Kidekuja 2 Vuokatti, 88600 Finland

Phone: +358407796297 EMail: zach@sensinode.com

mailto:hartke@tzi.org
mailto:zach@sensinode.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	3. Observation Relationships
	3.1. Establishment
	3.2. Maintenance
	3.3. Termination
	4. Notifications
	4.1. Strategies
	4.2. Retransmission
	4.3. Reordering
	4.4. Caching
	5. Lifetime Option
	6. Interactions with other CoAP features
	6.1. Request Methods
	6.2. Block-wise Transfers
	6.3. Resource Discovery
	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgements
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Examples
	Appendix A.1. Proxying
	Appendix B. Changelog
	Authors' Addresses

